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Abstract

ANOVA decompositions are a standard method for describing and estimating heterogeneity

among the means of a response variable across levels of multiple categorical factors. In such

a decomposition, the complete set of main effects and interaction terms can be viewed as a

collection of vectors, matrices and arrays that share various index sets defined by the factor levels.

For many types of categorical factors, it is plausible that an ANOVA decomposition exhibits

some consistency across orders of effects, in that the levels of a factor that have similar main-

effect coefficients may also have similar coefficients in higher-order interaction terms. In such a

case, estimation of the higher-order interactions should be improved by borrowing information

from the main effects and lower-order interactions. To take advantage of such patterns, this

article introduces a class of hierarchical prior distributions for collections of interaction arrays

that can adapt to the presence of such interactions. These prior distributions are based on

a type of array-variate normal distribution, for which a covariance matrix for each factor is

estimated. This prior is able to adapt to potential similarities among the levels of a factor, and

incorporate any such information into the estimation of the effects in which the factor appears.

In the presence of such similarities, this prior is able to borrow information from well-estimated

main effects and lower-order interactions to assist in the estimation of higher-order terms for

which data information is limited.

Key Words: array-valued data; Bayesian estimation; cross-classified data; factorial design; MANOVA;

penalized regression; tensor; Tucker product; sparse data.
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1 Introduction

Cross-classified data are prevalent in many disciplines, including the social and health sciences. For

example, a survey or observational study may record health behaviors of its participants, along

with a variety of demographic variables such as age, ethnicity and education level, by which the

participants can be classified. A common data analysis goal in such settings is the estimation of the

health behavior means for each combination of levels of the demographic factors. In a three-way

layout, for example, the goal is to estimate the three-way table of population cell means, where

each cell corresponds to a particular combination of factor levels. A standard estimator of the table

is provided by the table of sample means, which can alternatively be represented by its ANOVA

decomposition into additive effects and two- and three-way interaction terms.

The cell sample means provide an unbiased estimator of the population means, as long as there

are observations available for each cell. However, if the cell-specific sample sizes are small then

it may be desirable to share information across the cells to reduce the variance of the estimator.

Perhaps the simplest and most common method of information sharing is to assume that certain

mean contrasts among levels of one set of factors are equivalent across levels of another set of

factors, or equivalently, that certain interaction terms in the ANOVA decomposition of population

cell means are exactly zero. This is a fairly large modeling assumption, and can often be rejected

via plots or standard F -tests. If such assumptions are rejected, it still may be desirable to share

information across cell means, although perhaps in a way that does not posit exact relationships

among them.

As a concrete example, consider estimating mean macronutrient intake across levels of age,

ethnicity and education from the National Health and Nutrition Examination Survey (NHANES).

Table 1 summarizes the cell-specific sample sizes for intake of overall carbohydrates as well as two

subcategories (sugar and fiber) by age, ethnicity, and education levels for male respondents (more

details on these data are provided in Section 5). Studies of carbohydrate intake have been motivated

by a frequently cited relationship between carbohydrate intake and health outcomes (Chandalia

et al., 2000; Moerman et al., 1993). However, these studies generally report on marginal means

of carbohydrate intake across demographic variables, and do not take into account potential non-

additivity, or interaction terms, between them (Park et al., 2011; Montonen et al., 2003). A more

detailed understanding of the relationship between mean carbohydrate intake and the demographic
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Mexican Hispanic White Black

Age P S HD AD BD P S HD AD BD P S HD AD BD P S HD AD BD

31-40 21 24 23 17 13 12 8 10 11 1 3 37 56 55 56 1 13 31 35 16

41-50 26 10 19 14 6 11 9 10 9 3 10 25 56 57 50 2 25 21 25 17

51-60 29 11 10 14 10 17 6 12 13 11 10 24 46 57 57 3 23 23 24 14

61-70 31 7 5 11 5 19 4 11 6 7 15 23 56 46 54 16 34 20 33 14

71-80 27 2 3 1 3 10 8 5 2 7 61 37 93 72 68 16 10 11 7 12

Table 1: Cross-tabulation of the demographic variables.

variables can be obtained from a MANOVA decomposition of the means array into main-effects,

two- and three-way interactions. Evidence for interactions can be assessed with approximate F -tests

based on the Pillai trace statistics (Olson, 1976), presented in Table 2.

approx F num df den df p-value

Education 11.15 15 6102 < 0.01

Ethnicity 18.07 9 6102 < 0.01

Age 21.38 12 6102 < 0.01

Education:Ethnicity 1.67 36 6102 0.01

Education:Age 1.60 48 6102 0.01

Ethnicity:Age 2.05 36 6102 < 0.01

Education:Ethnicity:Age 1.44 144 6102 < 0.01

Table 2: Testing MANOVA variance components via Pillai’s trace statistic.

The F -tests indicate strong evidence that the two- and three-way interactions are not zero.

Based on these results, standard practice would be to retain the full model and describe the in-

teraction patterns via various contrasts of sample cell means. However, OLS estimates of these

interactions typically have undesirably high mean squared error (MSE), due to the small number of

observations for each two- or three-way combination of factors. A variety of penalized least squares

procedures have been proposed in order to reduce MSE, such as ridge regression and the lasso.

Recent variants of these approaches allow for different penalties on ANOVA terms of different or-

ders, including the ASP method of Beran (2005), and grouped versions of the lasso (Yuan and Lin,
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Figure 1: Plots of main effects and interaction correlations for the three outcome variables (car-

bohydrates, sugar and fiber). The first row of plots gives OLS estimates of the main effects for

each factor. The second row of plots gives correlations of effects between levels of each factor, with

white representing 1 and black representing -1.

2007; Friedman et al., 2010). Corresponding Bayesian approaches include Bayesian lasso proce-

dures (Yuan and Lin, 2005; Genkin et al., 2007; Park and Casella, 2008) and multilevel hierarchical

priors (Pittau et al., 2010; Park et al., 2006).

While these procedures attain a reduced MSE by shrinking linear model coefficient estimates

towards zero, they do not generally take full advantage of the structure that is often present in

cross-classified datasets. In the data analysis example above, two of the three factors (age and

education) are ordinal, with age being a binned version of a continuous predictor. Considering

factors such as these more generally, suppose a categorical factor x is a binned version of some

underlying continuous or ordinal explanatory variable x̃ (such as income, age, number of children

or education level). If the mean of the response variable y is smoothly varying in the underlying
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variable x̃, we would expect that adjacent levels of the factor x would have similar main effects

and interaction terms. Similarly, for non-ordinal factors (such as ethnic group or religion) it is

possible that two levels represent similar populations, and thus may have similar main-effects and

interaction terms as well. We refer to such similarities across the orders of the effects as order

consistent interactions,

Returning to the NHANES data, Figure 1 summarizes the OLS estimates of the main effects

and two-way interactions for the three outcome variables (carbohydrates, sugar and fiber). Not

surprisingly, the main effects for the ordinal factors (age and education) are “smooth,” in that

the estimated main effect for a given level is generally similar to the effect for an adjacent level.

Additionally, some similarities among the ethnic groups appear consistent across the three outcome

variables. To assess consistency of such similarities between main effects and two-way interactions,

we computed correlations of parameter estimates for these effects between levels of each factor.

For example, there are 3 × 10 = 30 main-effect and two-way interaction estimates involving each

level of age: For each of the three outcome variables, there is 1 main-effect estimate for each age

level, 4 estimates from the age by ethnicity interaction and 5 estimates from the age by education

interaction. We compute a correlation matrix for the five levels of age based on the resulting 30×5

matrix of parameter estimates, and similarly compute correlations among levels of ethnicity and

among levels of education. The second row of Figure 1 gives grayscale plots of these correlation

matrices. The results suggest some degree of order consistent interactions: For the ordinal factors,

the highest correlations are among adjacent pairs. For the ethnicity factor, the results suggest that

on average, the effects for the Mexican category are more similar to the Hispanic category than to

the other ethnic categories, as we might expect.

The OLS estimates of the main effects and two-way interactions presented above, along with the

fact that two of the three factors are ordinal, suggest the possibility of order consistent interactions

among the array of population cell means. More generally, order consistent interactions may be

present in a variety of datasets encountered in the social and health sciences, especially those

that include ordinal factors, or factors for which some of the levels may represent very similar

populations. In this paper, we propose a novel class of hierarchical prior distributions over main

effects and interaction arrays that can adapt to the presence of order consistent interactions. The

hierarchical prior distribution provides joint estimates of a covariance matrix for each factor, along

5



with the factor main effects and interactions. Roughly speaking, the covariance matrix for a given

factor is estimated from the main effects and interactions in which the factor appears. Conversely,

an estimate of a factor’s covariance matrix can assist in the estimation of higher-order interactions,

for which data information is limited. We make this idea more formal in the next section, where

we construct our prior distribution from a set of related array normal distributions with separable

covariance structures (Hoff, 2011), and provide a Markov chain Monte Carlo algorithm for inference

under this prior. In Section 3 we provide a simulation study comparing estimation under our

proposed prior to some standard estimators. As expected, our approach outperforms others when

the data exhibit order consistent interactions. Additionally, for data lacking any interactions, our

approach performs comparably to the OLS estimates obtained from the additive model (i.e. the

oracle estimator). In Section 4 we extend this methodology to MANOVA models in order to

analyze the multivariate NHANES data presented above. In addition to estimates of main effects

and interactions, our analysis provides measures of similarity between levels of each of the factors.

We conclude in Section 5 with a summary of our approach and a discussion of possible extensions.

2 A hierarchical prior for interaction arrays

In this section we introduce the hierarchical array (HA) prior, and present a Markov chain Monte

Carlo (MCMC) algorithm for posterior approximation and parameter estimation. The HA prior

is constructed from several semi-conjugate priors, and so the MCMC algorithm can be based on a

straightforward Gibbs sampling scheme.

2.1 The hierarchical array prior

For notational convenience we consider the case of three categorical factors, and note that the

HA prior generalizes trivially to accommodate a greater number of factors. Suppose the three

categorical factors have levels {1, . . . ,m1}, {1, . . . ,m2} and {1, . . . ,m3} respectively. The standard

ANOVA model for a three-way factorial dataset is

yijkl = µ+ ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + εijkl (1)

{εijkl} ∼ i.i.d. normal(0, σ2).
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Let a denote the m1 × 1 vector of main effects for the first factor, (ab) denote the m1 ×m2 matrix

describing the two-way interaction between the first two factors, (abc) denote the m1 ×m2 ×m3

three-way interaction array, and let b, c, (ac), and (bc) be defined similarly. Bayesian inference

for this model proceeds by specifying a prior distribution for the ANOVA decomposition θ =

{µ, a, b, c, (ab), (ac), (bc), (abc)} and the error variance σ2.

As described in the Introduction, if two levels of a factor represent similar populations, we

would expect that coefficients of the decomposition involving these two levels would have similar

values. For example, suppose levels i1 and i2 of the first factor correspond to similar populations.

We might then expect ai1 to be close to ai2 , the vector {(ab)i1,j , j = 1, . . . ,m2} to be close to the

vector {(ab)i2,j , j = 1, . . . ,m2}, and so on. We represent this potential similarity between levels

of the first factor with a covariance matrix Σa, and consider a prior distribution on the ANOVA

decomposition such that

Cov[a] = E[aaT ] = Σa,

E[(ab)(ab)T ] = kabΣa,

E[(ac)(ac)T ] = kacΣa,

E[(abc)(1)(abc)
T
(1)] = kabcΣa,

where kab, kac and kabc are scalars. Here, (abc)(1) is the matricization of the array (abc), which

converts the m1 × m2 × m3 array into an m1 × (m2m3) matrix (Kolda and Bader, 2009). To

accommodate similar structure for the second and third factors, we propose the following prior

covariance model for the main effects and interaction terms:

Cov[a] = Σa Cov[b] = Σb Cov[c] = Σc

Cov[vec(ab)] = Σb ⊗ Σa/γab Cov[vec(bc)] = Σc ⊗ Σb/γbc Cov[vec(ac)] = Σc ⊗ Σa/γac

Cov[vec(abc)] = Σc ⊗ Σb ⊗ Σa/γabc,

where “⊗” is the Kronecker product. The covariance matrices Σa, Σb and Σc represent the simi-

larities between the levels of each of the three factors, while the scalars γab, γac, γbc, γabc represent

the relative (inverse) magnitudes of the interaction terms as compared to the main effects. Further

specifying the priors on the ANOVA decomposition parameters as being mean-zero and Gaussian,

the prior on a is then the multivariate normal distribution Nm1(0,Σa), and the prior on vec(ab) is
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Nm1m2(0,Σb ⊗ Σa/γab). This latter distribution is sometimes referred to as a matrix normal dis-

tribution (Dawid, 1981). Similarly, the prior on vec(abc) is Nm1m2m3(0,Σc ⊗ Σb ⊗ Σa/γabc), which

has been referred to as an array normal distribution (Hoff, 2011).

In most data analysis situations the similarities between the levels of a given factor and mag-

nitudes of the interactions relative to the main effects will not be known in advance. We there-

fore consider a hierarchical prior so that Σa, Σb, Σc and the γ-parameters are estimated from

the data. Specifically, we use independent inverse-Wishart prior distributions for each covariance

matrix, e.g. Σa ∼ inverse-Wishart(ηa0, S
−1
a0 ) and gamma priors for the γ-parameters, e.g. γab ∼

gamma(νab0/2, τ
2
ab0/2), where ηa, Sa, νab0 and τ2

ab0 are hyperparameters to be specified (some de-

fault choices for these parameters are discussed at the end of this section). This hierarchical prior

distribution can be viewed as an adaptive penalty, which allows for sharing of information across

main effects and interaction terms: For example, any similarities between levels of the first factor

that are consistent across the main effects and two-way interactions will be reflected in the estimate

of Σa, which in turn assists in the estimation of the three-way interaction for which there is limited

data information.

2.2 Posterior approximation

Due to the semi-conjugacy of the HA prior, posterior approximation can be obtained from a straight-

forward Gibbs sampling scheme. Under this scheme, iterative simulation of parameter values from

the corresponding full conditional distributions generates a Markov chain having a stationary dis-

tribution equal to the target posterior distribution. For computational simplicity, we consider the

case of a balanced dataset in which the sample size in each cell is equal to some common value n,

in which case the data can be expressed as an m1×m2×m3×n four-way array Y . A modification

of the algorithm to accommodate unbalanced data is discussed in the next subsection.

Derivation of the full conditional distributions of the grand mean µ and the error variance σ2 are

completely standard: Under a N(µ0, τ
2
0 ) prior for µ, the corresponding full conditional distribution

is N(µ1, τ
2
1 ), where τ2

1 = (1/τ2
0 +nm1m2m3/σ

2)−1 and µ1 = τ2
1 (µ0/τ

2
0 +nm1m2m3r̄/σ

2), where r̄ =∑
ijkl(yijkl−[ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ikj ])/n. Under an inverse-gamma

(
ν0/2, ν0σ

2
0/2
)

prior distribution, the full conditional distribution of σ2 is an inverse-gamma
(
ν1/2, ν1σ

2
1/2
)

distri-

bution, where ν1 = ν0 + nm1m2m3, ν1σ
2
1 = ν0σ

2
0 +

∑
ijkl (yijkl − µijk)

2 and µijk = µ + ai + bj +

8



ck + (ab)ij + (ac)ik + (bc)jk + (abc)ikj . Derivation of the full conditional distributions of param-

eters other than µ and σ2 is straightforward, but slightly non-standard due to the use of matrix

and array normal prior distributions for the interaction terms. In what follows, we compute the

full conditional distributions for a few of these parameters. Full conditional distributions for the

remaining parameters can be derived in an analogous fashion.

Full conditionals of a and (abc): To identify the full conditional distribution of the vector a of

main effects for the first factor, let

rijkl = yijkl −
(
µ+ bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk

)
= ai + εijkl,

i.e., rijkl is the “residual” obtained by subtracting all effects other than a from from the data. Since

{εijkl} ∼ i.i.d. normal(0, σ2), we have

p(Y |θ, σ2) ∝a exp
{
−m2m3n

2σ2
(aTa− 2aT r̄)

}
,

where r̄ = (r̄1, . . . , r̄m1) with r̄i =
∑

jkl rijkl/(m2m3n), θ = {a, b, c, (ab), (ac), (bc), (abc)} and “∝a”

means “proportional to as a function of a.” Combining this with the Nm1(0,Σa) prior distribution

for a, we have

p(a|Y, θ−a, σ2) ∝a exp

(
−m2m3n

2σ2

[
aTa− 2aT r̄

]
− 1

2
aTΣ−1

a a

)
and so the full conditional distribution of a is multivariate normal with

Var[a|Y, θ−a, σ2] =
(
Σ−1
a + Im2m3n/σ

2
)−1

E[a|Y, θ−a, σ2] =
(
Σ−1
a + Im2m3n/σ

2
)−1

r̄ × (m2m3n/σ
2),

where I is the m1 ×m1 identity matrix.

Derivation of the full conditional distributions for the interaction terms is similar. For example,

to obtain the full conditional distribution of (abc) let rijkl be the residual obtained after subtracting

all other components of θ from the data, so that rijkl = (abc)ijk + εijkl. Let r̄ be the three-way

array of cell means of {rijkl}, so that r̄ijk =
∑

l rijkl/n. Combining the likelihood in terms of r̄

with the Nm1m2m3(0,Σc ⊗ Σb ⊗ Σa/γabc) prior density for vec(abc) gives

p
(
(abc) |Y, σ2,Σa,Σb,Σc, γabc, θ−(abc)

)
∝(abc) exp

(
−n

2

[
vec (abc)T vec (abc)− 2vec (abc)T vec(r̄)

])
×

exp

(
−1

2
vec (abc)T (Σc ⊗ Σb ⊗ Σc/γabc)

−1 vec (abc)

)
9



and so vec(abc) has a multivariate normal distribution with variance and mean given by

Var[vec(abc)|Y, θ−(abc), σ
2] =

(
(Σc ⊗ Σb ⊗ Σa/γabc)

−1 + In/σ2
)−1

E[vec(abc)|Y, θ−(abc), σ
2] =

(
(Σc ⊗ Σb ⊗ Σa/γabc)

−1 + In/σ2
)−1

vec(r̄)× n/σ2.

Full conditional distributions for the remaining effects can be derived analogously.

Full conditional of Σa: The parameters in the ANOVA decomposition whose priors depend on

Σa are a, (ab), (ac) and (abc). For example, the conditional density of (ab) given Σa, Σb and γab

can be written as

p((ab)|Σa,Σb, γab) = |2πΣb ⊗ Σa/γab|−1/2 exp
(
−vec(ab)T [Σb ⊗ Σa/γab]

−1vec(ab)/2
)

∝Σa |Σa|−m2/2etr
(
−Σ−1

a γab(ab)
TΣ−1

b (ab)/2
)

= |Σa|−m2/2etr(−Σ−1
a Sab/2),

where Sab = γab(ab)
TΣ−1

b (ab) and etr(A) = exp{trace(A)} for a square matrix A. Similarly, the

priors for a, (ac) and (abc) involve the following terms:

Sa = aaT

Sac = γac(ac)Σ
−1
c (ac)T

Sabc = γabc(abc)(1)(Σc ⊗ Σb)
−1(abc)T(1).

Multiplying together the prior densities for a, (ab), (ac) and (abc) and the inverse-Wishart(ηa0, S
−1
a0 )

prior density for Σa gives

p(Σa|θ,Σb,Σc, γ) ∝ |Σa|−(1+m1+ηa0+1+m2+m3+m2m3)/2 etr
(
−Σ−1

a (Sa0 + Sa + Sab + Sac + Sabc)/2
)
.

It follows that the full conditional distribution of Σa is inverse-Wishart
(
ηa1, S

−1
a1

)
where ηa1 =

ηa0 +(1 +m2 +m3 +m2m3) and Sa1 = Sa0 +Sa+Sab+Sac+Sabc. The full conditional expectation

of Σa is therefore Sa1/ (ηa1 −m1 − 1), which combines several estimates of the similarities among

the levels of the first factor, based the main effects and the interactions.

Full conditional of γabc: The full conditional distribution of γabc depends only on the (abc)

interaction term. The normal prior for (abc) can be written as

p((abc)|Σa,Σb,Σc, γabc) ∝γabc γ
m1m2m3/2
abc exp{−γabcvec(abc)T [Σc ⊗ Σb ⊗ Σa]

−1vec(abc)T /2}

10



Combining this density with a gamma(νabc0/2, τ
2
abc0/2) prior density yields a full conditional for

γabc that is gamma
(
νabc1/2, τ

2
abc1/2

)
, where

νabc1 = νabc0 +m1m2m3

τ2
abc1 = τ2

abc0 + vec(abc)T [Σc ⊗ Σb ⊗ Σa]
−1vec(abc).

2.3 Balancing unbalanced designs

For most survey data we expect the sample sizes {nijk} to vary across combinations of factors. As a

result, the full conditional distributions of the ANOVA decomposition parameters are more difficult

to compute. For example, the conditional variance of the three-way interaction vec(abc) changes

from
(
γabc (Σc ⊗ Σb ⊗ Σa)

−1 + In/σ2
)−1

in the balanced case to
(
γabc (Σc ⊗ Σb ⊗ Σa)

−1 +D/σ2
)−1

in the general case, where D is a diagonal matrix with diagonal elements vec({nijk}). Even for

moderate numbers of levels of the factors, the matrix inversions required to calculate the full

conditional distributions in the unbalanced case can slow down the Markov chain considerably.

As an alternative, we propose the following data augmentation procedure to “balance” an un-

balanced design. Let Ȳ o be the three-way array of cell means based on the observed data, i.e.

ȳoijk =
∑
yijkl/nijk. Letting n = max ({nijk}), for each cell ijk with sample size nijk < n and at

each step of the Gibbs sampler, we impute a cell mean based on the “missing” n−nijk observations

as ȳmijk ∼ normal(µijk, σ
2/[nmax−nijk]), where µijk is the population mean for cell ijk based on the

current values of the ANOVA decomposition parameters. We then combine ȳoijk and ȳmijk to form

the “full sample” cell mean ȳfijk = (nijkȳ
o
ijk + (n− nijk)ȳmijk)/n. This array of cell means provides

the sufficient statistics for a balanced dataset, for which the full conditional distributions derived

above can be used.

2.4 Setting hyperparameters

In the absence of detailed prior information about the parameters, we suggest using a modified

empirical Bayes approach to hyperparameter selection based on the maximum likelihood estimates

(MLEs) of the error variance and mean parameters. Priors for µ and σ2 can be set as unit in-

formation priors (Kass and Wasserman, 1995), whereby hyperparameters are chosen so that the

prior means are near the MLEs but the prior variances are set to correspond roughly to only one

observation’s worth of information. For the covariance matrices Σa, Σb and Σc, recall that the prior
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for the main effect a of the first factor is Nm1(0,Σa). Based on this, we choose the prior for Σa to be

inverse-Wishart(νa0, S
−1
a0 ) with νa0 = m1+2 and Sa0 = |â|2Im1/m1, where â is the MLE of a. Under

this prior, E[tr(Σa)] = |â|2, and so the scale of the prior matches the empirical estimates. Finally,

the γ-parameters can be set analogously, using diffuse gamma priors but centered around values to

match the magnitude of the OLS estimates of the interaction terms they correspond to, relative to

the magnitude of the main effects. For example, in the next section we use a gamma(νab0/2, τ
2
ab0/2)

prior for γab in which ν0 = 1 and τ2
ab0 = |â|2|b̂|2/| ˆ(ab)|2, where â, b̂ and ˆ(ab) are the OLS estimates.

3 Simulation study

This section presents the results of three simulation studies comparing the HA prior to several

competing approaches. The first simulation study uses data generated from a means array that

exhibits order consistent interactions. Estimates based on the HA prior outperform standard OLS

estimates as well as estimates from a standard Bayesian approach that is similar to the one in

Gelman (2005), and is also related to a grouped version of the lasso procedure (Yuan and Lin,

2006). The second simulation study uses data from a means array that exhibits “order inconsistent”

interactions, i.e. interactions without consistent similarities in parameter values between levels of

a factor. In this case the HA prior still outperforms the OLS and standard Bayes approaches,

although not by as much as in the presence of order consistent interactions. The third simulation

study uses data from a means array that has an exact additive decomposition, i.e. there are no

interactions. The HA prior procedure again outperforms the standard Bayes and OLS approaches,

although it does not do as well as OLS and Bayes oracle estimators that assume the correct additive

model.

3.1 Data with order consistent interactions

The data in this simulation study is generated from a model where the means array exhibits order

consistent interactions. The dimensions of the means array M were chosen to be m1 ×m2 ×m3 =

15 × 7 × 3, which could represent, for example, the number of categories we might have for age,

education level and political affiliation in a cross-classified survey dataset. The means array was

generated from a cubic function of three variables that was then binned. Figure 2 plots the mean

array across the third factor, demonstrating the nonadditivity present in M . By decomposing M
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Figure 2: The means array M across levels of the third factor.

into the main, two-way and three-way effects in the same manner as described in Section 2, we

can summarize the nonadditivity of M through the magnitudes of the different sums of squares.

The magnitudes of the main effects ‖a‖2 /m1, ‖b‖2 /m2, and ‖c‖2 /m3 are 5.267, 0.012, 0.004 respec-

tively. Those of the two-way interactions ‖ab‖2 /(m1m2), ‖ac‖2 /(m1m3), and ‖bc‖2 /(m2m3) are

1.365, 1.312, and 0.384, and the magnitude of the three-way interaction ‖abc‖2 /(m1m2m3) is 0.474.

For each sample size n ∈ {400, 1000, 5000, 10000}, we simulated 50 datasets using the mean array M

and independent standard normal errors. In order to make a comparison to OLS possible, we first

allocated one observation to each cell of the means array and then distributed the remaining obser-

vations uniformly, leading to a complete but potentially unbalanced design. The average number

of observations per cell under the sample sizes {400, 1000, 5000, 10000} was {1.3, 3.2, 15.9, 31.7}.

For each simulated dataset we obtained estimates under the HA prior (using the hyperparam-

eter specifications described in Section 2.4), as well as ordinary least squares estimates (OLS) and

posterior estimates under a standard Bayesian prior (SB). The SB approach is essentially a sim-

plified version of the HA prior in which the parameter values are conditionally independent given

the hyperparameters: {ai} ∼ i.i.d. N
(
0, σ2

a

)
, {(ab)ij} ∼ i.i.d. N

(
0, σ2

ab

)
and {(abc)ijk} ∼ i.i.d.(

0, σ2
abc

)
and similarly for all other main effects and interactions. To facilitate comparison to the

HA prior, the hyperpriors for these σ2-parameters are the same as the hyperpriors for the inverses

of the γ-parameters in the HA approach. As a result, this standard Bayes prior can be seen as the

limit of a sequence of HA priors where the inverse-Wishart prior distributions for the Σ-matrices

converge to point-masses on the identity matrices of the appropriate dimension.
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For each simulated dataset, the Gibbs sampler described in Section 2 was run for 11,000 itera-

tions, the first 1,000 of which were dropped to allow for convergence to the stationary distribution.

Parameter values were saved every 10th scan, resulting in 1,000 Monte Carlo samples per simulation.

Starting values for all the mean effects were set to zero and all variances set to identity matrices of

the proper dimensions. We examined the convergence and autocorrelation of the marginal samples

of the error variance σ2 using Geweke’s z-test and the effective sample size. The minimum effective

sample size across all simulations was 233 out of the 1000 recorded scans, and the average effective

sample size was 895. Geweke’s z-statistic was less than 2 in absolute value in 93, 93, 97, and 95

percent of the Markov chains for the four sample sizes (with the percentages being identical for

both Bayesian methods). While the cases in which |z| > 2 were not extensively examined, it is

assumed that running the chain longer would have yielded improved estimation.

For each simulated data set, the posterior mean estimates M̂HA and M̂SB were obtained by

averaging their values across the 1,000 saved iterations of the Gibbs sampler. The average squared

error (ASE) of estimation was calculated as ASE(M̂) = ‖M̂ −M‖2/(m1m2m3) where M is the

means array that generated the data. These values were then compared across the three approaches.

The left panel of Figure 3 demonstrates that the SB estimator provided a reduction in ASE when
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Figure 3: Comparison of ASE for different estimation methods.

compared to the OLS estimator for all data sets with sample sizes 400 and 1000, 96% of the data sets

with sample size 5000 and 90% of data sets with sample size 10000. The second panel demonstrates

that the HA estimator provides a substantial further reduction in ASE for all data sets. As we

would expect, the reduction in ASE is dependent on the sample size and decreases as the sample
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size increases.

These results are not surprising: By estimating the variances σ2
a, σ

2
ab, etc. from the data, the SB

approach provides adaptive shrinkage and so we expect these SB estimates to outperform the OLS

estimates in terms of ASE. However, the SB approach does not use information on the similarity

among the levels of an effect, and so its estimation of higher order interactions relies on the limited

information available directly in the corresponding sufficient statistics. As such, we expect the SB

estimates to perform less well than the HA estimates, which are able to borrow information from

well-estimated main effects and low-order interactions to assist in the estimation of higher-order

terms for which data information is limited. Additionally, recall that the parameters in the mean

array M were generated by binning a third-degree polynomial, and were not generated from array

normal distributions, i.e. the HA prior is “incorrect” as a model for M . Even so, the HA prior

is able to capture the similarities between adjacent factor levels, resulting in improved estimation.

However, we note that not all of the improvement in ASE achieved by the HA prior should be

attributed to the identification of order-consistent interactions. The simulation study that follows

suggests some of the performance of the HA prior is due to additional parameter shrinkage provided

by the inverse-Wishart distributions on the Σ-matrices

3.2 Data with order inconsistent interactions
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Figure 4: The means array M for the second simulation study, across levels of the third factor.

In this subsection we evaluate the HA approach for populations which exhibit interactions that

are order inconsistent. The means array M is constructed by taking the means array from Section

15



3.1, decomposing it into main effects, two- and three-way interactions, permuting the levels of each

factor within each effect, and reconstructing a means array. That is, if {ai : i = 1, . . . ,m1} is the

collection of parameters for the first main effect and
{

(ab)ij : i = 1 . . . ,m1, j = 1, . . . ,m2

}
is the

collection of parameters for the two way interaction between the first and second factors in Section

3.1 then
{
aπ1(i)

}
and

{
(ab)π2(i)π3(j)

}
are the main effect and two-way interaction parameters for

the means array in this section, where π1, π2 and π3 are independent permutations. The remaining

effects were permuted analogously. Due to this construction, the magnitudes of the main effects,

two- and three-way interactions remain the same, but the process becomes less “smooth,” as can

be seen in Figure 4.

Again, 50 data sets were generated for each sample size, and estimates M̂HA, M̂SB and M̂OLS

were obtained for each data set, where the Bayesian estimates were obtained using the same MCMC

approximation procedure as in the previous subsection. Figure 5 compares ASE across the different

approaches. The left panel of Figure 5, as with the left panel of Figure 3, demonstrates that the SB

estimator provides a reduction in ASE when compared to the OLS estimator. As expected, since

neither of these approaches take advantage of the structure of the order consistent interactions,

this plot is nearly identical to the corresponding plot in Figure 3.

The second panel demonstrates that the HA estimator provides a further reduction in ASE for

all data sets, although this reduction is less substantial than in the presence of order consistent

interactions. The lower ASE of the HA estimates may be initially surprising, as there are no order

consistent interactions for the HA prior take advantage of. We conjecture that the lower ASE is

due to the additional shrinkage on the parameter estimates that the inverse-Wishart priors on the

Σ-parameters provide. For example, under both the SB and HA priors we have Cov[vec(ab)] =

Σb ⊗ Σa/γab, but under the former the covariance matrices are set to the identity whereas under

the latter they have inverse-Wishart distributions.

3.3 Data without interactions

In this subsection we evaluate the HA approach for populations in which interactions are not

present. In addition to the SB and OLS estimators, we compare the HA approach to two “oracle”

estimators: the additive model least squares estimator (AOLS) and Bayes estimator under the

additive model (ASB). The prior used by the ASB approach is the same as the SB prior, but does
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Figure 5: Comparison of ASE for different estimation methods.

not include terms other than main effects in the model.

As before, 50 data sets were generated for each sample size, and estimates M̂HA, M̂SB, M̂OLS,

M̂ASB and M̂AOLS were obtained for each data set, where the Bayesian estimates were obtained

using the same MCMC approximation procedure as in the previous two subsection. Some results

are shown in Figure 6, which compares ASE across the different approaches. In the top row of

Figure 6 we see that the performance of the HA estimates is comparable to but not as good as the

the oracle least squares and Bayesian estimates in terms of ASE. Specifically, the ASE for the HA

estimates is 24.2, 18.6, 20.1 and 17.4 percent higher than for the AOLS estimates for data sets with

sample sizes 400, 1000, 5000 and 10000 respectively. Similarly, the ASE for the HA estimates is 25,

19.7, 20.3 and 17.8 percent higher than for the ASB estimates for data sets with sample sizes 400,

1000, 5000 and 10000 respectively. However, the bottom row of Figure 6 shows that the HA prior is

superior to the other non-oracle OLS and SB approaches that attempt to estimate the interaction

terms.

These results, together with those of the last two subsections, suggest that the HA approach

provides a competitive method for fitting means arrays in the presence or absence of interactions.

When order consistent interactions are present, the HA approach is able to make use of the sim-

ilarities across levels of the factors, thereby outperforming approaches that cannot adapt to such

patterns. Additionally, the HA approach does not appear to suffer when interactions are not or-

der consistent. In the absence of interactions altogether, the HA approach adapts well, providing

estimates similar to those that assume the correct additive model.
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Figure 6: Comparison of ASE for different estimation methods.

4 Analysis of carbohydrate intake

In this section we estimate average carbohydrate, sugar and fiber intake by education, ethnicity

and age using the HA procedure described in Section 2. Our estimates are based on data from

2134 males from the US population, obtained from the 2007-2008 NHANES survey. Nutrient intake

is self reported on two non-consecutive days. Each day’s data include food and beverage intake

information from the preceding 24 hour period only, and is calculated using the USDA’s Food and

Nutrient Database for Dietary Studies 4.1 (USDA, 2010). All intake was measured in grams, and

we average the intake over the two days to yield a single measurement per individual. We are

interested in relating the intake data to the following demographic variables:

• Age: (31− 40) , (41− 50) , (51− 60) , (61− 70) , (71− 80).

• Education: Primary (P), Secondary (S), High School diploma (HD), Associates degree (AD),

Bachelors degree (BD).
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Figure 7: Two-way plots of the transformed data.

• Ethnicity: Mexican (not Hispanic), Hispanic, white (not Hispanic) and black (not Hispanic).

Sample sizes for age-education-ethnicity combinations were presented in Table 1 in Section 1. Of

the 2234 male respondents within the above demographic groups, 100 were missing their nutrient

intake information for both days, with similar rates of missingness across the demographic variables.

For the purpose of this example analysis, we treat this information as missing at random.

The data on the original scale are somewhat skewed and show heteroscedasticity across the

demographic variables. Since different variances across groups can lead to bias in the sums of squares

estimates, making F -tests for interactions anti-conservative (Miller and Brown, 1997), stabilizing

the variance is desirable. Figure 7 provides two-way scatterplots of the response variables after

applying a quarter power transformation to each variable, which we found stabilized the variances

across the groups better than either a log or square-root transformation. Additionally, we centered

and scaled each response variable to have mean zero and variance one.

4.1 MANOVA model and parameter estimation

As presented in Table 1 of Section 1, F -tests indicate evidence for the presence of interactions in the

array of population cell means. However, 12% of all age-education-ethnicity categories have sample

sizes less than 5, and so we are concerned with overfitting of the OLS estimates. As an alternative,

we extend the HA methodology described in Section 2 to accommodate a MANOVA model. Our

MANOVA model has the same form as the ANOVA model given by Equation (1), except that each

effect listed there is a three-dimensional vector corresponding to the separate effects for each of the
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three response variables. Additionally, the error terms now have a multivariate normal distribution

with zero-mean and unknown covariance matrix Σy.

We extend the hierarchical array prior discussed above to accommodate the p-variate MANOVA

model as follows: Our prior for the m1 × p matrix a of main effects for the first factor is vec(a) ∼

Nm1p(0, I ⊗ Σa), where I is the p × p identity matrix. Our prior for the m1 ×m2 × p array (ab)

of two-way interaction terms is given by vec(ab) ∼ Nm1m2p(0,Γ
−1
ab ⊗Σb ⊗Σa). Here, Γab is a p× p

diagonal matrix whose terms determine the scale of the two-way interactions for each of the p

response variables. Similarly, our prior for the four-way array (abc) of three-way interaction terms

is vec(abc) ∼ Nm1m2m3p(0,Γ
−1
abc ⊗ Σc ⊗ Σb ⊗ Σa). Priors for other main effects and interaction

terms are defined similarly. The hyperpriors for each diagonal entry of Γ are independent gamma

distributions, chosen as in Section 2.4 so that the prior magnitude of the effects for each response

is centered around the sum of squares of the effect from the OLS decomposition.

A Gibbs sampling scheme similar to the one outlined in Section 2 was iterated 200,000 times

with parameter values saved every 10 scans, resulting in 20,000 simulated values of the means array

M and the covariance matrices {Σeth,Σage,Σedu} for posterior analysis. Mixing of the Markov chain

for M was good: Figure 8 shows MCMC samples of 4 out of 320 entries of M (chosen so that their

trace plots were visually distinct). The autocorrelation across the saved scans was low, with the

lag-10 autocorrelation for the thinned chain being less than 0.14 in absolute value for each element

of M (97.3% of entries have lag-10 autocorrelation less than 0.07 in absolute value) and effective

sample sizes between 1929 and 13520. The mixing for the elements of the covariance matrices Σeth,

Σage, Σedu was not as good as that of the means array M : The maximum absolute value of lag-10

autocorrelation of the saved scans for the three rescaled covariance matrices was 0.18, 0.12, and

0.19 respectively. The effective sample sizes for the elements of the covariance matrices were at

least 1684.

4.2 Posterior inference for M and the Σs

We obtain a Monte Carlo approximation to M̂ = E [M |Y ] by averaging over the saved scans of the

Gibbs sampler. Figure 9 provides information on the shrinkage and regularization of the estimates

due to the HA procedure, as compared to OLS. The first panel plots the difference between the

OLS and Bayes estimates of the cell means versus cell-specific sample sizes. For small sample sizes,
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Figure 8: MCMC samples of 4 out of 320 entries of the means array M .

the Bayes estimate for a given cell is affected by the data from related cells, and can generally be

quite different from the OLS estimate (the cell sample mean). For cells with large sample sizes the

difference between the two estimates is generally small. The second panel of the figure plots the

OLS estimates of the cell means for carbohydrate intake of black survey participants across age and

education levels. Note that there appears to be a general trend of decreasing intake with increasing

age and education level, although the OLS estimates themselves are not consistently ordered in this

way. In contrast, these trends are much more apparent in the Bayes estimates plotted in the third

panel. The HA prior allows the parameter estimates to be close to additive, while not enforcing

strict additivity in this situation where we have evidence of non-additivity via the F -tests.

The first row of Figure 10 provides the estimates of the main effects from the HA procedure.

The second row of Figure 10 summarizes covariance matrices {Σeth,Σage,Σedu} via the posterior

mean estimates of the correlation matrices {Cd,ij} =
{

Σd,ij/
√

Σd,iiΣd,jj

}
for d ∈ {eth, age, edu}. In

this figure, the diagonal elements are all 1, and darker colors represent a greater departure from one.

The range of the estimated correlations was -0.34 to 0.42 for age categories, -0.30 to 0.35 for ethnic

groups, and -0.37 to 0.38 for educational categories. For the two ordered categorical variables,

age and education, we see that closer categories are generally more positively correlated than ones

that are further apart. While the ethnicity variable is not ordered, its correlation matrix informs

us of which categories are more similar in terms of these response variables. The middle panel of

the second row of Figure 10 confirms the order-consistent interactions we observed in Figure 1:

Mexican survey participants are more similar to Hispanic participants in terms of carbohydrate
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Figure 9: Shrinkage and regularization plots. The first panel plots the difference between the OLS

and HA estimates of a cell-mean against the cell-specific sample sizes. The second a third panels

plot estimated cell-means for black survey participants across age and education levels, where lighter

shades represent higher levels of education.

intake patterns than to white or black participants.

5 Discussion

This article has presented a novel hierarchical Bayes method for parameter estimation of cross-

classified data under ANOVA and MANOVA models. Unlike least-squares estimation, a Bayesian

approach provides for regularized estimates of the potentially large number of parameters in a

MANOVA model. Unlike the non-hierarchical Bayesian approach, the hierarchical approach pro-

vides a data-driven method of regularization, and unlike the standard hierarchical Bayes, the hi-

erarchical array prior can identify similarities among categories and share this information across

interaction effects to assist in the estimation of higher-order terms for which data information is

limited. In a simulation study the HA approach was able to detect interactions when they were

present, and to estimate the means array better than a full least squares or standard Bayesian

approaches (in terms of mean squared error). When the true means array was completely additive,

the HA prior was able to adapt to this smaller model better than the other full model estimation

approaches under consideration.

Generalizations of the HA prior are applicable to any model whose parameters consist of vectors,

matrices and arrays for which some of the index sets are shared. This includes generalized linear
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Figure 10: Plots of main effects and interaction correlations for the three outcome variables (car-

bohydrates, sugar and fiber). The first row of plots gives HA estimates of the main effects for each

factor. The second row of plots gives correlations of effects between levels of each factor, with white

representing 1 and black representing -1.

models with categorical factors, as well as ANCOVA models that involve interactions between

continuous and categorical explanatory variables. As an example of the latter case, suppose we

are interested in estimating the linear relationship between an outcome and a set of explanatory

variables for every combination of three categorical factors. The regression parameters then consist

of an m1 × m2 × m3 × p array, where m1,m2,m3 are the numbers of factor levels and p is the

number of continuous regressors. The usual ANCOVA decomposition can be used to parametrize

this array in terms of main effects and interactions arrays, for which a hierarchical array prior may

be used.

Computer code and data for the results in Sections 3 and 4 are available at the authors’ websites:

www.stat.washington.edu/~volf, www.stat.washington.edu/~hoff
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