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Abstract

Evaluating the overall ability of players in the National Hockey League (NHL) is a
difficult task. Existing methods such as the famous “plus/minus” statistic have many
shortcomings. Standard linear regression methods work well when player substitu-
tions are relatively uncommon and scoring events are relatively common, such as in
basketball, but as neither of these conditions exists for hockey, we use an approach
that embraces these characteristics. We model the scoring rate for each team as its
own semi-Markov process, with hazard functions for each process that depend on the
players on the ice. This method yields offensive and defensive player ability ratings
which take into account quality of teammates and opponents, the game situation, and
other desired factors, that themselves have a meaningful interpretation in terms of
game outcomes. Additionally, since the number of parameters in this model can be
quite large, we make use of two different shrinkage methods depending on the question
of interest: full Bayesian hierarchical models that partially pool parameters according
to player position, and penalized maximum likelihood estimation to select a smaller
number of parameters that stand out as being substantially different from average. We
demonstrate this on games through five NHL seasons.
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1 Introduction

In many situations where a desired outcome depends on the performance of a group, it can

be difficult to evaluate the individual contributions of its members. The study of sports

provides a number of examples of this over time; the easier decomposition of baseball into

what are essentially head-to-head match-ups makes it comparatively easy to tell whether

one batter is superior to another, given enough observations.

The study of goal-based team sports – hockey, basketball, soccer, and lacrosse, among

others – is considerably more difficult, as the separation of roles is much more difficult to

measure with modern game statistics, especially when player efforts do not directly lead to

goals. In hockey, the subject of our investigations, player abilities are historically quantified

by citing offensive statistics, such as goals and assists, and defensive statistics such as blocked

shots and a goaltender’s saves. However, these are measured on different combinations of

players on the ice, so an overall assessment of ability is not as obvious. Even if we assume

that goaltenders have no role in team offense, there is surely a defensive assessment that can

be made for other players, which is not as easily captured by these count-based statistical

measured.

The first well-known attempt at capturing an overall effect of a player in hockey was

the Plus/Minus statistic (+/-). Consider all goals that happen when a particular player is

on the ice; the number of goals that were scored for their team minus the number of goals

scored by the opposition, whether or not the player was directly involved in the goal-scoring

plays.1 There are several known issues with this measure, mostly related to factors outside

the player’s control. It does not take into account each player’s quality of teammates, quality

of opponents, and position; good players on bad teams often have similar +/- statistics as

bad players on good teams.

The nature of ice hockey means that scoring events are often quite rare. If we divide

a game into many segments when the total number of goals scored is less than ten, the

1Goals scored by a team with a man advantage are not typically counted in this measure.



majority of these may be empty of scoring events, requiring a treatment that is considerate

of this imbalance; segments of unequal length must also be handled appropriately.

This rarity also contributes to another important consideration – what if the data are

insufficient to adequately separate players from each other in their ratings or, worse yet,

have little to no predictive value, either for a player’s own future performance or for in-game

outcomes? Any method we use to generate these ratings should take this into account, either

as an integral part of the method or as a post-analysis check.

To manage these factors and generate meaningful player ratings, we propose to measure

the abilities of players in ice hockey according to goal-scoring rates when they are on the

ice, much as in the plus-minus approach. However, we have two particular features of our

approach that adjust for these factors. First, we consider goal-scoring to be the combination

of at least two semi-Markov processes, modulated by the players on the ice for each team, so

that each player on the ice contributes to both their team offense and team defense. Second,

we regularize these estimates to ensure better predictive performance, which may also have

the benefit of selecting a subset of players to have non-zero (i.e. non-average) ratings.

Ideally, our method for obtaining meaningful player ratings will have several important

properties:

• The ratings will be directly interpretable in terms of game outcomes.

• It can distinguish the offensive and defensive capabilities of each player from each

other, allowing for a superior assessment of ability.

• It will control for the quality of a player’s team and teammates by factoring their

abilities into each observed event.

• It will control for the quality of a player’s opposition in the same fashion.

• If required, it can distinguish “average” from those who have exceptional skills at

offense or defense, in either form.



We continue by describing previous methods for rating the offensive and defensive skill for

players in hockey and other sports in Section 2, as well as describing the data available for this

work. In Section 3 we describe our methodological approach to the problem, demonstrating

many of its applications in Section 4. We conclude in Section 6 by discussing potential

extensions to our approach.

2 Previous Approaches for Player Ratings

2.1 Count-Based Measures: Simple Plus/Minus

The notion of tracking the number of goals scored, both for and against, for each player on

the ice is decades old, but its full application took years to reach its current state. In the

National Hockey League (NHL), the world’s premier professional ice hockey organization, its

initial use is said to be pioneered by the Montreal Canadiens hockey club in the 1950s, though

only for their own purposes and in secret. The system was popularized by NHL coach Emile

Francis during the 1960s, though the existing weaknesses of this approach were obvious even

then. The most obvious to address is the effective rarity of goals, with an average of roughly

three per team per game. By adding other events that can lead to goals, more information

can be attributed to the efforts of players on the ice. These typically include shots on goal,

either unweighted or adjusted for the distance from the net, possibly including those that are

blocked by the opposing team’s skaters or miss the net entirely; these include the Fenwick-

and Corsi- weighted Plus/Minus; Macdonald (2012b) lists these and others that have been

adapted to the general approach.

Lock and Schuckers (2009); Schuckers et al. (2011) extend this idea by accounting for all

events that are recorded in a modern NHL game, including faceoffs, turnovers, and hits, all

of which are thought to change the likelihood of the scoring of goals, either due to changes

in puck possession or location on the ice. Each of these has an effective “weight” in terms of

the expected number of goals scored or prevented because that event did or did not occur;



for example, a team that wins a faceoff near their opponent’s goal is more likely to score

in the following seconds than they are to be scored upon, and have a higher probability of

scoring than if their opponent had won the faceoff instead. For a player in a game, the sum

of the weights of events in which they are involved can then inform us about that player’s

overall contribution to the game.

2.2 Regression-Adjusted Measures

The other most notable weakness of the standard Plus/Minus measure, or any of its deriva-

tives, is coincident play: if two or more players are on the ice together for much of their

shared time, it can be difficult to distinguish the abilities of each player from each other

when so many of the outcomes to which they contribute are common to both. This problem

is common to all goal-based team sports.

To handle this issue in basketball, Rosenbaum (2004) proposed to divide a National

Basketball Association (NBA) game into intervals marked by the substitution of players

onto the court. From this, he derived a number of independent events, each containing a

number of scoring opportunities for each team. The outcome of each event is the difference

in points scored between the two teams divided by the time elapsed during the interval; the

predictors are indicators of the players on the court for each team – positive for the home

team, negative for the away team. Using a linear regression model of these player-predictors

on the scoring outcome, each player’s associated coefficient represents their contribution to

the change in score in favor of their team; this is their “adjusted plus-minus” rating. Ideally,

this measure will isolate a player’s contribution to their own rating and remove it from others,

as the quality of their teammates and their opponents is accounted for.

Ilardi and Barzilai (2008) modify this approach by taking every interval as not one but

two events – home scoring and away scoring – and treating them as independent, conditional

on the length of the event. Each player on the court appears in each of these two events,

as an offensive and defense player respectively, and therefore has a distinct rating for each



of these “skills”; the combination of the two can then be taken as the total adjusted player

rating.

Each of these procedures was conducted by Macdonald (2011) on NHL data by noting

player substitutions from official game logs and using these to construct a table of events.

2.3 Regularization Methods and Variable Selection

One consequence of this modeling approach is the relatively large number of predictors

against the number of events we can observe; in one season, there are roughly 400 different

players in the NBA, and 1000 different players in the NHL. Because of this, estimates of

ability on all players can be imprecise due to a potentially small sample on a subset of these

individuals, through large variance or collinearity. One way to adjust for this is to regularize

the estimates of each coefficient, producing biased estimates with lower variance. Ridge

regression (Hoerl and Kennard, 1970) is used by Sill (2010) for the NBA, and Macdonald

(2012a) for the NHL, to account for these difficulties; the degree of regularization was chosen

through cross-validation on withheld observations.

Ridge regression is equivalent to specifying a Bayesian model on the ensemble of param-

eters. In particular, for the linear model, each coefficient has its own independent Gaussian

prior βi ∼ N(0, σ2
β), equivalent to a constraint on the squared sum of the coefficients, where

the prior parameter σ2
β is either specified beforehand or selected using out-of-sample valida-

tion. The ridge method is in fact the simplest form of hierarchical model for this data; there

is potential for more flexibility by assigning a hyperprior distribution to this parameter, such

as the conjugate form σ2
β ∼ InvGamma(a, b), and obtaining a posterior estimate of each of

the coefficients and the variance parameter simultaneously. These approaches, plus other

Gaussian-derived models such as James-Stein estimation James and Stein (1961), are com-

pared for the case of batting averages in Brown (2008); this type of comparison is equally

valid in this case.

Each of these methods of Gaussian regularization produces estimates that are non-zero,



but if the point is to distinguish the relative ability of two or more players, it may be that we

are far less interested in the comparison between players ranked 499 and 500 than we would

be between players ranked 1 and 2. Many of these other players may simply be nuisances in

estimating parameters of greater interest. As a result, incorporating a method for variable

selection may be useful; the most automatic in this case would be the Lasso (Tibshirani,

1996), in which we obtain both a subset of non-zero parameters as well as estimates for these

parameters. In this case, each coefficient has an independent Laplace prior, βi ∼ Laplace(λ).

2.4 Process Models

The nature of substitution and scoring data from the NBA is vastly different from that of

the NHL. In the NBA, there are typically several scoring events for either team per rotation

(the equivalent of a “shift” in hockey), and there are relatively few substitutions per game.

In the NHL, scoring events are much rarer, on the order of 10 minutes between goals, while

players typically only spend about 30-60 seconds on the ice before returning to the bench for

a substitution. As we show in Section 2.5, roughly 98% of these intervals have a total of zero

goals scored; using this linear regression approach, the event durations will not factor in, and

significant information will be lost. Additionally, since the data are clearly non-Gaussian,

methods based on Gaussian convergence properties may not be reliable, as the error terms

and the prediction terms must be highly dependent to produce the majority-zero data.

The rarity of scoring events relative to the number of observable intervals suggests the use

of a Poisson-type process model. Each event represents an observation of the same players

on the ice, and any event that does not end in a goal is essentially censored by the change in

players. This directly incorporates the observed duration of the event as well as accounting

for the relatively sparse number of goals. Simple Poisson models have been used for making

strategic decisions in hockey (Morrison, 1976; Beaudoin and Swartz, 2010); these methods

can be improved to account for heterogeneity in the scoring rate over time (Thomas, 2007).

Moreover, the game can often be divided into a number of discrete states that give



additional information about the game. Hirotsu and Wright (2002) examine soccer as a

continuous-time Markov process with 6 states: 2 teams can possess the ball on either half

of the field, plus the state of having a goal scored in either net. Thomas (2006) considers

a larger state space for hockey with a semi-Markov process instead. Only when a team has

possession of the ball/puck in their opponent’s territory can they score a goal, so that this

underlying state will then directly influence the scoring rate for each team. This method can

be applied if data on location and possession is available, but this is not currently available

to the public.

We expect that players in the game will similarly affect the scoring rates for each team.

The Cox process model (Cox, 1972) decomposes the rate of this process, described by the haz-

ard function h(t,X) = λ(t,X), into a time-varying component λ0(t) and a time-independent

term for the inclusion of covariates λx(X). Just as in the linear model case, these models

can also be regularized, such as with the Lasso (Tibshirani, 1997).

2.5 Source of Data

Records of many National Hockey League (NHL) games are available to varying levels of

detail. For the sake of dividing the game into discrete intervals, we use the interpretation of

Rosenbaum (2004) and Macdonald (2011) that an interval should end either when a player

substitution is made by either team or when an event occurs (e.g. when a goal is scored).

This level of detail is available with ease in game records from the 2007-2008 season until the

2011-2012 season. We select those shifts in which both teams are at full strength – each team

has five skaters and one goaltender on the ice – and note the duration of the event in seconds.

The outcome is one of three possibilities: the home team scores, the away team scores, or

neither team scores and at least one player substitution occurs. As Table 1 shows, over 98%

of the observations are non-goal outcomes, which is highly disproportionate compared to the

examples in basketball.

For this analysis, we consider only goal-scoring events as those produced by the process.



Seasons: 2007-2012 Away Goal No Goal (Changes) Home Goal
Total Events 10,935 1,301,799 11,981

Percent of Total Events 0.83 98.27 0.90

Table 1: A count of the events of each type in the database. A home team advantage is
apparent.

We have additional information on shots on goal that did not result in goals, on penalties

called that result in man-advantage situations, and on time-outs called (extremely rarely) by

coaches. We do not include these at this stage to keep the analysis on events that directly

influence the final result of winning or losing the game, since shots on goal only lead to goals

a fraction of the time, and the relationship between shots on goal and goals is not as simple

as a fixed fraction of events. Any processes that lead to shots must also lead to goals, and to

add additional competing processes to the model would add an additional level of complexity

that is beyond the scope of this investigation. (See Macdonald (2012b) for how this can be

used in a standard regression set-up.)

For each season, we divide the data randomly into two groups – one for in-sample training

(all observations from 80% of the games) and one for out-of-sample validation (20%).

3 Model Specification

We model the stochastic nature of the game as a model of two competing processes for the

scoring of a goal, censored by player substitutions. Each process has parameters for offensive

and defensive characteristics, and these parameters are regularized by partial pooling. We

use either penalized maximum likelihood and full hierarchical Bayesian models to infer the

parameters of interest.



3.1 Events Obey A Competing Processes Model

There are, at a minimum, two opposing processes in a hockey game: the home team tries to

score on the away team, and vice versa. Both of these events are relatively rare compared

to the number of observed event intervals, so that it is natural to model these as competing

stochastic processes. Predictors that modulate these processes can be the teams in the game,

the score of the game, the players on the ice, or some other combination. In particular, each

of these predictors has a role in each process, though the magnitude and sign of the effects

ought to be different.

We choose a Cox proportional hazards model for each process, so that the hazard function

has separate components for time dependence and predictors, as h(X, t) = h0(t)h1(X),

where X can represent various factors such as the players and/or team on the ice. For this

investigation we begin with h0(t) = 1; more information on the location of the puck at each

t = 0 may allow us to refine the time-based component in future investigations.

From this, each team’s scoring rate is modeled as a log-linear Poisson process. The

intercept terms, labeled rh and ra, represent the baseline scoring rates for the home and away

teams, since as we see in Table 1, the overall scoring rate for the home team is greater than

for the away team; in this way, we can explicitly detect a “home-ice advantage”. For each

predictor indexed by p, let (ωp, δp) be a measure of the offensive and defensive contribution

for that predictor, so that a rating of zero corresponds to an “average” contribution; the

corresponding indicators are Xh
p and Xa

p . The scoring rates for each process are therefore

• λh = exp(rh +
∑

p(X
h
pωp +Xa

p δp));

• λa = exp(ra +
∑

p(X
a
pωp +Xh

p δp))

for this combination. For each instance of this process, T h and T a are the times to each event

for these processes, and let t be the first time at which any players on the ice are substituted,

thereby censoring the scoring process. We assume that the (unmodeled) censoring time is



independent of these event times, and that conditional on the predictors, these events are

independent of each other. The outcome can then be registered as

Y =


1 if T h < T a, T h < t

−1 if T a < T h, T a < t

0 otherwise

so that (1, 0,−1) represents a home goal, no goal and away goal respectively. Let T =

min{t, Th, Ta} be the observed time of the event.

Because of the independence condition, the likelihood for this event is then the product

of the individual likelihoods, noting if either or each of the events was censored. With the

survival function form S(x) = P (T > x), we have

f(Y |λh, λa, T ) = fh(T |λh)I(Y=1)Sh(T |λh)I(Y 6=1) × fa(T |λa)I(Y=−1)Sa(T |λa)I(Y 6=−1).

Using this approach, each predictor’s offensive parameter coefficient represents the change

in the team goal scoring rate with respect to a baseline rate (in particular, if they are

replaced by another player of typical ability), and likewise for their defensive parameter and

the opposing goal rate.

This method has several advantages for this class of data. Rather than trying to model

a single outcome, such as a differential of goals, we can simultaneously calculate both the

offensive and the defensive player ability parameters for each player, which are known to

be distinct. The parameters we calculate have an immediately meaningful interpretation in

terms of game outcomes, since it reflects an increase or decrease in scoring rate. We can

assess a player’s marginal goal fraction over data in question by comparing the expected

number of goals scored and allowed by their team given their ratings against the same data

with ratings set to zero.

In addition to the offensive and defensive abilities of each player, we can take into account



several other possible influences. We can fit parameters to a whole team to capture their

average ability, rather than simply including all the players independently. If we include

both teams and players as predictors, this would change the interpretation of a “player

effect” to be relative to the performance of one’s team. We can also model an effect for

the in-game score differential, since many teams may change their offensive and defensive

strategies depending on how far ahead or behind they are in the game. This may best be

accomplished by selecting a different intercept term depending on the score.

3.2 Regularization of Parameter Estimates

Even though we observe hundreds of thousands of discrete shift intervals in a season, the

sheer number of parameters in this model can be excessively large, and many of the player

ability measures will be made with only a small number of observations, such as players who

appear in only one game; worse yet are those players who are not on the ice for any goal

by one team and therefore have a maximum likelihood estimate of minus infinity for each

of their parameters. To account for this, we use a hierarchical model to shrink parameter

estimates toward a common mean (namely, zero), with the possibility that different positions

(center, goaltender, winger and defenseman) have different shrinkage behavior. We have a

number of choices for how to carry this out: the choice of prior distribution or penalty term,

the degree of hierarchical structure we impose, and whether we choose to minimize a function

or integrate over a distribution.

The two standard choices for a prior/penalty distribution are the Gaussian and the

Laplace, which penalize the mean squared error and absolute error respectively. We can also

consider a third class that joins the two, in the spirit of the Elastic Net method (Zou and

Hastie, 2005):



Prior Type Distribution PDF

LASSO/L1 Laplace(λ) f(x|λ) = λ
2

exp(−λ|x|)

Ridge/L2 Gaussian(0, σ2) f(x|σ2) = exp(−x2/(2σ2))/
√

2πσ2

Elastic Net/L1+L2 Laplace-Gaussian(λ, σ2) f(x|λ, σ2) = exp(−σ2λ2/2−λ|x|−x2/(2∗σ2))√
8πσ2Φ(−σλ)

2

Each of these families gives a different interpretation for the shrinkage behavior of the

covariates, both in terms of minimization of a penalty function and in the nature of the

partial pooling distribution of each group of players. All of these regularization options act

to stabilize parameter estimates against perturbations in the data, both in cases with few

observations and in those pairs or multiples with high collinearity.

If we choose the L1 method and set each λ to a constant, then we have a (relatively

standard) Lasso implementation, in which the penalized MLE or MAP estimates for the

parameter may be exactly zero with non-zero probability. By selecting a smaller subset of

non-zero parameters, we would in effect be choosing a sample of players, teams or circum-

stances whose scoring rates are distinguishable from the average, without having to perform

a re-estimation of the effective subset. The number of non-zero terms would depend on the

choices of each λ, which need not be identical for every parameter.

Choosing the L2 method and a constant set of σ2 terms yields a ridge regression-like

result, in which the penalized MLE or MAP estimates for each parameter are brought closer

but not exactly to zero. We do not have benefit of automatic variable selection in this case,

only that of minimizing those estimates with high variance that could bias other parameter

estimates.

Compromising with the L1+L2 method allows for some of the benefits of both properties,

but may sacrifice the ease of implementation that can be found in the simpler cases. In the

case of simple optimization, the L1 and L2 cases are suited to using cross-validation to choose

the penalty weights λ and σ2. If we are considering multiple partially pooled groups, cross-

validation may no longer be computationally feasible, since searching the space of possible

parameters becomes more difficult the more dimensions we add. A method that can explore



the space in a principled fashion may then be preferred.

Since the data are non-Gaussian, and do not have a convenient prior form, neither of

the Gaussian or Laplace distributions is in any way conjugate to the parameters in the

likelihood, making direct sampling of the full conditional distributions trickier. Each of the

scale parameters has a semi-conjugate prior, meaning that we can sample each of these terms

from their full conditionals without resorting to Metropolis-type proposals; this advantage

disappears with our Elastic Net prior, but this calculation is light enough that a direct draw

can be obtained through direct estimation of the full conditional distribution.

3.3 Implementation

We have several computational methods at our disposal to evaluate the suitability of these

models, both for their fit to the data and for the questions we wish to answer:

• We use maximization of a penalized likelihood to get rough parameter estimates, with

modest levels of L1 and/or L2 shrinkage to handle parameters with minimal informa-

tion in the data (such as players who are only in one game and were involved in no

goals.)

• We can use this as a starting point for Markov Chain Monte Carlo to obtain estimates

for the pooled variance/shrinkage parameters. For each MCMC routine, we discard a

sufficient number of initial draws as burn-in and thin the chain sufficiently so that the

thinned chain has negligible autocorrelation for all parameters and a sufficient number

of uncorrelated draws (in each of our cases, a minimum of 500) for use in inference.

• Alternatively, we can simply scan through a series of values for each shrinkage param-

eter and obtain the penalized maximum likelihood estimator for each, selecting the

optimal value through out-of-sample validation. This is easiest when there is only one

such parameter to estimate.



In each of these cases, we can judge the performance of each selected model initially using

in-sample measures, then confirming goodness of fit by checking against our withheld data

subset.

We have two types of problems that we consider: those in which the total distribution of

predictors, and their group-level variance terms, is of direct interest, and those in which we

are only interested in selecting a subset of predictors. The former case requires simultaneous

estimation of a number of shrinkage parameters, and this dimensionality makes a search of

the space difficult to accomplish with cross-validated methods, so we use the full Hierarchical

Bayesian approach. In the latter case, there is typically only one dimension of interest, as we

wish to select from only one relevant subset of predictors, and so here we can use penalized

maximum likelihood estimation much more easily.

3.3.1 MCMC Estimation

The full hierarchical model has three levels, from the data, to the predictor coefficients, to

their partial pooling prior distributions:

Level 1 Each outcome (Y |Xh, Xa, ω, δ, t)i is distributed as the competing process model. Each

predictor block (Xh
i , X

a
i ) is stored as a sparse vector, given that there are typically no

more than 16 total non-zero terms in each row.

Level 2 Each coefficient pair (ω, δ)p is distributed according to its prior distribution. In the

Laplace-Gaussian case, this has four terms corresponding to the group g(p) that

has predictor p as a member: the Laplace terms (λω,g, λδ,g) and the Gaussian terms

(σ2
ω,g, σ

2
δ,g).

As the intercept terms rh and ra effectively correspond to their own (ω, δ) pair and

belong to their own group, each acts as their own group mean; weak hyperpriors on

their own prior terms act marginally as weak prior distributions.

Level 3 Each Laplace λ term has a weak Gamma conjugate prior; each Gaussian σ2 term has



a weak Inverse Gamma conjugate prior. If the Laplace-Gaussian is used, these priors

are no longer conjugate to their respective parameter forms.

We initialize the method by finding the penalized maximum likelihood estimate for all

(ω, δ) terms with loose shrinkage parameters. We then use a standard Gibbs sampling routine

blocked on each relevant pair of variables:

• Each pair (ωp, δp) is updated using a Metropolis sampler with a bivariate Gaussian

proposal distribution. Indexing each observed shift with i, the target distribution is

f(ωp, δp|Y,X, σω,g(p), σδ,g(p), λω,g(p), λδ,g(p)) ∝ f(ωp, δp|σω,g(p), σδ,g(p), λω,g(p), λδ,g(p))×∏
i:p∈(Xh

i ,X
a
i )

f(Y |Xh, Xa, ω, δ, t)i.

• Each pair (λω,g, σ
2
ω,g) is updated through a pair of univariate grid approximation sam-

plers. The first samples according to the density along the sum of approximate

total shrinkage, 1/σω,g + λω,g/
√

2, while keeping the relative fraction of shrinkage

λω,g/
√

2

λω,g/
√

2+1/σω,g
constant;3 after updating these values, the second samples the relative

fraction while keeping the approximate total constant. This is repeated for each pair

(λδ,g, σ
2
δ,g). (One can always sample directly from the bivariate grid approximation as

well, though this is less computationally efficient.)

3The
√

2 factor is added to reflect the fact that a Laplace distribution with scale 1 has a variance of 2.



Home and Away Intercepts: Even Strength Goals Per 60 Minutes
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Figure 1: The scoring rates per 60 minutes for generic home and away teams across all
seasons and in each individual season. Points are posterior means, thin and thick lines are
central 95% and 50% credible intervals. The home team consistently outscores the away
team in all five seasons and overall.

4 Applications Where MCMC Is Optimal: Group Vari-

ability and Complete Abilities

4.1 Measuring Home-Ice Advantage

The simplest version of this process model has only two coefficients, the intercepts for the

home team and away team processes:

λh = exp(rh); λa = exp(ra).

Figure 1 shows estimates for the scoring rates obtained by results of MCMC, by taking

exp(rh) and exp(ra), the per-second rates, and multiplying up to a full 60-minute game.

It is clear that the home team has a consistent advantage. Whether or not the effective

home scoring rate is actually identical in each of the five seasons, they are so close as to be



Insample Outsample
Season L1 L2 L1+L2 L1 L2 L1+L2

2007-2008 57701.00 57703.41 57691.29 14088.33 14087.59 14084.88
2008-2009 59996.23 59966.41 59961.80 15070.79 15064.35 15063.55
2009-2010 61414.61 61358.52 61347.06 15709.86 15704.05 15702.43
2010-2011 62551.85 62521.21 62515.34 15540.85 15537.76 15536.86
2011-2012 62397.71 62391.72 62377.40 15983.34 15982.60 15981.68

Table 2: DIC for the Laplace, Gaussian and Laplace-Gaussian pooling priors for the model
with teams as explanatory variables.

indistinguishable from each other; this is similar for the away scoring rate. The year-to-year

variability in home and away mean rates is consistent with a common goal-scoring rate across

all five seasons; simulations verify that the change in estimated means is consistent with the

spread in estimation based on the generation of a season’s worth (1230 games) of goals for

each team from the Poisson model.

4.2 Overall Team Performance, Per Season

Because each of the 30 teams in the data is present in roughly one fifteenth of the total

events, we do not expect the degree of sparsity as when we model the impact of individual

players. This does not mean, however, that the model cannot benefit from partial pooling

on team parameters, both to reduce the effective dimensionality of the model and to improve

predictive accuracy. This model is then specified as

λh = exp(rh + ωhome + δaway); λa = exp(ra + ωaway + δhome)

with partial pooling under one of our chosen schemes; in general, this is of the form

ωteam ∼ Laplace−Gaussian(λteam, σ
2
team)

where the shrinkage behavior depends on the prior specification for (λteam, σ
2
team).

We estimate these parameters within each season using MCMC for each of the three
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Figure 2: Total team ability estimates for each team in the NHL, grouped by team for each
season; order is by overall team rating. Points are posterior means, lines are central 95%
credible intervals. A rating of 0.1 corresponds to a differential of roughly 0.3 goals per game
scored or prevented.

submodels for pooling, with the home and away intercepts pooled from all seasons as specified

from the previous section. For each shrinkage mode, two variance components are estimated,

for total offensive and defensive ability respectively. For the Laplace-Gaussian prior form,

there are then four total parameters, rather than two, and this mode has the lowest Deviance

Information Criterion for all five seasons, both in- and out-sample, as shown in Table 2. From

this point on, we share results of our methods using only the full Laplace-Gaussian prior.

Figure 2 shows the posterior distributions for each team’s net ability, or their offensive

ability minus their defensive liability, ωi−δi, within each season, using the Laplace-Gaussian

prior. As expected, these track well with the number of goals scored and allowed by each

team during these seasons, since the correlation of parameters across teams is minimal; teams

play each other no more than eight times per season out of a total of 82 games. There are

also several significant deviations for some teams for one season compared to the rest, such

as St. Louis in 2012 (very positive) and Minnesota in 2012 (very negative), that are not

statistically distinguishable from their other performances but still illuminating nonetheless.



4.3 Distribution of Player Abilities, Across All Seasons

The estimation procedure for team effects is relatively straightforward, given the relative

balance of the design matrix. Once we consider individual players, many more questions

arise since the design matrix can be far more unbalanced; for example, a player’s defensive

rating may be trickier to estimate because they share the majority of their shifts with a

single goaltender. Arguably, it gets worse if both players are great players, since they may

both be retained by a single team for much of their careers.

There is some relaxation of this when dealing with data from multiple seasons, as the

more players change teams, the more the players in the league will mix. We therefore model

player abilities with all five seasons together, which we refer to as the “grand model”. The

model is specified with the following terms:

• Overall home and away effects.

• Offensive and defensive parameters for all skaters (centers, wingers and defensemen).

• Defensive parameters only for goaltenders.

• Laplace-Gaussian pooling for each type of ability and each position parameter (center,

left wing, right wing, defenseman, goaltender).

We do not include team effects at this stage specifically due to the fact that we are trying

to compare players across teams, and their collinearity with goaltenders would be needlessly

complicating. We are still resigned to the degree of confounding in defensive estimates, since

the goaltender not only plays a large role, but is not typically replaced throughout the game,

often only relieved during a poor outing. We use the standard MCMC set-up to estimate

parameters.
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Figure 3: Variability properties of coefficient estimates by position. Thick and thin lines
represent 50% and 95% credible intervals; points represent estimated means. Top, the ap-
proximate fraction of the variability that can be attributed to the Laplace component of
the Laplace-Gaussian error distribution, for each position and for offense and defense. For
most positions there is a strong tendency towards the Laplacian distribution, with heavier
tails and more outliers; this is less pronounced for winger offence. Bottom, the offensive,
defensive and total variability by position. Goaltenders have only defensive variability, which
is considerably more variable than defense for any skating position. Offensive players (cen-
ters and wingers) have more variability in offense, and every skating position has minimal
variability in defence.



4.3.1 Overall Variability of Rating By Position

Figure 3 shows the variability of player abilities at each position according to their respective

Laplace-Gaussian distributions. The first graph shows us an approximate proportion of the

fraction of variability best explained by the Laplace term, as an indicator of the degree to

which a distribution of players has heavier tails; the higher this is, the higher the number

of “extreme” players. The second graph shows the total variability of player abilities as the

standard deviation of player estimates at each iteration of the MCMC. Several matters are

apparent:

• There is considerable variability in offensive ability for forwards (centers and wingers)

but far less for defensemen. This is consistent with the notion that defensemen have

less impact on offensive output during even-strength situations.

• For all positions other than goaltender, defensive variability is far smaller than it is

for offense. Two explanations are immediate. First, it may be that the collinearity

between skaters and goaltenders is causing our estimates of goaltender ability to be

more variable than they are in reality, and less variable for the skaters. Second, since

the total defensive burden is shared by six players (five skaters plus one goaltender)

rather than the five for offense, and the bulk of defensive skill is taken up by the

goaltender, the total amount of “defensive skill” available to be shared by skaters is

considerably smaller, and therefore there is less total variability between players.

• How valuable is an individual position to a team? A typical starting goaltender plays

about 60 full games a season for their team, while first-line offensive and defensive

players will have the equivalent of roughly 30 and 35 full games respectively. On

average, a good goaltender is worth roughly what a good offensive player is to a team’s

total output with respect to “average” players, while a good defensive player appears

to be worth considerably less.



• The center position has, on the whole, more effect on defensive performance than a

defenseman does, and wingers seem to have roughly equal defensive variability as the

defense position has total variability. This would seem to confirm the case that when

forwards have control of the puck, particularly in their offensive zone, they deny the

likelihood of their opponents being able to score. As we show soon, this does not mean

that a player with a high ω rating must therefore have a high δ rating.

From these overall results, we move on to describe the individual performances of players

over the five-season period, as organized by position. Table 3 lists the top three players

in each position group under the grand model; we provide a more complete list of players

at each position in the supporting material, including several of the worst players at each

position.
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Figure 4: Scatterplots of player ability estimates by position. There is little if any correlation
between a player’s estimates of offensive and defensive ability.

Which Players Made The Greatest Total Difference?

Since the ratings represent multipliers to the default scoring rate, we can quickly estimate

the total contribution of a player over the observation period as the difference in expected

goals, scored and allowed by any average team, relative to an average player,

Gnet = [(exp(rbase + ωp)− exp(rbase))− (exp(rbase − δp)− exp(rbase))]× Ttotal,p.



Player Total Rating SE(Rating) Player Total Rating SE(Rating)

Center Winger
Pavel Datsyuk 0.463 0.105 Alexander Semin 0.321 0.0744
Sidney Crosby 0.388 0.116 Alex Ovechkin 0.318 0.0805
Henrik Sedin 0.355 0.133 Marian Gaborik 0.308 0.0875

Goaltender Defense
Henrik Lundqvist 0.186 0.0546 Zdeno Chara 0.077 0.0739

Tim Thomas 0.12 0.0581 Mark Streit 0.0427 0.0626
Jonathan Quick 0.102 0.0594 Jaroslav Spacek 0.0373 0.0528

Table 3: Top players at each position, by overall rating, over five NHL seasons (2007-2012).

A mean intercept parameter rbase = −7.3 corresponds to roughly 2.4 goals per 60 minutes.

Table 4 lists the top 20 total goal producers and preventers over the five season period. Four

goaltenders make the top 20 list; despite the fact that defensemen typically log more ice

time than forwards, no defencemen make the top 20. We can adjust these ratings to reflect

teammates and opponents by using the expected goals in each shift given all other player

ratings, to handle nonlinearity in the rate relationship.

5 Applications of Variable Selection

5.1 “Most Valuable Player” Awards, Per Team, Per Season

The term Most Valuable Player has many interpretations throughout the sports world. One

that appeals to us is the notion that a player is most valuable to their team if their team’s

performance suffers the most compared to a “replacement” player in their stead. In the

context of this model, we propose that each player should be judged with respect to the

rest of their team. Since selecting an exceptional player can be treated as a special case of

variable selection, we propose the following scheme to pick exceptional players on each team:

• Take a model with teams and individual players as predictors. (Omit goaltenders for

this ranking.)



Rank Player Position Total Time +Scored +Prevented Net Goals

1 Henrik Lundqvist G 928100 0.00 127.80 127.80
2 Pavel Datsyuk C 320200 103.70 15.93 119.60
3 Henrik Sedin C 350300 100.60 0.10 100.70
4 Alex Ovechkin L 373500 94.81 -0.18 94.63
5 Sidney Crosby C 240400 98.37 -13.32 85.06
6 Alexander Semin L 271100 69.88 -0.40 69.48
7 Evgeni Malkin C 309400 81.26 -12.63 68.63
8 Marian Gaborik R 276700 67.61 -0.22 67.39
9 Loui Eriksson L 330900 66.44 -0.45 65.99
10 Jarome Iginla R 393100 73.61 -8.72 64.89
11 Tim Thomas G 732300 0.00 63.31 63.31
12 Joe Thornton C 360000 55.96 6.92 62.88
13 Ilya Kovalchuk L 376500 72.66 -13.66 59.01
14 Martin Brodeur G 814100 0.00 58.64 58.64
15 Roberto Luongo G 799600 0.00 57.10 57.10
16 Jonathan Toews C 306800 57.22 -0.17 57.05
17 Martin St. Louis R 384400 68.73 -12.16 56.56
18 Jason Spezza C 318400 69.67 -13.21 56.46
19 Patrick Sharp R 300200 54.65 -1.00 53.65
20 Henrik Zetterberg L 339700 52.07 -0.80 51.27

· · ·
81 Zdeno Chara D 436700 21.640 1.83200 23.470

· · ·

Table 4: The top 20 even-strength players in the NHL over 5 seasons (2007-2012) according
to the net number of goals scored or prevented, assuming a baseline scoring rate of roughly
2.4 goals per team per 60 minutes. At position 81, Zdeno Chara is the highest-ranked
defenseman in this time period.



• Fix the estimates for team ability and the grand means to be those obtained in Section

4.2. This is to ensure that all subsequent player ratings obtained will roughly sum to

zero, since all ratings are relative to their team rating for each of offense and defense.

• Using a single shrinkage penalty for player ratings, choose an appropriate penalty size.

Here we choose a Lasso penalty of λ = 8 as it produces the highest likelihood for the

out-of-sample data in three of five seasons; in the other two, the optimal penalty was

such that no player had a non-zero relative rating. In each case, the fit to out-of-sample

data was virtually identical for penalties greater than 5.

• For each team, select players with the highest and lowest offensive, defensive and overall

ratings. Place them in the appropriate MVP and LVP tables.

• If necessary, steadily decrease the penalty, filling in empty cells in the MVP and LVP

table as new players emerge. Stop when all cells in the table are filled. (This occurs

for between 2 and 5 teams in 30 at most.)

One demonstration of the method is shown in Figure 5, for the 2011-2012 season, and

Table 5 lists the top 10 MVPs and bottom 10 LVPs for that year; a full list of named MVPs

and LVPs, for offense, defense and overall, is given in the supplementary material. Most

of the results are consistent with expectations, though we can spot some interesting trends.

First, quite often, the most valuable player for offense will be the least valuable player for

defense, such as Joffrey Lupul with the 2011-2012 Maple Leafs, or vice versa. In many ways

this is not surprising; since the best players have the most ice time, they would be more likely

to have ratings that are not shrunk completely to zero on that basis alone, and because these

ratings tend to not be correlated (see Figure 4 for ratings in the five-season grand model) it

is not unexpected that this rating will sometimes be negative.

Second, some of the more surprising Least Valuable Players are centers who specialize

in taking faceoffs, often at critical times, such as David Steckel of the Washington Capitals

in 2009-2010 and again with the Toronto Maple Leafs in 2011-2012. These players are often
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Figure 5: The Lasso Cascade method for picking team Most/Least Valuable Players for the
2011-2012 season. Team-level effects are fixed, and player effects are subjected to a steadily
decreasing penalty beginning with λ = 8 as chosen by out-of-sample validation. Points
indicate where MVPs (in blue) and LVPs (in red) are first declared for overall ability.

brought into the game specifically to take faceoffs, often in their team’s defensive zone,

before switching off for another player at their next opportunity. Because they are given

fewer opportunities to score goals, merely to help prevent them, their offensive ratings will

suffer accordingly; their defensive ratings can be insignificant by comparison. Taking puck

location into account has been the subject of previous research (Thomas, 2006) and its role

in this model will be the subject of a future investigation.

5.2 Identifying Exceptional Player Pair Interactions

By taking advantage of variable selection methods as a part of the modeling process, we

allow for the possibility of including a substantially large number of alternate predictors to

any of our models. One compelling inclusion is interaction effects; in this context, this would

allow us to see whether two players have additional “chemistry” that yields a higher or lower

total in their offensive or defensive abilities. If this is the case, we must see whether there

are any corresponding changes to the individual player abilities as well.



Team MVP Rel. Rating Team LVP Rel. Rating
EDM Jordan Eberle 0.407 N.J Ryan Carter -0.338
T.B Steven Stamkos 0.334 NYI Nino Niederreiter -0.315
PIT Sidney Crosby 0.332 DET Tomas Holmstrom -0.266
NYI John Tavares 0.295 BOS Shawn Thornton -0.252
FLA Stephen Weiss 0.276 CHI Michael Frolik -0.238
PHX Adrian Aucoin 0.221 MTL Alexei Emelin -0.229
OTT Marcus Foligno 0.203 T.B Dominic Moore -0.202
WSH Alexander Semin 0.200 WSH Michael Knuble -0.200
STL David Perron 0.200 BUF Robyn Regehr -0.178
DAL Jamie Benn 0.184 CGY Tim Jackman -0.173

Table 5: The top 10 MVPs and bottom 10 LVPs for the 2011-2012 season, calculated as the
rating of a player relative to their team’s average and selected by the Lasso method.

Since the MCMC procedure gets considerably slower with the addition of a large number

of predictors and coefficients, and since our particular interest is in variable selection, we use

the Lasso method of penalized maximum likelihood to select a number of non-zero coefficients

for the new group. The procedure is similar to those used in previous analyses:

• Begin with the specification of the grand model in Section 4.3. Use the mean value

of each σg and λg as Laplace-Gaussian penalty terms that we will keep fixed for the

individual player effects, to allow for and moderate adjustments due to the pair terms.

• Select a subset of player pairs from the database. For this analysis, we took the top

1000 pairs of players in terms of the number of shifts they played together over the

five-year period. We use the condition that both players played forward positions or

both players played defense, since these groups tend to co-ordinate their play amongst

themselves. Add these pairs as predictors to the model.

• Estimate the model for a series of Lasso penalty values, labelled λpair, on the player-

pair terms, in order from strictest to loosest for computational ease. (Maintain the

previously obtained penalty values for player effects.)

• If the goal is to increase predictive accuracy, choose the penalty term that minimizes



Rank Player 1 Player 2 Team Time (s) Rating
1 Brad Boyes R Jay McClement C STL 35466 0.393
2 Matt Carle D Andrej Meszaros D PHI 41011 0.314
3 Patrice Bergeron C Brad Marchand C BOS 85678 0.31
4 Jussi Jokinen L Jeff Skinner C CAR 46196 0.287
5 Kris Letang D Paul Martin D PIT 40034 0.275

217 Zach Bogosian D John Oduya D ATL/WPG 57215 -0.235
218 David Booth L Michael Santorelli C FLA 34158 -0.241
219 Alex Frolov L Anze Kopitar C LA 45982 -0.269
220 Sidney Crosby C Evgeni Malkin C PIT 69217 -0.283
221 Ilya Kovalchuk L Todd White C ATL 70421 -0.545

Table 6: The top and bottom five player-pair interactions over 5 NHL seasons. These effects
represent the additional total rate beyond the abilities of the players themselves.

out-of-sample error. If the goal is to select a fixed number of significant partnerships,

choose the penalty term that yields that count.

In this case, we find that the penalty λpair = 8.5 minimizes the out-of-sample likelihood

for these events. Of the 2000 possible parameters to select from (1000 each for ω and δ),

this routine selects 247 non-zero parameters for player pairs for 221 unique player pairs.

Table 6 shows the top and bottom five player pair ratings from the analysis; a more

complete list is available in the supporting material. Of particular note is the most extreme

case, the pairing of Ilya Kovalchuk of Todd White, whose mutual rating is so low that they

effectively wiped out their positive total individual ratings during their time together. Both

recorded very high-scoring seasons when they played together, but this accolade effectively

masks their mutual liability on defense. The next-lowest pair of Sidney Crosby and Evgeni

Malkin is similar; their presence together does not increase their (considerable) offensive

prowess beyond their individual levels, but does lead to a substantial increase in the rate of

goals scored against their team while they are both on the ice.

Interestingly, the pair of Henrik and Daniel Sedin, twin brothers who play most of their

even-strength shifts together, does not appear in the selected group. Indeed, the most total

ice time in the top/bottom five is the 135th-most coincident pair of Patrice Bergeron and



Brad Marchand from Boston. This suggests that the levels of shrinkage are appropriate for

obtaining a reasonable subset of player pairs that have reasonable deviations.

As a final check, the positions of players in the grand rating table are mostly unchanged,

so that the original player ratings are reasonably robust to these new variables. Worth noting

is that the top two positions in the grand ratings reverse; Sidney Crosby now has the highest

player rating over Pavel Datsyuk, due to the removal of the poorer outcomes when he plays

with Evgeni Malkin, as opposed to other potential linemates.

6 Discussion and Extensions

We have presented a model-based method for assessing player ability in ice hockey by treating

the game as a competing stochastic process. Given the sheer number of predictors, and

the relatively weak explanatory power of each, we use shrinkage methods to improve our

estimation of model parameters. We also allow for the possibility of expanding the model

specification from a simple flat hazard model to a more general Cox proportional hazards

semi-Markov process, to account for other phenomena. Here we address potential ways to

better extend the model as a useful interpretation of the game.

One obvious issue is that the methods for estimating parameters in this model are con-

siderably slower than simple regression, whether we use Monte Carlo methods or functional

maximization, especially when more parameters or data points are added. If this method

is to ever see conventional and public use, the computation must either be considerably

faster, or a new method of estimation must be used. Because this is a highly non-standard

likelihood function, it is a complicated matter to improve parameter estimates in a general

way. Sequential updating may prove to be the easiest method to improve both methods,

particularly with regard to particle filtering for the Hierarchical Bayesian methods.

As a practical matter, there are several factors that can be explored immediately. Many

have to do with the use of the time-dependent component of the Cox model, which we have



kept as constant and unit-valued to this point.

Knowing Location Affects The Short-Term Scoring Rate

A game of hockey begins with a face-off at center ice, immediately after which neither team

is very likely to score in the next few seconds. A distribution for the goal hazard after faceoff

was proposed by Thomas (2007), which begins at 0 for both teams and rises to a plateau

with an exponential decay. If a team has the puck in their offensive zone, they are more

likely to score a goal in the immediate future than the mean rate, and their opponents far

less likely.

One approach is to include known puck possession and location terms as covariates in a

general model; Macdonald (2012b) in particular uses the zone in which the play starts as a

mean-altering covariate. In our case, the natural point to include this is in the time-varying

component to the Cox model, by choosing a relative hazard that starts at a rate given the

state of play and returns to the overall mean.

One benign side effect of this is that “garbage goals” – those scored after a longer scrum

in an offensive zone, taking advantage of continued pressure rather than pure skill – would

be down-weighted, since we would expect a goal to be much more likely in that scenario.

Including More Events As Outcomes

Since a goal is preceded by a shot on goal in the vast majority of cases, one method to improve

the modelling framework is to consider shots to be a non-censored terminating state of a

model instead of a goal. Since this would lead to a roughly ten-fold count in the number of

uncensored events, it would represent a great increase in the precision of estimates, especially

if there was no individual variability on what fraction of shots on goal became goals. But

this is certainly not the case, since there is significant variety on the fraction of shots that

become goals (let alone shots on net) depending on the player; a defenseman’s slap shot is

considerably less likely than a forward’s wrist shot. How we can include this feature in this
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Figure 6: The lengths of shifts, conditioned on whether or not a goal was scored to terminate
the observation. Shifts that end in goals are slightly longer.

model framework is an open problem, but may include information on the success rate of

shots based on location and type as a post-processing step.

Censoring May Be Slightly Informative

Shift lengths are either obtained directly or censored by player changes. One assumptions

we make is that the censoring mechanism is roughly exogenous, and does not depend on of

influence the state of the game in progress. While this assumption is clearly incorrect, the

distributions of shift time are quite similar, as shown in Figure 6. Two immediate reasons

for this are clear. First, a goal is often scored following a longer scrum in the offensive zone,

during which players have no opportunity to change off. Second, the changing process can

be sequential; three players change, then shortly after, the other two change off, leading to a

bias in short shifts. We expect that this factor can be accounted for, either through modeling

or stratification, once we take puck possession and location into account.

Does The Power Play Look Like The Process Model?

When a team has a man-advantage over their opponents, the game tends to look very

differently than a smooth stochastic process: the team on the power play sets up shop in

their offensive zone, plays keep-away from their opponents and maneuvers to make a shot



on goal. The short-handed team’s prime goal in this period is not to score, but to remove

the danger by clearing the puck from their own zone. (Scoring a short-handed goal is often

seen as a bonus rather than the main objective while killing a penalty.)

To extend this model to the power-play situation, we would need to account for this in

a principled manner. It may be sufficient to simply change the baseline scoring rates, or to

replace the penalized player with an indicator for the power play state, but this is subject

to a future investigation and not at all obvious given the apparent differences in game play.
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Supplementary Material: Improving NHL Player Ability Ratings

with Hazard Function Models for Goal Scoring and Prevention

A.C. Thomas, Samuel L. Ventura, Shane Jensen, Stephen Ma

A Prior Distribution Characteristics

The three prior families we consider (L1, L2, L1+L2) have slightly different properties, as
shown in this figure:
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Each line represents the log-probability density for three families for the prior/penalty dis-
tribution on player parameters. Red/solid is the Gaussian, which is smoothly varying with
light tails; green/dash is the Laplace, which is sharp at zero, with exponential tails; and
blue/dot-dash is the Laplace-Gaussian, which is also sharp with exponential tails, and has
one additional parameter to compromise between the other two. All three distributions have
unit variance.



B Player Abilities Across All Five Seasons

Goaltenders:
Rank Player ωi − δi ∆(ωi − δi) Time (s) ωi δi
1 HENRIK.LUNDQVIST 0.186 0.0546 928000 0 -0.186
2 TIM.THOMAS 0.12 0.0581 732000 0 -0.12
3 JONATHAN.QUICK 0.102 0.0594 662000 0 -0.102
4 MARTIN.BRODEUR 0.101 0.0571 814000 0 -0.101
5 ROBERTO.LUONGO 0.1 0.0567 8e+05 0 -0.1
6 PEKKA.RINNE 0.0917 0.0556 678000 0 -0.0917
7 CORY.SCHNEIDER 0.0753 0.0761 169000 0 -0.0753
8 DOMINIK.HASEK 0.0715 0.0815 102000 0 -0.0715
9 ANTTI.NIEMI 0.0602 0.0587 469000 0 -0.0602
10 ILJA.BRYZGALOV 0.0592 0.0484 859000 0 -0.0592
11 SEMYON.VARLAMOV 0.056 0.0635 308000 0 -0.056
12 MIKE.SMITH 0.0509 0.0517 539000 0 -0.0509
13 KARI.LEHTONEN 0.0502 0.0473 617000 0 -0.0502
14 EVGENI.NABOKOV 0.0469 0.0496 674000 0 -0.0469
15 ERIK.ERSBERG 0.0455 0.069 125000 0 -0.0455

145 J-SEBASTIEN.AUBIN -0.052 0.078 36900 0 0.052
146 JUSTIN.POGGE -0.0552 0.0801 17400 0 0.0552
147 PATRICK.LALIME -0.0637 0.0626 188000 0 0.0637
148 HANNU.TOIVONEN -0.0665 0.0791 52500 0 0.0665
149 ANDREW.RAYCROFT -0.106 0.071 231000 0 0.106

Wingers:
Rank Player ωi − δi ∆(ωi − δi) Time (s) ωi δi
1 ALEXANDER.SEMIN 0.321 0.0744 271000 0.323 0.00221
2 ALEX.OVECHKIN 0.318 0.0805 374000 0.319 0.000724
3 MARIAN.GABORIK 0.308 0.0875 277000 0.309 0.00118
4 LOUI.ERIKSSON 0.258 0.0814 331000 0.26 0.00202
5 ALEXANDER.RADULOV 0.249 0.127 71600 0.265 0.0161
6 PATRICK.SHARP 0.234 0.0833 3e+05 0.239 0.00494
7 ALEX.TANGUAY 0.232 0.0795 278000 0.235 0.00253
8 RADIM.VRBATA 0.23 0.109 249000 0.187 -0.0432
9 JAKUB.VORACEK 0.227 0.0905 230000 0.239 0.012
10 BOBBY.RYAN 0.221 0.0928 284000 0.232 0.0114
11 THOMAS.VANEK 0.22 0.0915 290000 0.241 0.0203
12 JAROME.IGINLA 0.211 0.0898 393000 0.245 0.0334
13 ZACH.PARISE 0.206 0.0848 295000 0.202 -0.0043
14 HENRIK.ZETTERBERG 0.201 0.0831 340000 0.205 0.00349
15 SCOTT.HARTNELL 0.199 0.0851 322000 0.205 0.00604

510 COLTON.ORR -0.253 0.139 114000 -0.27 -0.0178
511 RYAN.HOLLWEG -0.267 0.165 44400 -0.268 -0.00148
512 STEPHANE.VEILLEUX -0.267 0.114 174000 -0.266 0.00117
513 NINO.NIEDERREITER -0.281 0.171 38800 -0.26 0.0211
514 RAITIS.IVANANS -0.292 0.151 80100 -0.297 -0.00487



Centers:
Rank Player ωi − δi ∆(ωi − δi) Time (s) ωi δi
1 PAVEL.DATSYUK 0.463 0.105 320000 0.392 -0.0711
2 SIDNEY.CROSBY 0.388 0.116 240000 0.474 0.0855
3 HENRIK.SEDIN 0.355 0.133 350000 0.354 -0.000419
4 PATRICE.BERGERON 0.28 0.112 239000 0.256 -0.0246
5 EVGENI.MALKIN 0.266 0.0907 309000 0.328 0.0623
6 JONATHAN.TOEWS 0.243 0.0978 307000 0.244 0.000816
7 JOE.THORNTON 0.235 0.0974 360000 0.207 -0.028
8 JASON.SPEZZA 0.217 0.108 318000 0.281 0.0633
9 NATHAN.HORTON 0.207 0.103 286000 0.259 0.0521
10 MATS.SUNDIN 0.195 0.132 91200 0.195 -2.97e-05
11 JORDAN.EBERLE 0.185 0.134 124000 0.21 0.0252
12 STEPHEN.WEISS 0.181 0.0966 328000 0.194 0.013
13 JEFF.CARTER 0.179 0.0857 307000 0.186 0.00652
14 ALEXANDER.STEEN 0.179 0.0994 267000 0.124 -0.0551
15 MARC.SAVARD 0.175 0.114 181000 0.178 0.00354

416 NICK.SPALING -0.156 0.131 126000 -0.152 0.0039
417 COLTON.GILLIES -0.16 0.154 67000 -0.171 -0.011
418 TOM.PYATT -0.17 0.136 107000 -0.164 0.00574
419 RADEK.BONK -0.19 0.141 106000 -0.181 0.00978
420 ROD.PELLEY -0.305 0.177 121000 -0.334 -0.0288

Defensemen:
Rank Player ωi − δi ∆(ωi − δi) Time (s) ωi δi
1 ZDENO.CHARA 0.077 0.0739 437000 0.0708 -0.00619
2 MARK.STREIT 0.0427 0.0626 303000 0.0485 0.00585
3 JAROSLAV.SPACEK 0.0373 0.0528 297000 0.0374 0.000195
4 MIKE.GREEN 0.0355 0.0527 315000 0.0374 0.00192
5 MATT.CARLE 0.0341 0.0454 379000 0.0334 -0.000666
6 DAN.HAMHUIS 0.0335 0.0462 393000 0.0333 -0.000192
7 IAN.WHITE 0.0325 0.0471 395000 0.0341 0.00157
8 TOM.GILBERT 0.0309 0.0452 387000 0.0321 0.00119
9 FILIP.KUBA 0.0261 0.0461 331000 0.0284 0.00231
10 LUBOMIR.VISNOVSKY 0.026 0.0433 362000 0.0284 0.00245
11 KRIS.LETANG 0.025 0.0443 326000 0.027 0.002
12 BRENT.BURNS 0.022 0.0427 353000 0.0212 -0.000733
13 NICKLAS.LIDSTROM 0.0215 0.0388 391000 0.0117 -0.00982
14 ALEX.GOLIGOSKI 0.0206 0.0429 253000 0.0238 0.00326
15 KENT.HUSKINS 0.0202 0.0452 225000 0.014 -0.00616

504 NICLAS.WALLIN -0.0266 0.048 225000 -0.0242 0.00235
505 GARNET.EXELBY -0.0283 0.0499 151000 -0.0261 0.00218
506 LUCA.SBISA -0.0295 0.0518 167000 -0.0285 0.000981
507 ANTON.VOLCHENKOV -0.0296 0.0559 303000 -0.0342 -0.00456
508 FRANCOIS.BEAUCHEMIN -0.0315 0.045 373000 -0.0299 0.00161



C Team MVP/LVP By Season
2007-2008:

Team MVP Offense MVP Defense MVP Total
ANA RYAN.GETZLAF KENT.HUSKINS RYAN.GETZLAF
ATL ILYA.KOVALCHUK BRYAN.LITTLE ILYA.KOVALCHUK
BOS ZDENO.CHARA AARON.WARD ZDENO.CHARA
BUF JAROSLAV.SPACEK ALES.KOTALIK JAROSLAV.SPACEK
CAR BRET.HEDICAN GLEN.WESLEY BRET.HEDICAN
CBJ JAN.HEJDA JAN.HEJDA JAN.HEJDA
CGY JAROME.IGINLA ADRIAN.AUCOIN JAROME.IGINLA
CHI JONATHAN.TOEWS DUNCAN.KEITH JONATHAN.TOEWS
COL PAUL.STASTNY KURT.SAUER PAUL.STASTNY
DAL BRENDEN.MORROW STEVE.OTT BRENDEN.MORROW
DET PAVEL.DATSYUK NICKLAS.LIDSTROM PAVEL.DATSYUK
EDM JONI.PITKANEN MATT.GREENE MATT.GREENE
FLA NATHAN.HORTON JASSEN.CULLIMORE NATHAN.HORTON
L.A ALEX.FROLOV KEVIN.DALLMAN KEVIN.DALLMAN
MIN MARIAN.GABORIK JAMES.SHEPPARD MARIAN.GABORIK
MTL ANDREI.KASTSITSYN FRANCIS.BOUILLON ANDREI.KASTSITSYN
N.J DAVID.ODUYA DAVID.ODUYA DAVID.ODUYA
NSH JASON.ARNOTT JERRED.SMITHSON JASON.ARNOTT
NYI MIKE.COMRIE JOSEF.VASICEK JOSEF.VASICEK
NYR SEAN.AVERY MAREK.MALIK SEAN.AVERY
OTT DANY.HEATLEY CHRIS.PHILLIPS DANY.HEATLEY
PHI BRAYDON.COBURN BRAYDON.COBURN BRAYDON.COBURN
PHX SHANE.DOAN ZBYNEK.MICHALEK SHANE.DOAN
PIT EVGENI.MALKIN JORDAN.STAAL EVGENI.MALKIN
S.J JOE.THORNTON JONATHAN.CHEECHOO JOE.THORNTON
STL KEITH.TKACHUK DAVID.PERRON DAVID.PERRON
T.B VINCENT.LECAVALIER MICHEL.OUELLET MICHEL.OUELLET
TOR MATS.SUNDIN BRYAN.MCCABE MATS.SUNDIN
VAN MARKUS.NASLUND SAMI.SALO MARKUS.NASLUND
WSH ALEX.OVECHKIN BOYD.GORDON ALEX.OVECHKIN

Team LVP Offense LVP Defense LVP Total
ANA TRAVIS.MOEN FRANCOIS.BEAUCHEMIN TRAVIS.MOEN
ATL STEVE.MCCARTHY ILYA.KOVALCHUK STEVE.MCCARTHY
BOS SHANE.HNIDY PHIL.KESSEL SHANE.HNIDY
BUF NOLAN.PRATT THOMAS.VANEK NOLAN.PRATT
CAR NICLAS.WALLIN ERIC.STAAL NICLAS.WALLIN
CBJ DAVID.VYBORNY RICK.NASH RICK.NASH
CGY STEPHANE.YELLE ANDERS.ERIKSSON STEPHANE.YELLE
CHI CRAIG.ADAMS CRAIG.ADAMS CRAIG.ADAMS
COL KARLIS.SKRASTINS RYAN.SMYTH KARLIS.SKRASTINS
DAL MATTIAS.NORSTROM STEPHANE.ROBIDAS STEPHANE.ROBIDAS
DET DALLAS.DRAKE ANDREAS.LILJA DALLAS.DRAKE
EDM JARRET.STOLL SAM.GAGNER JARRET.STOLL
FLA BRANISLAV.MEZEI OLLI.JOKINEN BRANISLAV.MEZEI
L.A MICHAL.HANDZUS PATRICK.OSULLIVAN MICHAL.HANDZUS
MIN BRIAN.ROLSTON SEAN.HILL SEAN.HILL
MTL JOSH.GORGES ANDREI.MARKOV JOSH.GORGES
N.J SERGEI.BRYLIN VITALY.VISHNEVSKI SERGEI.BRYLIN
NSH JERRED.SMITHSON ALEXANDER.RADULOV JERRED.SMITHSON
NYI RADEK.MARTINEK MIKE.COMRIE MIKE.COMRIE
NYR RYAN.HOLLWEG CHRIS.DRURY RYAN.HOLLWEG
OTT ANTON.VOLCHENKOV WADE.REDDEN ANTON.VOLCHENKOV
PHI SAMI.KAPANEN DANIEL.BRIERE SAMI.KAPANEN
PHX MICHAEL.YORK SHANE.DOAN MICHAEL.YORK
PIT ADAM.HALL RYAN.WHITNEY RYAN.WHITNEY
S.J MARC-EDOUARD.VLASIC SANDIS.OZOLINSH SANDIS.OZOLINSH
STL RYAN.JOHNSON PAUL.KARIYA RYAN.JOHNSON
T.B NICK.TARNASKY DAN.BOYLE NICK.TARNASKY
TOR TOMAS.KABERLE JIRI.TLUSTY TOMAS.KABERLE
VAN SAMI.SALO AARON.MILLER BYRON.RITCHIE
WSH SHAONE.MORRISONN MICHAEL.NYLANDER MICHAEL.NYLANDER



2008-2009:

Team MVP Offense MVP Defense MVP Total
ANA COREY.PERRY BRETT.FESTERLING COREY.PERRY
ATL ZACH.BOGOSIAN MARTY.REASONER ZACH.BOGOSIAN
BOS MARC.SAVARD DAVID.KREJCI MARC.SAVARD
BUF THOMAS.VANEK ADAM.MAIR THOMAS.VANEK
CAR ERIC.STAAL PATRICK.EAVES ERIC.STAAL
CBJ JAKUB.VORACEK CHRISTIAN.BACKMAN JAKUB.VORACEK
CGY MATTHEW.LOMBARDI CORY.SARICH CORY.SARICH
CHI ANDREW.LADD DUSTIN.BYFUGLIEN ANDREW.LADD
COL RUSLAN.SALEI IAN.LAPERRIERE IAN.LAPERRIERE
DAL LOUI.ERIKSSON STEPHANE.ROBIDAS LOUI.ERIKSSON
DET PAVEL.DATSYUK BRETT.LEBDA PAVEL.DATSYUK
EDM DENIS.GREBESHKOV LUBOMIR.VISNOVSKY DENIS.GREBESHKOV
FLA STEPHEN.WEISS KARLIS.SKRASTINS STEPHEN.WEISS
L.A KYLE.QUINCEY SEAN.ODONNELL SEAN.ODONNELL
MIN ANDREW.BRUNETTE ANTTI.MIETTINEN ANDREW.BRUNETTE
MTL JOSH.GORGES MAXIM.LAPIERRE JOSH.GORGES
N.J ZACH.PARISE MIKE.MOTTAU ZACH.PARISE
NSH JASON.ARNOTT ANTTI.PIHLSTROM JASON.ARNOTT
NYI MARK.STREIT SEAN.BERGENHEIM MARK.STREIT
NYR NIKOLAI.ZHERDEV RYAN.CALLAHAN NIKOLAI.ZHERDEV
OTT DANIEL.ALFREDSSON FILIP.KUBA DANIEL.ALFREDSSON
PHI JEFF.CARTER CLAUDE.GIROUX JEFF.CARTER
PHX STEVE.REINPRECHT KEN.KLEE STEVE.REINPRECHT
PIT EVGENI.MALKIN ROB.SCUDERI EVGENI.MALKIN
S.J DEVIN.SETOGUCHI MICHAEL.GRIER MICHAEL.GRIER
STL PATRIK.BERGLUND PATRIK.BERGLUND PATRIK.BERGLUND
T.B MARTIN.ST LOUIS ADAM.HALL MARTIN.ST LOUIS
TOR ALEXEI.PONIKAROVSKY IAN.WHITE ALEXEI.PONIKAROVSKY
VAN HENRIK.SEDIN DANIEL.SEDIN HENRIK.SEDIN
WSH ALEX.OVECHKIN MILAN.JURCINA ALEX.OVECHKIN

Team LVP Offense LVP Defense LVP Total
ANA TRAVIS.MOEN ROB.NIEDERMAYER TRAVIS.MOEN
ATL GARNET.EXELBY ILYA.KOVALCHUK GARNET.EXELBY
BOS SHAWN.THORNTON VLADIMIR.SOBOTKA SHAWN.THORNTON
BUF JOCHEN.HECHT THOMAS.VANEK JOCHEN.HECHT
CAR ROD.BRINDAMOUR JOE.CORVO ROD.BRINDAMOUR
CBJ ANDREW.MURRAY KRISTIAN.HUSELIUS KRISTIAN.HUSELIUS
CGY ERIC.NYSTROM DION.PHANEUF ERIC.NYSTROM
CHI BEN.EAGER BRIAN.CAMPBELL BRIAN.CAMPBELL
COL DARCY.TUCKER JORDAN.LEOPOLD JORDAN.LEOPOLD
DAL JOEL.LUNDQVIST MATT.NISKANEN JOEL.LUNDQVIST
DET KRIS.DRAPER DAN.CLEARY KRIS.DRAPER
EDM JASON.STRUDWICK LIAM.REDDOX JASON.STRUDWICK
FLA JAY.BOUWMEESTER NATHAN.HORTON JAY.BOUWMEESTER
L.A RAITIS.IVANANS ANZE.KOPITAR RAITIS.IVANANS
MIN STEPHANE.VEILLEUX MARTIN.SKOULA STEPHANE.VEILLEUX
MTL ALEX.KOVALEV ANDREI.KASTSITSYN ALEX.KOVALEV
N.J JAY.PANDOLFO COLIN.WHITE JAY.PANDOLFO
NSH ANTTI.PIHLSTROM JASON.ARNOTT RADEK.BONK
NYI THOMAS.POCK FREDDY.MEYER THOMAS.POCK
NYR COLTON.ORR MARC.STAAL COLTON.ORR
OTT ANTON.VOLCHENKOV JASON.SPEZZA ANTON.VOLCHENKOV
PHI ANDREAS.NODL ARRON.ASHAM ANDREAS.NODL
PHX DAN.CARCILLO DAVID.HALE DAVID.HALE
PIT MARK.EATON KRIS.LETANG MARK.EATON
S.J JODY.SHELLEY DEVIN.SETOGUCHI DEVIN.SETOGUCHI
STL MIKE.WEAVER BARRET.JACKMAN BARRET.JACKMAN
T.B ADAM.HALL MARK.RECCHI MARK.RECCHI
TOR JOHN.MITCHELL NIK.ANTROPOV JOHN.MITCHELL
VAN MASON.RAYMOND KEVIN.BIEKSA MASON.RAYMOND
WSH MILAN.JURCINA TOMAS.FLEISCHMANN DONALD.BRASHEAR



Team MVP Offense MVP Defense MVP Total
ANA RYAN.GETZLAF GEORGE.PARROS GEORGE.PARROS
ATL ILYA.KOVALCHUK CHRIS.THORBURN ILYA.KOVALCHUK
BOS ZDENO.CHARA MARCO.STURM ZDENO.CHARA
BUF JOCHEN.HECHT TONI.LYDMAN TONI.LYDMAN
CAR ERIC.STAAL BRETT.CARSON ERIC.STAAL
CBJ JAKUB.VORACEK NATHAN.PAETSCH NATHAN.PAETSCH
CGY RENE.BOURQUE CURTIS.GLENCROSS CURTIS.GLENCROSS
CHI PATRICK.SHARP PATRICK.SHARP PATRICK.SHARP
COL CHRIS.STEWART DARCY.TUCKER WOJTEK.WOLSKI
DAL BRAD.RICHARDS MARK.FISTRIC MARK.FISTRIC
DET HENRIK.ZETTERBERG DREW.MILLER DREW.MILLER
EDM DUSTIN.PENNER TOM.GILBERT DUSTIN.PENNER
FLA NATHAN.HORTON DENNIS.SEIDENBERG NATHAN.HORTON
L.A WAYNE.SIMMONDS DREW.DOUGHTY WAYNE.SIMMONDS
MIN KIM.JOHNSSON ERIC.BELANGER KIM.JOHNSSON
MTL BRIAN.GIONTA JOSH.GORGES BRIAN.GIONTA
N.J ZACH.PARISE MARK.FRASER ZACH.PARISE
NSH DAN.HAMHUIS FRANCIS.BOUILLON FRANCIS.BOUILLON
NYI MARK.STREIT ANDREW.MACDONALD MARK.STREIT
NYR MARIAN.GABORIK MARC.STAAL MARIAN.GABORIK
OTT ALEXANDRE.PICARD MARCUS.FOLIGNO MARCUS.FOLIGNO
PHI MATT.CARLE DAN.CARCILLO MATT.CARLE
PHX ZBYNEK.MICHALEK TAYLOR.PYATT TAYLOR.PYATT
PIT SIDNEY.CROSBY JORDAN.STAAL SIDNEY.CROSBY
S.J PATRICK.MARLEAU MANNY.MALHOTRA MANNY.MALHOTRA
STL ALEXANDER.STEEN BRAD.WINCHESTER BRAD.WINCHESTER
T.B STEVEN.STAMKOS STEPHANE.VEILLEUX VICTOR.HEDMAN
TOR IAN.WHITE COLTON.ORR IAN.WHITE
VAN DANIEL.SEDIN KYLE.WELLWOOD DANIEL.SEDIN
WSH ALEX.OVECHKIN JEFF.SCHULTZ ALEX.OVECHKIN

Team LVP Offense LVP Defense LVP Total
ANA BRAD.MARCHAND COREY.PERRY BRAD.MARCHAND
ATL ZACH.BOGOSIAN MAXIM.AFINOGENOV MAXIM.AFINOGENOV
BOS STEVE.BEGIN BLAKE.WHEELER BLAKE.WHEELER
BUF CRAIG.RIVET CLARKE.MACARTHUR CRAIG.RIVET
CAR ROD.BRINDAMOUR ROD.BRINDAMOUR ROD.BRINDAMOUR
CBJ JARED.BOLL R.J..UMBERGER JARED.BOLL
CGY JAY.BOUWMEESTER RENE.BOURQUE JAY.BOUWMEESTER
CHI DUSTIN.BYFUGLIEN ANDREW.LADD DUSTIN.BYFUGLIEN
COL DARCY.TUCKER CHRIS.STEWART DARCY.TUCKER
DAL MATT.NISKANEN BRAD.RICHARDS MATT.NISKANEN
DET KIRK.MALTBY JONATHAN.ERICSSON KIRK.MALTBY
EDM TAYLOR.CHORNEY PATRICK.OSULLIVAN PATRICK.OSULLIVAN
FLA DENNIS.SEIDENBERG NATHAN.HORTON KEITH.BALLARD
L.A RAITIS.IVANANS JACK.JOHNSON JACK.JOHNSON
MIN CAL.CLUTTERBUCK MARTIN.HAVLAT CAL.CLUTTERBUCK
MTL MAXIM.LAPIERRE PAUL.MARA MAXIM.LAPIERRE
N.J NICKLAS.BERGFORS MIKE.MOTTAU NICKLAS.BERGFORS
NSH FRANCIS.BOUILLON MARTIN.ERAT MARTIN.ERAT
NYI NATE.THOMPSON KYLE.OKPOSO NATE.THOMPSON
NYR CHRIS.HIGGINS MICHAEL.DEL ZOTTO CHRIS.HIGGINS
OTT RYAN.SHANNON ALEX.KOVALEV ALEX.KOVALEV
PHI RYAN.PARENT OSKARS.BARTULIS OSKARS.BARTULIS
PHX LAURI.KORPIKOSKI ED.JOVANOVSKI LAURI.KORPIKOSKI
PIT RUSLAN.FEDOTENKO EVGENI.MALKIN RUSLAN.FEDOTENKO
S.J JED.ORTMEYER DAN.BOYLE JED.ORTMEYER
STL B.J..CROMBEEN ERIC.BREWER ERIC.BREWER
T.B STEPHANE.VEILLEUX STEVEN.STAMKOS STEPHANE.VEILLEUX
TOR FRANCOIS.BEAUCHEMIN MATT.STAJAN MATT.STAJAN
VAN KYLE.WELLWOOD RYAN.KESLER RYAN.KESLER
WSH DAVID.STECKEL SHAONE.MORRISONN DAVID.STECKEL



2010-2011:

Team MVP Offense MVP Defense MVP Total
ANA BOBBY.RYAN GEORGE.PARROS BOBBY.RYAN
ATL DUSTIN.BYFUGLIEN DUSTIN.BYFUGLIEN DUSTIN.BYFUGLIEN
BOS NATHAN.HORTON JOHNNY.BOYCHUK NATHAN.HORTON
BUF DREW.STAFFORD PAUL.GAUSTAD PAUL.GAUSTAD
CAR JEFF.SKINNER BRANDON.SUTTER BRANDON.SUTTER
CBJ RICK.NASH NIKITA.FILATOV RICK.NASH
CGY ALEX.TANGUAY CORY.SARICH JAROME.IGINLA
CHI JONATHAN.TOEWS BRIAN.CAMPBELL BRIAN.CAMPBELL
COL MATT.DUCHENE DANIEL.WINNIK DANIEL.WINNIK
DAL BRAD.RICHARDS JEFF.WOYWITKA BRAD.RICHARDS
DET BRIAN.RAFALSKI TOMAS.HOLMSTROM BRIAN.RAFALSKI
EDM ALES.HEMSKY THEO.PECKHAM ALES.HEMSKY
FLA CORY.STILLMAN MIKE.WEAVER MIKE.WEAVER
L.A DREW.DOUGHTY ALEC.MARTINEZ DREW.DOUGHTY
MIN BRENT.BURNS GREG.ZANON BRENT.BURNS
MTL TOMAS.PLEKANEC ROMAN.HAMRLIK TOMAS.PLEKANEC
N.J PATRIK.ELIAS MARK.FAYNE PATRIK.ELIAS
NSH SIARHEI.KASTSITSYN DAVID.LEGWAND DAVID.LEGWAND
NYI PA.PARENTEAU ANDREW.MACDONALD ANDREW.MACDONALD
NYR RYAN.MCDONAGH MICHAEL.SAUER MICHAEL.SAUER
OTT JASON.SPEZZA RYAN.SHANNON JASON.SPEZZA
PHI JEFF.CARTER ANDREAS.NODL JEFF.CARTER
PHX LAURI.KORPIKOSKI SAMI.LEPISTO SAMI.LEPISTO
PIT SIDNEY.CROSBY CHRIS.CONNER SIDNEY.CROSBY
S.J DEVIN.SETOGUCHI KYLE.WELLWOOD KYLE.WELLWOOD
STL DAVID.BACKES DAVID.BACKES DAVID.BACKES
T.B STEVEN.STAMKOS BRETT.CLARK STEVEN.STAMKOS
TOR MIKHAIL.GRABOVSKI FREDRIK.SJOSTROM MIKHAIL.GRABOVSKI
VAN HENRIK.SEDIN KEVIN.BIEKSA HENRIK.SEDIN
WSH ALEXANDER.SEMIN JOHN.CARLSON ALEXANDER.SEMIN

Team LVP Offense LVP Defense LVP Total
ANA CAM.FOWLER SAKU.KOIVU CAM.FOWLER
ATL JOHN.ODUYA ANDREW.LADD JOHN.ODUYA
BOS BRAD.MARCHAND MICHAEL.RYDER BRAD.MARCHAND
BUF SHAONE.MORRISONN CRAIG.RIVET CRAIG.RIVET
CAR CHAD.LAROSE ERIC.STAAL CHAD.LAROSE
CBJ NATHAN.PAETSCH DERICK.BRASSARD NATHAN.PAETSCH
CGY RENE.BOURQUE ALEX.TANGUAY ALEX.TANGUAY
CHI FERNANDO.PISANI TOMAS.KOPECKY TOMAS.KOPECKY
COL RYAN.OBYRNE KEVIN.PORTER KEVIN.PORTER
DAL TOM.WANDELL BRENDEN.MORROW TOM.WANDELL
DET RUSLAN.SALEI TODD.BERTUZZI RUSLAN.SALEI
EDM JASON.STRUDWICK SAM.GAGNER SAM.GAGNER
FLA MIKE.WEAVER DAVID.BOOTH DAVID.BOOTH
L.A TREVOR.LEWIS JACK.JOHNSON JACK.JOHNSON
MIN ERIC.NYSTROM MARTIN.HAVLAT ERIC.NYSTROM
MTL MAXIM.LAPIERRE P.K..SUBBAN MAXIM.LAPIERRE
N.J DAVID.CLARKSON ILYA.KOVALCHUK DAVID.CLARKSON
NSH NICK.SPALING FRANCIS.BOUILLON NICK.SPALING
NYI BRUNO.GERVAIS MILAN.JURCINA BRUNO.GERVAIS
NYR BRANDON.PRUST MICHAEL.DEL ZOTTO MICHAEL.DEL ZOTTO
OTT ZACK.SMITH BOBBY.BUTLER BOBBY.BUTLER
PHI DAN.CARCILLO DARROLL.POWE DAN.CARCILLO
PHX DEREK.MORRIS KYLE.TURRIS DEREK.MORRIS
PIT MAXIME.TALBOT EVGENI.MALKIN EVGENI.MALKIN
S.J JAMIE.MCGINN PATRICK.MARLEAU PATRICK.MARLEAU
STL B.J..CROMBEEN JAY.MCCLEMENT B.J..CROMBEEN
T.B ADAM.HALL DOMINIC.MOORE ADAM.HALL
TOR FREDRIK.SJOSTROM TYLER.BOZAK TYLER.BOZAK
VAN TANNER.GLASS MASON.RAYMOND TANNER.GLASS
WSH JEFF.SCHULTZ JASON.CHIMERA JASON.CHIMERA



2011-2012:

Team MVP Offense MVP Defense MVP Total
ANA SAKU.KOIVU SHELDON.BROOKBANK SAKU.KOIVU
BOS TYLER.SEGUIN ADAM.MCQUAID TYLER.SEGUIN
BUF THOMAS.VANEK ROBYN.REGEHR THOMAS.VANEK
CAR JAMIE.MCBAIN PATRICK.DWYER TIM.GLEASON
CBJ VACLAV.PROSPAL NATHAN.PAETSCH VACLAV.PROSPAL
CGY OLLI.JOKINEN ROMAN.HORAK ROMAN.HORAK
CHI PATRICK.SHARP NIKLAS.HJALMARSSON PATRICK.SHARP
COL GABRIEL.LANDESKOG GABRIEL.LANDESKOG GABRIEL.LANDESKOG
DAL JAMIE.BENN MARK.FISTRIC JAMIE.BENN
DET HENRIK.ZETTERBERG TODD.BERTUZZI IAN.WHITE
EDM JORDAN.EBERLE BEN.EAGER JORDAN.EBERLE
FLA STEPHEN.WEISS JASON.GARRISON STEPHEN.WEISS
L.A JUSTIN.WILLIAMS WILLIE.MITCHELL JUSTIN.WILLIAMS
MIN DANY.HEATLEY NICK.SCHULTZ NICK.SCHULTZ
MTL ERIK.COLE JOSH.GORGES ERIK.COLE
N.J PETR.SYKORA JACOB.JOSEFSON JACOB.JOSEFSON
NSH MIKE.FISHER BLAKE.GEOFFRION BLAKE.GEOFFRION
NYI JOHN.TAVARES MATT.MARTIN JOHN.TAVARES
NYR MARIAN.GABORIK RYAN.MCDONAGH MARIAN.GABORIK
OTT MARCUS.FOLIGNO KYLE.TURRIS MARCUS.FOLIGNO
PHI SCOTT.HARTNELL SEAN.COUTURIER SCOTT.HARTNELL
PHX RAY.WHITNEY ADRIAN.AUCOIN ADRIAN.AUCOIN
PIT SIDNEY.CROSBY DERYK.ENGELLAND SIDNEY.CROSBY
S.J PATRICK.MARLEAU DOUGLAS.MURRAY PATRICK.MARLEAU
STL DAVID.PERRON VLADIMIR.SOBOTKA DAVID.PERRON
T.B STEVEN.STAMKOS BRETT.CONNOLLY STEVEN.STAMKOS
TOR JOFFREY.LUPUL CARL.GUNNARSSON JOFFREY.LUPUL
VAN HENRIK.SEDIN CHRISTOPHER.TANEV HENRIK.SEDIN
WPG BLAKE.WHEELER JOHN.ODUYA BLAKE.WHEELER
WSH ALEXANDER.SEMIN KARL.ALZNER ALEXANDER.SEMIN

Team LVP Offense LVP Defense LVP Total
ANA JASON.BLAKE CAM.FOWLER JASON.BLAKE
BOS SHAWN.THORNTON DAVID.KREJCI SHAWN.THORNTON
BUF ROBYN.REGEHR JASON.POMINVILLE ROBYN.REGEHR
CAR PATRICK.DWYER ERIC.STAAL ERIC.STAAL
CBJ JOHN.MOORE JEFF.CARTER JOHN.MOORE
CGY BLAKE.COMEAU OLLI.JOKINEN TIM.JACKMAN
CHI MICHAEL.FROLIK ANDREW.BRUNETTE MICHAEL.FROLIK
COL JAN.HEJDA KYLE.QUINCEY JAN.HEJDA
DAL VERNON.FIDDLER ADAM.PARDY VERNON.FIDDLER
DET TOMAS.HOLMSTROM HENRIK.ZETTERBERG TOMAS.HOLMSTROM
EDM MAGNUS.PAAJARVI JORDAN.EBERLE MAGNUS.PAAJARVI
FLA BRIAN.CAMPBELL TOMAS.KOPECKY BRIAN.CAMPBELL
L.A TREVOR.LEWIS ANZE.KOPITAR TREVOR.LEWIS
MIN NICK.SCHULTZ DEVIN.SETOGUCHI DEVIN.SETOGUCHI
MTL MATHIEU.DARCHE ALEXEI.EMELIN ALEXEI.EMELIN
N.J RYAN.CARTER ILYA.KOVALCHUK RYAN.CARTER
NSH KEVIN.KLEIN FRANCIS.BOUILLON KEVIN.KLEIN
NYI NINO.NIEDERREITER MILAN.JURCINA NINO.NIEDERREITER
NYR MARC.STAAL BRAD.RICHARDS BRAD.RICHARDS
OTT JARED.COWEN STEPHANE.DA COSTA JARED.COWEN
PHI MATT.CARLE HARRISON.ZOLNIERCZYK MATT.CARLE
PHX DEREK.MORRIS DEREK.MORRIS DEREK.MORRIS
PIT JOE.VITALE STEVE.SULLIVAN JOE.VITALE
S.J DOUGLAS.MURRAY JAMIE.MCGINN JAMIE.MCGINN
STL SCOTT.NICHOL ANDY.MCDONALD SCOTT.NICHOL
T.B DOMINIC.MOORE STEVEN.STAMKOS DOMINIC.MOORE
TOR DAVID.STECKEL JOFFREY.LUPUL DAVID.STECKEL
VAN DALE.WEISE ALEXANDER.EDLER DALE.WEISE
WPG TANNER.GLASS DUSTIN.BYFUGLIEN TANNER.GLASS
WSH MICHAEL.KNUBLE TROY.BROUWER MICHAEL.KNUBLE



D Exceptional Player Pairs, Overall
These ratings represent the total increase or decrease in team scoring rates if these two players
play together, rather than separately. (We do not claim, for example, that the net impact of
playing Crosby and Malkin is extremely negative, since their individual abilities are each positive;
merely that their partnership leads to worse results than when these players play separately.)
Rank Player 1 Player 2 Total Time (s) Rating
1 BRAD.BOYES R JAY.MCCLEMENT C 35466 0.393
2 MATT.CARLE D ANDREJ.MESZAROS D 41011 0.314
3 PATRICE.BERGERON C BRAD.MARCHAND C 85678 0.31
4 JUSSI.JOKINEN L JEFF.SKINNER C 46196 0.287
5 KRIS.LETANG D PAUL.MARTIN D 40034 0.275
6 MICHAL.HANDZUS C WAYNE.SIMMONDS R 96815 0.265
7 TOM.GILBERT D RYAN.WHITNEY D 32378 0.247
8 BARRET.JACKMAN D KEVIN.SHATTENKIRK D 59537 0.24
9 JASON.BLAKE L DOMINIC.MOORE C 36983 0.231
10 PASCAL.DUPUIS L JORDAN.STAAL C 48978 0.225
11 KEITH.BALLARD D NICHOLAS.BOYNTON D 51300 0.212
12 ALEX.FROLOV L PATRICK.OSULLIVAN C 31117 0.211
13 VALTTERI.FILPPULA C JIRI.HUDLER C 115005 0.198
14 MATT.CARLE D CHRIS.PRONGER D 112174 0.197
15 MILAN.HEJDUK R WOJTEK.WOLSKI L 46147 0.191
16 KEVIN.BIEKSA D DAN.HAMHUIS D 102515 0.191
17 MARTIN.HANZAL C RADIM.VRBATA R 157171 0.188
18 KARL.ALZNER D JOHN.CARLSON D 120008 0.187
19 ALES.HEMSKY R DUSTIN.PENNER R 90640 0.186
20 MATT.GREENE D SEAN.ODONNELL D 42201 0.183
21 VERNON.FIDDLER C LEE.STEMPNIAK R 42605 0.181
22 CRAIG.CONROY C CURTIS.GLENCROSS L 44530 0.178
23 BRIAN.CAMPBELL D JASON.GARRISON D 62456 0.177
24 NICKLAS.LIDSTROM D BRIAN.RAFALSKI D 173306 0.177
25 ZACH.PARISE L TRAVIS.ZAJAC C 150049 0.176
26 MATT.GREENE D ALEC.MARTINEZ D 57029 0.175
27 TROY.BROUWER R PATRICK.SHARP R 38506 0.174
28 JIRI.HUDLER C HENRIK.ZETTERBERG L 63952 0.172
29 BRETT.CLARK D VICTOR.HEDMAN D 53748 0.169
30 SHANE.DOAN R STEVE.REINPRECHT C 51277 0.164
31 TONI.LYDMAN D LUBOMIR.VISNOVSKY D 88426 0.161
32 JOHNNY.BOYCHUK D ZDENO.CHARA D 92395 0.155
33 DREW.DOUGHTY D ROB.SCUDERI D 125662 0.154
34 ALEX.BURROWS L HENRIK.SEDIN C 173247 0.15
35 PATRICK.DWYER R BRANDON.SUTTER C 80414 0.148
36 PATRIK.ELIAS L BRIAN.ROLSTON R 57073 0.147
37 PAUL.MARTIN D DAVID.ODUYA D 85861 0.147
38 BRUNO.GERVAIS D MARK.STREIT D 66853 0.138
39 JOSH.GORGES D P.K..SUBBAN D 67710 0.138
40 ZDENO.CHARA D DENNIS.WIDEMAN D 82733 0.138
41 MATT.DUCHENE C MILAN.HEJDUK R 87232 0.133
42 FILIP.KUBA D PAUL.RANGER D 46711 0.131
43 VERNON.FIDDLER C TAYLOR.PYATT L 54765 0.124
44 CARLO.COLAIACOVO D ALEX.PIETRANGELO D 73311 0.123
45 MILAN.JURCINA D JEFF.SCHULTZ D 31131 0.12
46 BRAD.MARCHAND C GEORGE.PARROS R 32479 0.119
47 WILLIE.MITCHELL D SLAVA.VOYNOV D 37854 0.116
48 RYAN.CALLAHAN R CHRIS.DRURY C 72179 0.116
49 ROB.BLAKE D MARC-EDOUARD.VLASIC D 97836 0.109
50 TRAVIS.HAMONIC D ANDREW.MACDONALD D 107992 0.101
201 MICHAEL.CAMMALLERI L ANZE.KOPITAR C 29798 -0.123
202 BRAD.BOYES R KEITH.TKACHUK C 68156 -0.125
203 MILAN.HEJDUK R RYAN.SMYTH L 74613 -0.125
204 DERICK.BRASSARD C RICK.NASH L 78314 -0.125
205 DAVID.BACKES R ANDY.MCDONALD C 84713 -0.128
206 MILAN.MICHALEK L JASON.SPEZZA C 104458 -0.131
207 VYACHESLAV.KOZLOV L TODD.WHITE C 54517 -0.132
208 FRANCOIS.BEAUCHEMIN D CAM.FOWLER D 74655 -0.138
209 JAROME.IGINLA R OLLI.JOKINEN C 113358 -0.145
210 TYLER.BOZAK C PHIL.KESSEL R 131533 -0.148
211 MICHAEL.DEL ZOTTO D DAN.GIRARDI D 54129 -0.157
212 MICHAEL.CAMMALLERI L JAROME.IGINLA R 52981 -0.177
213 NIK.ANTROPOV C EVANDER.KANE L 39117 -0.197
214 PAUL.STASTNY C CHRIS.STEWART R 65308 -0.197
215 MARTIN.ST LOUIS R STEVEN.STAMKOS C 173577 -0.206
216 KYLE.OKPOSO R JOHN.TAVARES C 60880 -0.211
217 ZACH.BOGOSIAN D JOHN.ODUYA D 57215 -0.235
218 DAVID.BOOTH L MICHAEL.SANTORELLI C 34158 -0.241
219 ALEX.FROLOV L ANZE.KOPITAR C 45982 -0.269
220 SIDNEY.CROSBY C EVGENI.MALKIN C 69217 -0.283
221 ILYA.KOVALCHUK L TODD.WHITE C 70421 -0.545
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