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Abstract. A game or Israeli option is an American style option where both the writer and the holder
have the right to terminate the contract before the expiration time. As [9] shows the fair price for this
option can be expressed as the value of a Dynkin game. In general, there are no explicit formulas for
fair prices of American and game options and approximations are used for their computations. The
paper [17] provides error estimates for binomial approximation of American put options and here we
extend the approach of [17] in order to obtain error estimates for binomial approximations of game put
options which is more complicated as it requires us to deal with two free boundaries corresponding to
the writer and to the holder of the game option.

1. Introduction

A put option on a stock can be interpreted as a contract between a holder and a writer which allows
the former to claim from the latter at an exercise time t the amount (K−St)

+ where K is a fixed amount
called the option’s strike, St is the stock price at time t and (x)+ = max(x, 0). In the American options
case its holder has the right to choose any exercise time before the contract matures while in the game
options case the contract writer also has the right to terminate it at any time before its maturity but
then he is required to pay a cancellation fee in addition to the payoff above.

The fair price of American options and of game options is defined as the minimal amount the writer
needs to construct a self-financing portfolio which covers his obligation to pay according to the option’s
contract. It is well known that in the American options case the fair price can be obtained as a value of an
appropriate optimal stopping problem while for game options we have to deal with an optimal stopping
(Dynkin) game (see [9]). In general, both for American options and, even more so, for game options with
finite maturity explicit formulas for their price are not available and approximation methods come into
the picture while estimates of their errors become important. One of most easily implemented methods is
the binomial approximation of stock prices modelled by the geometric Brownian motion and [17] provided
corresponding error estimates for American put options. In the present paper we extend this approach
in order to provide error estimates of binomial approximations for game put options. We observe that
for perpetual game options some explicit formulas can be obtained (see [15]) but the finite maturity case
studied here seems to be more realistic.

Approximating the Brownian motion by appropriately normalized sums of Bernoulli random variables
the paper [17] provided (error) estimates const·n−3/4 and const·n−2/3 for the difference between the
price of an American put option and the price of its corresponding nth binomial model approximation.
Using again the binomial approximation of the Brownian motion as above we construct in this paper two
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approximating procedures such that the difference between the price of a game put option and its nth
approximation in the first procedure is between const·n−3/4 and const·n−1/2 and in the second procedure
is between const·n−1/2 and const·n−2/3. The error estimates here are somewhat worse than in the case
of American put options which is due to the lack of a smooth fit on the boundary of the writer’s stopping
region which causes substantial difficulties in the study of regularity of payoff functions.

We observe that specific properties of game put options had to be used in order to obtain error estimates
with the above precision. For instance, when payoffs are path dependent (and not only dependent on
the present value of the stock) [10] provides error estimates of similar binomial approximations only of
order n−1/4(lnn)3/4. Since price functions of game options can be represented as solutions of doubly
reflected backward stochastic differential equations the results of [4] are also related to game options
approximations. Nevertheless, approximations in [4] are not by binomial models, where computations
can be done by means of the dynamical programming algorithm (see [10]), but by time discretizations,
and so relevant probability space and σ-algebras remain infinite which prevents effective computations.
Furthermore, error estimates in [4] applied to our situation are of order n−1/4, i.e. they are worse than
for binomial approximations which we construct here for the specific case of game put options.

Our exposition proceeds as follows. In Section 2 we provide basic results concerning game put option
price functions, introduce our approximation processes and formulate our main result Theorem 2.1. In
Section 3 we show that the price function can be represented as a solution of a variational inequality
problem closely related to the Stefan problem (see [11]). We then use this representation to study
regularity properties of the price function near the free boundary of the option’s holder exercise region.
In Section 4 we study the price function near the boundary of the exercise region of the writer. We use the
information about this region from [14] in order to represent the price function as an explicit solution of
the heat equation. This representation enables us to understand better the behavior of the price function
near the boundary. We estimate also the rate of decay of the price function when the initial stock price
tends to infinity. Section 5 is devoted to the proof of Theorem 2.1. Finally, in Section 6 we exhibit some
computations of the price functions and of the free boundaries.

2. Preliminaries and main results

The Black–Scholes (BS) model of a financial market consists of two assets among which one is nonrisky
and the other one is risky. A nonrisky asset is called a bond and its price Bt at time t is given by the
formula Bt = B0e

rt where r is interpreted as the interest rate. A risky asset is called a stock and its
price at time t is determined by a geometric Brownian motion

(2.1) St = S0 exp((r −
κ2

2
)t+ κWt)

where κ > 0 is called volatility and Wt, t ≥ 0 is a standard Brownian motion defined on a complete
probability space (Ω,F ,P). If S0 = x we write also Sx

t for St. The fair price of an American put option
at time t with a strike (price) K and a maturity (horizon) time T <∞ can now be written as a function
FA(t, St) of time and the current stock price having the form (see, for instance, [13]),

(2.2) FA(t, x) = sup
τ∈T0,T−t

E exp(−rτ)
(

K − x exp((r − κ2

2
)τ + κWτ )

)

where T0,T−t denotes the set of all stopping times of the Brownian filtration with values in the interval
[0, T − t] and E is the expectation with respect to the measure P. If we set ψ(x) = (K− ex)+, PA(t, x) =

FA(t, e
x) and µ = r − κ2

2 then we can rewrite (2.2) in the form

(2.3) PA(t, x) = sup
τ∈T0,T−t

E exp(−rτ)ψ(x + µτ + κWτ ).

Relying on [9] (see also [15], [16] and [14]) we can also write the fair price of a game put option at
time t with a strike price K, a maturity time T and a constant penalty δ > 0 as a function F (t, St) of
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time and the current stock price in the form

(2.4) F (t, x) = inf
σ∈T0,T−t

sup
τ∈T0,T−t

E exp(−rσ ∧ τ)R(σ, τ)

where R(s, t) = (K − Sx
t )

+ + δIs<t and IQ is the indicator of an event Q. Using the functions P (t, x) =
FA(t, e

x) and ψ as above we can rewrite this formula in the form

(2.5) P (t, x) = inf
σ∈T0,T−t

sup
τ∈T0,T−t

E exp(−rσ ∧ τ)
(

ψ(x+ µσ ∧ τ + κWσ∧τ ) + δIσ<τ

)

.

It follows also (see [18], [9], [14], [16]) that the saddle point (optimal) stopping times for the game value
expressions (2.4) and (2.5) are given by

σ∗ = inf{s < T − t : F (t+ s, Sx
s ) = (K − Sx

s )
+ + δ} ∧ T and(2.6)

τ∗ = inf{s < T − t : F (t+ s, Sx
s ) = (K − Sx

s )
+} ∧ T.

Next, we introduce our binomial approximations of the Brownian motion

W
(n)
t =

√
T√
n

[nt/T ]
∑

k=1

ǫk, t ∈ [0, T ], n = 1, 2, ...

where ǫk, k = 1, 2, ... are independent indentically distributed (i.i.d.) random variables taking on values
1 and -1 with probability 1/2 and [a] denotes the integral part of a number a. It is convenient to view
{ǫk}∞k=1 as defined on the sequence space Ωǫ = {−1, 1}N = {ξ = (ξ1, ξ2, ...) : ξi = ±1} by the formula

ǫk(ξ) = ξk if ξ = (ξ1, ξ2, ...). Then W
(m)
t will be defined on the probability space (Ωǫ,Fǫ,Pǫ) where

Pǫ = { 1
2 ,

1
2}N is the product measure and Fǫ is generated by cylinder sets.

Now set δ∗ = FA(0,K) which is the price of the American put option with a maturity T and a
strike K. Clearly, if the penalty δ ≥ δ∗ then it does not make sense for the writer to cancel the
corresponding game put option, and so in this case the prices of American and game options are the
same, i.e. FA(0,K) = F (0,K). Since approximations of American options were studied in [17] we
assume in this paper that δ < δ∗. Observe that FA(t,K) is continuous in t and it is strictly decreasing
to 0 as t increases to T , and so for each δ ∈ [0, δ∗] there exists a unique tδ < T such that FA(tδ,K) = δ.
Furthermore, we can define kn to be the minimal k ∈ N such that δ ≥ FA(Tk/n,K) and set β(n) = Tkn

n .

In order to define two sequences of functions P
(n)
1 and P

(n)
2 , n = 1, 2, ... which will approximate P (0, x)

we set X
(n)
t = x+ κW

(n)
t and introduce stopping times

(2.7) σ(n) = inf{t ∈ [0, β(n)) : lnK − |µ|h− 2κ
√
h < µh[

t

h
] +X

(n)
t < lnK + |µ|h+ 2κ

√
h} ∧ T

where σ(n) = T if the infimum above is taken over the empty set. Introduce a filtration {Gt = F[t/h], t ≥ 0}
where F0 is the trivial σ-algebra and Fk is generated by ǫ1, ..., ǫk. Denote by T (n) the set of all stopping
times with respect to the filtration {Gt} taking on value in the set {kh, k = 0, 1, ..., n}. Then, clearly,
σ(n) ∈ T (n). Now, for x ≤ lnK we define

(2.8) P
(n)
1 (x) = sup

τ∈T (n)

E
(

e−rσ(n)∧τ
(

ψ(µτ +X(n)
τ )I{τ≤σ(n)} + δI{σ(n)<τ}

))

and for x > lnK we set

(2.9) P
(n)
1 (x) = sup

τ∈T (n)

E
(

e−rσ(n)∧τ
(

ψ(µτ +X(n)
τ )I{τ≤σ(n)} +

(

δ −Ke(|µ|
√
h+κh)

)

I{σ(n)<τ}
)

].

The second approximation function is defined for all x by

(2.10) P
(n)
2 (x) = sup

τ∈T (n)

E
(

e−rσ(n)∧τ
(

ψ(µτ +X(n)
τ )I{τ≤σ(n)} + (ψ(µσ(n) +X

(n)

σ(n)) + δ)I{σ(n)<τ}
)

].

We can formulate now our main result.
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2.1. Theorem. For each x there exists C = C(x) such that

(2.11) − C

n1/2
≤ P

(n)
1 (x) − P (0, x) ≤ C

n3/4
and − C

n2/3
≤ P

(n)
2 (x) − P (0, x) ≤ C

n1/2
.

In the following sections we will analyze regularity properties of the price function P (t, x) of game put
options and will complete the proof of Theorem 2.1 in Section 5 providing some computations in Section
6. The general strategy of the proof resembles that of [17] but the study of the price function of game
put options is more complicated than in the American options case, in particular, because of appearance
of two exercise boundaries (holder’s and writer’s) having different properties. Our proof will be based on
regularity properties of solutions of parabolic partial diferential equations with free boundary and of the
corresponding variational inequalities and we will rely also on some prior results from [17], [15] and [14].

3. Price function near the holder’s exercise boundary

3.1. Some previous results. First, we state the following result from [14] (see also [16]) which we will
use later on.

3.1. Proposition. (i) There exists an increasing function b : [0, T ) → R such that limt→T b(t) = K
and F (t, x) = K − x for all (t, x) satisfying 0 < x ≤ b(t).

(ii) There exists 0 < δ∗ such that for every 0 ≤ δ ≤ δ∗ there is a β = β(δ) ≥ 0 so that F (t,K) = δ for
t ∈ [0, β] and for t ≥ β we have F (t, x) = FA(t, x) for all x ≥ 0.

(iii) Furthermore,

Ft(t, x) + x2Fxx(t, x) + (r − κ2

2
)xFx(t, x)− rF (t, x) = 0

for all

(t, x) ∈ (0, T )× R
+ \ ({(t, x) : x ≤ b(t)} ∪ [0, β)× {K}).

In particular, F (t, x) is of class C1,2, i.e. continuously differentiable once with respect to t and twice
with respect to x, and so, in fact, it is a smooth function there.

(iv) Finally, F (t, x) is convex and strictly decreasing in x and nonincreasing in t.

Next, we introduce an operator D which acts on Borel functions u(t, x) on [0, T ]× R by

(3.1) Du(t, x) = 1

2
[u(t+ h, x+ κ

√
h) + u(t+ h, x− κ

√
h)]− u(t, x)

Clearly, 1
hD(t, x) can be viewed as a discretization of the differential operator ∂

∂t +
κ2

2
∂2

∂x2 . We will rely
on the following results from [17] concerning the operator D.

3.2. Proposition. For each Borel function u on [0, T ] × R there exists a martingale (Mt)0≤t≤T with
respect to the filtration Gt, t ≥ 0 such that M0 = 0 and for every t ∈ {0, h, 2h, ..., T },

(3.2) u(t,X
(n)
t ) = u(0, x) +Mt +

nt/T
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h).

3.3. Proposition. Let 0 ≤ t ≤ T − h and x ∈ R. Assume that u is a C2 function on ([t, t + h] × [x +

κ
√
h, x− κ

√
h]). Then

(3.3) Du(t, x) = 1

κ

∫

√
h

0

dy

∫ κy

−κy

dz
(

z
∂2u

∂t∂x
(t+ y2, x+ z) + δ(u)(t+ y2, x+ z)

)

where

δ(u)(t, x) = ut(t, x) +
κ2

2
uxx(t, x).
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We will need also the following result concerning the free boundary s(t) = ln(b(t)) of the holder exercise
region of our game put option which in the case of American options appears as Proposition 1 in [17]
and it can be proved for game options in the same way.

3.4. Proposition. Let 0 ≤ t1 < t2 ≤ β and let x0 = s(0) < x1 = s(β) < lnK then (s(t1) − s(t2))
2 ≤

supx0≤x≤x1
|P (t1, x)− P (t2, x)|.

We also observe that it follows from the Berry-Esseen estimate that for some constant C1 > 0 inde-
pendent of j, n ≥ 1,

(3.4) P{|X(n)
jh − z| ≤ κ

√
h} ≤ C1√

j
.

We will also rely on the following standard bounds on derivatives of solutions of 2nd order parabolic
equations with constant coefficients (see, for instance, [3] and [5]).

3.5. Proposition. Let D = (0, T ) × (0, 1) and let w(t, x) ∈ C[D̄] be a solution in D of the following
parabolic equation

κ2

2
wxx + µwx − rw = wt.

Suppose that w(0, x) = 0 for all 0 ≤ x ≤ 1 and that there exists A > 0 such that |w(t, x)| < A for all
(x, t) ∈ D̄. Then for every k, n and 0 < a < b < 1 there exists C = C(k, n, a, b, T, A) such that

(3.5) | ∂
k+nw

∂kx∂nt
(t, x)| < C for all (t, x) ∈ (0, T )× [a, b].

3.2. Price function and variational inequalities. Next, we will show that the price function of the
game put option can be represented as a solution of a variational inequality (v.i.) problem which is a
generalization of the Stefan problem (see [11] ,VIII). This will enable us to derive certain regularity
properties of this price function which we will use later on. Details of some of the proofs concerning the
solutions of the v.i. problem below which are similar to the proofs in the case of the Stefan problem will
not be given here. For the corresponding results in the American put option case we refer the reader to
[13], [17] and to references there.

Let T ′ be such that β < T ′ < T and set

(3.6) A =
κ2

2

∂2

∂x2
+ µ

∂

∂x
− r where µ = r − κ2

2
.

Using the maximum principle, properties of price functions of American and game put options and the
fact that after time β the price functions of the game and American option are the same we obtain that
for every x > s(T ′) the time derivative Pt(T

′, x) = PA,t(T
′, x) is strictly negative and we can find a, b

satisfying s(T ′) < a < b < lnK such that for some constant c > 0,

(3.7) − Pt(T
′, x) > c ∀x ∈ [a, b].

Relying on Proposition 3.1(iii) we also observe that for all (t, x) ∈ [0, T ′]× (s(t), lnK),

∂P
∂t (t, x) +AP (t, x) = 0, P (t, x) > K − ex ∀ (t, x) ∈ [0, T ′]× (s(t), lnK),(3.8)

P (t, x) = K − ex ∀t ∈ [0, T ′], ∀x ≤ s(t) and Pt ≤ 0.

Let a0 be such that a0 < s(0) < s(T ′) < b. Introduce the domain D = (0, T ′)× (a0, b) and for all (t, x)
in the closure D̄ of D define the functions

(3.9) v(t, x) = P (T ′ − t, x)− P (T ′, x) and f(x) = AP (T ′, x).

We obtain that

(3.10) f(x) =
{ −Pt(T

′, x), s(T ′) < x ≤ b
−rK, a0 ≤ x ≤ s(T ′)
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and from the definition of v(t, x) it follows that for any (t, x) ∈ D̄,

Pt(t, x) = −vt(t, x), Ptx(t, x) = −vtx(t, x), Ptt(t, x) = −vtt(t, x),(3.11)

Px(t, x) + Px(T
′, x) = −vx(t, x) and Pxx(t, x) + Pxx(T

′, x) = −vxx(t, x).
Since Px(T

′, x) and Pxx(T
′, x) are bounded we obtain that the integrability properties of the first and

second order derivatives of P (t, x) and v(t, x) are the same in D̄. Now set

(3.12) ψ(t) = v(t, b) , g(t) = vt(t, b) for 0 ≤ t ≤ T ′.

Then by (3.7) and (3.11),

(3.13) ψ(t) =

∫ t

0

g(τ)dτ =

∫ t

0

vt(τ, b)dτ ≥ 0 for 0 ≤ t ≤ T ′.

It follows from (3.8) and (3.9)–(3.10) that on the set v > 0,

(3.14) vt −Av − f = −Pt(T
′ − t, x)−AP (T ′ − t, x) +AP (T ′, x)− f(x) = 0

and on the set v = 0 we obtain

(3.15) vt −Av − f = rK > 0.

Hence we arrive at the following (see [11]).

3.6. Lemma. The function v is the unique solution of the following variational inequality problem.
v.i. Problem 1: Find v ∈ L2[0, T ′;H2(a0, b)] ∩H1[D] such that

(i) v, vt ≥ 0.
(ii) (vt −Av)(w − v) ≥ f(w − v) a.s for every w ∈ L2[D], w ≥ 0.
(iii) v(t, b) = ψ for 0 ≤ t ≤ T ′, x = b.
(iv) v(t, a0) = 0 for 0 ≤ t ≤ T ′, x = a0.
(v) v(0, x) = 0 for t = 0, a0 ≤ x ≤ b.

Proof. We shall prove uniqueness, the fact that v is a solution to v.i. Problem 1 follows from (3.9)-(3.15).
Assume that v and ṽ are two solutions of v.i. Problem 1. Since ṽ ≥ 0 (property (i)) we can use the
property (ii) of v and replace w by ṽ. Since both of them are solutions we obtain that

(3.16) (vt −Av)(ṽ − v) ≥ f(ṽ − v) and (ṽt −Aṽ)(v − ṽ) ≥ f(v − ṽ).

Define the parabolic boundary as the boundary of D without the interval {T ′}× (a0, b) and let u = v− ṽ.
Note that u is zero on the parabolic boundary and the sum of the two inequalities (3.16) is

(3.17) utu− κ2

2
uxxu− µuxu+ ru2 = (ut −Au)u ≤ 0.

Integrating both sides of (3.17) on (0, T ′) × (a0, b) we obtain four terms on the left side. For the first
term we have

∫ b

a0

∫ T ′

0

u(t, x)ut(t, x)dtdx =

∫ b

a0

1

2
u2(T ′, x)dx ≥ 0.

Integration by parts of the second term and the fact that u = 0 on the parabolic boundary yields

(3.18) − κ2

2

∫ T ′

0

∫ b

a0

uxx(t, x)u(t, x)dxdt =
κ2

2

∫ T ′

0

∫ b

a0

u2x(t, x)dxdt ≥ 0.

For the third term note that uxu = 1
2
du2

dx and that u(t, a0) = u(t, b0) = 0 for every t, and so

µ

∫ T ′

0

∫ b

a0

ux(t, x)u(t, x)dxdt = 0.

The last term satisfies r
∫ T ′

0

∫ b

a0
u2(t, x)dxdt ≥ 0 since r > 0. We conclude that the left side of (3.17) can

not be negative and so it must be zero. Since all terms in the left hand side of (3.17) are non-negative
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and their sum is equal to 0 we obtain that r
∫ T ′

0

∫ b

a0
u2(t, x)dxdt = 0, and so u = 0 almost everywhere

(a.e.). Hence, v = ṽ a.e., and so there is only one continuous solution. �

Denote parts of the boundary of D = (0, T ′)× (a0, b) by

Γ1 = [0, T ′]× {b}, Γ2 = {0} × (a0, b), Γ3 = [0, T ′]× {a0}, Γ = Γ1 ∪ Γ2 ∪ Γ3

and set

(3.19) L =
∂

∂t
−A =

∂

∂t
− κ2

2

∂2

∂x2
− µ

∂

∂x
+ r.

Thus, Γ is a parabolic boundary of D. For every ε > 0 we define following functions.

(1) A smooth function f (ε)(x) ≥ f(x) on (a0, b) such that f (ε)(x) = f(x) for s(T ′) < a < x ≤ b and
for a0 ≤ x ≤ a1 where a1 satisfies a0 < a1 < s(T ′) and limε→0 f

(ε)(x) = f(x) for a0 ≤ x ≤ b.
(2) A smooth function β(ε)(v) satisfying

β(ε)(v) = 0 for all v ≥ ε, β(ε)(0) = −1, β(ε)
v (v) ≥ 0 and β(ε)

vv (v) ≤ 0.

(3) ψ(ε)(t) = ψ(t) + ε with ψ defined in (3.12).
(4) A smooth function η(x) such that 0 ≤ η(x) ≤ 1 and for some a < a2 < b,

η(x) = 1 for a2 ≤ x ≤ b and η(x) = 0 for a0 ≤ x ≤ a.

Set Fε(x, v) = f (ε)(x) − rKβ(ε)(v) which is a Lipschitz continuous function and for every constant C
there is M0 such that C|F (ε)(x, v)| ≤ M whenever M ≥ M0 and |v| ≤ M . Let φ(ε) be a function on Γ
satisfying

φ(ε)|Γ1 = ψ(ε)(t), φ(ε)|Γ2 = εη(x), φ(ε)|Γ3 = 0,

and, moreover, relying on Chapter 3 in [5] we can choose φ(ε) so that

(1) φ(ε) ∈ C̄2+δ[D] for some 0 < δ < 1 (in fact for each δ) and we refer the reader to Chapter 3 in
[5] for the definition of C̄2+δ[D] and for conditions yielding that a function defined only on the
boundary Γ can be extended to a function from C̄2+δ[D].

(2) Lφ(ε) = F (ε)(x, ψ) at the points (0, b) and (0, a0).

By the theory of semi-linear parabolic equations (see [5]) there exist a function v(ε) ∈ C̄2+γ [D] for some
0 < γ < 1 such that

(3.20) Lv(ε) = F (ε)(x, v(ε)) and v(ε)|Γ = φ(ε).

In particular v(ε), v
(ε)
x , v

(ε)
xx , v

(ε)
t , are continuous on D̄.

Let w = v
(ε)
t . By differentiating with respect to t the equation (3.20) and taking into account (3.12),

(3.20) and the properties of φ(ε) we obtain that

wt − κ2

2 wxx − µwx +
(

r + rKβ
(ε)
v (v(ε))

)

w = 0(3.21)

where w(t, b) = g(t) ∀0 ≤ t ≤ T ′ and w(t, a0) = 0 ∀0 ≤ t ≤ T ′

w(0, x) = f (ε)(x) + ε
(

κ2

2 ηx,x(x) + µηx(x)− rη(x)
)

− rKβ
(ε)
v (v(ε)(0, x)) ∀a0 ≤ x ≤ b.

We see that in D the function w is a solution to a parabolic equation and since r + rKβ
(ε)
v ≥ 0 we can

use the maximum principle

(3.22) min
(

min
Γ

(w), 0
)

≤ w(t, x) ≤ max
(

max
Γ

(w), 0
)

∀(t, x) ∈ D.

Therefore in order to bound the function w we only need to bound its values on the parabolic boundary.
First, we estimate the left hand side of (3.22). For a ≤ x ≤ b we have that v(ε)(0, x) = εη(x) ≤ ε, and so
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β(ε)(v(ε)) ≤ 0. In view of (3.7), (3.10) and the definition of f (ε) above there exists ε0 > 0 such that for
every 0 < ε ≤ ε0,

w(0, x) ≥ f(x) + ε(ηxx(x) + µηx(x)− rη(x))

= −Pt(T
′, x) + ε(κ

2

2 ηxx(x) + µηx(x)− rη(x)) ≥ 0 ∀ a ≤ x ≤ b.

On the interval a0 ≤ x ≤ a we have η = 0 and since v(ε)(0, x) = εη(x) = 0 we see that β(ε)(v(ε)(0, x)) =
−1. Since on this interval f(x) ≥ −rK we obtain

w(0, x) = f (ε)(x) − rKβ(ε)(0) ≥ f(x) + rK ≥ 0 for a0 ≤ x < a.

Hence, w ≥ 0 on Γ2. We obtain next that,

w(t, b) = −∂P
∂t

(T ′ − t, b) ≥ 0 on Γ1 and w(t, b) = 0 on Γ3.

It follows that min
(

minΓ(w), 0
)

= 0.
Next, we estimate the right hand side of (3.22). On Γ2 we have that

w(0, x) ≤ |f (ε)(x) + ε(
κ2

2
ηxx(x) + µηx(x)− rη(x)) − rKβ(ε)(v(ε)(0, x))|

≤ sup |f (ε)|+ ε sup |κ
2

2
ηxx + µηx − rη| + rK ≤ C0

where C0 > 0 is a constant independent of ε, and so

0 = min
(

min
Γ

(w), 0
)

≤ w(t, x) ≤ max
(

max(−∂P
∂t

(T ′ − t, b), C0)
)

= C1.

We conclude that there are some constants ε0 and C1 such that for every 0 < ε ≤ ε0,

(3.23) 0 ≤ v
(ε)
t (t, x) ≤ C1.

Since v
(ε)
t ≥ 0 and v(ε)(0, x) ≥ 0 for a0 ≤ x ≤ b we deduce that v(ε)(t, x) ≥ 0 and because v

(ε)
t is uniformly

bounded it follows that v(ε) is also uniformly bounded. By the properties of β(ε) we see that

(3.24) − 1 ≤ β(ε)(v(ε)) ≤ 0 or ‖β(ε)(v(ε))‖L∞[D] ≤ 1.

Let D0 = (0, T )× (a2, b) be an upper subrectangle of D where a2 is the same as in the definition of the
function η in (4). From the definition we have v(ε)(0, x) = εη(x) = ε in D̄0 and since vε,t is nonnegative,

we obtain that v(ε)(t, x) ≥ ε, and so β(ε)(v(ε)(t, x)) = 0.
This means that on D0 the function v(ε) satisfies the parabolic equation

Lv(ε) = f (ε).

For w = v
(ε)
t and 0 < ε < ε0 we also have that

Lw(t, x) = 0 ∀(t, x) ∈ D0 and w(0, x) = f (ε)(x) when a2 ≤ x ≤ b.

Next, let y(t, x) be a function on D0 such that

Ly(t, x) = 0 ∀(t, x) ∈ D0, y(0, x) = f (ε)(x) ∀a2 ≤ x ≤ b

and all of its first and second order derivatives are bounded there. Such a function exists since we can
choose a smooth function on the remaining part Γ0 \ {0} × [a2, b] of the parabolic boundary Γ0 of D0

which extends f (ε)(x) as a smooth function to the whole D0, and then use Theorem 12 from Chapter 3

in [11]. For each ε < ε0 we define z(t, x) = w(t, x) − y(t, x) in the domain D0 where w(t, x) = v
(ε)
t (t, x).

Then z(0, x) = w(0, x) − y(0, x) = 0 for every a2 ≤ x ≤ b. Fix x0 ∈ (a2, b), then by Proposition 4.5
from Section 4.1 of [11] we obtain that |zt(t, x0)|, |ztt(t, x0)| < C for every 0 ≤ t ≤ T ′ where a constant
C > 0 is independent of ε. Since we assume that |yt(t, x0)|, |ytt(t, x0)| < C1 for 0 ≤ t ≤ T ′ it follows that
|wt(t, x0)|, |wtt(t, x0)| < C1 + C (for every ε). Let D1 = (x0, b)× (0, T ), then by Theorem 6 in chapter 3
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of [5] we obtain that for every ε > 0 (and in fact every 0 < α < 1) v(ε), v
(ε)
t ∈ C̄2+α[D1] and there is a

constant C independent of ε such that

|v(ε)|2+α + |v(ε)t |2+α < C.

In particular, we get

(3.25) ‖v(ε)x ‖L∞(D1) + ‖v(ε)tx ‖L∞(D1) + ‖v(ε)tt ‖L∞(D1) < C.

Considering again the whole region D we have

−
∫ b

x

v(ε)xx (t, y)dy =
2

κ2

∫ b

x

(

µv(ε)x (t, y)− v
(ε)
t (t, y)− rv(ε)(t, y) + β(ε)(v(ε)(t, y)) + f (ε)(y)

)

dy.

Hence,

v
(ε)
x (t, x) = v

(ε)
x (t, b) + 2

κ2

[

µ
(

v(ε)(t, b)− v(ε)(t, x)
)

+
∫ b

x

(

− v
(ε)
t (t, y)− rv(ε)(t, y) + β(ε)(v(ε)(t, y)) + f (ε)(y)

)

dy
]

.

Since all terms in the right hand side are uniformly bounded there is a constant C > 0 independent of ε

such that ‖v(ε)x ‖ < C for every 0 < ε ≤ ε0. Now we see that in the equation

v(ε)xx (t, y) =
2

κ2
(

µv(ε)x (t, y)− v
(ε)
t (t, y)− rv(ε)(t, y) + β(ε)(v(ε)(t, y)) + f (ε)(y)

all terms in the right hand side are uniformly bounded and therefore the term in the left is uniformly
bounded, as well.

We summarize this in the following lemma.

3.7. Lemma. There are constants C > 0, ε0 > 0 such that for every ε ≤ ε0,

‖v(ε)xx ‖L∞[D] + ‖v(ε)x ‖L∞[D] + ‖v(ε)t ‖L∞[D] + ‖v(ε)‖L∞[D] ≤ C.

We now obtain the following (see [11]).

3.8. Proposition. For any 1 < p < ∞ and t ∈ [0, T ′], v(ε) → v as ε → 0 weakly in W 1,p(D). Further-

more, v(ε) → v uniformly on D and also v
(ε)
x → vx uniformly in x ∈ [0,K] for each t ∈ [0, T ′]. The

function v is the unique solution of v.i. Problem 1.

Next, we analyze properties of second order derivatives starting with the following result.

3.9. Lemma. There is a constant C > 0 such that for any 0 < ε ≤ ε0,
∫ T ′

0

∫ b

a0

(v
(ε)
tx (t, x))2dxdt < C.

Proof. Set v = v(ε), β = β(ε) and w = v
(ε)
t . Multiply the equation (3.21) by w to obtain

wwt −
κ2

2
wwxx − µwwx + (r + rKβ′(v))w2 = 0.

Integrating this equation over (a0, b) and recalling that β′(v), t and K are non-negative we obtain that
for any 0 ≤ t ≤ T ′,

(3.26)
1

2

d

dt

∫ b

a0

w2(t, x)dx − κ2

2

∫ b

a0

w(t, x)wxx(t, x)dx − µ

∫ b

a0

1

2

dw2

dx
(t, x)dx ≤ 0.

By (3.20) and (3.23) we estimate the third term in (3.26),

∣

∣µ

∫ b

a0

1

2

dw2

dx
(t, x)dx

∣

∣ = |µ||w2(t, b)− w2(t, a0)| = |µ|w2(t, b) < C2
1 .
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For the second term in (3.26) we see that

−κ
2

2

∫ b

a0

w(t, x)wxx(t, x)dx =
κ2

2

(

∫ b

a0

w2
x(t, x)dx − w(t, b)wx(t, b) + w(t, a0)wx(t, a0)

)

.

Since w(t, a0) = 0 and the function w(t, x) is uniformly bounded in D we see that wx = v
(ε)
tx is uniformly

bounded near the boundary [0, T ′] × {b} and w(t, a0)wx(t, a0) = 0 while |w(t, b)wx(t, b)| < C2 for some
constant C2 > 0 independent of ε. Thus, we conclude from (3.26) that

1

2

d

dt

∫ b

a0

w2(t, x)dx +
κ2

2

∫ b

a0

w2
x(t, x)dx ≤ C3

for some C3 > 0 independent of ε. Integrating the last equation over [0, T ′] we obtain

κ2

2

∫ T ′

0

∫ b

a0

w2
x(t, x)dxdt +

1

2

∫ b

a0

(w2(T, x)− w2(0, x))dx ≤ C3.

Since the function w is uniformly bounded it follows that there is C > 0 independent of ε such that
∫ T ′

0

∫ b

a0

w2
x(t, x)dxdt ≤ C.

�

We will now deal with the L2 properties of the function v
(ε)
tt (t, x).

3.10. Lemma. There is a constant C > 0 such that for any 0 < ε ≤ ε0 and every 0 < σ ≤ t ≤ T ′,
∫ b

a0

(v
(ε)
tx (t, x))2dx+

∫ t

σ

∫ b

a0

(v
(ε)
tt (x, t))2dxdτ ≤ C

σ
.

Proof. Set v = v(ε), β = β(ε) and w = v
(ε)
t . Multiplying (3.21) by the function wt we have

w2
t −

κ2

2
wxxwt − µwxwt + (r + rKβ′(v))wwt = 0

and an integration with respect to x over (a0, b) yields

(3.27)

∫ b

a0

w2
t dx− κ2

2

∫ b

a0

wxxwtdx− µ

∫ b

a0

wxwtdx+

∫ b

a0

(r + rKβ′(v))wwtdx = 0.

Fix some t ∈ [0, T ]. Since wt(t, a0) = w(t, a0) = 0 we see that

κ2

2

∫ b

a0

wxx(t, x)wt(t, x)dx =
κ2

2
wx(t, b)wt(t, b)−

κ2

4

d

dt

∫ b

a0

wx(t, x)
2dx.

From (3.25) it follows that κ2

2 |wx(t, b)wt(t, b)| ≤ C1 for some constant C1 > 0 independent of ε, and so
we obtain

κ2

4
d
dt

∫ b

a0
w2

x(t, x)dx +
∫ b

a0
w2

t dx+
∫ b

a0
(r + rKβ′(v))w(t, x)wt(t, x)dx(3.28)

≤ µ
∫ b

a0
wx(t, x)wt(t, x)dx + C1.

Now we deal with the last term in (3.27). Since β′′(v) ≤ 0 and v, w ≥ 0 we obtain that
∫ b

a0
(r + rKβ′(v))wwtdx = 1

2

∫ b

a0
(r + rKβ′(v)) d

dtw
2dx

= 1
2

d
dt

∫ b

a0
(r + rKβ′(v))w2(t, x)dx − 1

2

∫ b

a0
rKβ′′(v)w3dx ≥ 1

2
d
dt

∫ b

a0
(r + rKβ′(v))w2dx.

We plug this inequality into (3.28) and obtain

1

2

d

dt

∫ b

a0

[
κ2

2
w2

x(t, x) + (r + rKβ′(v))w2(t, x)]dx +

∫ b

a0

w2
t (t, x)dx+ ≤ µ

∫ b

a0

wx(t, x)wt(t, x)dx + C1.
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Integrate the last inequality with respect to τ ′ over the interval (τ, t) to obtain

1
2

∫ b

a0
[κ

2

2 w
2
x(t, x) + (r + rKβ′(v))w2(t, x)]dx +

∫ t

τ

∫ b

a0
w2

t (t, x)dxdτ
′

≤ µ
∫ t

τ

∫ b

a0
|wx(t, x)||wt(t, x)|dxdτ ′ + C1(t− τ) + 1

2

∫ b

a0
[κ

2

2 w
2
x(τ, x) + (r + rKβ′(v))w2(τ, x)]dx.

Next, integrating in τ over the interval (0, σ) for some 0 < σ < t and taking into account that (r +
rKβ′(v))w2 ≥ 0 by the property (2) of β we obtain that

σ
2

∫ b

a0

κ2

2 w
2
x(t, x)dx +

∫ σ

0

∫ t

τ

∫ b

a0
w2

t (t, x)dxdτ
′dτ(3.29)

≤ C2 + |µ|
∫ σ

0

∫ t

τ

∫ b

a0
|wx(t, x)||wt(t, x)|dxdτ ′dτ + 1

2

∫ σ

0

∫ b

a0
[κ

2

2 w
2
x(τ, x) + (r + rKβ′(v))w2(τ, x)]dxdτ.

Now, by (3.23), (3.24) and Lemma 3.9 together with the Cauchy–Schwarz inequality we estimate the
right hand side of (3.29) by a constant C3 > 0 independent of ε. Hence,

C3 ≥ σκ2

4

∫ b

a0

w2
xdx+

∫ σ

0

∫ t

τ

∫ b

a0

w2
t dxdτ

′dτ ≥ σκ2

4

∫ b

a0

w2
xdx+ σ

∫ t

σ

∫ b

a0

w2
t dxdτ

′

and Lemma 3.10 follows. �

As a corollary of previous results we obtain

3.11. Proposition. Let β < σ < T and a < s(0) < s(σ) < b < lnK. Define Dσ = (0, σ)× (a, b). Then

(3.30) P (t, x) ∈ H2(Dσ)

where by definition H2[U ] is the set of all the functions in L2[U ] with an L2 weak second order derivatives.
Also there exists C > 0 such that for every 0 ≤ t ≤ T ′,

(3.31)

∫ b

a

| ∂
2P

∂x∂t
(t, x)|2dx = ‖ ∂

2P

∂x∂t
(t, x)‖L2[a,b] < C.

Proof. From Lemma 3.10, Lemma 3.9 and Lemma 3.7 we obtain that {v(ε)}ε<ε0 are uniformly bounded
in H2[Dσ] and so they have a weak limit ṽ ∈ H2[Dσ]. Since v(ε) → v uniformly we must have that v = ṽ,
and so v ∈ H2[Dσ]. Since v is the solution of (3.15) we can apply Proposition 3.5 and using the fact that
the constant C in (3.5) doesn’t depend on t we can obtain in a similar way that for a fixed σ there is a
constant C > 0 such that for every 0 ≤ t ≤ σ,

‖vx,t(t, ·)‖L2[a0,b] < C.

From (3.11) we can deduce the same result for the function P (t, x). �

3.12. Corollary. For each 0 ≤ t < T the function vt(t, x) is Holder continuous with a Holder exponent
1
2 .

Proof. For every 0 < t < T Proposition 3.11 gives us that vt(t, x) ∈ H1[a0, b]. Hence, the result is a
consequence of the Sobolev inequality. �

3.13.Corollary. For every 0 ≤ t < T ′ the functions Pt(t, x) and Pxx(t, x) as functions of x are continuous
in the closed interval [s(t), b].

Proof. For the function Pt(t, x) the result follows from (3.11) and the previous corollary. Since P (t, x) is
a solution of (3.8) in the interval {(t, x) : s(t) < x < lnK} and since the functions Px(t, x) and P (t, x)
are continuous in the interval [s(t), b] we obtain the result for Pxx, as well. �

3.14. Corollary. Let β < σ < T and a < s(0) < s(σ) < b < lnK. Define Eσ = {(t, x) : 0 < t <
β, a− µt < x < b− µt} and u(t, x) = e−rtP (t, x+ µt). Then

(3.32) u(t, x) ∈ L2[Eσ]
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and there exists C > 0 such that for every 0 ≤ t ≤ β,

(3.33)

∫ b−µt

a−µt

| ∂
2u

∂x∂t
(t, x)|2dx < C.

Proof. The assertion (3.32) follows from Proposition 3.11 and the definition of u(t, x). For (3.33) note
that

∂2u

∂x∂t
(t, x) = e−rt

(

− r
∂P

∂x
(t, x+ µt) +

∂2P

∂x2
(t, x+ µt) +

∂2P

∂x∂t
(t, x+ µt)

)

,

then use (3.31) and the fact that for (t, x) ∈ Eσ the functions ∂2P
∂x2 (t, x + µt) and ∂P

∂x (t, x + µt) are
bounded. �

4. Price function near the writer’s exercise boundary

4.1. Regularity properties of price function. Let F (t, x) be the price function of the put game
option (see Section 2). We begin this section by showing that near the writer’s exercise region Γ1 =
{(t,K) : 0 ≤ t ≤ β} the function ∂F

∂t is continuous. Let

(4.1) Y
[s,x]
t = (Y

1,[s,x]
t , Y

2,[s,x]
t ) = (s+ t, Sx

t )

which is a non homogeneous in time Markov process in R
+ × R where Sx

t = xeµt+κBt and µ = r − κ2

2 .
Let

(4.2) LY =
∂

∂t
+
κ2x2

2

∂2

∂x2
+ rx

∂

∂x
− r

which is the infinitesimal generator of Yt when considered on the space of all C2 functions. This is a
parabolic operator with bounded smooth coefficients in the domain

(4.3) D = (0, β)× (k,K)

where k > 0. Let P[s,x] and E[s,x] be the probability and the corresponding expectation for the Markov
process Y starting at the point [s, x]. We will first show that for any t0 ∈ [0, β),

(4.4) lim
(t,x)→(t0,K)

P[t,x][Yτ ∈ Γ1] = 1

where τ = τ(Γ) and for any closed set Q ⊂ R+ × R we set τ(Q) to be the arrival time at the set Q
for a Markov process under consideration which is Yt here. Indeed, choosing an appropriate nonnegative
function φ ≤ 1 on the boundary Γ and relying on Chapter 3 in [5] we can choose u(t, x) ∈ C1,2(D) which
solves the equation LY u = 0 in D and equals 1 on the boundary part Γ1 for 0 ≤ t ≤ t1 < β while decaying
smoothly to 0 when t grows to β. Then

u(t, x) = E[t,x]φ(Yτ ) ≤ P[t,x]{Yτ ∈ Γ1},
and so

1 ≥ lim inf
(t,x)→(t0,b)

P[t,x][Yτ ∈ Γ1] ≥ lim
(t,x)→(t0,K)

u(t, x) = u(t0,K) = 1.

Next let f(x) = (K − x)+ and g(x) = f(x) + δ. Recall that the price of a put game option with an
expiration time T and a constant penalty δ can be written in the form

F (t, x) = sup
0≤τ≤T̃

inf
0≤σ≤T̃

J[t,x](f, g, σ, τ)

where T̃ = inf{t : Y 1
t = T } and for any bounded Borel functions f̂ and ĝ we write

J[t,x](f̂ , ĝ, σ, τ) = E[t,x][e
−rσ∧τ (g(Y 2

σ )I{σ<τ} + f(Y 2
τ )I{τ≤σ})].

Set

(4.5) fs(x) = F (s, x) when β < s < T and Fs(t, x) = sup0≤τ≤s̃inf0≤σ≤s̃J[t,x](fs, g, σ, τ).
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where s̃ = inf{u : Y
(1)
u = s}. Let < σ∗, τ∗ > and < σ∗

s , τ
∗
s > be the two saddle points (see [9])

corresponding to the optimal stopping games with values F (t, x) and Fs(t, x), respectively, and so

σ∗ = inf{0 ≤ t ≤ T̃ : F (Yt) = g(Y 2
t )} τ∗ = inf{0 ≤ t ≤ T̃ : F (Yt) = f(Y 2

t )}(4.6)

σ∗
s = inf{0 ≤ t ≤ s̃ : Fs(Yt) = g(Y 2

t )} τ∗s = inf{0 ≤ t ≤ s̃ : Fs(Yt) = fs(Y
2
t )}.

Then

F (t, x) = J[t,x](f, g, σ
∗, τ∗) and Fs(t, x) = Js

[t,x](fs, g, σ
∗
s , τ

∗
s ).

4.1. Lemma. For all 0 ≤ t ≤ s < T and x > 0, Fs(t, x) = F (t, x).

Proof. We have

Fs(t, x) = J[t,x](fs, g, σ
∗
s , τ

∗
s ) ≤ J[t,x](fs, g, σ

∗, τ∗s )

= E[t,x][e
−rσ∗∧τ∗

s

(

fs(Y
2
τ∗
s
)I{τ∗

s ≤σ∗} + F (Yσ∗)I{σ∗<τ∗
s }
)

]

≤ E[t,x][e
−rσ∗∧τ∗

s

(

F (Yτ∗
s
)I{τ∗

s ≤σ∗} + F (Yσ∗)I{σ∗<τ∗
s }
)

] = E[t,x][e
−rσ∗∧τ∗

s F (Yσ∗∧τ∗
s
)] ≤ F (t, x).

Indeed, the first inequality above follows by the saddle point property. The second inequality holds
true since F is nonincreasing in the time variable, τ∗s ≤ s̃ = s − t for Y [t,x] and Y 1,[t,x](τ∗s ) ≤ s. The

third inequality is satisfied since the process e−rY I

σ∗∧uF (Yσ∗∧u) is a continuous supermartingale in u with
respect to P[t,x] (see [8]). For the other direction we have

F (t, x) ≤ E[t,x][e
−rs̃∧σ∗

s∧τ∗
F (Ys̃∧σ∗

s∧τ∗)] = E[t,x][e
−rs̃∧σ∗

s∧τ∗(
f(Y 2

τ∗)Iτ∗≤s̃∧σ∗
s

+F (Ys̃)Is̃<τ∗∧σ∗
s
+ g(Y 2

σ∗
s
)Iσ∗

s<s̃∧τ∗
)

] ≤ E[t,x][e
−rs̃∧σ∗

s∧τ∗(
fs(Y

2
τ∗∧s)Iτ∗∧s̃≤σ∗

s

+g(Y 2
σ∗
s
)Iσ∗

s<s̃∧τ∗
)

] = J[t,x](fs, g, σ
∗
s , τ

∗ ∧ s̃)) ≤ J[t,x](fs, g, σ
∗
s , τ

∗
s ) = Fs(t, x)

where we use the submartingale property of e−rY I

τ∗∧uF (Yτ∗∧u) in u. �

Now for any bounded Borel functions f̂ and ĝ set

Is(t, x, f̂ , ĝ) = sup
0≤τ≤s̃

inf
0≤σ≤s̃

J[t,x](f̂ , ĝ, σ, τ).

From the time homogeneity of the process Y 2
t = St we obtain that

(4.7) Is+h(t+ h, x, f̂ , g) = Is(t, x, f, g).

4.2. Proposition. There is a constant C > 0 such that for any (t, x) ∈ (0, β)× (k,K),

0 ≤ −∂F
∂t

(t, x) ≤ CP[t,x][τ
∗
s < σ∗

s+h].

Proof. The left hand side of the above inequality follows from (iii) and (iv) of Proposition 3.1. For the
right hand side, let h > 0 be such that β + h < T − h and t+ h < β and let β < s < T − h. By (see [L])
the price function of an American put option has a bounded derivative with respect to t in [0, s+ h]×R,

i.e. C = sup(t,x)∈[0,s+h]×R+
|∂FA(t,x)

∂t | <∞. This together with Proposition 3.1(ii) yields

(4.8) sup
β<s<T,x≥0

|∂F (s, x)
∂s

| ≤ C.

Next, by Lemma 4.1 and the saddle point property,

(4.9) F (t, x) = Fs(t, x) = J[t,x](fs, g, σ
∗
s , τ

∗
s ) ≤ J[t,x](fs, g, σ

∗
s+h, τ

∗
s ).

By Lemma 4.1, (4.7) and the saddle point property,

F (t+ h, x) = Fs+h(t+ h, x) = Is+h(t+ h, x, fs+h, g) = Is(t, x, fs+h, g)(4.10)

= J[t,x](fs+h, g, σ
∗
s+h, τ

∗
s+h) ≤ J[t,x](fs+h, g, σ

∗
s+h, τ

∗
s ).
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Now, (4.5), (4.8), (4.9) and (4.10) yields that

0 ≤ 1
h (F (t, x)− F (t+ h, x)) ≤ 1

hE[t,x][e
−rσ∗

s+h∧τ∗
s (fs(Y

2
τ∗
s
)− fs+h(Y

2
τ∗
s
))I{τ∗

s ≤σ∗
s+h

}]

≤ 1
hE[e−rσ∗

s+h∧τ∗
sChI{τ∗

s ≤σ∗
s+h

}] ≤ CP[t,x][τ
∗
s ≤ σ∗

s+h].

Passing to the limit as h→ 0 we obtain the result. �

4.3. Corollary. For every 0 ≤ t0 < β, lim(t,x)→(t0,K)
∂F
∂t (t, x) = 0, and so lim(t,x)→(t0,lnK)

∂P
∂t (t, x) = 0.

Proof. In view of Proposition 4.2 we only have to show that for every 0 ≤ t0 < β,

lim
(t,x)→(t0,K)

P[t,x][τ
∗
s ≤ σ∗

s+h] = 0.

Let D be as in (4.3), Γ2 = {(β, x) : k ≤ x ≤ K} and Γ3 = {(t, k) : 0 ≤ t ≤ β}. It follows from the
definition of τ∗s and σ∗

s+h that for every (x, t) ∈ D,

{τ(Γ1) < τ(Γ2 ∩ Γ3)} ⊂ {σ∗
s+h < τ∗s } with respect to P[t,x].

From (4.4) we obtain

lim
(t,x)→(t0,K)

P[t,x][σ
∗
s+h < τ∗s ] = 1

and the result follows. �

Next, we deal with functions P (t, x) = F (t, ex), and so it is natural to consider the domain D0 =
(0, β) × (k, lnK) for some positive k < lnK (which is, essentially, the same domain after the space
coordinate change) and let

(4.11) c = PA,t(β, lnK) = lim
x→logK

PA,t(β, x).

Let v(t, x) be a function solving the equation ∂
∂t +Av(t, x) = 0 with A defined by (3.6) and satisfying

the boundary conditions

(4.12) v(t, lnK) = c , v(t, k) = Pt(t, k) for 0 ≤ t ≤ β and v(β, x) = Pt(β, x) for k < x < lnK.

Since these boundary conditions are continuous then (see [5]) they are satisfied by a unique solution in
C1,2[D] of the above equation. Let w(t, x) be a function on D̄0 such that

(4.13) Pt(t, x) = w(t, x) + v(t, x) ∀(t, x) ∈ D̄0 \ (β, lnK).

Thus, w(t, x) ∈ C1,2[D′] and it satisfies the same parabolic equation in D0 as ∂P
∂t (t, x) and v(t, x). Its

boundary values are

(4.14) w(t, lnK) = −c , w(t, k) = 0 for 0 ≤ t ≤ β and w(β, x) = 0 for k < x < lnK.

From the continuity of v(t, x) on D̄0 we see that it is bounded there and since ∂P
∂t is also bounded there

we obtain the same result for the function w as for v. Hence,

(4.15) w(t, x), v(t, x) ∈ C1,2[D0] ∩ L∞[D0].

4.2. Integrability of wt(t, x) and wx(t, x). Now we will analyze the function w(t, x). Let Z
[u,x]
t =

(u + t,Xx
t ) be the diffusion process in the plane whose infinitesimal generator is equal to L1 = ∂

∂t +A

on the space of C2 functions. For each ε > 0 define Dε = (0, β − ε) × (k + ε, lnK − ε). Let Γε be the
parabolic boundary of Dε. For every ε > 0 which is sufficiently small we can find a smooth function
w̄(t, x) with compact support on the plane such that in D̄ε it is equal to w(t, x). By the Dynkin formula
we obtain that for every (u, x) ∈ Dε,

(4.16) E[u,x][w̄(Zτ(Γε))] = w̄(u, x) +E[u,x][

∫ τ(Γε)

0

L1w̄(Zs)ds]
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where τ(Q) denotes the arrival time to Q by the process Z
[u,x]
t . Note that since w(t, x) = w̄(t, x) for

(t, x) ∈ D̄ε we can replace w̄ by w in the above formula and since Z
[u,x]
s ∈ D0 for s ≤ τ we obtain that

Lw(Ys) = 0. It follows that for every ε > 0,

(4.17) w(u, x) = E[u,x][w(Zτ(Γε))].

Now fix (u, x) ∈ D0 and a continuous path ω0. Let E = {Z [u,x]
τ(Γ 1

n
)(ω0)}n0<n ⊂ D̄0 where n0 is such that

(u, x) ∈ D 1
n0

. The sequence of times {τ(Γ 1
n
)(ω)}n>n0 is non decreasing with respect to n and so it has

a limit ρ ≤ T . Let γ be an accumulation point in E , i.e. limk→∞ Z
[u,x]
τ(Γ 1

nk

)(ω0) = γ for some subsequence

nk. Define d(y,Γ0) = inf{|y − x| : x ∈ Γ0} and note that this function is continuous on D̄0 and it is

0 if and only if y ∈ Γ0. Since d(Y
[u,x]
τ(Γ 1

nk

)(ω0),Γ0) ≤ 1
nk

for each k we conclude that γ ∈ Γ0 and since

limk→∞ τ(Γ 1
nk

) = ρ it follows that Z
[u,x]
ρ (ω0) = limk→∞ Z

[u,x]
τ(Γ 1

nk

)(ω0) = γ. Hence, τ(Γ0)(ω0) = r. By the

definition w(t, x) is continuous except at the point (β, lnK) but because P[u,x][Zτ(Γ0) = (β, lnK)] = 0
for every (u, x) ∈ D0 we can ignore paths that reach the point (β, lnK), and so

(4.18) lim
ε→0

w(Z
[u,x]
τ(Γε)

) = w(Z
[u,x]
τ(Γ0)

) P[u,x] a.s.

4.4. Corollary. For every (t, x) ∈ D0,

w(t, x) = E[t,x][w(Zτ(Γ0))] = −cE[t,x][I{τ(Γ01)<τ(Γ02∪Γ03)}] = −cP[t,x][τ(Γ01) < τ(Γ02 ∪ Γ03)]

where Γ01 = {(t, lnK) : 0 ≤ t ≤ β}, Γ02 = {(β, x) : k ≤ x ≤ lnK} and Γ03 = {(t, k) : 0 ≤ t ≤ β}.
Proof. From (4.15) we know that the function w(t, x) is bounded and so we can use the Lebesgue bounded
convergence theorem and from the boundary conditions on w(t, x) it follows that

w(t, x) = lim
ε→0

E[t,x][w(Zτ(Γε))] = E[t,x][ lim
ε→0

w(Zτ(Γε))] = E[t,x][w(Zτ(Γ0))]

which gives the first equality of the corollary while the second equality follows from (4.14) and the third
equality is obvious. �

Let (t, x), (t′, x) ∈ D0 and assume that t ≤ t′. Then it is not difficult to understand that

P[t,x][τ(Γ01) < τ(Γ02 ∪ Γ03)] ≥ P[t′,x][τ(Γ01) < τ(Γ02 ∪ Γ03)],

and so w(t, x) is nonincreasing in t for every x which implies that

(4.19)
∂w

∂t
(t, x) ≥ 0 ∀(t, x) ∈ D0.

It is also easy to see that for 0 ≤ t < T and 0 ≤ x ≤ x′ ≤ 1,

P[t,x][τ(Γ01) < τ(Γ02 ∪ Γ03)] ≤ P[t,x′][τ(Γ01) < τ(Γ02 ∪ Γ03)],

and so

(4.20)
∂w

∂x
≤ 0 ∀(t, x) ∈ D0.

4.5. Lemma. The functions wt and wx are in L1[D0].

Proof. We will use (4.19) in order to prove the result for wt(t, x). The case of wx(t, x) can be proven
similarly be using (4.20). Using (4.14), (4.19) and the continuity of w(0, x) on {0} × [k, lnK] we obtain
that

∫

D0
|∂w∂t |dtdx =

∫ lnK

k

∫ β

0
∂w
∂t dtdx = limε→0

∫ lnK−ε

k

∫ β

0
∂w
∂t dtdx

= limε→0

∫ lnK−ε

k (w(β, x) − w(0, x))dx = − limε→0

∫ lnK−ε

k w(0, x)dx = −
∫ lnK

k w(0, x)dx <∞.

Using (4.20) in place of (4.19) the proof of integrability of wx is similar. �
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4.3. Integrability of vt(t, x) and vx(t, x). We continue this section by analyzing the function v(t, x)
solving the equation L1v = 0 with the boundary conditions given by (4.12). Let C1,2[D̄0] be the set of
all functions which have one derivative in t and two derivatives in x both uniformly continuous in D0.

4.6. Lemma. There exist a function z(t, x) ∈ C1,2[D̄0] such that

(4.21) z(t, x) = v(t, x) ∀(t, x) ∈ Γ0.

Proof. Recall that PA,t(T, x) = Pt(T, x) for k ≤ x < lnK and note that the functions PA,t(T, x), PA,t(t, x)
and Pt(t, k) as function of (t, x) belong to the space C1,2[D̄0]. Set

z̃(t, x) =
lnK − x

lnK − k

(

Pt(t, k) + PA,t(T, x)− PA,t(T, k)
)

+
x− k

lnK − k
PA,t(t, x).

Then z̃(t, x) ∈ C1,2[D̄] since it is a linear combination of functions from this space. We also have

z̃(t, k) = lnK−k
lnK−k

(

Pt(t, k) + PA,t(T, k)− PA,t(T, k)
)

= Pt(t, x) ∀0 ≤ t ≤ β

z̃(t, lnK) = PA,t(t, lnK) when 0 ≤ t ≤ β and for all k ≤ x ≤ lnK,

z̃(T, x) = lnK−x
lnK−k

(

Pt(T, k) + PA,t(T, x)− PA,t(T, k)
)

+ x−k
lnK−kPA,t(T, x) = PA,t(T, x).

Thus, we obtain

(4.22) z(t, x) =
lnK − x

lnK − k
z̃(t, x) +

x− k

lnK − k
z̃(T, x) ∈ C1,2[D̄].

Since

z(t, k) = z̃(t, k) = Pt(t, x), z(t, lnK) = z̃(T, lnK) = PA,t(T, lnK) = c and z(T, x) = z̃(T, x) = PA,t(T, x)

it follows that

(4.23) z(t, x) = v(t, x) ∀(t, x) ∈ Γ.

�

Next, define f(t, x) = −Lz(t, x). From Lemma 4.6 we obtain that f(x, t) is bounded in D0 and so it
belongs to Lp[D0] for every 1 ≤ p ≤ ∞. Set ṽ(t, x) = v(t, x)− z(x, t) and observe that

Lṽ(t, x) = f(t, x) and ṽ(t, x) = 0 ∀(t, x) ∈ Γ0.

We conclude that the function ṽ(t, x) is the unique solution of the following problem (see [1]).

4.7. Theorem. Let 1 ≤ p <∞ then for any f(t, x) ∈ Lp[D0] there exists a unique function ṽ such that

(i) ṽ ∈ Lp[0, T ;W 2,p(0, 1)] ∩ Lp[0, T ;W 1,p
0 (0, 1)],

(ii) ∂ṽ
∂t ∈ Lp[D0],

(iii) Lṽ(t, x) = f(t, x) for every (t, x) ∈ D0,
(iv) ṽ|Γ0 = 0.

From assertions (i) and (ii) of Theorem 4.7 we obtain that the functions ṽx(t, x) and ṽt(t, x) are both
in Lp[D] for every 0 ≤ p <∞ and since z(t, x) ∈ C1,2[D̄0] we obtain the following.

4.8. Corollary. For every 1 ≤ p <∞ the functions vt(t, x) and vx(t, x) belong to the space Lp[D0].

We can now summarize most of the results of this section as follows.

4.9. Proposition. Let s(β) < k < lnK < k′ and define

D0 = (0, β)× (k, lnK) and D′
0 = (0, β)× (lnK, k′).

Then the function Pt(t, x) is continuous at every point in the domain D̄0 \ {(β, lnK)}, and there exist
two functions w(t, x) and v(t, x) on D0 such that

(4.24) Pt(t, x) = w(t, x) + v(t, x) for every (t, x) ∈ D̄0 \ {(β, lnK)},
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(4.25) w(t, x), v(t, x) ∈ C1,2(D0) ∪ L∞[D0]

and both functions are solutions of the parabolic equation L1u = 0. Furthermore, w(t, x) is continuous in
D0 and it satisfies

w(t, lnK) = PA,t(β, lnK) and w(t, b) = 0 when 0 ≤ t ≤ β,(4.26)

w(β, x) = 0 when k < x < lnK

and

(4.27) wt(t, x), wx(t, x) ∈ L1[D].

Finally, v(t, x) ∈ C(D̄) and for every 1 ≤ p <∞,

(4.28) vt(t, x), vx(t, x) ∈ Lp[D].

The same decomposition of Pt(t, x) with the same properties holds true in the domain D′
0.

Proof. Taking the same functions v and w as in (4.13) we see that (4.25) is actually the same as (4.15)
and the fact that both v and w are solution of L1u = 0 is clear from their definitions. Next we see that
(4.26) is the same as (4.14), that (4.27) is the same as Lemma 4.5 and that (4.28) is, in fact, Corollary
4.8. Observe that we did not use in this section the fact that k < lnK so all the proofs are also applicable
to the case k′ > lnK and the domain D′

0. �

From (4.24), (4.27) and (4.28) we obtain the following.

4.10. Corollary. Let D̃ = {(t, x) : 0 < t < β, k − µt < x < lnK − µt} and

(4.29) u(t, x) = e−rtP (t, x+ µt).

Then

(4.30)
∂2u

∂t2
∈ L1[D̃].

4.4. Price function when initial stock price is large. Let F (t, x), P (t, x) and u(t, x) be as above.
Recall that in the domain (0, T ) × (lnK,∞) the function P (t, x) satisfies the equation L1P = 0, it is
continuous in the closure of [0, T ]× [lnK,∞) and P (T, x) = (K − ex)+ = 0 for x > lnK. Define

(4.31) v(t, x) = u(T − t,
κ√
2
x+ lnK + |µ|T )

where u is given by (4.29) and set G = (0, T )× (0,∞). It follows from Proposition 4.9 that

(1) v(t, x) ∈ C1,2[G] ∪ C[Ḡ],
(2) vxx(t, x) = vt(t, x) for every (t, x) ∈ G,
(3) v(t, 0) = u(T − t, lnK + 2|µ|T ) is continuous,
(4) v(0, x) = 0 for every 0 ≤ t ≤ T ,
(5) v(0, x) is bounded (since P (t, x) is).

Since a bounded solution of the heat equation in G is unique (see [3]) then for every (t, x) ∈ G,

(4.32) v(t, x) = −2

∫ t

0

∂K

∂x
(t− τ, x)v(τ, 0)dτ where K(t, x) =

1√
4πt

e−
x2

4t ,

and so

v(t, x) =
1√
4π

∫ t

0

xe−
x2

4(t−τ) v(τ, 0)dτ

(t− τ)3/2
.

Differentiating v we obtain polynomials Qk,n(s, x) such that for all k, n ∈ N,

∂k+nv

∂nt∂kx
(t, x) =

∫ t

0

Qn,k((t− τ)−1/2, x)e
−x2

4(t−τ) v(τ, 0)dτ.
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If N is large enough and c > 0 then (t−τ)N

xN Qk,n((t− τ)−1/2, x) is a polynomial in (t− τ)1/2 and 1/x and

it is bounded on (0, T )× (c,∞). Since supy≥0y
Ne−y <∞ for any N ∈ N we can set y = x2

4(t−τ) deriving

that for any N ∈ N and (t, x) ∈ (0, T )× (c,∞),

∂k+nv
∂nt∂kx

(t, x) =
∫ t

0
4N (t−τ)N

x2N Qn,k((t− τ)−1/2, x)yNe−yv(τ, 0)dτ

≤ ( 4x)
N
∫ t

0

( (t−τ)N

xN Qn,k(x, (t− τ)−1/2)
)

yNe−yv(τ, 0)dτ ≤ C
xN

For some C = C(N) > 0. Hence, the following results hold true.

4.11. Corollary. For any k, n positive integers k, n and c > 0,

∂k+nv(t, x)

∂kt∂nx
∈ L2[(0, T )× (c,∞)].

4.12. Corollary. Let
√
2

κ (lnK + |µ|T ) < k′ and G̃ = {(t, x) : 0 < t < β, k′ − µ < x <∞}. Then

∂2u

∂t2
(t, x) ∈ L2[G̃].

5. Proof of main theorem

We split the proof into two cases for x ≤ lnK and for x > lnK.

5.1. Case x ≤ lnK. We begin by proving the upper bound in (2.11). Since the option holder can exercise
at time 0 it is clear from the definition of P (t, x) in (2.5) that P (t, x) ≥ ψ(x) for every x > 0. Furthermore,
by Proposition 3.1(iv) for each fixed t the function P (t, x) as a function of x is nonincreasing. Therefore,
P (t, x) ≥ P (t, lnK) = δ when x ≤ lnK. From the definition (2.7) of the stopping time σ(n) it is not
difficult to see that in the present case when σ(n) < T ,

x+ µσ(n) + κBσ(n) < lnK,

and so

(5.1) P (σ(n), x+ µσ(n) + κBσ(n)) ≥ δ.

Hence for every τ ∈ T (n) we obtain,

E[e−rτ∧σ(n)(

ψ(x+ µt+ κB
(n)
τ )Iτ≤σ(n) + δIσ(n)<τ

)

](5.2)

≤ E[e−rτ∧σ(n)(

P (τ ∧ σ(n), x+ µτ ∧ σ(n) + κB
(n)

τ∧σ(n))] = E[u(τ ∧ σ(n), X
(n)

τ∧σ(n))]).

By Proposition 3.2,

(5.3) E[u(τ ∧ σ(n), X
(n)

τ∧σ(n))]) = u(0, x) +E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)]

where, as before, u(t, x) = e−rtP (t, x+ µt). Taking the sup with respect to all τ ∈ T (n) in the inequality
(5.2) and using the fact that u(0, x) = P (0, x) we obtain that

(5.4) P
(n)
1 (x)− P (0, x) ≤ sup

τ∈T (n)

E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)].

Thus, in order to bound P
(n)
1 (x)− P (0, x) from the above it suffices to find an upper bound of the right

hand in (5.4).
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Next, we split the domain [0, T ]× R into three parts

C = {(t, x) ∈ [0, T − h] : µt+ x > s(t+ h) + |µ|h+ κ
√
h},(5.5)

S = {(t, x) ∈ [0, T − h] : µt+ x ≤ s(t)− |µ|h− κ
√
h} and

B = {(t, x) ∈ [0, T − h]× R : s(t)− |µ|h− κ
√
h ≤ µt+ x ≤ s(t+ h) + |µ|h+ κ

√
h}.

In order to estimate the right hand side of (5.4) we split it into three parts according to the domains C,
S and B, i.e.

E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)] = E[

∑h−1(τ∧σ(n))
j=1 Du((j − 1)h,(5.6)

X
(n)
(j−1)h)I((j−1)h,X(j−1)h)∈C] +E[

∑h−1(τ∧σ(n))
j=1 Du((j − 1)h,X

(n)
(j−1)h)I((j−1)h,X(j−1)h)∈S]

+E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)∈B].

By Proposition 3.1(ii) after the time β the prices of the American and game put options coincide which
enables us to conclude that u(t, x) = e−rtPA(t, x + µt) for t ≥ β and that the sets Ct≥β = {(t, x) ∈ C :
t ≥ β}, St≥β = {(t, x) ∈ S : t ≥ β} and Bt≥β = {(t, x) ∈ B : t ≥ β} are the same as the corresponding
parts of the domains C̄, S̄ and B̄ introduced in [17] for the case of American put options. Therefore, we
can use the following results from Sections 4.2 and 4.3 in [17].

5.1. Proposition. There exists a constant C > 0 such that for every τ ∈ T (n),

(5.7) E[

(τ/h)∨kβ
∑

j=kβ

D|u((j − 1)h,X
(n)
(j−1)h)|I((j−1)h,X(j−1)h)∈C] ≤ C

(

√
lnn

n

)4/5
,

where kβ = min{k : kh ≥ β}, and

(5.8) E[

(τ/h)∨kβ
∑

j=kβ

Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)∈B] ≤

C

n3/4
.

Observe also that P (t, x) = K − ex in the domain S, and so we can use there Lemma 2 from Section
4 of [17].

5.2. Lemma. For every (t, x) ∈ S we have Du(t, x) ≤ 0, and so

E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)∈S] ≤ 0.

Thus, for an upper bound of the right side of (5.4) we can ignore the second term in the right hand
side of (5.6) and estimate only two remaining terms starting with the first term in the right hand side of
(5.6).

5.3. Proposition. There is a constant C > 0 such that for all n ∈ N,

(5.9) E[

h−1(τ∧σ(n))
∑

j=1

|Du((j − 1)h,X
(n)
(j−1)h)|I((j−1)h,X(j−1)h)∈C] ≤ Cn−3/4.

Proof. We have

E[
∑h−1(τ∧σ(n))

j=1 |Du((j − 1)h,X
(n)
(j−1)h)|I((j−1)h,X(j−1)h)∈C](5.10)

= E[
∑(h−1(τ∧σ(n)))∧kβ

j=1 |Du((j − 1)h,X
(n)
(j−1)h)|I((j−1)h,X(j−1)h)∈C]

+E[
∑(h−1(τ∧σ(n)))∨kβ

j=kβ
|Du((j − 1)h,X

(n)
(j−1)h)|I((j−1)h,X(j−1)h)∈C].
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Proposition 5.1 provides a bound for the second term in the right hand side of (5.10), and so it remains

to deal only with the first term there. Note that if jh < σ(n) ∧ β(n) and (jh,X
(n)
jh ) ∈ C then

c̃1(j) = s(jh)− µjh+ κ
√
h ≤ X

(n)
jh ≤ lnK − 2κ

√
h− µjh = c̃2(j)

where the equalities above are just definitions of c̃1 and c̃2. Observe also that since x < lnK and jh < σ(n)

then by the definition of the stopping times σ(n) the process X
(n)
jh + µjh does not exceed lnK − 2K

√
h.

By Proposition 3.3,

(5.11) Du(t, x) = 1

κ

∫

√
h

0

dy

∫ κy

−κy

dz
(

z
∂2u

∂t∂x
(t+ y2, x+ z) + δ(u)(t+ y2, x+ z)

)

.

Relying on the same computation as in Section 4 of [17] we see that for (t, x) ∈ C and x < lnK − |µ|h−
κ
√
h,

(5.12) |Du(t, x)| ≤
√
h

κ

∫ t+h

t

ds

∫ x+κ
√
h

x−κ
√
h

dz|∂
2u

∂t2
(s, z)|.

Thus, for 0 ≤ j < kβ ,

E(|Du(jh,X(n)
jh )|I{(jh,X(n)

jh )∈C}∩{jh<σ(n)}) ≤
∫ c̃2(j)

c̃1(j)
|Du(jh, y)|dPXjh

(y)

≤
∫ c̃2(j)

c̃1(j)

(

√
h

2κ

∫ jh+h

jh ds
∫ y+κ

√
h

y−κ
√
h
|∂2u
∂t2 (s, z)|dz

)

dPXjh
(y)

=
√
h

2κ

∫ (j+1)h

jh
ds

∫ c̃2(j)

c̃1(j)
dz|∂2u

∂t2 (s, z)|
∫min(c̃2(j),z+κ

√
h)

max(c̃1(j),z−κ
√
h)
dPXjh

(y)

≤
√
h

2κ

∫ (j+1)h

jh
ds

∫ c̃2(j)+κ
√
h

c̃1(j)−κ
√
h
dz|∂2u

∂t2 (s, z)|P[|X(n)
jh − z| ≤ κ

√
h].

From (3.4) we see that there is a constant C > 0 independent of j and n such that

P[|X(n)
jh − z| ≤ κ

√
h] ≤ C√

j + 1
.

Hence, for jh < σ(n),

E(|Du(jh,X(n)
jh )|I

(jh,X
(n)
jh )∈C

) ≤
√
h

2κ

∫ (j+1)h

jh ds
∫ c̃2(j)+κ

√
h

c̃1(j)−κ
√
h
dz|∂2u

∂t2 (s, z)| C√
j+1

= Ch
2κ

∫ (j+1)h

jh
ds√

h(j+1)

∫ c̃2(j)+κ
√
h

c̃1(j)−κ
√
h
dz|∂2u

∂t2 (s, z)|

≤ C1

n

∫ (j+1)h

jh
ds√
s

∫ c̃2(j)+κ
√
h

c̃1(j)−κ
√
h
dz|∂2u

∂t2 (s, z)|.

Define

c1(t) = s(t)− µt, c2(t) = lnK − µt− κ
√
h

where s(t) = ln(b(t)) is the free boundary of the option holder and b(t) was introduced at the beginning
of Section 3. Observe that for every j and any jh ≤ s ≤ (j + 1)h,

c̃1(j)− κ
√
h ≥ c1(s), c̃2(j) + κ

√
h ≤ c2(s).

Summing up the above estimates we obtain
∑kβ−1

j=0 E(|Du(jh,X(n)
jh )|I{(jh,X(n)

jh )∈C}∩{jh<σ(n)})(5.13)

≤ C2

n + C1

n

∫ β

h
ds√
s

∫ c2(s)

c1(s)
dz|∂2u

∂t2 (s, z)|

= C2

n + C1

n

(

∫

√
h

h
ds√
s

∫ c2(s)

c1(s)
dz|∂2u

∂t2 (s, z)|+
∫ β√

h
ds√
s

∫ c2(s)
√
h

c1(s)
dz|∂2u

∂t2 (s, z)|
)
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where the term C2

n comes from the first term E|Du(0, x)| of the sum which can be estimated easily using
the fact that ut(t, x) and uxx(t, x) are bounded for small t.

Let G = {(t, x) : 0 < t < β, c1(t) < x < lnK − µt} and note that G ⊂ E ∪ Eσ where E and Eσ are

defined in Corollaries 4.10 and 3.14 which imply that ∂2u
∂t2 (s, z) ∈ L1[F ]. Hence,

(5.14)

∫ β

√
h

ds√
s

∫ c2(s)

c1(s)

dz|∂
2u

∂t2
(s, z)| ≤ C1n

1/4

∫ β

√
h

ds

∫ c2(s)

c1(s)

dz|∂
2u

∂t2
(s, z)| ≤ Cn1/4.

Next, we estimate the first integral in brackets in the right hand side of (5.13). Let s(β) < k < lnK, k′ =
lnK−k

2 and split the integral in question as follows

∫

√
h

h
ds√
s

∫ c2(s)

c1(s)
dz|∂2u

∂t2 (s, z)|(5.15)

=
∫

√
h

h
ds√
s

∫ k′−µs

c1(s)
dz|∂2u

∂t2 (s, z)|+
∫

√
h

h
ds√
s

∫ c2(s)

k′−µs
dz|∂2u

∂t2 (s, z)|.

From Corollary 3.14 we know that the function ∂2u
∂t2 (s, z) is in L

2[Ẽ], where

Ẽ = {(s, z) : 0 < s < T, c1(t) < z < k′ − µt} ⊂ Eσ

(for an appropriate b < lnK in the definition of Eσ). Therefore we can use the Cauchy-Schwarz inequality
to obtain

∫

√
h

h
ds√
s

∫ k′−µs

c1(s)
dz|∂2u

∂t2 (s, z)|(5.16)

≤
( ∫

√
h

h
ds
s

∫ k′−µs

c1(s)
dz

)( ∫

√
h

h

∫ k′−µs

c1(s)
|∂2u
∂t2 (s, z)|2dz

)

≤ C lnn.

Now we are left with the second integral in the right hand side of (5.15). We will show that there is a
constant C > 0 such that,

(5.17) In =

∫

√
h

h

ds√
s

∫ c2(s)

k′−µs

dz|∂
2u

∂t2
(s, z)| ≤ Cn1/4.

Recall that u(t, x) = e−rtP (t, x+ µt), and so

∂2u

∂t2
(t, x) = e−rt

(

r2P (t, x+ µt)− 2rPt(t, x+ µt)− 2rµPx(t, x+ µt)
)

+e−rt
(

µ2Pxx(t, x+ µt) + 2µPxt(t, x + µt) + Ptt(t, x+ µt)
)

.

Observe that the functions P (t, x), Px(t, x), Pt(t, x) and Pxx(t, x) are all bounded for small t. Indeed,
P ≤ K+ δ while Pt is bounded in the domain of integration in (5.17) for small h in view of (4.13), (4.15),
(4.24) and (4.25). Next, Px is bounded by Theorem 8.1 from [14]. Finally, Pxx is bounded since in the
domain in question P and its first derivatives are bounded and P satisfies the equation ( ∂

∂t +A)P = 0
(see (3.8)). Therefore, we can write

(5.18) In ≤
∫

√
h

h

dt√
t

∫ c2(t)

k′−µt

dx
(

|2µe−rtPtx(t, x+ µt)|+ |e−rtPtt(t, x+ µt)|
)

+ C1,

for some constant C1 > 0 independent of n. Recall that for (x, t) ∈ D = (0, β)× (k, lnK) by Proposition
4.9, Pt(t, x) = v(t, x) +w(t, x) where vt and vx belong to L2[D]. Hence, expressing Ptx and Ptt via vt, wt

and vx, wx we can estimate the integral (5.18) containing vt and vx by means of the Cauchy-Schwarz
inequality as it was done in (5.16). Replacing these integrals by C2 lnn we obtain

In ≤
∫

√
h

h

dt√
t

∫ c2(t)

k′−µt

dx
(

|2µe−rtwx(t, x+ µt)|+ |e−rtwt(t, x + µt)|
)

+ C2 lnn+ C1.
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By (4.19) and (4.20) the functions wt(t, x) and wx(t, x) do not change signs in D, and so it follows that

∫

√
h

h
dt√
t

∫ c2(t)

k′−µt

(

|2µe−rtwx(t, x+ µt)|+ |e−rtwt(t, x+ µt)|
)

dx(5.19)

=
∣

∣

∣

∫

√
h

h
dt√
t
2|µ|e−rt

∫ lnK−κ
√
h

k′ wx(t, x)dx
∣

∣

∣
+
∣

∣

∣

∫

√
h

h
dt√
t

∫ c2(t)

k′−µt
e−rtwt(t, x+ µt)dx

∣

∣

∣
.

By Proposition 4.9, w(x, t) is bounded on D, and so the contribution of the first integral in the right
hand side of (5.19) is bounded by a constant and it remains to estimate only the second integral there.

Next, we will need a more explicit representation of the function w. Let

(5.20) z̃(t, x) = e−rtw(t, x + µt).

Then in the domain Ẽ = {(t, x), 0 < t < β, k − µt < x < lnK − µt},
κ2

2
z̃xx(t, x) + z̃t(t, x) = 0.

Define

(5.21) z(t, x) = z̃(T − t,
κ√
2
x)

and let

E = {(t, x) : 0 < t < T,

√
2(k − µt)

κ
< x <

√
2(lnK − µt)

κ
}.

In the domain E the function z(t, x) satisfies the heat equation

zxx(t, x) = zt(t, x).

If we let

(5.22) d1(t) =

√
2(k − µ(T − t))

κ
, d2(t) =

√
2(lnK − µ(T − t))

κ

then from the boundary values of w(t, x) we obtain

z(0, x) = 0 for d1(0) < x < d2(0), z(t, s1(t)) = 0 and z(t, s2(t)) = e−r(T−t) for 0 < t ≤ T.

Note that z(t, x) is a bounded continuous function on the boundaries (t, di(t)), i = 1, 2 , 0 < t ≤ T of
E. Hence, by Chapter 14 of [3] we can represent z(t, x) in the form

(5.23) z(t, x) =

∫ t

0

∂H

∂x
(x− d1(τ), t − τ)φ1(τ)dτ +

∫ t

0

∂H

∂x
(x− d2(τ), t − τ)φ2(τ)dτ

where H(t, x) = 1√
4πt

e−
x2

4t is the fundamental solution and the functions φi(t), i = 1, 2 are bounded

continuous on the interval (0, T ]. From the definition of z̃ we see that

z̃t(t, x) = −re−rtw(t, x+ µt) + e−rtwt(t, x+ µt).

Since w(t, x) is bounded then for some constant C1 > 0 independent of n,

∣

∣

∣

∫

√
h

h

dt√
t

∫ c2(t)

k′−µt

e−rtwt(t, x+ µt)dx
∣

∣

∣
≤

∣

∣

∣

∫

√
h

h

dt√
t

∫ c2(t)

k′−µt

zt(t, x)dx
∣

∣

∣
+ C1.

From the representation (5.23) of z(t, x) we obtain that
∣

∣

∣

∫

√
h

h
dt√
t

∫ c2(t)

k′−µt
zt(t, x)dx

∣

∣

∣
≤(5.24)

κ√
2

∣

∣

∣

∫

√
h

h
dt√
t

∫

√
2

κ c2(t)√
2

κ (k′−µt)

d
dt

∫ T−t

0
∂H
∂x (x− d1(τ), T − t− τ)φ1(τ)dτdx

∣

∣

∣

+ κ√
2

∣

∣

∣

∫

√
h

h
dt√
t

∫

√
2

κ c2(t)√
2

κ (k′−µt)

d
dt

∫ T−t

0
∂H
∂x (x − d2(τ), T − t− τ)φ2(τ)dτdx

∣

∣

∣
.
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Observe that as long as we keep x or t away from 0 the function H(x, t) is smooth and it has bounded
derivatives with bounds depending on the range of t, x and their distance from zero. Next, if x satisfies

√
2

κ
(k′ − µt) < x <

√
2

κ
c2(t) =

√
2

κ
(lnK − µt− κ

√
h)

then

k′ − k ≤
√
2

κ

(

k′ − k + µ(T − t− τ)
)

< x− d1(τ) for 0 < τ ≤ T − t.

Since k′ > k we see that x− d1(τ) stays away from 0 on the entire interval (0, T − t]. It follows from the
above that the function

Φ1(t, x) =

∫ T−t

0

∂H

∂x
(x − d1(τ), T − t− τ)φ1(τ)dτ

has bounded derivatives with respect to t with bounds independent of n in the region {(t, x) : h < t <√
h,

√
2

κ (k′ − µt) < x
√
2

κ c2(t)}. We conclude that the first integral in the right hand side of (5.24) is
bounded from above by a constant independent of n and it remains to estimate the second integral there.

Set

Φ2(t, x) =

∫ T−t

0

∂H

∂x
(x− d2(τ), T − t− τ)φ2(τ)dτ.

We see that if

x <

√
2

κ
c2(t) =

√
2

κ
(lnK − µt−

√
h),

then

x− d2(τ) = x−
√
2

κ
(lnK − µ(T − τ)) <

√
2

κ
(µ(T − t− τ)−

√
h).

In this case x− d2(τ) can be zero when τ ∈ [0, T − t] but this can happen only for a τ that which is at

least µ−1
√
h apart from T − t. Thus, the function Φ2 is smooth with a bounded uniformly continuous

derivative with respect to t though this bound may depend on n. Nevertheless, we still have the following

κ√
2

∣

∣

∣

∫

√
h

h
dt√
t

∫

√
2

κ c2(t)√
2

κ (k′−µt)

d
dt

( ∫ T−t

0
∂H
∂x (x− d2(τ), T − t− τ)φ2(τ)dτ

)

dx
∣

∣

∣

= κ√
2

∣

∣

∣

∫

√
h

h
dt√
t
d
dt

( ∫ T−t

0

∫

√
2

κ c2(t)√
2

κ (k′−µt)

∂H
∂x (x− d2(τ), T − t− τ)dxφ2(τ)dτ

)

∣

∣

∣

= κ√
2

∣

∣

∣

∫

√
h

h
dt√
t
d
dt

(

∫ T−t

0

(

H(
√
2

κ c2(t)− d2(τ), T − t− τ)

−H(
√
2

κ (k′ − µt)− d2(τ), T − t− τ)
)

φ2(τ)dτ
)
∣

∣

∣

≤ κ√
2

∣

∣

∣

∫

√
h

h
dt√
t
d
dt

(

∫ T−t

0

(

H(
√
2

κ c2(t)− d2(τ), T − t− τ)φ2(τ)dτ
)∣

∣

∣

+ κ√
2

∣

∣

∣

∫

√
h

h
dt√
t
d
dt

(

∫ T−t

0
H(

√
2

κ (k′ − lnK + µ(T − t− τ), T − t− τ)φ2(τ)dτ
)∣

∣

∣
.

We see that in the second term in the right hand side k′ − lnK +µ(T − t− τ) can take on the value 0 for
τ ∈ (0, T − t] but then τ is at least c = µ−1|k′ − lnK| apart from T − t and now the separation constant
c does not depend on n. Thus, we can bound the second term there from above by a constant and it
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remains to estimate the first term which we do as follows

I = κ√
2

∣

∣

∣

∫

√
h

h
dt√
t
d
dt

∫ T−t

0
H(

√
2

κ c2(t)− d2(τ), T − t− τ)φ2(τ)dτ
∣

∣

∣

≤ C2

∫

√
h

h
dt√
t

∫ T−t

0

∣

∣

∣

1
(T−t−τ)3/2

exp
(

− (
√

2
κ (µ(T−t−τ)−κ

√
h)2

4(T−t−τ)

)

φ2(τ)
∣

∣

∣
dτ

+C2

∫

√
h

h
dt√
t

∫ T−t

0

∣

∣

∣

1
(T−t−τ)1/2

exp
(

− (
√

2
κ (µ(T−t−τ)−κ

√
h)2

4(T−t−τ)

)

φ2(τ)
∣

∣

∣
dτ

+C2

∫

√
h

h
dt√
t

∫ T−t

0

∣

∣

∣

h
(T−t−τ)5/2

exp
(

− h
2(T−t−τ)

)

exp
(

µ
√
h√
2

− µ2

2κ2 (T − t− τ)
)

φ2(τ)
∣

∣

∣
dτ

where C2 > 0 is a constant independent of n. Analyzing the integral with respect to τ in the second term
in the right hand side above by considering different possible values of T − t − τ we conclude that this

integral is bounded by a constant independent of n. Next we observe that | exp
(

µ
√
h√
2
− µ2

2κ2 (T−t−τ)
)

φ2(τ)|
is also bounded by a constant independent of n too. Hence, we obtain

I ≤ C3 + C3

∫

√
h

h
dt√
t

∫ T−t

0
1

(T−t−τ)3/2
exp

(

− h
2(T−t−τ)

)

dτ

+C3

∫

√
h

h
dt√
t

∫ T−t

0
h

(T−t−τ)5/2
exp

(

− h
2(T−t−τ)

)

dτ

for a constant C3 > 0 independent of n. Set ρ =
√

h
2(T−t−τ) and note that dρ

dτ = −
√
h

4(T−t−τ)3/2
and

dρ2

dτ = −
√
h

4(T−t−τ)2 . We proceed by changing variables arriving at

I ≤ C4 + C4

∫

√
h

h
dt√
t

∫∞√
h√

2(T−t)

1√
h
e−ρ2

dρ+ C4

∫

√
h

h
dt√
t

∫∞
h

2(T−t)

1√
h
ρe−ρ2

dρ2

≤ C4 + C5
1√
2

∫

√
h

h
dt√
t
≤ C4 + C52(1 +

1
h1/4 ) ≤ C6n

1/4

for some constants C4, C5, C6 > 0 independent of n and (5.17) follows. Combining (5.17) and (5.16) we
obtain from (5.15) that

(5.25)

∫

√
h

h

ds√
s

∫ c1(s)

c2(s)

dz|∂
2u

∂t2
(s, z)| ≤ Cn1/4.

Finally, Proposition 5.1 follows from (5.25), (5.13) and (5.14). �

Next, we turn our attention to the domain B. First, we will prove the following result.

5.4. Lemma. There exists a constant C > 0 such that for all n ∈ N,

(5.26) E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)|∈B] ≤ Cn−3/4.

Proof. Let Bt<β(n) and Bt≥β(n) be the set of all points (t, x) ∈ B such that t < β(n) and t ≥ β(n),
respectively. We split (5.26) according to these two regions, namely,

E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)|∈B]

= E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)|∈B

t<β(n)
]

+E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)|∈B

t≥β(n)
].

By Proposition 5.1 we have that for a constant C > 0 independent of n,

E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)I((j−1)h,X(j−1)h)|∈B

t≥β(n)
] ≤ Cn−3/4.
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Thus, it remains to estimate only the first term in the right hand side. Let E = {(t, x) : 0 < t <

β(n), a− µt < x < b− µt} where a < s(0) and s(β(n) + h) + |µ|h+ 2κ
√
h < b < lnK. For n large enough

we can find such a b because s(t) is continuous and s(β(n)) < lnK. We know from Corollary 3.14 that
u(t, x) ∈ H2[E]. Since C2[E] is dense in this space we can approximate u(t, x) by C2 functions to get

equality (3.3) of Proposition 3.3 for u(t, x), as well. Since ut(t, x) +
κ2

2 uxx(t, x) ≤ 0 in the domain E we
obtain

Du(t, x) ≤ 1
κ

∫

√
h

0
dy

∫ κy

−κy
dz

(

z ∂2u
∂t∂x (t+ y2, x+ z)

)

≤
∫

√
h

0 ydy
∫ κ

√
y

−κ
√
y dz

∣

∣

∂2u
∂t∂x (t+ y2, x+ z)

∣

∣

= 1
2

∫

√
h

0
ds

∫ κ
√
y

−κ
√
y
dz

∣

∣

∂2u
∂t∂x (s, z)

∣

∣.

It follows that

Du(t, y)I(t,y)∈B̄ ≤ 1

2

∫ t+h

t

ds

∫ s(t+h)+λ
√
h−µt

s(t)−λ
√
h−µt

I|z−y|≤κ
√
h

∣

∣

∂2u

∂t∂x
(s, z)

∣

∣dz

where λ = |µ|+ κ. Hence,

E[
∑h−1(τ∧σ(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I{((j−1)h,X(j−1)h))∈B

t<β(n)}]

≤ 1
2

(
∑kβ

j=1

∫ (j+1)h

jh
dτ

∫ s(jh+h)+λ
√
h−µjh

s(jh)−λ
√
h−µjh

P
(

|X(n)
jh − z| ≤ κ

√
h
)∣

∣

∂2u
∂t∂x (s, z)

∣

∣dz
)

+ C
n .

Here kβ = ⌈β
h ⌉, and the term C

n is the contribution of Du(0, Xn
0 ) = Du(0, x) ≤ C

n which holds true from
by the definition of the operator D and boundedness of ut and uxx for small t. From Corollary 3.14 we
see that there exists a constant C1 > 0 such that

(5.27)

∫ b

a

| ∂
2u

∂t∂x
(t, z)

∣

∣

2
dz ≤ C1 when 0 ≤ t ≤ β(n).

This together with (3.4), the Cauchy-Schwarz inequality and the inequality 1√
τ
≥ 1√

2jh
, which is satisfied

when j ≥ 1 and jh ≤ τ ≤ 2jh, yields that

E[
∑h−1(τ∧β(n))

j=1 Du((j − 1)h,X
(n)
(j−1)h)I{((j−1)h,X(j−1)h))∈B

t<β(n)}]

≤
√
hC2

∑kβ

j=1

∫ (j+1)h

jh
dτ√
τ

(

(s(j + 1)h)− s(jh) + 2λ
√
h
)1/2

+ C2

n

From Proposition 3.4 and Lipschitz continuity of the function P (t, x) in t ≤ β(n) uniformly in x ≤ lnK
(see Theorem 8.1 in [14]) we obtain that for some constant C3 > 0,

|s(t1)− s(t2)| ≤
√

|t1 − t2|C3 whenever 0 ≤ t1, t2 ≤ β(n).

Hence,

E[

h−1(τ∧β(n))
∑

j=0

Du((j − 1)h,X
(n)
(j−1)h)I{((j−1)h,X(j−1)h))∈B

t<β(n)}] ≤
C4

n3/4

for some constant C4 > 0 independent of n. �

By combining the results of Lemma 5.2 , Proposition 5.3 and Lemma 5.4 together with (5.6) we obtain

that the upper bound P
(n)
1 (x)−P (0, x) < C

n3/4 for some constant C > 0 independent of n and of x ≤ lnK.

Next, we will obtain a lower bound for the approximation error P
(n)
1 (x)− P (0, x) when x ≤ lnK. Set

(5.28) τ (n) = inf{t : µ[t/h]h+X
(n)
t < s([t/h]h+ h) + |µ|h+ κ

√
h}.
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By Proposition 5.3,

E[u(τ (n) ∧ σ(n), X
(n)

τ (n)∧σ(n))] = u(0, x) +E[
∑τ (n)∧σ(n)/h

j=1 |Du((j − 1)h,X
(n)
(j−1)h)](5.29)

= E[
∑h−1(τ∧σ(n))

j=1 |Du((j − 1)h,X
(n)
(j−1)h)I{((j−1)h,X(j−1)h})|∈C] ≥ P (0, x)− Cn−3/4.

Set α = αn = T − 1
n2/3 and let τ

(n)
A be defined by (5.28) with s there replaced by the free boundary sA

for the American put option (see Section 2.2 in [17]). Define also τ
(n)
α = τ (n)I{τ (n)+h<α} + T I{τ (n)+h≥α}

and τ
(n)
A,α = τ

(n)
A I{τ (n)

A +h<α} + T I{τ (n)
A +h≥α}. We will rely on the following estimate from Section 4.5 in

[17].

5.5. Lemma. There exists a constant C > 0 independent of nN such that

(5.30) |E[uA(τ
(n)
A , X

(n)

τ
(n)
A

)− erτ
(n)
A,αψ(µτ

(n)
A,α +X

τ
(n)
A,α

)]| ≤ C

n2/3

where uA(t, x) = e−trPA(t, x+ µt) with PA given by (2.3).

5.6. Remark. Note that sA(t) = s(t) for β ≤ t < T , and so τ
(n)
A ∨ β = τ (n) ∨ β and τ

(n)
A,α ∨ β = τ

(n)
α ∨ β.

From now on we assume that n is large enough so that β(n) < α. From the definition of P
(n)
1 (x) we

have

(5.31) P
(n)
1 (x) ≥ E[e−rτ (n)

α ∧σ(n)(

ψ(µτ (n)α +X
(n)

τ
(n)
α

)I{τ (n)
α ≤σ(n)} + δI{σ(n)<τ

(n)
α }

)

].

Hence, if we prove that for some constant C > 0 independent of n,
(5.32)

J = |E[u(τ (n) ∧ σ(n), X
(n)

τ (n)∧σ(n))]−E[e−rτ (n)
α ∧σ(n)(

ψ(µτ (n)α +X
(n)

τ
(n)
α

)I{τ (n)
α ≤σ(n)} + δI

σ(n)<τ
(n)
α

)

]| ≤ C√
n

then by (5.31) and (5.29) we could conclude that

(5.33) − C√
n
≤ P

(n)
1 (x) − P (0, x).

We split the left hand side of (5.32) into three parts

J = E[
{

u(τ (n) ∧ β(n), X
(n)

τ (n)∧β(n))− e−rτ (n)∧β(n)(

ψ(µτ (n) ∧ β(n)(5.34)

+X
(n)

τ (n)∧β(n))
)}

I{τ (n)
α ≤σ(n)∧β(n)}] +E[

{

u(σ(n), X
(n)

σ(n))− e−rσ(n)

δ
}

I{σ(n)<τ
(n)
α }]

+E[
{

u(τ (n), X
(n)

τ (n))− e−rτ (n)
α

(

ψ(µτ
(n)
α +X

(n)

τ
(n)
α

)
)}

I{β(n)<τ
(n)
α ≤σ(n)}].

This equality is true since τ (n) = τ
(n)
α = τ (n)∧β on the set τ

(n)
α ≤ σ(n)∧β(n) < α. We begin with the last

term. First note that on the set β(n) ≤ τ
(n)
α ≤ σ(n) we have, in particular, β(n) ≤ σ(n) and so σ(n) = T

by Remark 5.6. In the case τ
(n)
α > β(n) we have τ

(n)
α = τ

(n)
A,α and τ (n) = τ

(n)
A and so from Lemma 5.5 we

derive that

|E[
{

u(τ (n), X
(n)

τ (n))− e−rτ (n)
α

(

ψ(µτ
(n)
α +X

(n)

τ
(n)
α

)
)}

I{β(n)<τ
(n)
α ≤σ(n)}]|

≤ |E[
{

u(τ
(n)
A , X

(n)

τ
(n)
A

)− e−rτ
(n)
A,α

(

ψ(µτ
(n)
A,α +X

(n)

τ
(n)
A,α

)
)}

]| ≤ C
n2/3 .

Next, we deal with the first term in the right hand side of (5.34) where τ
(n)
α = τ (n) ≤ σ(n) ∧β(n). This

means that before time β(n) the process X(n) is stopped near the boundary s(t) and

µτ (n) +X
(n)

τ (n) < s(τ (n) + h) + |µ|h+ σ
√
h.
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By the definition, u(τ (n), X
(n)

τ (n)) = e−rτ (n)

P (τ (n), X(n) + µτ (n)). Thus, we have

E[
{

u(τ (n) ∧ β(n), X
(n)

τ (n))− e−rτ (n)∧β(n)(

ψ(µτ (n) ∧ β(n) +X
(n)

τ (n)∧β(n))
)}

I{τ (n)
α ≤σ(n)∧β(n)}]

= E[
{

e−rτ (n)(

P (τ (n), X(n) + µτ (n))− ψ(µτ (n) +X
(n)

τ (n))
)}

I{τ (n)
α ≤σ(n)∧β(n)}].

If µτ (n) +X
(n)

τ (n) ≤ s(τ (n)) then P (τ (n), X(n) + µτ (n))− ψ(µτ (n) +X
(n)

τ (n)) = 0 so we can assume that

(5.35) s(τ (n)) < µτ (n) +X
(n)

τ (n) < s(τ (n) + h) + |µ|h+ σ
√
h.

To continue we need the following lemma.

5.7. Lemma. There is a constant C > 0 independent of n such that for every point (t, x) satisfying

s(t) ≤ µt+ x ≤ s(t+ h) + |µ|h+ σ
√
h and 0 ≤ t ≤ β(n),

|P (t, µt+ x)− ψ(µt+ x)| ≤ C

n
.

Proof. The function P (t, x) is Lipschitz continuous when t ≤ β and 0 ≤ x ≤ µβ + lnK (see [14]), and so

|P (t, µt+ x)− P (t+ h, µt+ x)| ≤ C

n

for some C > 0 independent of n. If µt+ x ≤ s(t+ h) then P (t+ h, µt+ x) = ψ(µt+ x) and we are done.

Now assume that s(t+ h) < µt+ x < s(t+ h) + λ√
n
where λ =

√
n(|µ|h+ σ

√
h).

From Corollary 3.13 it follows that for every t < T and a < lnK the function Pxx(t, x) is continuous
in x on the closed interval [s(t), a], so we can write

P (t+ h, µt+ x) = Px(t+ h, s(t+ h))
λ√
n
+ Pxx(t+ h, s(t+ h))

λ2

2n
+ α

where α = α(h) satisfies limh→0(
α
h ) = 0. From the property of smooth fit (see [14]) it follows that

Px(t+ h, s(t+ h)) = ψx(s(t+ h)), and so for some C > 0 independent of n,

|P (t+ h, µt+ x)− ψ(µt+ x)| ≤ C

n
.

�

Using (5.35) and the above lemma we obtain

|E[
{

u(τ (n) ∧ β(n), X
(n)

τ (n)∧β(n))− e−rτ (n)∧β(n)(

ψ(µτ (n) ∧ β(n)(5.36)

+X
(n)

τ (n)∧β(n))
)}

I{τ (n)
α ≤σ(n)∧β(n)}]| ≤

C
n .

Hence, we are done with the first term in the right hand side of (5.34) and it remains to estimate the

second one. Since σ(n) < τ
(n)
α ≤ T the process X(n) is stopped near the writer’s boundary. Namely, we

have
lnK − |µ|h− σ

√
h < µσ(n) +X

(n)

σ(n) ≤ lnK.

Since P (t, lnK) = δ when t ≤ β, β(n) − β < h and P is Lipschitz continuous (see Theorem 8.1 of [14])
we obtain that

|P (σ(n), µσ(n) +X
(n)

σ(n))− δ| ≤ C√
n

for some C > 0 independent of n. Hence,

(5.37) E[
(

u(σ(n), X
(n)

σ(n))− e−rσ(n)

δ
)

I{σ(n)<τ
(n)
α }] ≤

C√
n
.

It follows that there exists C > 0 independent of n such that for every x ≤ lnK,

(5.38) − C√
n
< P

(n)
1 (x) − P (0, x).
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Next, we will derive a lower bound for the second approximation function P
(n)
2 (x) defined by (2.10),

still assuming that x ≤ lnK. According to (5.29) in order to obtain

(5.39) P
(n)
2 (x)− P (0, x) ≥ − C

n3/2
.

it suffices to show that

(5.40) E[u(τ (n) ∧ σ(n), X
(n)

τ (n)∧σ(n))]− P
(n)
2 (x) ≤ C

n2/3
.

We have

E[u(τ (n) ∧ σ(n), X
(n)

τ (n)∧σ(n))]− P
(n)
2 (x) ≤(5.41)

E[u(τ (n) ∧ σ(n), X
(n)

τ (n)∧σ(n))− e−rτ (n)
α ∧σ(n)

(

ψ(µτ
(n)
α +X

(n)

τ
(n)
α

)I{τ (n)
α ≤σ(n)}

+
(

ψ(µσ(n) +X
(n)

σ(n)) + δ
)

I{σ(n)<τ
(n)
α }

)

] = E[
{

u(τ (n) ∧ β(n), X
(n)

τ (n)∧β(n))− e−rτ (n)∧β(n)(

ψ(µτ (n) ∧ β(n)

+X
(n)

τ (n)∧β(n))
)}

I{τ (n)
α ≤σ(n)∧β(n)}] +E[

{

u(σ(n), X
(n)

σ(n))− e−rσ(n)

(ψ(µσ(n) +X
(n)

σ(n)) + δ)
}

I{σ(n)<τ
(n)
α }]

+E[
{

u(τ (n), X
(n)

τ (n))− e−rτ (n)
α

(

ψ(µτ
(n)
α +X

(n)

τ
(n)
α

)
)}

I{β(n)<τ
(n)
α ≤σ(n)}]

Indeed, the first inequality is true since P
(n)
2 (x) is defined as the sup on τ ∈ T (n) and we chose a specific

one, i.e. τ
(n)
α . The equality is true due to the same reason that (5.34) holds true. We see that the first

term in the right hand side of (5.41) is the same as the first term in (5.34) and by (5.36) it is less then C
n

for some constant C. The second term is nonpositive because for every (t, x) we have P (t, x) ≤ ψ(x) + δ
and u(t, x) = e−rtP (t, µt+ x) so we can just remove it from the equation. The last term is the same as
the last term of (5.34) and from Lemma (5.5) we obtain that this term is less or equal than C

n2/3 for an
appropriate C. These arguments yield (5.40) and hence (5.39), as well. For the upper bound we already

know that P
(n)
1 (x) − P (0, x) ≤ C

n3/4 and from the definition of P
(n)
1 and P

(n)
2 it is not hard to see that

|P (n)
2 − P

(n)
1 | ≤ C√

n
. It follows from above that there exist C > 0 such that for every x ≤ lnK,

(5.42) − C

n3/2
≤ P

(n)
2 (x)− P (0, x) ≤ C√

n
.

5.2. Case x > lnK. We begin with the upper bound on P
(n)
1 . We will show first that

(5.43) P
(n)
1 (x)− P (0, x) ≤ sup

τ∈T (n)

E[

h−1(τ∧σ(n))
∑

j=1

Du((j − 1)h,X
(n)
(j−1)h)].

The proof is similar to the proof of (5.4), we just have to show that for every τ ∈ T (n),

(5.44) P (τ ∧ σ(n), µτ ∧ σ(n) +X
(n)

τ∧σ(n))

≥ ψ(µτ +X(n)
τ )I{τ≤σ(n)} +

(

δ −Ke(|µ|h+ 2κ
√
h)
)

I{σ(n)<τ}.

On the set τ ≤ σ(n) this inequality is clear since P (t, x) ≥ ψ(x). For the case σ(n) < τ observe that
because x > lnK we must have

lnK < µσ(n) +X
(n)

σ(n) < lnK + |µ|h+ 2κ
√
h.

By Theorem 8.1 in [14] the right derivative Fx(t,K+) at K satisfies 0 > Fx(t,K+) > −1 for any t, and
so 0 ≤ F (t,K) − F (t,K + Cλ) ≤ Cλ for each C > 0 provided 0 ≤ λ ≤ λ(C) is small enough. Assume
0 < λ < 1, then eλ − 1 ≤ λeλ ≤ λe. Hence, taking C = Ke we have

P (t, lnK)− P (t, lnK + λ) = F (t,K)− F (t,Keλ) ≤ F (t,K)− F (t,K +Keλ) ≤ Keλ.
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Put λ = |µ|h+ κ
√
h then for σ(n) < τ and sufficiently large n,

P (σ(n), µσ(n) +X
(n)

σ(n)) ≥ P (σ(n), lnK + λ) ≥ δ −Keλ.

Hence, we obtain (5.44) which yields also (5.41). To bound the right hand side of (5.43) we split it
similarly to the case x ≤ lnK (see (5.6)) according to the three different regions C, B and S. Since our

process starts at x > lnK, if ((j − 1)h,X
(n)
(j−1)h) ∈ B for some j then this must happen after the time β,

and so we can use (5.8). The part that belongs to the region S is non positive so we can ignore it, and
so we will be left only with the region C.

5.8. Lemma. For the discrete process X
(n)
t such that X

(n)
0 = x > lnK we have

E[

h−1(τ∧σ(n))
∑

j=1

D|u((j − 1)h,X
(n)
(j−1)h)|I{((j−1)h,X(j−1)h)∈C}] ≤ Cn−3/4.

Proof. It suffices to show that

(5.45) E[

kβ∧(σ(n)/h)
∑

j=1

D|u((j − 1)h,X
(n)
(j−1)h)|I{((j−1)h,X(j−1)h)∈C}] ≤ Cn−3/4

for some C > 0 independent of n since after time β(n) we come back to the American option case.
This is done in the same way as in Proposition 5.3, and so we provide only a sketch of the proof. Let
c(s) = lnK − µs+ κ

√
h then similarly to the proof of Proposition 5.3 we obtain

(5.46)

kβ−1
∑

j=0

E(|Du(jh,X(n)
jh )|I{(jh,X(n)

jh )∈C}∩{jh<σ(n)}) ≤
C2

n
+
C1

n

∫ β

h

ds√
s

∫ ∞

c(s)

dz|∂
2u

∂t2
(s, z)|.

Let
√
2

κ (lnK + |µ|T ) < k′ and split the integral in (5.46) into two parts
∫ β

h
ds√
s

∫∞
c(s) dz|∂

2u
∂t2 (s, z)| =(5.47)

∫ β

h
ds√
s

∫ k′−µs

c(s) dz|∂2u
∂t2 (s, z)|+

∫ β

h
ds√
s

∫∞
k′−µs dz|∂

2u
∂t2 (s, z)|.

Let E = {(s, z) : 0 < s < β, k′ − µs < z <∞} then by Corollary 4.12 we see that ∂2u
∂t2 (s, z) ∈ L2[E], and

so we obtain similarly to (5.16) that for some constant C > 0,

(5.48)

∫ β

h

ds√
s

∫ ∞

k′−µs

dz|∂
2u

∂t2
(s, z)| < C lnn.

In the first integral in the right hand side of (5.47) we do the same procedure as in (5.13)-(5.17) relying
on Proposition 4.9 and deriving that for some constant C > 0,

(5.49)

∫ β

h

ds√
s

∫ k′−µs

c(s)

dz|∂
2u

∂t2
(s, z)| < Cn1/4.

Combining (5.46)–(5.49) we obtain (5.45) and complete the proof of the lemma. �

An estimate for the lower bound of P
(n)
1 (x) − P (0, x) when x > lnK is done similarly to the case

x ≤ lnK. As in that case we use the stopping time τ (n) from (5.28) and from the above we see that

(5.29) is true also for the case under consideration. We consider again τ
(n)
α defined before Lemma 5.5

and similarly to (5.30) obtain that
∣

∣E[u(τ
(n)
α ∧ σ(n), X

τ
(n)
α ∧σ(n))](5.50)

−E[e−rτ (n)
α ∧σ(n)

(

ψ(µτ
(n)
α +X

(n)

τ
(n)
α

)I{τ (n)
α ≤σ(n)} +

(

δ −Ke(|µ|
√
h+ σh)

)

I{σ(n)<τ
(n)
α }

)

)

]
∣

∣.
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In order to estimate (5.50) for x > lnK we only need to split it into two parts, one for τ
(n)
α ≤ σ(n) and the

other one for σ(n) < τ
(n)
α . This it true in view of the fact that if we begin with x > lnK and τ

(n)
α ≤ σ(n)

then we must have β(n) ≤ τ
(n)
α , and so we are back to the American option case and can use Lemma 5.5

for this case. If σ(n) < τ
(n)
α then the process X(n) is stopped near the seller’s boundary and similarly to

(5.37) we can use the Lipschitz property of P to obtain,

E[
(

u(σ(n), X
(n)

σ(n))− e−rσ(n)

(δ −Ke(|µ|h+ 2κ
√
h))I{σ(n)<τ

(n)
α }

)

] ≤ C√
n
.

From here we can proceed similarly to the case of x ≤ lnK and obtain the lower bound for P
(n)
1 proving

(2.11) for P
(n)
1 . �

Next, we turn to the second approximation function P
(n)
2 , still in the case of x > lnK. For the upper

bound we use Lemma 5.7 as in the case x ≤ lnK and proceed similarly to the proof of the upper bound

for the first approximation function P
(n)
1 . The proof of the lower bound is similar to the case x ≤ lnK

and we obtain the result observing that if x > lnK then P (t, x) < ψ(x) + δ = δ for any t ∈ [0, T ]. �

6. Computations

In this section we exhibit computations of price functions and free boundaries of game and American
put options. All graphs of functions related to game put options were plotted using the approxima-

tion function P
(2000)
2 (see (2.10)). The graphs for the American put options were computed using the

approximation function P
(2000)
A from [17].

Figure 1 shows both free boundaries of the holder and of the writer of a game put option and also
the free boundary of the holder of an American put option corresponding to the option parameters
K = 20, r = 0.02, κ = 0.15, T = 0.5, δ = 0.15. Here K is the strike of the option, r is the interest rate,
κ is the volatility, T is the time to maturity and δ is the writer’s cancelation penalty in the case of game
option.

In Figure 2 we plot the graphs of an American put option price function and of a game put option
price functions with δ = 1.0 and δ = 1.5 while other parameters are K = 20, r = 0.02, κ = 0.15, T = 10.

Figure 3 shows the holder’s free boundary for American and game put options where we use the same
parameters as in (1) adding also plots of free boundaries for the game put options with penalty values
δ = 0.3 and δ = 0.5.
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Figure 1. Free boundaries of American and game put options.
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Figure 2. The price functions of American and game put options.
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Figure 3. Holder free boundaries of American and game put options.
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