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Abstract

This paper revisits the fractional cointegrating relationship between ex-ante implied volatil-
ity and ex-post realized volatility. We argue that the concept of corridor implied volatility
(CIV) should be used instead of the popular model-free option-implied volatility (MFIV)
when assessing the fractional cointegrating relation as the latter may introduce bias to the
estimation. For the realized volatility, we use recently proposed methods which are robust
to noise as well as jumps and interestingly we find that it does not affect the implied-realized
volatility relation. In addition, we develop a new tool for the estimation of fractional coin-
tegrating relation between implied and realized volatility based on wavelets, a wavelet band
least squares (WBLS). The main advantage of WBLS in comparison to other frequency
domain methods is that it allows us to work conveniently with potentially non-stationary
volatility due to the properties of wavelets. We study the dynamics of the relationship in the
time-frequency domain with the wavelet coherence confirming that the dependence comes
solely from the lower frequencies of the spectra. Motivated by this result we estimate the
relationship only on this part of the spectra using WBLS and compare our results to the
fully modified narrow-band least squares (FMNBLS) based on the Fourier frequencies. In
the estimation, we use the S&P 500 and DAX monthly and bi-weekly option prices covering
the recent financial crisis and we conclude that in the long-run, volatility inferred from the
option prices using the corridor implied volatility (CIV) provides an unbiased forecast of the
realized volatility.
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1. Introduction

Option prices are widely believed to carry information relating to expectations of market
participants about the future movement of the underlying asset prices in financial markets,
mostly its volatility. The volatility implied by an option’s price is the forecast of the future
return volatility over the remaining life of the relevant option if the option markets are
efficient. Early papers studying the phenomenon of implied-realized volatility relation use
volatility implied by option pricing models – most commonly Black and Scholes (1973) or
Hull and White (1987) – and come to a conclusion that volatility inferred from the option
markets is a biased predictor of the stock return volatility (Day and Lewis, 1992; Lamoureux
and Lastrapes, 1993; Canina and Figlewski, 1993; Jorion, 1995).

In contrast, Christensen and Prabhala (1998); Christensen and Strunk (2002) first notes
that ex-ante implied volatility in fact is an unbiased and efficient forecast of ex-post volatility
after the 1987 stock market crash, while they point to large bias before the 1987 crash. Using
wide variety of methods authors show that information content of option implied volatility
is superior to that of the past volatility and it is less biased (although still biased) predictor
of future realized volatility than has been previously shown. Authors shed some light on
the dubiety about the informational content of option implied volatility by specifying the
sources of errors of previous research, for example choice of particular option contracts to
extract volatility from and lower liquidity of option market than in underlying asset market.
Moreover, overlapping data errors cause cross-correlation in the volatility series, which stems
from overlapping period between the current implied volatility and future implied volatil-
ity. Yet, there is a problem with non overlapping samples, as they drastically reduce the
data used. Last, but not least, mismatching errors include for example maturity mismatch
(options with longer expiration are used to predict day/week ahead realized volatilities). In
the light of these methodological issues, Christensen and Strunk (2002) conclude that op-
tion implied volatility is more efficient forecast for future realized volatility than historical
volatility, but it does not subsume all information contained in historical volatility and it is
an upward biased forecast for future realized. Still, the approach to infer the volatility from
the option markets is model based, authors use a modification of Black and Scholes (1973).

Strikingly simple method to extract volatilities from options across all strike prices,
model-free implied volatility (MFIV) was introduced by Britten-Jones and Neuberger (2000).
Unlike the traditional concept, model-free implied volatility is not based on any specific
option pricing model and it is derived from no-arbitrage conditions. Jiang and Tian (2005)
extended the simple measure of implied volatility to all martingale asset price processes and
express the formulae in forward rather than spot prices. Most notably, Jiang and Tian (2005)
first find that the MFIV subsumes all information contained by historical and Black and
Scholes (1973) implied volatility and is more efficient forecast of future realized volatility.
Informational content of option implied volatility in the subsequent research is analyzed
using the model-free measure1.

1Many studies use the Chicago Board Option Exchange (CBOE) Volatility Index (VIX) as a proxy for
model-free implied volatility of S&P 500. Introduced by the CBOE in 1993, its methodology was revised in
2003 using a new model-free measure of expected volatility thus is can be used conveniently.
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Finally, Andersen and Bondarenko (2007) and Andersen et al. (2011) argue that MFIV
computation brings serious practical limitations yielding an inaccurate measurement tool.
The main problem is the lack of liquid options with strike prices covering the entire return
distribution including its tails. Authors advocate using a limited strike ranges at a given
point in time instead. The concept is called model-free corridor implied volatility index
(CIV), previously introduced by Carr and Madan (1998a). While different measures can
be obtained depending on the width and positioning of the strike range, Andersen et al.
(2011) advocate fixing the range of strikes at a level that provides broad coverage but avoids
excessive extrapolation of noisy or non-existing quotes for far out-of-the-money options.

When assessing the efficiency of implied volatility forecasts, one needs to have a return
volatility at hand. However, actual volatility has not been directly observable variable
for a long time. In recent years, as a consequence of an increased availability of high-
frequency data, another subject has brought new insight into the implied-realized volatility
relation; the concept of realized volatility, which is simply observed sample variance of
returns. Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004a) have shown
that realized variance provides a consistent nonparametric measure of price variability over
a given time interval. Immense literature studying the realized volatility emerged in the
past decade discussing the impact of noise as well as jumps in the volatility measurement
concluding that realized volatility is unbiased and consistent measure of quadratic variation
only in case we assume no market microstructure noise in the process. Literature also
argues that it is important to separate jump process and use the estimator robust to noise
to recover a true underlying volatility. For this, we use recently proposed jump wavelet
two scale realized volatility estimator (JWTSRV) proposed by Barunik and Vacha (2012a),
which compares to other estimators used in the literature very well. JWTSRV is able to
estimate the jumps consistently and the estimator is robust to noise. Forecasting power of
the estimator is studied using a Realized GARCH framework in Barunik and Vacha (2012b).

Using more and more precise measures, recent literature suggests that predictive regres-
sion between implied volatility and realized volatility is an cointegrating relation and OLS
estimation should be avoided as it will result in biased estimates (Bandi and Perron, 2006;
Nielsen and Frederiksen, 2011). Using a spectral methods, both studies confirm that in a
long-run, implied volatility is an unbiased predictor of realized volatility. Still, the results
do not say anything about short-term unbiasedness and they rely on Black-Scholes implied
volatility only. Generally, band spectrum regression may be useful tool in the situation when
we believe the relationship between variables is dependent on frequency. The concept was
introduced in econometrics by Engle (1974) and further shown to be useful for estimation
of cointegrating regressions (Phillips, 1991; Marinucci and Robinson, 2001).

While Bandi and Perron (2006); Nielsen and Frederiksen (2011); Kellard et al. (2010) use
Fourier transform in order to estimate the relation in the frequency domain, we contribute
to the literature by proposing the band regression on the spectrum estimated by wavelet
coefficients. The wavelet transform offers localized frequency decomposition, providing in-
formation about frequency components. As a result, wavelets have significant advantages
over basic Fourier analysis when the object under study is locally stationary and inhomoge-
neous – see Gençay et al. (2002); Percival and Walden (2000); Ramsay (2002). This can be
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a crucial property as implied-realized volatility cointegrating relation may potentially lie in
a non-stationary region (Kellard et al., 2010).

Wavelets also allow us to study the relationship in the time-frequency domain. We
motivate this dynamics by estimating the wavelet coherence measure to study the implied-
realized relation. While wavelet coherence may be used as the “lens” into the relationship
which shows the dynamics through time as well as frequencies at once, a newly proposed
wavelet band spectral regression allows us to estimate the relationship.

The contribution of this paper is twofold. First, we develop a new time-series technique
to validate the unbiasedness of ex-ante implied volatility as a predictor of ex-post realized
volatility, the wavelet band least squares (WBLS). Second, we emphasize the importance of
the implied volatility measure in studying the cointegrating relation. We compare MFIV
and recently proposed CIV as measures of option implied volatilities with realized volatility
and recently proposed jump-wavelet realized volatility (JWTSRV) capable of separating the
continuous part of the volatility from jumps as well as noise. We argue that it is crucial
to use a proper measures for finding the answer to the question whether the option implied
volatility is an efficient forecast of the realized volatility. The methods are applied on German
DAX and U.S. S&P 500 stock market indices covering the 2008 financial crisis with abrupt
changes in prices. Unlike the previous studies, we use both call and put options and we use
options with monthly as well as bi-weekly maturities.

The paper is organized as follows: second section describes the volatility measurement. It
starts generally with concept of realized volatility and introduces model-free implied volatil-
ity (MFIV) as well as corridor implied volatility (CIV) subsequently. After the introduction
of the data in the third section, fourth section begins to study the time-frequency dependence
of implied and realized volatility using wavelet coherence, introduces our wavelet band least
squares (WBLS) to study the fractionally cointegrated series and summarizes narrow band
least squares (NBLS) and fully modified narrow band least squares (FMNBLS) method-
ology. Section five discusses the results while last section concludes. As we use wavelets
extensively but do not want to distract the reader from the main text, we also provide the
short introduction to the wavelet methodology in the appendix.

2. Volatility measurement

Consider a univariate risky logarithmic asset price process pt defined on a complete
probability space (Ω,F ,P). The price process evolves in continuous time t over the interval
[0, T ], where T is a finite positive integer according to a jump diffusion process:

dpt = µtdt+ σtdWt + ξtdqt, (1)

where µt is a predictable mean, σt strictly positive volatility process, Wt is standard Brownian
motion, ξtdqt is a random jump process allowing for occasional jumps in pt and q is a Poisson
process uncorrelated with W and governed by the constant jump intensity λ. The magnitude
of the jump in the return process is controlled by factor ξt ∼ N(ξ̄, σ2

ξ ).
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Generally, we assume the latent logarithmic asses price process is contamined with mi-
crostructure noise. Let yt be the observed log prices, which will be equal to the latent,
so-called “true” log-price process pt in Eq. (1) and will contain microstructure noise εt, a
zero mean i.i.d. noise with variance η2

yt = pt + εt. (2)

The main object of interest in financial econometrics is the estimated integrated variance
of the latent price process, 〈p, p〉t =

∫ t
t−h σ

2
t dt. Quadratic return variation over the [t− h, t]

time interval, 0 ≤ h ≤ t ≤ T is

QVt,h =

∫ t

t−h
σ2
sds︸ ︷︷ ︸

IVt,h

+
∑

t−h≤s≤t

J2
s︸ ︷︷ ︸

Jump Var.

. (3)

Thus, quadratic variation QVt,h is equal to the integrated volatility of the continuous path
and the sum of jumps with size Js.

2.1. Realized volatility

Recently popularized simple measure of quadratic variation – realized variance – is con-
sistent and unbiased estimator of the quadratic variation if the sampling goes to infinity
(Andersen and Bollerslev, 1998; Andersen et al., 2003; Barndorff-Nielsen and Shephard,
2001, 2002a,b). The realized variance over [t− h, t], for 0 ≤ h ≤ t ≤ T , is defined by

R̂V t,h =
n∑
i=1

r2
t−h+( i

n)h, (4)

where n is the number of observations in [t− h, t]. While the realized variance measure
is widely used due to its simplicity, it estimates the whole part of the quadratic variation
and is subject to the bias from the microstructure noise. In fact when the realized variance
is used to measure the volatility (its square root), it will measure volatility of yt from Eq.
(2) together with jumps. Still, the main interest is to measure the integrated variance part
〈p, p〉t hence more sophisticated estimators need to be used.

Literature developed several estimators dealing with microstructure noise and jumps
recently. For example Zhang et al. (2005) propose the solution to the problem of noise
by introducing the two-scale realized volatility (TSRV henceforth) estimator. Another es-
timator, which is able to deal with the noise is the realized kernels (RK) introduced by
Barndorff-Nielsen et al. (2008). Barndorff-Nielsen and Shephard (2004b, 2006) developed a
very powerful and complete way of detecting the presence of jumps in high-frequency data,
bipower variation. The basic idea is to compare two measures of the integrated variance,
one containing the jump variation and the other being robust to jumps and hence containing
only the integrated variation part.
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More recently, jump adjusted wavelet two scale realized volatility (JWTSRV) has been
proposed to measure the integrated variance in the presence of jumps and noise by Barunik
and Vacha (2012a). JWTSRV is able to consistently estimate jumps using wavelet transform
and is also robust to microstructure noise thanks to a Zhang et al. (2005)’s framework. Let
us introduce the estimator.

Starting with the jump detection, Barunik and Vacha (2012a) utilize the methodol-
ogy proposed by Fan and Wang (2007) who use the wavelet jump detection to the deter-
ministic functions with i.i.d. additive noise εt of Wang (1995) and Raimondo (1998). For
the estimation of jump location the universal threshold of Donoho and Johnstone (1994)

on the 1st level wavelet coefficients of yt over [t − h, t], W̃1,k is used2. If for some W̃1,k,

|W̃1,k| > d
√

2 log n, then τ̂l = {k} is the estimated jump location with size ȳτ̂l+ − ȳτ̂l− (aver-
ages over [τ̂l, τ̂l + δn] and [τ̂l, τ̂l− δn], respectively, with δn > 0 being the small neighborhood
of the estimated jump location τ̂l ± δn) and where d is median absolute deviation estimator

defined as median{|W̃1,k|, k = 1, . . . . , n}/0.6745, for more details see Percival and Walden
(2000).

The jump variation is then estimated by the sum of the squares of all the estimated jump
sizes:

ŴJV =
Nt∑
l=1

(ȳτ̂l+ − ȳτ̂l−)2. (5)

Fan and Wang (2007) proved that we are able to estimate the jump variation from the
process consistently in this way. In the following analysis, we separate the continuous part
of the price process containing noise from the jump variation. This result can be found

in Fan and Wang (2007) and it states that the jump-adjusted process y(J) = yt − ŴJV
converges in probability to the continuous part. Thus, if we are able to deal with the noise
in y(J), we are be able to estimate the true 〈p, p〉t.

Let R̂V
(estimator,J)

t,h denote an estimator of realized variance over [t− h, t], for 0 ≤ h ≤ t ≤
T , on the jump-adjusted observed data, y

(J)
t,h = yt,h −

∑Nt

l=1 Jl. The jump-adjusted wavelet
two-scale realized variance estimator is

R̂V
(JWTSRV )

t,h = R̂V
(WRV,J)

t,h − n̄

n
R̂V

(all,J)

t,h , (6)

where R̂V
(WRV,J)

t,h = 1
G

∑G
g=1

∑Js+1
j=1

∑n
k=1 W̃2

j,t−h+ k
n
h

obtained from wavelet coefficient esti-

mates on a grid of size n̄ = n/G on the jump-adjusted observed data, y
(J)
t,h = yt,h −

∑Nt

l=1 Jl.
The JWTSRV estimator decomposes the realized variance into an arbitrary chosen number
of investment horizons and jumps and it is unbiased estimator and consistent estimator of
the integrated variance as it converges in probability to the true integrated variance 〈p, p〉t of
the process pt with increasing sampling frequency n→∞ (Barunik and Vacha, 2012a). To

2Not to distract the reader from the main text, we provide the necessary introduction to wavelet analysis
in an Appendix 6.
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measure the ex-post realized volatility, we use simple realized volatility as well as JWTSRV.

2.2. Model-free implied volatility and corridor implied volatility

While realized volatility measures the volatility from the high frequency returns, model-
free implied volatility (MFIV) can be used to infer the volatility from the option prices. This
approach, derived by Britten-Jones and Neuberger (2000) uses cross-section of option prices
to calculate the volatility as the risk-neutral expected sum of squared returns between two
dates. The resulting implied volatility does not depend on any parametric model and provide
ex-ante risk-neutral expectations of the future volatilities. The most serious forerunner of
MFIV was the volatility inverted from the Black and Scholes (1973) option pricing formula.
Nevertheless it has been proved that Black-Scholes implied volatility featured a notarially
known moneyness bias, known as volatility smile or smirk (Macbeth and Merville (1979)
were amongst the first researches to describe this issue).

Britten-Jones and Neuberger (2000) derived the model-free implied volatility under the
diffusion assumption. They extended the work of Derman and Kani (1994) and Dupire
(1994) to infer a forecast of underlying asset’s volatility from a continuum of European call
options with strikes and maturities ranging from zero to infinity. The complete set of option
prices is used to extract a condition which characterizes the set of continuous processes
consistent with current option prices.

In the option setting, current time is fixed to t = 0, pay-off takes place at a future fixed
date T , time to maturity is denoted as τ = T − t. For 0 ≤ t ≤ T , Ft denotes the time t value
of the futures contract expiring at date T ′. Prices of European put and call options with
strike K and expiration date T are given by Pt(K) and Ct(K) and risk-free rate is assumed
to be zero.

Authors first derive the risk-neutral probability of the stock price that is fully deter-
mined by initial set of option prices. Consequently they show that the set of initial option
prices determine as well the probability of the stock price reaching any two price levels at
two consecutive dates. Jiang and Tian (2005) further extend Britten-Jones and Neuberger
(2000) volatility measure to all martingale asset price processes and express the formulae in
forward rather than spot prices. Since a martingale can be decomposed canonically into the
orthogonal sum of a purely continuous martingale and a purely discontinuous martingale
(Jacod and Shirayev, 1987; Protter, 1990), the model-free relationship between the asset
return variance and option prices also holds when asset prices contain jumps.

A forecast of integrated variance for the period [0, T ] can be determined from observed
European call option prices with maturity T as follows

EF
0

[∫ T

0

σ2
sds

]
= 2

∫ ∞
0

Ct (T,K)−max (0, F0 −K)

K2
dK (7)

where EF
t denotes the time t expectation with respect to the risk-neutral distribution (RND)

of the asset price, T denotes expiration date, F forward probability measure, K strike price
and Ft and Ct (T,K) are forward asset price and forward option price respectively. To
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calculate the integral, numerical integration can be used, e.g. trapezoidal rule∫ Kmax

Kmin

Ct (T,K)−max (0, F0 −K)

K2
dK ≈

m∑
i=1

[g (T,Ki) + g (T,Ki−1)] ∆K, (8)

where ∆K = (Kmax −Kmin) /m, Ki = Kmin+i∆K, and g (T,Ki) = [Ct (T,K)−max (0, F0 −K)]/K2.
Jiang and Tian (2005) further developed, based on examination of implementation issues,

a simple method to implement the MFIV on observed option prices. They identify two types
of errors associated with implementation: truncation and discretization errors. Truncation
errors are present when tails in the RND are ignored (due to limited availability of the
strike prices for listed options). Authors find that truncation errors are negligible if RND is
truncated at two standard deviations from F0 and propose the flat extrapolation scheme for
the range of strike prices outside the available set of the prices. In their later work (Jiang
and Tian (2007)) authors propose to impose smooth pasting condition at the minimum
and maximum of available strike prices to avoid kinks in the implied volatility function at
the lower and upper price bound. We discuss both schemes later on in the data section.
Discretization errors are minimized using interpolation between listed strike prices. Cubic
spline interpolation is not applied directly to option prices as there is nonlinear relationship
between the option prices and option strike prices. Implied volatilities are obtained from
Black and Scholes (1973) formula, smooth function is fitted to implied volatilities and using
Black and Scholes (1973) formula volatilities are again translated to option prices at the
desired strike prices. The Black and Scholes (1973) model works as one-to-one mapping
between volatilities and option prices and does not impose any model dependency on the
calculation of model-free volatility.

Andersen and Bondarenko (2007) and Andersen et al. (2011) argue that lack of the liquid
contracts results into a non-trivial measurement errors that are amplified by the stochastic
nature of availability of strike prices which vary over time. Authors propose corridor implied
volatility measure following the work of Carr and Madan (1998b) with cut-off criterion that
is determined endogenously by option prices (part of the estimated risk neutral density
inferred from option prices). As such, it allows to reflect the pricing of volatility across
an economically equivalent fraction of the strike range. That would ensure inter-temporal
coherence of the measure. Authors further show that due to lack of availability of strike
prices, implementation of MFIV actually brings the resulting implied volatilities to corridor-
implied volatilities rather than model-free implied volatilities.

By defining two positive barriers, the lower B1, the upper B2 and the following indicator
function,

It(B1, B2) = It = 1 [B1 ≤ Ft ≤ B2] , (9)

corridor integrated variance is

CIV ARt(B1, B2) =

∫ T

0

σ2
sIs(B1, B2)ds. (10)

In comparison to the pure integrated variance, now the return variation is accumulated only
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when the futures price at time t is between the two barrier levels. Carr and Madan (1998b)
and Andersen and Bondarenko (2007) demonstrate that risk-neutral expectation of future
corridor implied variance (CIV )at time t = 0 is

EF
0

[∫ T

0

σ2
sIs(B1, B2)ds

]
= 2

∫ B2

B1

Ct (T,K)−max (0, F0 −K)

K2
dK (11)

When B1 = 0 and B2 =∞ the future corridor integrated variance is equivalent to model-free
implied variance. Expected future volatility can be obtained by taking square roots of CIV
as well as MFIV.

3. Data

To calculate option implied volatility we use the set of European-style option prices
on DAX and S&P 500. The cross-sectional data contain daily option prices for all listed
maturities and strike prices and cover the period from July 2006 till October 2010. The
data have been provided by by OptionMetrics database. We use settlement mid price for
the analysis. Settlement prices have the advantage over close prices as they are not plagued
by nonsynchroneous trading. Following Bakshi et al. (1997), we apply exclusions filters on
the datasets to prevent liquidity related bias and mitigate the impact of price discreteness.
First, options with less than week to expiration are excluded. Second, price quotes lower
than 0.375 are excluded. Third, the quotes that do not satisfy the no-arbitrage condition
C ≥ max (0, St −Xt) for calls and P ≥ max (0, Xt − St) for puts are dropped as well. We
include only out-of-the money options where strike price is strictly higher then the spot price
for call options and vice versa for put options. This approach is common in all comparable
studies as in-the-money options are less liquid and thus introduce bias into the calculation
of implied volatility. Last, we calculate the measures if and only if more then five options
for given maturity and different strikes passed the above mentioned criterions. Altogether,
we discarded 27% of option prices and used in average 80 options per day per maturity per
index.

To deal with the fact that measures work with spot price and options are written on
index forwards, we follow the literature and translate spot prices into forward rates using
zero coupon rates for a given currencies and maturities for each day. In case we do not
have zero coupons for given maturity, we interpolate (extrapolate) between the two nearest
rates available. Zero coupon rates are again obtained from OptionMetrics database. To
obtain forward prices, spot prices are multiplied by erf (T−t), where rf is the risk-free rate
corresponding the maturity of options.

To calculate the model-free measures we used the datasets with fixed time to maturity;
precisely, we use 15 and 28 calendar days for DAX, 15 and 29 for SPX. Note that the one-
day difference is caused by different listing conditions for the index options. We refer to
the different time to maturity as monthly and bi-weekly maturity further in the text. We
use non-overlapping datasets using the data from the trading days when options with fixed
time to maturity have been available so we do not introduce any autocorrelation into the
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forecasting regressions. When dealing with implementation of model-free implied volatility
on real option datasets, one has to inevitably resort to an approximation method introducing
potential bias. Jiang and Tian (2005) point out to some practical limitations associated with
the implementation of MFIV which result to truncation errors when the tails of distribution
is ignored, and discretization errors due to numerical integration and limited availability of
strike prices range. Authors as well propose the procedure that improve the implementation
and render more or less negligible errors.

In our calculations, we follow the part of this procedure. To limit the discretization errors,
we use step of one unit of the index to calculate the integral numerically. Trapezoidal rule
is applied to obtain the variance (correspondingly square root to obtain volatility). To
overcome the limited availability of strike prices, we infer the prices of absent options from
the prices of listed options. Due to nonlinearities in the option prices we apply cubic spline
curve-fitting method to implied volatilities, instead of option prices directly. The implied
volatilities are reverted from listed option prices using the Black and Scholes (1973) pricing
formula and smooth function is fitted to them. Implied volatilities for absent strikes are then
extracted and the same pricing formula is used again to calculate the corresponding option
prices. The pricing formula is used only as one-to-one mapping between option prices and
strike prices. Thus the procedure retains its model-free grounds.

The subsequent procedure differs for MFIV and CIV calculation. We impose flat ex-
trapolation to the prices beyond the available daily price range in MFIV measure imple-
mentation. Jiang and Tian (2007) adjust the slope of the extrapolated segment to match
the corresponding slope of the interior segment at the extremes. We did not apply this ap-
proach as it actually rendered much worse results. The number of listed strikes that passed
all above mentioned criterions varies between the days. In some cases the slope at the in-
terior segment would send the extrapolated prices to unrealistic numbers, thus introducing
huge bias into the calculated volatility. To avoid truncation errors we use one standard
deviation from forward prices as an integration range. We do not follow Jiang and Tian
(2005) recommended approach to set the truncation point at two standard deviations from
F0 for simple reasons: the lack of available options for some days and high volatility of index
prices through the time period that involves financial crisis. Interval of strike prices that
then needs to be extrapolated [F0 − 2SD,Kmin]∪ [Kmax, F0 + 2SD]) becomes too large and
amounts for the majority of the inputs that enters the calculation formula, which necessarily
introduces great amount of error into the calculation. We calculate CIV with the corridors
covering range from the 5th to 95th percentile (CIV1) and from 2.5th to 97.5th percentile
(CIV2) of the RND, estimated from the available option prices that passed the exclusion
criteria for given daily maturity.

Corresponding to each of the implied volatilities we compute the realized volatility (RV)
using a 5 minute returns and JWTSRV using all the available data. Tick by tick data were
provided by the Tick Data. After computing the daily realized measures, we aggregate them
into monthly and bi-weekly according to the maturities in order not to introduce the bias
from the maturity mismatch.
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4. Time-frequency volatility dynamics

The information content of implied volatility is typically assessed in the literature by
estimating a following regression

RVt+h = α + βIVt + εt, (12)

with ordinary least squares assuming εt to follow Gaussian normal errors with zero mean
and finite constant variance. RVt+h is the ex-post realized volatility for period t + h and
IVt is the implied volatility at the beginning of period t, being an ex-ante measure of t+ h
volatility. In case implied volatility is an unbiased forecast of realized volatility, α should
not be statistically different from 0 and β should not be statistically different from 1. In
case implied volatility is efficient, the residuals εt should be zero mean, constant and finite
variance and they should be serially uncorrelated.

Initial literature have generally found that implied volatility is biased forecast of the
realized volatility while β is significantly different from unity, see for example Christensen
and Prabhala (1998). A few researchers (Bandi and Perron, 2006; Christensen and Nielsen,
2006) suggest that the implied-realized volatility relation might be a fractional cointegration
relation as volatility is typically found to be a long memory process. In this case, εt would not
be integrated of order I(0) and standard OLS should not be used. Before proceeding further
with the cointegrating relationship, we study the time-frequency dynamics of the relation
using wavelet coherence to find out how the dependence varies over different frequencies.
This will provide an important insight for the further analysis.

4.1. Dynamic dependence: a wavelet coherence

To better understand the relationship, it might be useful to look at it from the point
of view of different frequencies. Here, the wavelet analysis may be well utilized as it allows
to study the time series in the time-frequency domain. As wavelet coefficients estimate the
spectrum of the time series, wavelet coherence can be seen as the estimate of the cross-
spectra between two series scaled by the spectra of both series. The coherence is analogous
to the square of the correlation between two series. Zero coherence suggests that there is no
relation, when coherence equals to one, we have perfect correlation. The main advantage of
this approach is that it provides us with the localized correlation at time-frequency domain.
As such, it can be used as a “lens” into the dependence.

The wavelet transform offers localized frequency decomposition, providing information
about frequency components. As a result, wavelets have significant advantages over basic
Fourier analysis when the object under study is locally stationary and inhomogeneous – see
Gençay et al. (2002); Percival and Walden (2000); Ramsay (2002).

To be able to study the interaction between two time series, we use a bivariate framework
of wavelet coherence3. Following Torrence and Compo (1998), we define the cross wavelet

3In our work we use continuous wavelet analysis tools, for an interested reader, we include the necessary
introduction to wavelet analysis in an Appendix 6
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transform of two time series RVt+h and IVt as

WIVtRVt+h
(u, s) = WIVt(u, s)W

∗
RVt+h

(u, s), (13)

where WIVt(u, s) and WRVt+h
(u, s) are continuous wavelet transforms of RVt+h and IVt,

respectively, u is a position index, and s denotes the scale, while the symbol ∗ denotes a
complex conjugate. The cross wavelet power can easily be computed using the cross wavelet
transform as |WIVtRVt+h

(u, s)|. The cross wavelet power reveals areas in the time-frequency
space where the time series show a high common power, i.e., it represents the local covariance
between the time series at each scale.

The wavelet coherence can detect regions in the time-frequency space where the examined
time series co-move, but do not necessarily have a high common power. Following the
approach of Torrence and Webster (1999), we define the squared wavelet coherence coefficient
as:

R2(u, s) =
|S(s−1WIVtRVt+h

(u, s))|2

S(s−1|WIVt(u, s)|2)S(s−1|WRVt+h
(u, s)|2)

, (14)

where S is a smoothing operator4. The squared wavelet coherence coefficient is in the range
0 ≤ R2(u, s) ≤ 1. Values close to zero indicate weak correlation, while values close to one
provide evidence of strong correlation. Hence, the squared wavelet coherence measures the
local linear correlation between two stationary time series at each scale and is analogous
to the squared correlation coefficient in linear regression. Since the theoretical distribution
for the wavelet coherence is not known, statistical significance of dependence is tested using
Monte Carlo methods (Grinsted et al., 2004; Torrence and Compo, 1998)5.

Finally, wavelet coherence phase differences may be used to asses the details about the
delays in the oscillation (cycles) between the two time series under study (see Torrence and
Webster (1999) for the details). Phase is indicated by arrows on the wavelet coherence plots.
A zero phase difference means that the examined time series move together. The arrows
point to the right (left) when the time series are in-phase (anti-phase) or are positively
(negatively) correlated. Arrows pointing up means that the first time series leads the second
one by 90◦, whereas arrows pointing down indicates that the second time series leads the
first one by 90◦. Usually we have a mixture of positions, for example, an arrow pointing
up and right means that the time series are in phase, with the first times series leading the
second one. Recently, Vacha and Barunik (2012) used the wavelet coherence to study the

4Without smoothing, the wavelet coherence equals one at all scales. Smoothing is achieved by convolu-
tion in both time and scale. The time convolution is performed with a Gaussian window, while the scale
convolution is done with a rectangular window – see Grinsted et al. (2004).

5The use of wavelets brings with it the difficulty of dealing with boundary conditions on a dataset with
finite length. This is a common problem with any transformation relying on filters. In our paper, we
deal with this problem by padding the time series with a sufficient number of zeroes. The area where the
errors caused by discontinuities in the wavelet transform cannot be ignored, i.e., where edge effects become
important, is called the cone of influence. The cone of influence is highly dependent on the type of wavelet
used – see Torrence and Compo (1998). The cone of influence lies under a cone which is bordered by a thin
black line.
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comovements of commodity markets.
Figure 1 brings the wavelet coherence plots of the two variance series. We use CIV1,

CIV2 as well as MFIV to measure volatility implied by options and RV and JWTSRV
robust to noise and jumps to measure the realized volatility. Moreover, for each index, we
use options with monthly and bi-weekly maturity to study the difference. Realized volatility
is computed correspondingly.

Dynamic dependence reveals an interesting findings. A distinct change in the general
pattern can be found in the 25 frequency corresponding to 32 days, or approximately 1.5
months when 21 trading day is considered in a month. In the investment horizons less
than 1.5 months, no dependence is found, while the wavelet coherence is significant through
horizons longer than 1.5 month and all time periods considered. Thus effects of market
frictions and short-run fluctuations disappear in the long-run and dynamic relationship
between the variances is nearly perfect in the long-run for the whole studied period. In
the long-run (low frequencies) coherence close to one implies that implied volatility is an
unbiased forecast of realized volatility and no forecast error or premium for bearing volatility
risk exist. In the short run this equilibrium is broken and zero coherence implies that most
of the changes in implied volatility is coming from the risk premium or errors in future
expectations.

Interestingly, options with different maturities used to calculate the implied volatility of
S&P 500 do not bring any difference into the relation. Implied-realized volatility relation is
very strong for all investment horizons longer than 1.5 months and time periods without an
exception. The situation is similar in the DAX. The only difference is that relation seems
to break in the last years of the sample even in the long horizons. This may suggest that
German option market is not that efficient as the U.S. one.

An important distinction can be seen from the wavelet coherence plots when we consider
different measures of volatility used. When CIV measures are used to calculate the implied
volatility, the long-term relation is much stronger than in the case when MFIV is used. This
may suggest that MFIV provide biased measure of implied volatility as long run dynamics
of the relation is not so pronounced.

Last observation can be made when looking at phases (arrows in the plot) which point
down-right. This means that implied volatility generally leads the realized volatility, which
is expected in case implied volatility provides an efficient expectation about future volatility.

While wavelet coherence plots provide us the “lenses” into the implied-realized relation, in
the next sections we will develop rigorous methodology to estimate the long-term fractional
cointegration relation using wavelets. Our main motivation in doing so is that wavelets are
capable of dealing with non-stationary time series, which will turn to be crucial property for
the analysis.

4.2. Fractional cointegration in variances

Fractional integration provides a framework for studying long-run dependencies in eco-
nomic time series (Baillie, 1996). A stationary time series yt is said to be fractionally
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integrated of order d ∈ (0, 0.5), I(d), if

∆dyt = εt, (15)

where εt is an I(0) process and ∆d = (1 − L)d is fractional difference operator. Empirical
evidence suggests that financial market volatilities are well described by the I(d) processes
Andersen et al. (2001, 2003); Christensen and Nielsen (2006). Naturally, we can expect that
the implied and realized variance series will be tied together in the long-run relationship in
the form of fractional cointegration and a linear combination of the two will be integrated
of order lower than I(d). Thus the difference between implied and realized variance, vari-
ance risk premium, should be less persistent that the two individual variance series. This
result has been documented by Christensen and Nielsen (2006). Interestingly, Bandi and
Perron (2006); Kellard et al. (2010) report fractional order of volatility in a non-stationary
region when 1/2 < d < 1, although it is difficult to determine the integration order of frac-
tional variables as smooth transition exists between stationary and non-stationary regions
(Marinucci and Robinson, 2001).

When looking at the regression Eq. (12), for α = 0 and β = 1, residuals εt reduces to
a variance risk premium obviously. In case εt is an I(du) with du < d, we may suspect the
fractional cointegrating relation between implied and realized variances.

4.3. Band spectral regression approach

Part of the literature proposes to use a band spectral regression to estimate a fractionally
cointegrating relation in implied and realized volatilities, as OLS estimates of β are incon-
sistent. Robinson and Marinucci (2003); Christensen and Nielsen (2006) have shown that
narrow band least squares (NBLS) results in an estimator that is consistent and normally
distributed. Basic idea is transforming the time series into the frequency domain using
Fourier transform and estimating β on the narrow band of the spectrum (Fourier coeffi-
cients) not far from the zero frequency on the long memory region. Recently, Nielsen and
Frederiksen (2011) generalize this idea to a fully modified NBLS (FMNBLS) which is able to
deal with the bias introduced by correlation between regressors and errors. In this paper, we
build on these ideas, but use rather different approach of band least squares on the spectra
estimated on wavelet coefficients.

Let us introduce the approach by considering the regression model

yt = xtβ + εt, (16)

where {xt, t = 1, . . . , T}, {yt, t = 1, . . . , T} and εt ∼ N(0, σ2). The OLS estimator of β is

β̂OLS =
(
xTx

)−1
xTy =

Cov(xt, yt)

V ar(xt)
. (17)

Engle (1974) was among first to consider estimation of β in the frequency domain. In fact
frequency domain is very intuitive as variance and covariance are spectrum and co-spectrum
of the series and can be simply estimated for example using Fourier transform.
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Recently, Kellard et al. (2010) finds that realized as well implied volatility series may
lie in the non-stationary region when 1/2 < d < 1. Frequency domain least squares using
the Fourier transform are able to accommodate non-stationary fractional cointegration by
transforming potentially non-stationary series xt which are I(d) with d > 1/2 using γ ≥ 0
into the resulting ∆γxt which are I(d − γ) (Nielsen and Frederiksen, 2011). The choice
of γ affects the estimation procedure and different choices will lead to different estimators.
Authors propose the best choice of γ = du, where du is memory parameter of the residuals
which can be estimated.

Frequency domain least squares based on the wavelet estimation of spectra is able to
deal with this problem as wavelets are generally very convenient tool in case we are dealing
with the non-stationary series (Fan and Whitcher, 2003; Roueff and Sachs, 2011). Although
wavelets do not improve the estimation of d in the standard stationary context d < 1/2, Faÿ
et al. (2009) showed that in the presence of trends, or series with d ≥ 1/2 and d ≤ −1/2,
they are helpful as they allow differencing implicitly.

4.4. Wavelet band spectral regression (WBLS)

Using wavelet transform, we are able to divide the whole frequency spectrum into fre-
quency bands represented by wavelet scales j. After the transform, the resulting spectrum
on the j-th scale has the following form: fWj ∈ [1/2j+1, 1/2j]. The wavelet spectral density
function at a scale j can be expressed as S(x)j(f) = Hj(f)Sx(f) where Hj(f) is the transfer
function of the wavelet filter at a scale j and Sx(f) denotes the spectrum of xt. Similarly the
wavelet cross-spectrum at a scace j is defined as S(xy)j(f) = Hj(f)Sxy(f), where S(xy)j(f)
represents the cross-spectrum of xt and yt. Furthermore, wavelet variance ν2x(j) and wavelet
covariance γxy(j) at a scale j reads:

ν2x(j) =

∫ 1/2

−1/2
S(x)j(f)df =

∫ 1/2

−1/2
Hj(f)Sx(f)df, (18)

γxy(j) =

∫ 1/2

−1/2
S(xy)j(f)df =

∫ 1/2

−1/2
Hj(f)Sxy(f)df, (19)

In case T → ∞ and therefore maximum number of wavelet scales J → ∞ is available, we
can write total variance and covariance as a sum of wavelet variances and covariances at all
scales as (Whitcher et al., 1999):

V ar(xt) =
(
xTx

)
=

∫ 1/2

−1/2
S(x)j(f)df =

∞∑
j=1

ν2x(j) (20)

Cov(xt, yt) =
(
xTy

)
=

∫ 1/2

−1/2
S(xy)j(f)df =

∞∑
j=1

γxy(j) (21)

Thus β can be estimated in the frequency domain using wavelet least square estimator
(WLS) as follows
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β̂WLS(1,∞) =

(
∞∑
j=1

γxy(j)

)−1( ∞∑
j=1

ν2x(j)

)
(22)

Asymptotically, β̂WLS is equal to β̂OLS. In many situations time series cary different in-
formation in the low and high part of the spectra. As revealed by the wavelet coherence,
this is also the case for volatility relation. As the relation comes solely from the long-run
part of the spectra, we need a tool which will be able to estimate the relation only on this
part. Similarly to the NBLS and FMNBLS (Robinson and Marinucci, 2003; Christensen
and Nielsen, 2006; Nielsen and Frederiksen, 2011), which we introduce later in the text as
we use it for comparison with our estimator, we can obtain the estimate on the narrow band
of the spectrum not far from the zero frequency on the long memory region. More precisely,
we can use only scales j which cover the long memory region.

Our final estimator, wavelet band least square estimator (WBLS) simply estimates the β
on the band of scales j ∈ [k, l] in Eq. (22), thus using frequency band f ∈ [1/2l+1, 1/2k]. For
the estimation of spectra, we use modified discrete wavelet transform (MODWT)6. WBLS
estimator is then

β̂WBLS(k, l) =

(
l∑

j=k

γxy(j)

)−1( l∑
j=k

ν2x(j)

)
(23)

where j-th scale represents the frequency band f ∈ [1/2j+1, 1/2j]. For example β̂WBLS(3, 4)
will estimate β over the frequency band of f ∈ [1/25, 1/23]. The estimator in Eq. (23) can

be expressed in terms of the MODWT coeffiecients W̃x(j, s) and W̃y(j, s), where j and s
denote scale position of the transform for xt and yt as

β̂WBLS(k, l) =

(
l∑

j=k

[
1

T

T∑
u=1

W̃x(j, s)W̃y(j, s)

])−1( l∑
j=k

[
1

T

T∑
u=1

W̃ 2
x (j, s)

])
(24)

By WBLS we can focus on estimating long-memory part of the spectra using frequency
band near origin and obtain long memory relationship. When we use all scales j and as
j →∞, β̂WBLS will be equivalent to β̂WLS and will converge to an OLS estimator.

4.5. FMNBLS

For the comparison with the newly proposed WBLS estimator of fractional cointegrating
implied-realized relation, we use frequency domain least squares methods well-established
in the literature. The basic distinction from the WBLS is that instead of using wavelet
coefficients to estimate the spectra and co-spectra, Fourier transform is used by the rest of
the literature.

Basic idea of the narrow band least squares (NBLS) estimator is transforming the time
series into the frequency domain using Fourier transform and estimating β on the narrow

6For a more detailed treatment see appendix
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band of the spectrum not far from the zero frequency on the long memory region. Robinson
and Marinucci (2003); Christensen and Nielsen (2006) have shown that narrow band least
squares (NBLS) results in an estimator that is consistent and normally distributed. Averaged
(co-) cross-periodogram used for the estimation of spectrum is F̂xy(k, l) = 2π/T

∑l
j=k Ixy(λj)

for any 0 ≤ k ≤ l ≤ T−1 and for λj = 2πj/T , where Ixy(λj) = 1/2πT
∑T

t=1

∑T
s xty

′
te
−i(t−s)λ

is cross-periodogram, or estimated cross-spectrum between two series on a specific frequency
band [k, l]. Analogously, F̂x(k, l) is estimated spectrum of xt. Then the cointegrating relation
between two time series {xt} and {yt} can be estimated as

β̂NBLS(k, l) = F̂−1x (k, l)F̂xy(k, l), (25)

where k and l define the frequency band used for the estimation of β.
By definition, β̂NBLS(1, T − 1) is algebraically identical to usual OLS estimator of β and

thus identical to WLS estimator in Eq. (22). If 1
l

+ l
T
→ 0 as T → ∞, β̂NBLS(k, l) is an

NBLS estimator using only degenerating band of frequencies near the origin. While l needs
to tend to infinity to have information, it also needs to remain in a neighborhood of zero
where we have assumed knowledge about the spectral density, so l/T must tend to zero.

Nielsen and Frederiksen (2011) based on their previous work (Christensen and Nielsen,
2006) show that in absence of non-coherence between regressors and errors at zero frequency
imposes bias to the NBLS estimates and they propose a fully modified NBLS (FMNBLS)
estimator to eliminate this bias. The FMNBLS estimator is simply NBLS corrected for
the asymptotic bias estimated by running an auxiliary NBLS regression of the (differenced)
residuals from the initial NBLS on the same regressors. To keep the text under control,
we point interested reader to the work of Nielsen and Frederiksen (2011) for details of the
methodology.

5. Results

The main aim of the paper is to revisit the relationship between implied and realized
volatility using the new unbiased measures of volatilities and newly proposed wavelet band
spectral regression.

Wavelet coherence suggests that implied volatility may be an efficient forecast of the
future volatility in the long run, while the existence of risk premia makes it an inefficient
forecast in the short run. Until now, we have been using the daily data as wavelets are
known for their decorrelation properties and they can deal with the non-stationary data as
well. Christensen and Prabhala (1998) were first to note that overlapping data may affect
the estimation considerably. To overcome this problem, we aggregate the daily data to a
monthly (and bi-weekly) non-overlapping data for further analysis.

We begin to study the volatilities by estimating its long memory parameter. Table 1
shows the memory estimates of different implied and realized volatility measures used in our
study. For the estimation, we use the popular GPH method (Geweke and Porter-Hudak,
1983; Robinson, 1995) and we report the estimates up to various different frequencies T 0.6,
T 0.7 and T 0.8. Interestingly, nearly all estimated volatilities show memory lying in between
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the stationary and non-stationary region of d = 0.5. When implied volatility is measured
using corridor implied volatility (CIV1 and CIV2), it displays larger memory than conven-
tional MFIV measure constituting the popular VIX index. Both realized volatility measures
show similar memory which is uniformly lower than the memory of implied volatility. These
results suggest that choice of the different measures may have serious consequence for the
estimation of relation, especially due to the implied volatility measure. When compared to
the literature which uses either model-driven implied volatilities or MFIV, our estimated
implied volatilities have larger memory possibly crossing boundary of stationarity. It is
worth to note that the period used in our study covers the recent financial crisis which could
possibly introduce this feature.

As a preliminary step in the estimation of the relation, we estimate it using OLS. The
results are reported together with frequency domain estimates separately for each series.
Tables 2, 3, 4 and 5 report the OLS estimates for the S&P 500 using monthly and bi-
weekly maturities, DAX using monthly and bi-weekly maturities in the implied volatility
measurement respectively. The first rows show the coefficients of the Eq. (12) suggesting
that generally IV is a biased predictor of RV. However, when CIV is used to measure the
implied volatility, slope coefficients are strikingly closer to unity than MFIV estimates for
both markets and both maturities used. This measurement error may have led researchers
to find bias more pronounced than it may be.

Memory estimates of the residuals from the OLS confirm this result. When MFIV is
used, residuals are I(d) suggesting implied-realized volatility is a cointegrating relation.
When CIV is used as the implied volatility measure, except for the case of S&P 500 with
monthly maturity options, residuals does not display as pronounced long memory as reported
in literature. In all the cases when residuals show long memory parameter close to zero, or
I(0), slope coefficient is very close to unity.

While estimated volatilities tend to be at the boundary of stationarity, wavelet band
least squares (WBLS) may serve as the best tool for the estimation of relation. From the
wavelet coherence plots we can see that there is no relationship until the 32nd period, while
the relationship for the periods higher than 32 seems to be nearly perfect. Thus we can
utilize the result and conveniently estimate the relationship only on this part of the spectra
using wavelet band least squares (WBLS).

Tables 2, 3, 4 and 5 report the results for the estimated β using WBLS. We use j = {5, 6}
levels from the 6 level wavelet decomposition to estimate the relationship. All the β’s are
much closer to unity, regardless the measure used. It is interesting to note that when CIV is
used, relationship is not significantly different from unity in most of the cases, while CIV1
measure implies coefficients closest to unity than does the CIV2. The only exception is
the S&P 500 data with monthly options where the coefficients are significantly lower than
unity. MFIV provide the β which is lower than unity all the times again. The difference
between RV and JWTSRV measures is not so pronounced, although JSTWRV does bring
some improvement in the estimates7. This confirms the result of Martin et al. (2009) who
assess the robustness of the relative performance of various estimators to the microstructure

7As JWTSRV is relatively new measure, we have also used realized measures well established in the lit-
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noise and they find that results are invariant to the method of noise correction in the realized
volatility.

For the comparison, we also estimate the FMNBLS. While in the WBLS we have mo-
tivated the choice of the bands by the wavelet coherence plots, in the FMNBLS we follow
Nielsen and Frederiksen (2011) and use the same bands to estimate the relationship, namely
we use [T 0.4, T 0.6], [T 0.4, T 0.7], [T 0.4, T 0.8], [T 0.5, T 0.6], [T 0.5, T 0.7] and [T 0.5, T 0.8] frequencies.
All of the bands overlap the bands used in the WBLS, although they interfere also with
higher frequencies. The results are statistically similar to those obtained by the WBLS es-
timates. When CIV measures are used, β is closer to unity (or significantly does not differ
from unity) when compared to usual OLS. When MFIV is used, β is closer to unity, but in
most cases they are significantly lower than unity.

Finally, it is worth to notice the difference between monthly and bi-weekly regressions.
In the case of monthly regressions, when CIV1 measure is used, spectral band regressions
confirm the long-run unbiasedness of the implied volatility forecasts. Residuals does not
display significant long memory, thus fractional cointegration describes the relation well.
On the other hand, unbiasedness of bi-weekly volatility forecasts is confirmed, but residuals
from both WBLS as well as FMNBLS display significant long memory. OLS residuals does
not show significant long memory and βs from OLS are very close to unity.

6. Conclusion

In this paper, we study the long-run unbiasedness of implied volatility as a predictor of
future volatility. While this relation has been studied previously in the literature, our work
contributes to the findings in several ways. First, we propose a new spectral techniques to
estimate the potential fractional cointegrating relation of the implied and realized volatility
based on wavelets. Main advantage in comparison to common spectral regression techniques
based on the Fourier coefficients is that wavelets allow us to work with locally stationary
series. Second, we study the fractional cointegration of the implied and relalized volatility
using accurate corridor implied volatility (CIV measure) for the first time as most of the
literature uses model based implied volatilities.

When CIV is used to measure implied volatility on the options with monthly maturities,
implied volatility is found to be an unbiased forecast of the realized volatility in the long
term horizon over one month. This result holds for the options on S&P 500 as well as DAX
indices. Implied and realized volatility is confirmed to be fractionally cointegrating relation
jointly using our newly proposed wavelet band least squares as well as fully modified narrow
band least squares. In contrast, when MFIV is used as a measure of implied volatility, all
estimates are lower than unity. This result strongly suggests that measurement of volatility
implied by option prices is crucial for the volatility forecasts as wrong measurement introduce
bias to the forecasts. The result is also important to the literature as it may suggest that

erature, namely bipower variation (BPV), realized kernels (RK) and the two-scale realized variance (TSRV)
and the results are very similar to those reported here. To keep the page numbers under control, we do not
report these results and make them available upon request from authors.
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estimated bias of option implied volatility forecasts may not be that pronounced as it is
caused by the imprecise measurement.

We also question the importance of measures used on the other side of the regression
testing the unbiasedness of implied volatility, namely realized volatility. Interestingly we
find that results are invariant to the method of noise correction in the realized volatility.
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Appendix

The continuous wavelet transform
The continuous wavelet transform (CWT) Wx(j, s) is obtained by projecting a specific wavelet ψ(.) onto

the examined time series xt ∈ L2(R), i.e.,

Wx(j, s) =

∫ ∞
−∞

xt
1√
j
ψ

(
t− s
j

)
dt. (26)

A wavelet is a real-valued square integrable function, ψ ∈ L2(R)8, defined as:

ψj,s(t) =
1√
j
ψ

(
t− s
j

)
, (27)

8A function x(t) is called a square integrable if
∫∞
−∞ x(t)2dt <∞.
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where the term 1/
√
j denotes a normalization factor. Parameter s determines the exact position of the

wavelet, whereas the scale parameter j defines how the wavelet is stretched or dilated. Scale has an inverse
relation to frequency; thus lower (higher) scale means a more (less) compressed wavelet, which is able
to detect higher (lower) frequencies of a time series. A wavelet needs to satisfy admissibility condition,

Cψ =
∫∞

0
|Ψ(f)|2
f df < ∞ where Ψ(f) is the Fourier transform of a wavelet ψ(.). Further, the wavelet is

usually normalized to have unit energy, i.e.,
∫∞
−∞ ψ2(t)dt = 1. In the analysis of wavelet coherence we use

the Morlet wavelet, defined as: ψM (t) = 1
π1/4 e

iω0te−t
2/2, where ω0 denotes the central frequency of the

wavelet. We set ω0 = 6, which is often used in economic applications – see for example Aguiar-Conraria
et al. (2008); Rua and Nunes (2009). The Morlet wavelet belongs to the family of complex or analytic
wavelets, hence this wavelet has both real and imaginary parts, allowing us to study both amplitude and
phase.

An important feature of the CWT is the ability to decompose and then subsequently perfectly reconstruct
a time series xt ∈ L2(R):

xt =
1

Cψ

∫ ∞
0

[∫ ∞
−∞

Wx(j, s)ψj,s(t)ds

]
dj

j2
, s > 0. (28)

Moreover, the CWT preserves the energy of the examined time series,

‖x‖2 =
1

Cψ

∫ ∞
0

[∫ ∞
−∞
|Wx(j, s)|2 ds

]
dj

j2
. (29)

The maximal overlap discrete wavelet transform (MODWT)
Since we work with real data, we need some form of sampling to compute the estimators, i.e., we

have to use a suitable form of discretization. In this work, we use the maximal overlap discrete wavelet
transformation (MODWT), a translation-invariant type of discrete wavelet transformation. Furthermore,
the MODWT does not use a downsampling procedure as in the case of the discrete wavelet transform9

(DWT), so the wavelet and scaling coefficient vectors at all scales have equal length. As a consequence, the
MODWT is not restricted to sample sizes that are powers of two. This feature is very important for the
analysis of real market data, since this limitation of DWT is usually too restrictive. For more details about
the MODWT see Mallat (1998), Percival and Walden (2000) and Gençay et al. (2002).

The MODWT is a very convenient tool for variance and energy analysis of a time series in the time-
frequency domain. Percival (1995) demonstrates the advantages of the MODWT estimator of variance over
the DWT estimator. Serroukh et al. (2000) analyze the statistical properties of the MODWT variance
estimator for (locally) non-stationary and non-Gaussian processes.

Definition of MODWT filters
First, let us introduce the MODWT scaling and wavelet filters g̃l and h̃l, l = 0, 1, . . . , L − 1, where L

denotes the length of the wavelet filter. For example, the Daubechies D(4) wavelet filter has length L = 4
(Daubechies, 1992). Generally, the scaling filter is a low-pass filter whereas the wavelet filter is a high-
pass filter. There are three basic properties that both the MODWT filters must fulfill. Let us show these
properties for the MODWT wavelet filter:

L−1∑
l=0

h̃l = 0,

L−1∑
l=0

h̃2
l = 1/2,

∞∑
l=−∞

h̃lh̃l+2n = 0, n ∈ ZN , (30)

9For a definition and detailed discussion of the discrete wavelet transform see Mallat (1998), Percival and
Walden (2000) and Gençay et al. (2002)
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and for the MODWT scaling filter:

L−1∑
l=0

g̃l = 1,

L−1∑
l=0

g̃2
l = 1/2,

∞∑
l=−∞

g̃lg̃l+2n = 0, n ∈ ZN . (31)

The transfer function of a MODWT filter {h̃l} at frequency f is defined via the Fourier transform as:

˜H(f) ≡
∞∑

l=−∞

h̃le
−i2πfl =

L−1∑
l=0

h̃le
−i2πfl, (32)

with the squared gain function defined as: H̃(f) ≡ | ˜H(f)|2.

Pyramid algorithm
We obtain the MODWT wavelet and scaling coefficients using the pyramid algorithm. The wavelet

coefficients at the first scale (j = 1) are obtained via filtering xt with the MODWT wavelet and scaling
filters (Percival and Walden, 2000):

W̃1,s ≡
L−1∑
l=0

h̃lxs−lmodN , Ṽ1,s ≡
L−1∑
l=0

g̃lxs−lmodN . (33)

For the second stage of the algorithm, we replace xt with the scaling coefficients Ṽ1,s and after the filtering
we obtain wavelet coefficients at scale j = 2 as:

W̃2,s ≡
L−1∑
l=0

h̃lṼ1,s−lmodN , Ṽ2,s ≡
L−1∑
l=0

g̃lṼ1,s−lmodN . (34)

After two stages of the pyramid algorithm we have two vectors of the MODWT wavelet coefficients W̃1,W̃2

and one vector of the MODWT wavelet scaling coefficients at scale two Ṽ2. Vector W̃1 represents wavelet

coefficients at the frequency band f ∈ [1/4, 1/2], W̃2: f ∈ [1/8, 1/4] and Ṽ2: f ∈ [0, 1/8]. The j-th level
MODWT coefficients are in the form:

W̃j,s ≡
L−1∑
l=0

h̃lṼj−1,s−lmodN , Ṽj,s ≡
L−1∑
l=0

g̃lṼj−1,s−lmodN , j = 1, 2, . . . , J. (35)

where J ≤ log2(T ). Generally, the j-th level wavelet coefficients in the vector W̃j represents frequency

bands f ∈ [1/2j+1, 1/2j ] wheres the j-th level scaling coefficients in the vector Ṽj represents f ∈ [0, 1/2j+1].

Energy decomposition of a stochastic process
For our analysis, it is important to show that we are able to decompose the energy of a stochastic process

on a scale-by-scale basis, i.e., we can get the energy contribution of every level j, with the maximum level
of decomposition J ≤ log2 T .

Proposition 1. Energy decomposition in discrete time
The energy of the time series Xt, t = 1, . . . , T − 1 can be decomposed on a scale-by-scale basis J ≤ log2N

so that

‖X‖2 =

J∑
j=1

‖W̃j‖2 + ‖ṼJ‖2 (36)
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where ‖X‖2 =
∑T−1
t=0 x2

t , ‖W̃j‖2 =
∑T−1
s=0 W

2
j,s, ‖ṼJ‖2 =

∑T−1
s=0 V

2
J,s . W̃j and Ṽj are T dimensional vectors

of the j-th level MODWT wavelet and scaling coefficients.

Proof of the energy decomposition using the MODWT can be found in Percival and Walden (2000) and
Barunik and Vacha (2012a).

Wavelet variance
For a real-valued covariance stationary stochastic process xt t = 1, 2, . . . , T with mean zero, or a covari-

ance stationary process after d−th backward differences10, the sequence of the MODWT wavelet coefficients
W̃x(j, s), for all j, s > 0 , is also stationary process with mean zero (Percival and Walden, 2000). Variance
of the wavelet coefficients at a scale j is the wavelet variance, i.e.,

ν2
x(j) = var

(
W̃x(j, s)

)
(37)

While the variance of a covariance stationary process xt is equal to the integral of the spectral density
function Sx(.), then for the wavelet variance at a particular level j the variance of a wavelet coefficients

W̃x(j, s), has the spectral density function S(x)j(.):

ν2
x(j) =

∫ 1/2

−1/2

S(x)j(f)df =

∫ 1/2

−1/2

H̃j(f)Sx(f)df, (38)

where H̃j(f) is the squared gain function of a wavelet filter h̃j , (Gençay et al., 2002; Percival and Walden,
2000). Since the variance of a process xt is a sum of the contribution of variances at all scales, for J →∞
we can write:

var(xt) =

∞∑
j=1

ν2
x(j) (39)

However, for a finite number of scales we have:

var (xt) =

∫ 1/2

−1/2

Sx(f)df =

J∑
j=1

ν2
x(j) + var

(
ṼX(J, s)

)
j = 1, 2, . . . , J (40)

Estimator of a wavelet variance at the j-th scale is defined as:

ν̂2
x(j) ≡ 1

Mj

T−1∑
s=Lj−1

W̃x(j, s) (41)

where Mj = T − Lj + 1 > 0 is number of j-th level MODWT coefficients unaffected by a boundary
conditions11. In case we take all MODWT wavelet coefficients T we obtain the biased MODWT variance
estimator. However as T → ∞ then the ratio T

Mj
goes to unity, so consequently the estimators gives more

or less the same results. Serroukh et al. (2000) derived the asymptotic distribution of the MODWT wavelet
variance estimator for Gaussian, non-Gaussian and non-linear processes.

Wavelet covariance
Let xt and yt be covariance stationary processes with the square integrable spectral density functions

Sx(.), Sy(.) and cross spectra Sxy(.). Since we use the Daubechies family wavelet with the length L = 4,

10L ≥ 2d where L is the length of a wavelet filter. In our analysis we use Daubechies D(4) filter with
L = 4.

11for detailed discussion about boundary conditions see Percival and Walden (2000).
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we can use generally non-stationary process, that is stationary after d-th difference, where d ≤ L/2. The
wavelet covariance of xt and yt at level j is then defined as:

γxy(j) = Cov
(
W̃x(j, s), W̃y(j, s)

)
(42)

For a particular level of decomposition J ≤ log2(T ), the covariance of xt and yt is a sum of covariances of
the MODWT wavelet coefficients γxy(j) at all scales j = 1, 2, . . . , J and covariance of the scaling coefficients

Ṽx(J, s) a scale J :

Cov (xt, yt) = Cov
(
Ṽx(J, s), Ṽy(J, s)

)
+

J∑
j=1

γxy(j) (43)

In a case when J → ∞, the covariance of scaling coefficients
(
Ṽx(J, s), Ṽy(J, s)

)
goes to zero (Whitcher

et al., 1999), hence we can rewrite 43 as:

Cov (xt, yt) =

∞∑
j=1

γxy(j) (44)

For processes xt and yt defined above, the estimator of a wavelet covariance at a level j is defined as

γ̂xy(j) =
1

Mj

N−1∑
t=Lj−1

W̃x(j, s)W̃y(j, s), (45)

where Mj = T − Lj + 1 > 0 is number of j-th level MODWT coefficients for both processes that are
unaffected by boundary conditions. Whitcher et al. (1999) prove that for the Gaussian processes xt and yt,
the MODWT estimator of wavelet covariance is unbiased and asymptotically normally distributed.
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Figure 1: S&P 500 and DAX monthly and bi-weekly wavelet coherences between implied and realized
volatility measured by CIV1, CIV2, MFIV and RV and JWTSRV respectively.
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Table 1: Long memory estimates of CIV1, CIV2, MFIV measures of implied volatility, RV and JWTSRV
measures of realized volatility series. Long memory parameter d is estimated using GPH estimator with
different frequency bands. Standard errors are provided in the parentheses.

CIV1 CIV2 MFIV RV JWTSRV

SPX monthly

[T 0.6] 0.581 (0.144) 0.573 (0.144) 0.582 (0.144) 0.515 (0.144) 0.534 (0.144)
[T 0.7] 0.523 (0.115) 0.517 (0.115) 0.546 (0.115) 0.538 (0.115) 0.555 (0.115)
[T 0.8] 0.641 (0.091) 0.636 (0.091) 0.665 (0.091) 0.776 (0.091) 0.776 (0.091)

SPX bi-weekly

[T 0.6] 0.654 (0.144) 0.662 (0.144) 0.494 (0.144) 0.526 (0.144) 0.520 (0.144)
[T 0.7] 0.782 (0.118) 0.784 (0.118) 0.702 (0.118) 0.693 (0.118) 0.637 (0.118)
[T 0.8] 0.711 (0.094) 0.683 (0.094) 0.527 (0.094) 0.779 (0.094) 0.752 (0.094)

DAX monthly

[T 0.6] 0.626 (0.139) 0.631 (0.139) 0.570 (0.139) 0.448 (0.139) 0.486 (0.139)
[T 0.7] 0.506 (0.112) 0.509 (0.112) 0.343 (0.112) 0.498 (0.112) 0.531 (0.112)
[T 0.8] 0.574 (0.091) 0.577 (0.091) 0.300 (0.091) 0.613 (0.091) 0.633 (0.091)

DAX bi-weekly

[T 0.6] 0.674 (0.112) 0.680 (0.112) 0.543 (0.112) 0.425 (0.112) 0.441 (0.112)
[T 0.7] 0.572 (0.087) 0.573 (0.087) 0.371 (0.087) 0.544 (0.087) 0.542 (0.087)
[T 0.8] 0.700 (0.067) 0.701 (0.067) 0.333 (0.067) 0.689 (0.067) 0.706 (0.067)
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Table 2: Estimates of the realized-implied volatility relation using OLS, WBLS and FMNBLS on the S&P
500 data using monthly maturities to calculate implied volatility. Implied volatility is measured by CIV1,
CIV2 and MFIV, realized volatility is measured by RV and JWTSRV. Standard errors are in parentheses.

RV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS 0.005 0.684 0.376 0.005 0.657 0.384 0.006 0.609 0.342
(0.005) (0.068) (0.177) (0.005) (0.066) (0.177) (0.005) (0.060) (0.177)

WBLS -0.000 0.822 0.058 -0.000 0.795 0.064 -0.000 0.736 0.041
(0.000) (0.027) (0.115) (0.000) (0.026) (0.115) (0.000) (0.024) (0.115)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.009 0.908 0.070 -0.009 0.891 0.084 -0.007 0.798 0.045
(0.038) (0.144) (0.025) (0.144) (0.144)

[T 0.4, T 0.7] -0.010 0.926 0.056 -0.010 0.904 0.062 -0.007 0.807 0.037
(0.048) (0.115) (0.055) (0.115) (0.026) (0.115)

[T 0.4, T 0.8] -0.009 0.917 0.109 -0.009 0.893 0.111 -0.007 0.797 0.091
(0.097) (0.091) (0.100) (0.091) (0.091)

[T 0.5, T 0.6] -0.012 0.962 0.088 -0.013 0.944 0.102 -0.009 0.832 0.055
(0.020) (0.144) (0.044) (0.144) (0.047) (0.144)

[T 0.5, T 0.7] -0.013 0.986 0.071 -0.014 0.962 0.077 -0.010 0.844 0.046
(0.060) (0.115) (0.067) (0.115) (0.001) (0.115)

[T 0.5, T 0.8] -0.012 0.969 0.116 -0.013 0.943 0.119 -0.009 0.827 0.093
(0.029) (0.091) (0.036) (0.091) (0.091)

JWTSRV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS 0.004 0.697 0.424 0.004 0.669 0.431 0.005 0.621 0.393
(0.005) (0.067) (0.177) (0.005) (0.065) (0.177) (0.005) (0.060) (0.177)

WBLS -0.000 0.842 0.069 -0.000 0.814 0.074 0.000 0.753 0.054
(0.000) (0.027) (0.115) (0.000) (0.027) (0.115) (0.000) (0.024) (0.115)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.011 0.946 0.099 -0.012 0.928 0.113 -0.009 0.831 0.076
(0.035) (0.144) (0.052) (0.144) (0.038) (0.144)

[T 0.4, T 0.7] -0.012 0.956 0.068 -0.012 0.934 0.074 -0.009 0.833 0.051
(0.057) (0.115) (0.064) (0.115) (0.016) (0.115)

[T 0.4, T 0.8] -0.011 0.936 0.106 -0.011 0.912 0.108 -0.008 0.815 0.088
(0.106) (0.091) (0.110) (0.091) (0.091)

[T 0.5, T 0.6] -0.015 1.006 0.120 -0.016 0.987 0.135 -0.012 0.869 0.089
(0.054) (0.144) (0.069) (0.144) (0.020) (0.144)

[T 0.5, T 0.7] -0.015 1.020 0.085 -0.016 0.996 0.090 -0.012 0.874 0.062
(0.071) (0.115) (0.076) (0.115) (0.029) (0.115)

[T 0.5, T 0.8] -0.014 0.992 0.113 -0.014 0.965 0.116 -0.010 0.847 0.091
(0.025) (0.091) (0.033) (0.091) (0.091)
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Table 3: Estimates of the realized-implied volatility relation using OLS, WBLS and FMNBLS on the S&P
500 data using bi-weekly maturities to calculate implied volatility. Implied volatility is measured by CIV1,
CIV2 and MFIV, realized volatility is measured by RV and JWTSRV. Standard errors are in parentheses.

RV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS -0.007 0.938 0.161 -0.006 0.883 0.185 -0.003 0.631 0.343
(0.004) (0.082) (0.177) (0.004) (0.079) (0.177) (0.004) (0.068) (0.177)

WBLS 0.000 1.001 0.316 0.000 0.945 0.329 0.000 0.752 0.390
(0.000) (0.041) (0.118) (0.000) (0.039) (0.118) (0.001) (0.042) (0.118)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.012 1.058 0.200 -0.012 1.023 0.218 -0.015 0.839 0.200
(0.068) (0.144) (0.072) (0.144) (0.127) (0.144)

[T 0.4, T 0.7] -0.013 1.063 0.316 -0.013 1.029 0.329 -0.012 0.797 0.360
(0.058) (0.118) (0.063) (0.118) (0.100) (0.118)

[T 0.4, T 0.8] -0.014 1.107 0.380 -0.016 1.095 0.388 -0.015 0.853 0.279
(0.151) (0.094) (0.166) (0.094) (0.149) (0.094)

[T 0.5, T 0.6] -0.016 1.142 0.220 -0.016 1.105 0.239 -0.024 0.993 0.218
(0.084) (0.144) (0.086) (0.144) (0.143) (0.144)

[T 0.5, T 0.7] -0.016 1.146 0.325 -0.016 1.110 0.341 -0.022 0.960 0.363
(0.067) (0.118) (0.073) (0.118) (0.110) (0.118)

[T 0.5, T 0.8] -0.019 1.208 0.380 -0.020 1.193 0.390 -0.025 1.021 0.265
(0.147) (0.094) (0.162) (0.094) (0.153) (0.094)

JWTSRV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS -0.007 0.939 0.176 -0.006 0.883 0.192 -0.003 0.634 0.363
(0.004) (0.083) (0.177) (0.004) (0.080) (0.177) (0.005) (0.069) (0.177)

WBLS -0.000 1.001 0.258 -0.000 0.945 0.267 0.000 0.750 0.337
(0.000) (0.040) (0.118) (0.000) (0.039) (0.118) (0.001) (0.042) (0.118)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.012 1.052 0.206 -0.012 1.019 0.226 -0.014 0.829 0.224
(0.074) (0.144) (0.079) (0.144) (0.135) (0.144)

[T 0.4, T 0.7] -0.012 1.043 0.258 -0.012 1.006 0.269 -0.011 0.774 0.317
(0.127) (0.118) (0.153) (0.118) (0.079) (0.118)

[T 0.4, T 0.8] -0.014 1.088 0.342 -0.015 1.073 0.351 -0.015 0.834 0.277
(0.130) (0.094) (0.147) (0.094) (0.145) (0.094)

[T 0.5, T 0.6] -0.017 1.152 0.232 -0.017 1.113 0.252 -0.024 0.990 0.240
(0.094) (0.144) (0.097) (0.144) (0.150) (0.144)

[T 0.5, T 0.7] -0.016 1.133 0.271 -0.016 1.091 0.281 -0.020 0.929 0.321
(0.047) (0.118) (0.054) (0.118) (0.088) (0.118)

[T 0.5, T 0.8] -0.019 1.204 0.345 -0.020 1.183 0.356 -0.025 1.005 0.262
(0.131) (0.094) (0.147) (0.094) (0.149) (0.094)
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Table 4: Estimates of the realized-implied volatility relation using OLS, WBLS and FMNBLS on the DAX
data using monthly maturities to calculate implied volatility. Implied volatility is measured by CIV1, CIV2
and MFIV, realized volatility is measured by RV and JWTSRV. Standard errors are in parentheses.

RV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS 0.005 0.774 -0.022 0.005 0.748 -0.032 0.025 0.333 0.338
(0.005) (0.073) (0.177) (0.005) (0.070) (0.177) (0.005) (0.053) (0.177)

WBLS -0.000 0.901 -0.133 0.000 0.869 -0.130 0.000 0.579 -0.041
(0.000) (0.026) (0.112) (0.000) (0.025) (0.112) (0.000) (0.023) (0.112)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] 0.001 0.835 -0.251 0.001 0.806 -0.258 -0.003 0.692 -0.236
(0.043) (0.139) (0.043) (0.139) (0.014) (0.139)

[T 0.4, T 0.7] 0.001 0.844 -0.121 0.001 0.814 -0.118 -0.007 0.742 -0.186
(0.003) (0.112) (0.005) (0.112) (0.017) (0.112)

[T 0.4, T 0.8] -0.001 0.868 -0.030 -0.001 0.836 -0.025 -0.010 0.780 -0.110
(0.091) (0.091) (0.066) (0.091)

[T 0.5, T 0.6] 0.004 0.789 -0.204 0.004 0.759 -0.206 -0.002 0.677 -0.254
(0.052) (0.139) (0.052) (0.139) (0.023) (0.139)

[T 0.5, T 0.7] 0.002 0.825 -0.108 0.002 0.792 -0.103 -0.007 0.742 -0.185
(0.003) (0.112) (0.005) (0.112) (0.030) (0.112)

[T 0.5, T 0.8] -0.000 0.865 -0.029 -0.000 0.831 -0.023 -0.009 0.766 -0.117
(0.091) (0.091) (0.059) (0.091)

JWTSRV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS 0.003 0.764 0.028 0.003 0.739 0.019 0.022 0.331 0.385
(0.005) (0.070) (0.177) (0.005) (0.067) (0.177) (0.005) (0.051) (0.177)

WBLS -0.000 0.909 -0.132 0.000 0.876 -0.128 0.000 0.585 -0.033
(0.000) (0.024) (0.112) (0.000) (0.023) (0.112) (0.000) (0.022) (0.112)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.001 0.830 -0.237 -0.001 0.800 -0.242 -0.005 0.683 -0.243
(0.044) (0.139) (0.045) (0.139) (0.013) (0.139)

[T 0.4, T 0.7] -0.003 0.859 -0.127 -0.003 0.829 -0.123 -0.010 0.738 -0.184
(0.003) (0.112) (0.005) (0.112) (0.018) (0.112)

[T 0.4, T 0.8] -0.004 0.883 -0.056 -0.004 0.851 -0.051 -0.013 0.778 -0.122
(0.091) (0.091) (0.058) (0.091)

[T 0.5, T 0.6] 0.002 0.785 -0.184 0.002 0.754 -0.184 -0.005 0.674 -0.253
(0.052) (0.139) (0.052) (0.139) (0.022) (0.139)

[T 0.5, T 0.7] -0.001 0.837 -0.114 -0.001 0.805 -0.109 -0.010 0.743 -0.180
(0.003) (0.112) (0.005) (0.112) (0.034) (0.112)

[T 0.5, T 0.8] -0.003 0.871 -0.053 -0.003 0.837 -0.047 -0.012 0.769 -0.128
(0.091) (0.091) (0.053) (0.091)
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Table 5: Estimates of the realized-implied volatility relation using OLS, WBLS and FMNBLS on the DAX
data using bi-weekly maturities to calculate implied volatility. Implied volatility is measured by CIV1, CIV2
and MFIV, realized volatility is measured by RV and JWTSRV. Standard errors are in parentheses.

RV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS -0.001 0.917 0.021 -0.001 0.876 0.020 0.019 0.350 0.104
(0.003) (0.058) (0.144) (0.003) (0.056) (0.144) (0.003) (0.045) (0.144)

WBLS 0.000 1.092 0.232 -0.000 1.049 0.231 -0.000 0.628 0.153
(0.000) (0.034) (0.087) (0.000) (0.033) (0.087) (0.000) (0.033) (0.087)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.000 0.889 0.043 0.000 0.853 0.046 -0.000 0.727 0.075
(0.116) (0.112) (0.112) (0.112) (0.031) (0.112)

[T 0.4, T 0.7] -0.004 0.994 0.202 -0.004 0.955 0.202 -0.006 0.843 0.084
(0.108) (0.087) (0.105) (0.087) (0.126) (0.087)

[T 0.4, T 0.8] -0.007 1.058 0.313 -0.007 1.021 0.316 -0.011 0.925 0.104
(0.101) (0.067) (0.099) (0.067) (0.170) (0.067)

[T 0.5, T 0.6] -0.003 0.957 0.072 -0.003 0.915 0.073 -0.003 0.783 0.117
(0.126) (0.112) (0.121) (0.112) (0.051) (0.112)

[T 0.5, T 0.7] -0.007 1.063 0.212 -0.007 1.019 0.211 -0.009 0.894 0.097
(0.108) (0.087) (0.104) (0.087) (0.124) (0.087)

[T 0.5, T 0.8] -0.008 1.087 0.312 -0.008 1.045 0.315 -0.012 0.959 0.108
(0.096) (0.067) (0.094) (0.067) (0.154) (0.067)

JWTSRV

CIV1 CIV2 MFIV

α β d α β d α β d

OLS -0.003 0.925 0.078 -0.003 0.885 0.077 0.017 0.356 0.148
(0.003) (0.056) (0.144) (0.003) (0.055) (0.144) (0.003) (0.044) (0.144)

WBLS 0.000 1.108 0.217 -0.000 1.065 0.216 -0.000 0.643 0.150
(0.000) (0.032) (0.087) (0.000) (0.031) (0.087) (0.000) (0.032) (0.087)

FMNBLS α β d α β d α β d

[T 0.4, T 0.6] -0.003 0.915 0.055 -0.003 0.879 0.058 -0.003 0.748 0.082
(0.107) (0.112) (0.104) (0.112) (0.035) (0.112)

[T 0.4, T 0.7] -0.006 0.999 0.190 -0.006 0.960 0.190 -0.009 0.854 0.076
(0.100) (0.087) (0.096) (0.087) (0.122) (0.087)

[T 0.4, T 0.8] -0.009 1.056 0.309 -0.009 1.018 0.312 -0.012 0.926 0.092
(0.096) (0.067) (0.095) (0.067) (0.161) (0.067)

[T 0.5, T 0.6] -0.006 0.983 0.083 -0.005 0.940 0.085 -0.006 0.800 0.121
(0.119) (0.112) (0.115) (0.112) (0.053) (0.112)

[T 0.5, T 0.7] -0.010 1.075 0.201 -0.009 1.029 0.201 -0.011 0.904 0.090
(0.102) (0.087) (0.098) (0.087) (0.121) (0.087)

[T 0.5, T 0.8] -0.010 1.095 0.307 -0.010 1.052 0.311 -0.014 0.962 0.097
(0.091) (0.067) (0.090) (0.067) (0.148) (0.067)
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