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Abstract

We introduce a class of local stochastic volatility models. Within our framework, we obtain an
expression for both (i) the price of any European option and (ii) the induced implied volatility smile. To

illustrate our method, we perform specific computations for a CEV-like model.
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1 Introduction

A local volatility model is a stochastic volatility model in which the volatility o; of an asset X is a function

of the present level of X. That is, o = 0(X;). Among local stochastic volatility models, perhaps the most

well-known is the constant elasticity of variance (CEV) model of ICox (1975). An extension of the CEV

model to defaultable assets (the Jump-to-Default CEV or JDCEV model) is derived in
) . One advantage of these two local stochastic volatility models is that they allow for closed-form
pricing formulas for European options written as infinite series of special functions.
In this paper, we introduce a class of local stochastic volatility models which, like the CEV and JDCEV
models, allow for European option prices to be written down in closed form as an infinite series. Additionally,
we derive an expression for the exact implied volatility surface induced by our class of models. Previous stud-

ies of the implied volatility surface induced by local volatility models focused on heat-kernal expansions to de-

rive asymptotic approzimations of the volatility smile (see e.g.,

JZ_OJ_(J); IHQHI_;&LLMMA JZ_O_OA) and references therein). It is worth mentioning that @ (@) solves the

inverse problem of finding a formula for the local volatility function the produces a given observed implied

volatility surface exactly.
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The rest of this paper proceeds as follows: in section 2l we present our model and assumptions. In section
Blwe derive a formula for the price of a European option in our modeling framework. In section @ we provide
an formula for the implied volatility smile induced by our model. As an example of our framework, in
section Bl we perform explicit pricing and implied volatility computations for a CEV-like model. Numerical
results are provided at the conclusion of the text. An appendix with some mathematical background is also

provided. Concluding remarks can be found in section

2 Model and Assumptions

We assume a frictionless market, no arbitrage and take an equivalent martingale measure PP chosen by the
market on a complete filtered probability space (0, F,{Fs, ¢ > 0},P). The filtration {F;,t > 0} represents
the history of the market. All processes defined below live on this space. For simplicity we assume zero
interest rates and no dividends so that all assets are martingales. We consider a diffusion X with lifetime ¢

whose dynamics are given by
2 1/2
dX; = (a® +en(log Xy)) '~ X dWs, (1)

were, a > 0, € > 0, the function n : R — RT is C§°(R) and W is a Brownian motion . Note that X
has local stochastic volatility o(X;) = (a® + en(log X;)) . Obviously, if n = 0 then X is a geometric
Brownian motion. This will be key for our implied volatility analysis in section @l Observe that both zero
and infinity are natural boundaries according to Feller’s boundary classification for one-dimensional diffusions
(see Borodin and Salminen (2002) pp. 14-15). That is, both zero and infinity are unattainable.

In what follows it will be convenient to introduce Y = log X. A simple application of It&’s formula shows

that Y satisfies

1/2

1
dY; = -5 (a2 +en(Yy)) dt + (a2 +en(Yy) " dWs.

3 Option Pricing

We wish to find the time-zero value u®(¢,y) of a European-style option with payoff h(Y;) at time ¢ > 0.

Using risk-neutral pricing we have

ua(tv y) =E, h(Y;?)v

1The notation C§°(R) indicates the space of infinitely differentiable functions with compact support.



where the notation E, indicates expectation starting from y = log Xo. The function u®(¢,y) satisfies the

Kolmogorov backward equation
(=0 + A7) u” =0, u(0,y) = h(y). (2)

where A°® is the generator of the process Y. The domain of A® is defined as the set of f for which the limit
limy—o + (B, f(Y;) — f(y)) exists in the strong sense. For any f € CZ(R) the generator A° has the explicit

representation
1
A% = Ay +enA, Ao = 5a2 (0% -0), A=< (0*-0), dom(A;) = C§(R).

Remark 1. The operators Ay and A; are normal operators in the Hilbert space H = L?(R, dy) and satisfy

the following (improper) eigenvalue equations (neither Ay nor A; have any proper eigenvalues)

1 1 )
Aothx = datha, Pr = \/%em“', br = §a2 (=A% —i)),

1 1 _
Arhx = xata, hy = \/%evxy, X\ = 5 (—)\2 — Z)\) .

Note that the eigenfunctions satisfy (1x,,) = f%(y)wH (y)dy = 6(A—p). Note also that Borel-measurable

functions of normal operators (e.g., g(Ap)) are well-defined, as explained in Appendix [Al
We seek a solution to Cauchy problem (@) of the form
ut = Z €" Up,. (3)
n=0

We will justify this expansion in Theorem Inserting the expansion (B into Cauchy problem (2) and

collecting terms of like powers of ¢ we obtain

o(1): (=0 + Ao)uo = 0, uo(0,y) = h(y),

VIGRE (=0 + Ao)un = —nA1un_1, un (0,9) = 0.
The solution to the above equations is
0(1): uo(t,y) = e h(y),
O(") : un(ty) = /Ot ds 0 (y) A1 (s, y)-
Using the equation () from appendix [A] we obtain
0(1) : uo(t, y) = /Rd)\ e (P, h)Pa(y),

t
O - wn(tyy) = / / ds d 9% (4, nAvtin1 (5, ) (y),



After a bit of algebra, we find an explicit representation for ., (t,y)

e / / (HdA’“> (Z o - m) (H(w’““’”ﬂlw“)) et

k=0

We have now obtained a formal expansion for the price of a European option. The following theorem provides

conditions under which the expansion is guaranteed to be valid.

Theorem 2 (Option Price). Suppose € < W where ||n|| = v/(n,n). Then the option price us(t,y) is given

by @) - @).

Proof. See Appendix [Bl O

4 Tmplied Volatility

In this section we fix (t,y) and a call option payoff h(y) = (e¥ — e*)*. Note that

_pk—ikX
= " Im(\) < —1.
(1x, ) NAOESY (A)
The following definitions will be useful:
Definition 3. The Black-Scholes Price uB5 : Rt — RT is defined as
1
uPS(o)i= [ dre O by, P5(0) = 30%(-N? — i),

Definition 4. The Implied Volatility is defined implicitly as the unique number ¢ € R* such that
uP%(o%) = u’, ()
where u* is as given in Theorem

Remark 5. Note that ug = u?%(a). As shown in [Lorig (2012), when u° can be expanded as a power series

BS

whose first term corresponds to u”~, one can obtain the exact implied volatility surface corresponding to

uc.

Remark 6. For 0 < t < oo the existence and uniqueness of the implied volatility ¢® can be deduced by

using the general arbitrage bounds for call prices and the monotonicity of u?%

Remark 7. Note that u? is an invertible analytic function that satisfies 9,u?(s) > 0 for all ¢ > 0. By

the Lagrange inversion theorem, the inverse [u°]~1 of such a function is also analytic.



Clearly, u® is an analytic function of e (we derived its power series expansion). It is a useful fact that the
composition of two analytic functions is also analytic (see Brown and Churchill (1996), section 24, p. 74).
Thus, in light of Remark [7l we deduce that o° = [uZ%]71(u®) is an analytic function and therefore has a

power series expansion in €. We write this expansion as follows
o0
o =09 + 6%, 0% = Zskak. (6)
k=1
Taylor expanding u?® about the point ¢y we have

uBS(O,s) _ UBS(O'Q + 55)

= uBS(Uo) + i % (i €k0k> a;luBS(Uo)
> 12[% e*| 9pu”?(00)

Il
<
o)
=
S
+
[~]e
S|
'
[~]e
Sl

n=1 k=1 \j1+-+jn=hki=1
o0 oo n
= uP%(00) + Zsk Z Z Hajl. o | uP(og)

k=1 n=1"" \ji+ - +jn=ki=1

=uS00) + 3 oo+ [ S [ew | 05| wPS(o0) (7)
n=2

k=1 R

Now, we insert expansions (8] and (@) into (Bl and collect terms of like order in

0(1): ug = uBS(JO),

oo 1 n
O(e") : ug = 0 0pu’ (00) + Z o Z H oj, | 92uPS (o), k> 1.
n=2

A in=h =1

Solving the above equations for {o}72, we find

1 =1 " N
O(Ek) : O = m Uk — Z E Z Ho-ji (’“)auBS(oo) N k > 1. (8)

n=2 """ \ji+-+jn=ki=1
Remark 8. The right hand side of () involves only o; for j < k — 1. Thus, the {04}, can be found

recursively.

Remark 9. Note that 07u?%(o) is easily computed using

oS (o) = / ax (93€'5°() (1, ).



Explicitly, up to O(¢*) we have

Ui
O(E) : g1 = )
80’“’0
1 292
N . ug — ﬁO’lag’UQ
0(e?) : oy = 2200
o U0
_ 2, 1,303
0(53) . o — us (0’20160 + 3!0'1(90)’(1,0
. 3 — )
80-’&0
2 1 292 1 293 1 494
0(84) . oy — uy — (030105 + 50505 + 502010, + 57010, )uo
: 4 = .

80- Uug

We summarize our implied volatility result in the following theorem:

Theorem 10 (Implied Volatility). The implied volatility o€ defined in () is given explicitly by (B) where

oo =0 and {0}, are given by ().

Remark 11. Everything we have done so far is exact. The accuracy of the implied volatility expansion (@)

is limited only by the number of terms one wishes to compute.

5 CEV-like Example

In the constant elasticity of variance (CEV) model of |Cox (1975) the dynamics of X are assumed to be of the
form dX; = \/EXfﬂXtth. A key feature of the CEV model is that, when 8 < 0, volatility o(z) = /z /2
increases as x N\, 0, which (i) is consistent with the leverage effect and (ii) results in a negative implied
volatility skew. However, values of 3 < 0 also cause the volatility to drop unrealistically close to zero as x

increases. If we choose 1(y) = es(y) := ¥ in (@) then the dynamics of X become
dX, = (a® + e XP)V2 X, dw,

Note that the local volatility function o(x) = (a? + e 2%)/? behaves like o(z) ~ e2?/? as 2 \, 0 and
behaves like a constant o(z) ~ a as x  oo. See figure [I] for a comparison of our local volatility function

and the CEV local volatility function.

Remark 12. Because eV is unbounded as y — —oo (recall 8 < 0), the function eg ¢ C5°(R). However,
we can modify the domain of u¢ to be RT x Ry where R := (yg,00). The operators Ag and A; would then
be defined on L?(Ry,dy) and the domain of these operators would include a absorbing boundary condition
at yo (signifying default of X the first time X reaches the level e?°). Note that |es]|, := (f;oo les|?dy)t/? =
ePvo /v/—2(. In the analysis that follows, it will simplifyy computations considerably if we continue to work on

L?(R, dy) as working on L?(Ry, dy) would require modifying the eigenfunctions v from complex exponentials



exp(iAy) to cosines cos(Ay). However, the simplification comes at a cost; in light of the conditions of theorem

@) our results may not be valid for values of y < —+ log o* V=25 2’8

We wish to find a simplified expression for u,, @) for the case n = eg. Noting that

(Vs epA1vn) = xa 0(A — p —if),

we see that the n + 1-fold integral (@) collapses into a single integral

" el PA—ikp
n = dA Z ,h »
’ /R (Z Hg;ﬁk((b)\ kB — Pr— UB ) (HXX k@) "/’k )’t/J>\ 8
- etPr—irp
_enﬁ/Rd/\ <kz_0 H?;ék((bAfikﬁ dr—ijp) ) <H Xx— 1kﬁ> (¥, h) Y. 9)

Remark 13. Although we have written the option price as an infinite series [l), from a practical standpoint,

one may only compute u® == Zg:o e"uy,. For any finite N we may pass the sum through the integral
appearing in ([@)). Thus, for the purposes of computation, the best way express the approximate option price

is

ik (Pa—ing — da—ijp)

N etPr—ikp
ut ,\N_,/d)\(d))\,h,)d))\zgnenﬁ (ZH > (H XA— zkﬁ)
R n=0

Note, to obtain the approximate value of u®, only a single integration is required. This makes our pricing
formula as efficient as other models in which option prices are expressed as a Fourier-type integral (e.g. Lévy

processes, Heston model, etc.).

Some Numerical Results

Define the transition density p® (¢, y; yo) and the O(e") approximation of the transition density p(™ (¢, y; o)
PE(t,ys90) = By, 0y(V2), ™t y390) ZE pi(t, Y5 Yo).

In figure @ we plot the approximate transition density p(™. Next, define the O(e™) approximation of the

implied volatility

n
o™ = E eFop,
k=0

where the oy are given by (8). In figure B we provide a numerical example illustrating convergence of
o™ to o°. We compute o¢ by calculating u® first using Theorem 2 and then by inverting the Black-
Scholes formula numerically. We plot implied volatility as a function of the log-moneyness to maturity ratio,

LMMR := (k — y)/t. Convergence is fastest for values of k near y and slows as k moves away from y.



6 Conclusion

In this paper we introduce a class of local stochastic volatility models. Within our modeling framework,
we obtain a formula (written as an infinite series) for the price of any European option. Additionally, we
obtain an explicit expression for the implied volatility smile induced by our class of models. As an example
of our framework, we introduce a CEV-like model, which corrects one possible short-coming of the CEV
model; namely, our choice of volatility does not drop to zero as the value of the underlying increases. In the
CEV-like framework, we show that option prices can be computed with the same level of efficiency as other

models in which option prices are computed as Fourier-type integrals.
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A Spectral theory of normal operators in a Hilbert space

In this appendix we summarize the theory of normal operators acting on a Hilbert space. A detailed
exposition on this topic (including proofs) can be found in |Reed and Simon (1980) and [Rudin (1973).

Let 3 be a Hilbert space with inner product (-, -). A linear operator is a pair (dom(A), A) where dom(A)
is a linear subset of H and A is a linear map A : dom(A) — H. The adjoint of an operator A is an operator

A* such that (Af,g) = (f,A*g),V f € dom(A), g € dom(A*), where
dom(A*) :={g € H:3Ih € H such that (Af,g) = (f,h) V[ € dom(A)}.
An operator (dom(A), A) is said to be self-adjoint in H if
dom(A) = dom(A*), (Af.9) = (f,Ag) v f,g € dom(A).

Throughout this appendix, for any self-adjoint operator A, we will assume that dom(A) is a dense subset of H.
A densely defined self-adjoint operator is closed (see Rudin (1973), Theorem 13.9). An operator (dom(A), A)
is said to be normal in H if it is closed, densely defined and commutes with its adjoint: A*A = AA*. Clearly,
every self-adjoint operator is a normal operator.

Given a linear operator A, the resolvent set p(A) is defined as the set of A € C such that the mapping
(A—1d \) is one-to-one and Ry := (A—Id \)~! is continuous with dom(Ry) = H. The operator Ry : 3 — H
is called the resolvent. The spectrum o(A) of an operator A is defined as o(A) := C\ p(A). We say that

A € o(A) is an eigenvalue of A if there exists ¢ € dom(A) such that the eigenvalue equation is satisfied

Atp = A, (10)

A function ¢ that solves (I0)) is called an eigenfunction of A corresponding to A. The multiplicity of an
eigenvalue X is the number of linearly independent eigenfunctions for which equation (I0) is satisfied. The
spectrum of an operator A can be decomposed into two disjoint sets called the discrete and essential
spectra: o(A) = o4(A) Uoe(A). For a normal operator A, a number A € C belongs to o4(A) if and only if A
is an isolated point of o(A) and A is an eigenvalue of finite multiplicity (see [Rudin (1973), Theorem 12.29).
A projection-valued measure on the measure space (C,B(C)) is a family of bounded linear operators

{E(B),B € B(C)} in H that satisfies:
1. E(®) =0 and E(C) =1d.

2. E(B) is an orthogonal projection. That is, E?(B) = E(B) and E(B) is self-adjoint: E*(B) = E(B).

2 The essential spectrum may be further decomposed into the continuous spectrum and the residual spectrum. It can be

shown that the residual spectrum of an ordinary differential operator is empty (see |Roach (1982), page 184).

10



3. E(ANB) = E(A)E(B).

4. If B=J;2, B; and B; N B; = for i # j then E(B) = lim, 00 »_ ., E(B;), where the limit is in the

strong operator topology.
5. For every in f, g € 3 the set function py4(B) := (f, E(B)g) is a complex measure on B(C).

Theorem 14 (Spectral Representation Theorem). There is a one-to-one correspondence between normal

operators A and projection-valued measures E on H, the correspondence being given by

A :/ AE(dN).
o(A)
If g() is a Borel function on C then
o= [ gE@y), domiga) = (£ €3¢: | loPpys@) <ooh (D)
Proof. See Rudin (1973) Theorems 12.21 and 13.33. O

As a practical matter, if A is an differential operator acting on a Hilbert space L?(R, dy), then the operators

defined by () can be constructed by solving the proper and improper [9 eigenvalue problems

proper: ‘Awn = ¢n wna ¢n € O'd(ﬂ)u wn e X,

improper: Ay = oy, Px € 0c(A), Un ¢ H.

For the improper eigenvalue problem one extends the domain of A to include functions all functions v for

which Af makes sense and for which the following boundedness conditions are satisfied

lim |y (y)]? < oco.

y—too

After normalizing, the proper and improper eigenfunctions A satisfy the following orthogonality relations

(Yn, Ym) = dn,m, (¥r,9ha) = (A = X'), (thn;¥x) = 0.

The operator g(A) in ([IIJ) is constructed as follows (see [Hanson and Yakovlev (2002), section 5.3.2)
= Y 9@ GrHiat [ g(on) (ha, Hvadn
A€oy (A) oe(A)
It is not always easy to evaluate divergent integrals of the form (¢y,%y) and verify that they are in fact

delta functions 6(A — \). A method for directly obtaining properly normalised improper eigenfunctions can

be found on page 238 of [Friedman (1956).

3The term “improper” is used because the improper eigenvalues A ¢ o4(A) and the improper eigenfunctions 1, ¢ H since

(¢A7¢)\) = o0.

11



B Proof of Theorem

Our strategy is to show that A° = Ag + enA; generates a semigroup P¢ = exp(tA®). This will guarantee
that u® = P5h(y) is an analytic function of £, which in turn, justifies the use of expansion (B). Throughout
this section we will work on the Hilbert space H = L?(R,dy). We let dom(A;) = C$°(R) and we note that

C§°(R) is a dense subset of H. Our analysis begins with a Theorem from [Chernoff (1972):

Theorem 15. Let A be the generator of a Co contraction semigroup P? = exp(tA) on a Banach space. Let

e B be a dissipative operator with a densely defined adjoint. Assume that the inequality
lle Bul|| < a||lu|l + b ||Au]|l, Vu € dom(A)

holds for some a > 0 and b <1 (i.e., the operator ¢ B is A-bounded with bound b < 1). Then the closure of

Af := A+ e B generates a Cy contraction semigroup P = exp(tA°).
Remark 16. The operator Ajg is the generator of a Cjy contraction semigroup PY = exp(tAg) on H.
To show that € n.A; is dissipative, the following Theorem will be useful:

Theorem 17. Let A be a linear operator with domain dom(A) = C§°(R). Then A satisfies the positive

mazimum principle if and only if

A= %“2(11)32 +b(y)d + /V(y, dz) (¢ =1 = Igzcpy20) — cly), (12)

for some a(z) >0, b(z) €R, ¢(x) >0, R € [0,00] and v(y, dz) satisfying

/ v(y,dz) (1A 2%) < oo.

R

Operators of the form (I2) are called Lévy-type operators.

Proof. See Theorem 2.12 of [Hoh (1998). O

Remark 18. An operator that satisfies the positive maximum principle is dissipative (see [Ethier and Kurtz

(1986), Lemma 4.2.1 on page 165).
Remark 19. The operator e A; is clearly of the form (I2)). Therefore, e A, is dissipative.

Remark 20. The adjoint of enA;, given by (enAi)* = eAln, has domain dom(sAin) = C§°(R), and is

therefore densely defined in J.

Since A( generates a Cy semigroup and € n.A; is dissipative and has a densely defined adjoint, we have only

to show that e n A; is Ap-bounded with b < 1.

12



Proposition 21. Suppose n € C§°(R) and ¢ < ﬁ (which is the condition given in Theorem [3). Then
en Ay is Ag-bounded with a =0 and b < 1.

Proof. Clearly, for any u € dom(Ay) we have

9
len Avull < eflnll - [ Avull = — lInll - [ Aoull < [Aou]-

The proof of Theorem Blis complete.

13



-3 -2 -1 1 2 3

Figure 1: A comparison of the CEV volatility o(e¥) = \/ce#¥/2 (dashed black) and our “shifted” version
of the CEV volatility o(e¥) = (a? + £e¢/¥)'/2 (solid blue). Notice that the CEV volatility drops to zero as

y — oo whereas our shifted version stays above a. The following parameters are used in this plot: a = 0.20,

VE =0.15, B = —0.75.
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Figure 2: A plot of the approximate transition density p(™ (¢, 4;0) (solid blue) for different values of n. For
comparison, we also plot p(©) (dashed black). Note that the density of Y; has a fat tail to the left, which
is expected since o(e?) increase as y — —oo. The following parameters are used in these plots: a = 0.20,

VE =0.15, B = —0.75, t = 2.0.
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Figure 3: We plot 0™ (solid blue) and o° (dashed black) as a function of LMMR. The following parameters
are used in these plots: a = 0.20, v/¢ = 0.10, 8 = —0.75, t = 3.0 y = —0.01.
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