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Abstract

We introduce a class of local stochastic volatility models. Within our framework, we obtain an

expression for both (i) the price of any European option and (ii) the induced implied volatility smile. To

illustrate our method, we perform specific computations for a CEV-like model.

Keywords: CEV, local volatility, stochastic volatility, implied volatility.

1 Introduction

A local volatility model is a stochastic volatility model in which the volatility σt of an asset X is a function

of the present level of X . That is, σt = σ(Xt). Among local stochastic volatility models, perhaps the most

well-known is the constant elasticity of variance (CEV) model of Cox (1975). An extension of the CEV

model to defaultable assets (the Jump-to-Default CEV or JDCEV model) is derived in Carr and Linetsky

(2006) . One advantage of these two local stochastic volatility models is that they allow for closed-form

pricing formulas for European options written as infinite series of special functions.

In this paper, we introduce a class of local stochastic volatility models which, like the CEV and JDCEV

models, allow for European option prices to be written down in closed form as an infinite series. Additionally,

we derive an expression for the exact implied volatility surface induced by our class of models. Previous stud-

ies of the implied volatility surface induced by local volatility models focused on heat-kernal expansions to de-

rive asymptotic approximations of the volatility smile (see e.g., Gatheral, Hsu, Laurence, Ouyang, and Wang

(2010); Henry-Labordere (2005) and references therein). It is worth mentioning that Dupire (1994) solves the

inverse problem of finding a formula for the local volatility function the produces a given observed implied

volatility surface exactly.
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The rest of this paper proceeds as follows: in section 2 we present our model and assumptions. In section

3 we derive a formula for the price of a European option in our modeling framework. In section 4 we provide

an formula for the implied volatility smile induced by our model. As an example of our framework, in

section 5 we perform explicit pricing and implied volatility computations for a CEV-like model. Numerical

results are provided at the conclusion of the text. An appendix with some mathematical background is also

provided. Concluding remarks can be found in section 6.

2 Model and Assumptions

We assume a frictionless market, no arbitrage and take an equivalent martingale measure P chosen by the

market on a complete filtered probability space (Ω,F, {Ft, t ≥ 0},P). The filtration {Ft, t ≥ 0} represents

the history of the market. All processes defined below live on this space. For simplicity we assume zero

interest rates and no dividends so that all assets are martingales. We consider a diffusion X with lifetime ζ

whose dynamics are given by

dXt =
(
a2 + ε η(logXt)

)1/2
XtdWt, (1)

were, a > 0, ε ≥ 0, the function η : R → R+ is C∞
0 (R) and W is a Brownian motion 1. Note that X

has local stochastic volatility σ(Xt) =
(
a2 + ε η(logXt)

)1/2
. Obviously, if η = 0 then X is a geometric

Brownian motion. This will be key for our implied volatility analysis in section 4. Observe that both zero

and infinity are natural boundaries according to Feller’s boundary classification for one-dimensional diffusions

(see Borodin and Salminen (2002) pp. 14-15). That is, both zero and infinity are unattainable.

In what follows it will be convenient to introduce Y = logX . A simple application of Itô’s formula shows

that Y satisfies

dYt = −1

2

(
a2 + ε η(Yt)

)
dt+

(
a2 + ε η(Yt)

)1/2
dWt.

3 Option Pricing

We wish to find the time-zero value uε(t, y) of a European-style option with payoff h(Yt) at time t > 0.

Using risk-neutral pricing we have

uε(t, y) = Ey h(Yt),

1The notation C∞

0
(R) indicates the space of infinitely differentiable functions with compact support.
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where the notation Ey indicates expectation starting from y = logX0. The function uε(t, y) satisfies the

Kolmogorov backward equation

(−∂t +A
ε) uε = 0, uε(0, y) = h(y). (2)

where Aε is the generator of the process Y . The domain of Aε is defined as the set of f for which the limit

limt→0
1
t (Eyf(Yt)− f(y)) exists in the strong sense. For any f ∈ C2

0 (R) the generator Aε has the explicit

representation

A
ε = A0 + ε ηA1, A0 =

1

2
a2
(
∂2 − ∂

)
, A1 =

1

2

(
∂2 − ∂

)
, dom(Ai) = C2

0 (R).

Remark 1. The operators A0 and A1 are normal operators in the Hilbert space H = L2(R, dy) and satisfy

the following (improper) eigenvalue equations (neither A0 nor A1 have any proper eigenvalues)

A0ψλ = φλψλ, ψλ =
1√
2π
eiλy, φλ =

1

2
a2
(
−λ2 − iλ

)
,

A1ψλ = χλψλ, ψλ =
1√
2π
eiλy, χλ =

1

2

(
−λ2 − iλ

)
.

Note that the eigenfunctions satisfy (ψλ, ψµ) =
∫
ψλ(y)ψµ(y)dy = δ(λ−µ). Note also that Borel-measurable

functions of normal operators (e.g., g(A0)) are well-defined, as explained in Appendix A.

We seek a solution to Cauchy problem (2) of the form

uε =

∞∑

n=0

εn un. (3)

We will justify this expansion in Theorem 2. Inserting the expansion (3) into Cauchy problem (2) and

collecting terms of like powers of ε we obtain

O(1) : (−∂t +A0)u0 = 0, u0(0, y) = h(y),

O(εn) : (−∂t +A0)un = −ηA1un−1, un(0, y) = 0.

The solution to the above equations is

O(1) : u0(t, y) = etA0h(y),

O(εn) : un(t, y) =

∫ t

0

ds e(t−s)A0η(y)A1un−1(s, y).

Using the equation (11) from appendix A we obtain

O(1) : u0(t, y) =

∫

R

dλ etφλ(ψλ, h)ψλ(y),

O(εn) : un(t, y) =

∫ t

0

∫

R

ds dµ e(t−s)φµ (ψµ, ηA1un−1(s, ·))ψµ(y),
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After a bit of algebra, we find an explicit representation for un(t, y)

un(t, y) =

∫

· · ·
∫

︸ ︷︷ ︸
n+1

(
n∏

k=0

dλk

)(
n∑

k=0

etφλk

∏n
j 6=k(φλk

− φλj
)

)(
n−1∏

k=0

(
ψλk+1

, ηA1ψλk

)

)

(ψλ0
, h) ψλn

. (4)

We have now obtained a formal expansion for the price of a European option. The following theorem provides

conditions under which the expansion is guaranteed to be valid.

Theorem 2 (Option Price). Suppose ε ≤ a2

‖η‖ , where ‖η‖ =
√

(η, η). Then the option price uε(t, y) is given

by (3) - (4).

Proof. See Appendix B.

4 Implied Volatility

In this section we fix (t, y) and a call option payoff h(y) = (ey − ek)+. Note that

(ψλ, h) =
−ek−ikλ

√
2π (iλ+ λ2)

, Im(λ) < −1.

The following definitions will be useful:

Definition 3. The Black-Scholes Price uBS : R+ → R+ is defined as

uBS(σ) :=

∫

dλ etφ
BS
λ (σ)(ψλ, h)ψλ, φBS

λ (σ) =
1

2
σ2(−λ2 − iλ).

Definition 4. The Implied Volatility is defined implicitly as the unique number σε ∈ R+ such that

uBS(σε) = uε, (5)

where uε is as given in Theorem 2.

Remark 5. Note that u0 = uBS(a). As shown in Lorig (2012), when uε can be expanded as a power series

whose first term corresponds to uBS , one can obtain the exact implied volatility surface corresponding to

uε.

Remark 6. For 0 < t < ∞ the existence and uniqueness of the implied volatility σε can be deduced by

using the general arbitrage bounds for call prices and the monotonicity of uBS.

Remark 7. Note that uBS is an invertible analytic function that satisfies ∂ρu
BS(σ) > 0 for all σ > 0. By

the Lagrange inversion theorem, the inverse [uBS ]−1 of such a function is also analytic.
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Clearly, uε is an analytic function of ε (we derived its power series expansion). It is a useful fact that the

composition of two analytic functions is also analytic (see Brown and Churchill (1996), section 24, p. 74).

Thus, in light of Remark 7, we deduce that σε = [uBS ]−1(uε) is an analytic function and therefore has a

power series expansion in ε. We write this expansion as follows

σε = σ0 + δε, δε =

∞∑

k=1

εkσk. (6)

Taylor expanding uBS about the point σ0 we have

uBS(σε) = uBS(σ0 + δε)

=

∞∑

n=0

1

n!
(δε∂σ)

nuBS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!

( ∞∑

k=1

εkσk

)n

∂nσu
BS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!





∞∑

k=1




∑

j1+···+jn=k

n∏

i=1

σji



 εk



 ∂nσu
BS(σ0)

= uBS(σ0) +

∞∑

k=1

εk





∞∑

n=1

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσ



uBS(σ0)

= uBS(σ0) +

∞∑

k=1

εk



σk∂σ +

∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσ



 uBS(σ0). (7)

Now, we insert expansions (3) and (7) into (5) and collect terms of like order in ε

O(1) : u0 = uBS(σ0),

O(εk) : uk = σk∂σu
BS(σ0) +

∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσu
BS(σ0), k ≥ 1.

Solving the above equations for {σk}∞k=0 we find

O(1) : σ0 = a,

O(εk) : σk =
1

∂σuBS(σ0)



uk −
∞∑

n=2

1

n!




∑

j1+···+jn=k

n∏

i=1

σji



 ∂nσu
BS(σ0)



 , k ≥ 1. (8)

Remark 8. The right hand side of (8) involves only σj for j ≤ k − 1. Thus, the {σk}∞k=1 can be found

recursively.

Remark 9. Note that ∂nσu
BS(σ) is easily computed using

∂nσu
BS(σ) =

∫

dλ
(

∂nσe
tφBS

λ (σ)
)

(ψλ, h)ψλ.
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Explicitly, up to O(ε4) we have

O(ε) : σ1 =
u1
∂σu0

,

O(ε2) : σ2 =
u2 − 1

2!σ
2
1∂

2
σu0

∂σu0
,

O(ε3) : σ3 =
u3 − (σ2σ1∂

2
σ + 1

3!σ
3
1∂

3
σ)u0

∂σu0
,

O(ε4) : σ4 =
u4 − (σ3σ1∂

2
σ + 1

2σ
2
2∂

2
σ + 1

2σ2σ
2
1∂

3
σ + 1

24σ
4
1∂

4
σ)u0

∂σu0
.

We summarize our implied volatility result in the following theorem:

Theorem 10 (Implied Volatility). The implied volatility σε defined in (5) is given explicitly by (6) where

σ0 = σ and {σk}∞k=1 are given by (8).

Remark 11. Everything we have done so far is exact. The accuracy of the implied volatility expansion (6)

is limited only by the number of terms one wishes to compute.

5 CEV-like Example

In the constant elasticity of variance (CEV) model of Cox (1975) the dynamics of X are assumed to be of the

form dXt =
√
εX

β/2
t XtdWt. A key feature of the CEV model is that, when β < 0, volatility σ(x) =

√
ε xβ/2

increases as x ց 0, which (i) is consistent with the leverage effect and (ii) results in a negative implied

volatility skew. However, values of β < 0 also cause the volatility to drop unrealistically close to zero as x

increases. If we choose η(y) = eβ(y) := eβy in (1) then the dynamics of X become

dXt = (a2 + εXβ
t )

1/2XtdWt,

Note that the local volatility function σ(x) = (a2 + ε xβ)1/2 behaves like σ(x) ∼ √
ε xβ/2 as x ց 0 and

behaves like a constant σ(x) ∼ a as x ր ∞. See figure 1 for a comparison of our local volatility function

and the CEV local volatility function.

Remark 12. Because eβy is unbounded as y → −∞ (recall β < 0), the function eβ /∈ C∞
0 (R). However,

we can modify the domain of uε to be R+ ×R0 where R0 := (y0,∞). The operators A0 and A1 would then

be defined on L2(R0, dy) and the domain of these operators would include a absorbing boundary condition

at y0 (signifying default of X the first time X reaches the level ey0). Note that ‖eβ‖0 := (
∫∞
y0

|eβ |2dy)1/2 =

eβy0/
√−2β. In the analysis that follows, it will simplifyy computations considerably if we continue to work on

L2(R, dy) as working on L2(R0, dy) would require modifying the eigenfunctions ψλ from complex exponentials
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exp(iλy) to cosines cos(λy). However, the simplification comes at a cost; in light of the conditions of theorem

(2) our results may not be valid for values of y < − 1
β log a2

√
−2β
ε .

We wish to find a simplified expression for un (4) for the case η = eβ . Noting that

(ψµ, eβA1ψλ) = χλ δ(λ− µ− iβ),

we see that the n+ 1-fold integral (4) collapses into a single integral

un =

∫

R

dλ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)

(ψλ, h)ψλ−inβ

= enβ

∫

R

dλ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)

(ψλ, h)ψλ. (9)

Remark 13. Although we have written the option price as an infinite series (3), from a practical standpoint,

one may only compute uε ≈ ∑N
n=0 ε

nun. For any finite N we may pass the sum through the integral

appearing in (9). Thus, for the purposes of computation, the best way express the approximate option price

is

uε ≈
∫

R

dλ (ψλ, h)ψλ

N∑

n=0

εn enβ

(
n∑

k=0

etφλ−ikβ

∏n
j 6=k(φλ−ikβ − φλ−ijβ)

)(
n−1∏

k=0

χλ−ikβ

)

.

Note, to obtain the approximate value of uε, only a single integration is required. This makes our pricing

formula as efficient as other models in which option prices are expressed as a Fourier-type integral (e.g. Lévy

processes, Heston model, etc.).

Some Numerical Results

Define the transition density pε(t, y; y0) and the O(εn) approximation of the transition density p(n)(t, y; y0)

pε(t, y; y0) = Ey0
δy(Yt), p(n)(t, y; y0) =

n∑

k=0

εkpk(t, y; y0).

In figure 2 we plot the approximate transition density p(n). Next, define the O(εn) approximation of the

implied volatility

σ(n) :=
n∑

k=0

εkσk,

where the σk are given by (8). In figure 3 we provide a numerical example illustrating convergence of

σ(n) to σε. We compute σε by calculating uε first using Theorem 2 and then by inverting the Black-

Scholes formula numerically. We plot implied volatility as a function of the log-moneyness to maturity ratio,

LMMR := (k − y)/t. Convergence is fastest for values of k near y and slows as k moves away from y.
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6 Conclusion

In this paper we introduce a class of local stochastic volatility models. Within our modeling framework,

we obtain a formula (written as an infinite series) for the price of any European option. Additionally, we

obtain an explicit expression for the implied volatility smile induced by our class of models. As an example

of our framework, we introduce a CEV-like model, which corrects one possible short-coming of the CEV

model; namely, our choice of volatility does not drop to zero as the value of the underlying increases. In the

CEV-like framework, we show that option prices can be computed with the same level of efficiency as other

models in which option prices are computed as Fourier-type integrals.

Thanks

The author would like to thank Bjorn Birnir for his helpful comments.
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A Spectral theory of normal operators in a Hilbert space

In this appendix we summarize the theory of normal operators acting on a Hilbert space. A detailed

exposition on this topic (including proofs) can be found in Reed and Simon (1980) and Rudin (1973).

Let H be a Hilbert space with inner product (·, ·). A linear operator is a pair (dom(A),A) where dom(A)

is a linear subset of H and A is a linear map A : dom(A) → H. The adjoint of an operator A is an operator

A∗ such that (Af, g) = (f,A∗g), ∀ f ∈ dom(A), g ∈ dom(A∗), where

dom(A∗) := {g ∈ H : ∃h ∈ H such that (Af, g) = (f, h) ∀ f ∈ dom(A)}.

An operator (dom(A),A) is said to be self-adjoint in H if

dom(A) = dom(A∗), (Af, g) = (f,Ag) ∀ f, g ∈ dom(A).

Throughout this appendix, for any self-adjoint operatorA, we will assume that dom(A) is a dense subset ofH.

A densely defined self-adjoint operator is closed (see Rudin (1973), Theorem 13.9). An operator (dom(A),A)

is said to be normal in H if it is closed, densely defined and commutes with its adjoint: A∗A = AA∗. Clearly,

every self-adjoint operator is a normal operator.

Given a linear operator A, the resolvent set ρ(A) is defined as the set of λ ∈ C such that the mapping

(A−Idλ) is one-to-one and Rλ := (A−Idλ)−1 is continuous with dom(Rλ) = H. The operator Rλ : H → H

is called the resolvent. The spectrum σ(A) of an operator A is defined as σ(A) := C \ ρ(A). We say that

λ ∈ σ(A) is an eigenvalue of A if there exists ψ ∈ dom(A) such that the eigenvalue equation is satisfied

Aψ = λψ. (10)

A function ψ that solves (10) is called an eigenfunction of A corresponding to λ. The multiplicity of an

eigenvalue λ is the number of linearly independent eigenfunctions for which equation (10) is satisfied. The

spectrum of an operator A can be decomposed into two disjoint sets called the discrete and essential 2

spectra: σ(A) = σd(A)∪ σe(A). For a normal operator A, a number λ ∈ C belongs to σd(A) if and only if λ

is an isolated point of σ(A) and λ is an eigenvalue of finite multiplicity (see Rudin (1973), Theorem 12.29).

A projection-valued measure on the measure space (C,B(C)) is a family of bounded linear operators

{E(B), B ∈ B(C)} in H that satisfies:

1. E(∅) = 0 and E(C) = Id.

2. E(B) is an orthogonal projection. That is, E2(B) = E(B) and E(B) is self-adjoint: E∗(B) = E(B).

2 The essential spectrum may be further decomposed into the continuous spectrum and the residual spectrum. It can be

shown that the residual spectrum of an ordinary differential operator is empty (see Roach (1982), page 184).
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3. E(A ∩B) = E(A)E(B).

4. If B =
⋃∞

i=1 Bi and Bi ∩Bj = ∅ for i 6= j then E(B) = limn→∞
∑n

i=1E(Bj), where the limit is in the

strong operator topology.

5. For every in f, g ∈ H the set function µf,g(B) := (f, E(B)g) is a complex measure on B(C).

Theorem 14 (Spectral Representation Theorem). There is a one-to-one correspondence between normal

operators A and projection-valued measures E on H, the correspondence being given by

A =

∫

σ(A)

λE(dλ).

If g(·) is a Borel function on C then

g(A) =

∫

σ(A)

g(λ)E(dλ), dom(g(A)) = {f ∈ H :

∫

σ(A)

|g(λ)|2µf,f (dλ) <∞}. (11)

Proof. See Rudin (1973) Theorems 12.21 and 13.33.

As a practical matter, if A is an differential operator acting on a Hilbert space L2(R, dy), then the operators

defined by (11) can be constructed by solving the proper and improper 3 eigenvalue problems

proper: Aψn = φn ψn, φn ∈ σd(A), ψn ∈ H,

improper: Aψλ = φλ ψλ, φλ ∈ σe(A), ψλ /∈ H.

For the improper eigenvalue problem one extends the domain of A to include functions all functions ψ for

which Af makes sense and for which the following boundedness conditions are satisfied

lim
y→±∞

|ψ(y)|2 <∞.

After normalizing, the proper and improper eigenfunctions A satisfy the following orthogonality relations

(ψn, ψm) = δn,m, (ψλ, ψλ′) = δ(λ− λ′), (ψn, ψλ) = 0.

The operator g(A) in (11) is constructed as follows (see Hanson and Yakovlev (2002), section 5.3.2)

g(A)f =
∑

λ∈σd(A)

g(φλ) (ψλ, f)ψλ +

∫

σe(A)

g(φλ) (ψλ, f)ψλdλ.

It is not always easy to evaluate divergent integrals of the form (ψλ, ψλ′) and verify that they are in fact

delta functions δ(λ− λ′). A method for directly obtaining properly normalised improper eigenfunctions can

be found on page 238 of Friedman (1956).

3The term “improper” is used because the improper eigenvalues λ /∈ σd(A) and the improper eigenfunctions ψλ /∈ H since

(ψλ, ψλ) = ∞.
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B Proof of Theorem 2

Our strategy is to show that Aε = A0 + ε ηA1 generates a semigroup Pε
t = exp(tAε). This will guarantee

that uε = Pε
th(y) is an analytic function of ε, which in turn, justifies the use of expansion (3). Throughout

this section we will work on the Hilbert space H = L2(R, dy). We let dom(Ai) = C∞
0 (R) and we note that

C∞
0 (R) is a dense subset of H. Our analysis begins with a Theorem from Chernoff (1972):

Theorem 15. Let A be the generator of a C0 contraction semigroup P0
t = exp(tA) on a Banach space. Let

εB be a dissipative operator with a densely defined adjoint. Assume that the inequality

‖εBu‖ ≤ a ‖u‖+ b ‖Au‖ , ∀u ∈ dom(A)

holds for some a ≥ 0 and b ≤ 1 (i.e., the operator εB is A-bounded with bound b ≤ 1). Then the closure of

Aε := A+ εB generates a C0 contraction semigroup Pε
t = exp(tAε).

Remark 16. The operator A0 is the generator of a C0 contraction semigroup P0
t = exp(tA0) on H.

To show that ε ηA1 is dissipative, the following Theorem will be useful:

Theorem 17. Let A be a linear operator with domain dom(A) = C∞
0 (R). Then A satisfies the positive

maximum principle if and only if

A =
1

2
a2(y)∂2 + b(y)∂ +

∫

ν(y, dz)
(
ez∂ − 1− I{z<R}z∂

)
− c(y), (12)

for some a(x) ≥ 0, b(x) ∈ R, c(x) ≥ 0, R ∈ [0,∞] and ν(y, dz) satisfying

∫

R

ν(y, dz)
(
1 ∧ z2

)
<∞.

Operators of the form (12) are called Lévy-type operators.

Proof. See Theorem 2.12 of Hoh (1998).

Remark 18. An operator that satisfies the positive maximum principle is dissipative (see Ethier and Kurtz

(1986), Lemma 4.2.1 on page 165).

Remark 19. The operator ε ηA1 is clearly of the form (12). Therefore, ε ηA1 is dissipative.

Remark 20. The adjoint of εηA1, given by (εηA1)
∗
= εA∗

1η, has domain dom(εA∗
1η) = C∞

0 (R), and is

therefore densely defined in H.

Since A0 generates a C0 semigroup and ε ηA1 is dissipative and has a densely defined adjoint, we have only

to show that ε ηA1 is A0-bounded with b ≤ 1.

12



Proposition 21. Suppose η ∈ C∞
0 (R) and ε ≤ a2

‖η‖ (which is the condition given in Theorem 2). Then

ε ηA1 is A0-bounded with a = 0 and b ≤ 1.

Proof. Clearly, for any u ∈ dom(A0) we have

‖ε ηA1 u‖ ≤ ε ‖η‖ · ‖A1u‖ =
ε

a2
‖η‖ · ‖A0u‖ ≤ ‖A0u‖ .

The proof of Theorem 2 is complete.
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Figure 1: A comparison of the CEV volatility σ(ey) =
√
εeβy/2 (dashed black) and our “shifted” version

of the CEV volatility σ(ey) = (a2 + εeβy)1/2 (solid blue). Notice that the CEV volatility drops to zero as

y → ∞ whereas our shifted version stays above a. The following parameters are used in this plot: a = 0.20,
√
ε = 0.15, β = −0.75.
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Figure 2: A plot of the approximate transition density p(n)(t, y; 0) (solid blue) for different values of n. For

comparison, we also plot p(0) (dashed black). Note that the density of Yt has a fat tail to the left, which

is expected since σ(ey) increase as y → −∞. The following parameters are used in these plots: a = 0.20,
√
ε = 0.15, β = −0.75, t = 2.0.
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Figure 3: We plot σ(n) (solid blue) and σε (dashed black) as a function of LMMR. The following parameters

are used in these plots: a = 0.20,
√
ε = 0.10, β = −0.75, t = 3.0 y = −0.01.
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