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VALUATION AND PARITY FORMULAS FOR EXCHANGE OPTIONS

CONSTANTINOS KARDARAS

Abstract. Valuation and parity formulas for both European-style and American-style exchange

options are presented in a general financial model allowing for jumps, possibility of default and

bubbles in asset prices. The formulas are given via expectations of auxiliary probabilities using the

change-of-numéraire technique. Extensive discussion is provided regarding the way that folklore

results such as Merton’s no-early-exercise theorem and traditional parity relations have to be altered

in this more versatile framework.

Introduction

A multitude of contracts in financial markets can be regarded as options to exchange units of

one asset for certain units of another. The first paper to discuss and consider such options in

the Black-Scholes-Merton modeling environment is [Mar78]. Building upon the groundbreaking

methodology of [BS73] and [Mer73], formulas were provided for the fair value of exchange options

when the log-price movement of two no-dividend-paying assets is modeled via (correlated and

drifted) Brownian motions. Depending on which of the two assets is chosen as a numéraire in

order to denominate wealth, such exchange options can be regarded either of a call or a put type.

Under this perspective, and always in the Black-Scholes-Merton model, Merton’s no-early-exercise

result [Mer73, Theorem 2] can be seen to imply that American-style exchange options have the

same value as their European-style counterparts; then, the usual put-call parity translates to a

single parity between exchange options of either European or American style.

In recent literature, considerable interest has been placed in financial models where certain

“anomalies” exist, the most prominent of which concerns assets which contain bubbles—see, for

example, [DS95], [CH05], [PP10], [Hul10], [Ruf11], [KKN12]. (Such bubbles may appear even in the

locally riskless bank account, an asset that is traditionally used as a baseline in order to denominate

wealth.) When a certain asset contains a bubble, the market allows for arbitrage relative to it;

more precisely, there exist free snacks (in the terminology if [LW00]) relative to the asset with the

bubble. This last fact prevents the existence of an equivalent probability which would render some
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2 CONSTANTINOS KARDARAS

sort of martingale property to wealth processes denominated in units of the asset containing the

bubble. Such probability measures are used for valuation of illiquid financial derivative securities;

therefore, it would appear that existence of baseline assets containing bubbles presents a hurdle in

the development of the theory of financial mathematics. However, a consistent theory of valuation

and hedging can still be developed in models where assets with bubbles exist, provided that one

utilizes strictly positive local martingale deflators instead of equivalent local martingale measures—

the survey article [KF09] is a thorough reference in this respect. Under appropriate assumptions

on the underlying stochastic environment which allow for the inference of existence of probability

measures in the spirit of Kolmogorov’s extension theorem (as explained, for example, in [Par67])

the previous local martingale deflators can still define auxiliary probabilities that can be used for

valuation. It should be noted, however, that these valuation probabilities may fail to be even

locally (along a sequence of deterministic times converging to infinity) equivalent to the original

probability.

It has been argued that several results that are folklore in traditional models fail to hold when

bubbles exist in asset prices. Typical examples of such failure include the aforementioned no-

early-exercise theorem for American options, as well as certain parity relations. In spite of such

claims, it is becoming increasingly understood that an alternative viewpoint concerning such results

enables the provision of formulas that are valid in wider-encompassing models. Such viewpoint also

facilitates the understanding of the exact attributes of earlier models that resulted in such formulas.

The present paper contributes to the existing literature by providing valuation and parity formulas

for exchange options via the change-of-numéraire approach in a general modeling environment,

allowing for jumps, possible default and bubbles in asset prices. As mentioned previously, in

order to provide formulas in terms of expectations under auxiliary valuation probabilities, mild

assumptions have to be enforced on the underlying filtered measurable space—canonical examples

of such environments are models driven by economic factors, a case that is discussed in detail in the

paper. Due to the potential existence of bubbles, the value of American exchange options may be

higher than the corresponding value of exchange options of European type; a general formula for

the early exercise premium (in terms of explosion probabilities, amongst other elements) is provided

that covers all models. The latter discrepancy of American and European option values affects the

parity relations as well: several different parity formulas relating European and American exchange

option values are provided.

The structure of the paper is as follows. Section 1 presents the underlying financial framework,

while Section 2 establishes existence of the valuation probabilities and studies the behavior of ratios

of asset prices under these probabilities. In Section 3, several formulas for valuation of European

and American exchange options are presented. Finally, Section 4 explores the different parity

relations between exchange options of both European and American type.
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1. Underlying Framework

1.1. The set-up. The underlying financial environment is modeled through a filtered measurable

space (Ω, F), where F = (Ft)t∈R+ is a right-continuous filtration. In the later development of the

paper, the need will arise to infer existence of probabilities arising from local martingale density

processes; in order to ensure such existence, the filtration F is assumed to coincide with the right-

continuous augmentation of a continuous-time standard system, a notion used in [Föl72] and due

to [Par67]. More precisely, it is assumed that Ft =
⋂

ǫ>0F0
t+ǫ holds for all t ∈ R+, where (F0

t )t∈R+

is a nondecreasing collections of σ-algebras with the following properties:

• For each t ∈ R+, (Ω,F0
t ) is a standard Borel space, meaning that F0

t is σ-isomorphic to

the σ-algebra of Borel sets of some complete separable metric space.

• For any R+-valued nondecreasing sequence (tn)n∈N and nonincreasing sequence (An)n∈N,

where An is a nonempty atom1 of F0
tn for all n ∈ N, it holds that

⋂
n∈NAn 6= ∅.

For both practical and technical reasons, the model will allow for potential “default” of the

whole economy. Fix ζ ∈ T , where T will be denoting throughout the set of (possibly infinite-

valued) stopping times on (Ω, F). The following interpretation should be kept in mind: from time

ζ onwards, all economic activity ceases and no financial claims are honored.

The concept introduced below will prove useful in localization arguments.

Definition 1.1. A T -valued sequence (ζn)n∈N will be said to nicely approximate the default time

if it is nondecreasing, ζn ≤ n holds for all n ∈ N and limn→∞ ζn(ω) = ζ(ω) holds for all ω ∈ Ω.

Remark 1.2. Note that limn→∞ ζn(ω) = ζ(ω) in Definition 1.1—as well as the nondecreasing and

boundedness property of (ζn)n∈N, in tacit form—is required to hold for all ω ∈ Ω, and not just in

an almost sure sense under some probability (which has not been yet introduced anyway). The

requirement ζn ≤ n for all n ∈ N is hardly a restriction: if a nondecreasing T -valued sequence

(ζ ′n)n∈N is such that limn→∞ ζ ′n(ω) = ζ ′(ω) holds for all ω ∈ Ω, then the sequence (ζn)n∈N defined

via ζn = ζ ′n ∧ n for all n ∈ N nicely approximates the default time in the sense of Definition 1.1.

1.2. The prototypical example. The abstract structure of the underlying space mentioned in

Subsection 1.1 is valid in a canonical framework, which will be now explained. (For more details

regarding the content of the present discussion, the reader is referred to [Mey72] and [Föl72,

Example 6.3(2)].) Typically, financial models are build via the introduction of economic factors

which affect the movement of asset prices. Mathematically, it is assumed that at each time-point

the state of the economy takes value in a topological space E with countable base, which will be

further assumed to be locally compact but not compact.

1Recall that A ⊆ Ω is called an atom of a σ-algebra F over Ω if A ∈ F and the the conditions B ∈ F and B ⊆ A

imply that either B = A of B = ∅.
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Remark 1.3. Under the previous assumptions on E, it is straightforward to see that there exists a

nondecreasing sequence (En)n∈N of open subsets of E such that:

• En is compact and En ⊆ En+1 holds for all n ∈ N.2

• ⋃
n∈NEn = E.

The default time ζ in such framework will correspond to “explosion” of the economy’s state. The

topological space E is extended via appending an extra point △, and the enlarged set Ẽ := E∪{△}
is endowed with the one-point (Alexandroff) compactification topology. For any càdlàg (right-

continuous with left limits) function ω : R+ 7→ Ẽ, representing a possible path of the time evolution

of the economy’s state, define the default (or explosion) time3

(1.1) ζ(ω) := inf {t ∈ R+ |ω(t−) = △ or ω(t) = △} .

The sample space Ω is defined as the set of all càdlàg functions ω : R+ 7→ Ẽ with the property

that ω(t) = △ holds for all t ≥ ζ(ω). (In words, △ becomes an absorbing state for functions in Ω.)

The coördinate process X = (Xt)t∈R+ on Ω, defined via Xt(ω) = ω(t) for all (ω, t) ∈ Ω × R+, will

be modeling the economic factors. Denote by F0 = (F0
t )t∈R+ the smallest filtration that makes

X an adapted process; then, define F = (Ft)t∈R+ via Ft =
⋂

ǫ>0F0
t+ǫ for t ∈ R+. Similar to the

argument in [Föl72, Example 6.3(2)], it can be shown that (F0
t )t∈R+ is a standard system. It

follows that this framework falls into the set-up of Subsection 1.1. Observe that ζ indeed becomes

a stopping time on (Ω,F).

The specification of Ω as a class of Ẽ-valued càdlàg paths allows for a natural identification of

practically useful sequences that nicely approximate the default time—their use in a Markovian

setting is presented in Subsection 1.4 later on. Choose any nondecreasing sequence (En)n∈N of

open subsets of E as in Remark 1.3, and define the sequence (ζn)n∈N via

(1.2) ζn := inf
{
t ∈ R+ |Xt /∈ En

}
∧ n, for n ∈ N.

Since En is closed, ζn is a stopping time for all n ∈ N. It is then straightforward to see that the

requirements of Definition 1.1 are satisfied.

Remark 1.4. If a model having factors that change in a continuous fashion is desired, Ω can be

chosen to consist of continuous, instead of càdlàg functions. In that case, the default time in (1.1)

can be plainly defined via ζ(ω) := inf {t ∈ R+ |ω(t) = △} for all continuous functions ω : R+ 7→ Ẽ

and the sequence (ζn)n∈N in (1.2) is such that ζn(ω) < ζ(ω) holds for all n ∈ N and ω ∈ Ω.

2As usual, D denotes the closure of D ⊆ E.
3The notation ω(t−) is used for the left limit of ω at t ∈ (0,∞); by convention, ω(0−) is defined to be equal to

ω(0). Furthermore, the infimum of an empty set is defined to be ∞.
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1.3. Assets and stochastic discount factor. On the filtered measurable space (Ω, F) satisfying

the tenets of Subsection 1.1, we postulate the existence of nonnegative adapted processes Si for

i ∈ I, where I is an arbitrary non-empty index set. Each Si, i ∈ I, is modeling the price-process

of a no-dividend-paying asset in the financial market. To keep in par with the interpretation of ζ

as default time of the economy, it shall be assumed that Si = 0 holds on the stochastic interval

[[ζ,∞[[ := {(ω, t) ∈ Ω× R+ | 0 ≤ t < ζ(ω)} for all i ∈ I.4 Earlier default for a specific asset is of

course also possible in our framework.

The complete probabilistic model for the movement of the asset prices is fulfilled by the intro-

duction of a probability P on the σ-algebra F∞ :=
∨

t∈R+
Ft. The following will be a standing

assumption throughout the paper.

Assumption 1.5. For all i ∈ I, Si = 0 holds on [[ζ,∞[[ and Si
0 is P-a.s. constant and strictly

positive. Furthermore, there exist a sequence (ζn)n∈N which nicely approximates the default time

and a nonnegative process Y with P [Y0 = 1] = 1 such that the process (Yζn∧tS
i
ζn∧t

)t∈R+ is a P-a.s.

càdlàg martingale on (Ω, F, P) for all n ∈ N and i ∈ I.

Before a couple of remarks on Assumption 1.5 are presented, we introduce some notation. The

symbol “EP” is reserved for expectation with respect to P, with analogous notation used for ex-

pectation under other probabilities. Notations of the form E [ξ;A] for nonnegative F∞-measurable

random variable ξ and A ∈ F∞ are shorthands for E [ξIA], where “IA” denotes the indicator of A.

Remark 1.6. Existence of a process Y with the prescribed properties mentioned in Assumption

1.5 with the additional property that is it is P-a.s. strictly positive is intimately related to market

viability; more precisely, to the condition of absence of opportunities of arbitrage of the first

kind—see [Kar11]. Under an additional completeness assumption, the minimal replicating price of

a nonnegative FT -measurable payoff HT , to be paid at time T ∈ T , is equal to EP [YTHT ;T < ζ].

(The restriction of the expectation on the event {T < ζ} appearing in the valuation formula is

due to the interpretation of ζ as default time of the whole economy.) Even if the market is not

complete, EP [YTHT ;T < ζ] provides a value for the aforementioned contract that will retain the

viability of the market. Such a process Y is commonly referred to as a stochastic discount factor,

and will be used for the valuation of financial derivatives.

Remark 1.7. The assumption ζn ≤ n for all n ∈ N for a sequence that nicely approximates the

default time in Definition 1.1 has been introduced in order to accommodate the situation where

Y Si is an actual martingale on (Ω, F, P) for all i ∈ I, in which case one can choose ζn = ζ ∧ n

for all n ∈ N. In conjunction with Remark 1.2, note that if a nondecreasing T -valued sequence

(ζ ′n)n∈N is such that limn→∞ ζ ′n(ω) = ζ ′(ω) holds for all ω ∈ Ω and (Yζ′n∧tS
i
ζ′n∧t

)t∈R+ is a P-a.s.

4This fact is repeated in Assumption 1.5 below.
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càdlàg martingale on (Ω, F, P) for all n ∈ N and i ∈ I, then Assumption 1.5 is valid via use of the

sequence (ζn)n∈N defined via ζn = ζ ′n ∧ n for all n ∈ N that nicely approximates the default time.

1.4. Markovian continuous factor models. We discuss here how Assumption 1.5 is valid in a

wide range of continuous-time, continuous-path Markovian factor models.

Consider the general framework of Subsection 1.2; in fact, since a continuous-path environment

will be utilized, Remark 1.4 is more relevant. Let m ∈ N and an open subset E of Rm. Consider

functions a : E 7→ Rm and c : E 7→ Sm++, where Sm++ denotes the space of strictly positive definite

symmetric m×m matrices. It is assumed that a is locally bounded5 on E and that c is continuous

on E. Under these assumptions, and for a fixed x0 ∈ E, [Pin95, Chapter 1, Theorem 13.1] implies

the existence of a unique solution P to the martingale problem (with possible explosion) associated

with a and c such that P [X0 = x0] = 1. More precisely, with the T -valued sequence (ζn)n∈N defined

as in (1.2), for all n ∈ N the process X − x0 −
∫ ζn∧·
0 a(Xt) dt is an m-dimensional martingale on

(Ω, F, P) with zero initial value and quadratic covariation process given by
∫ ζn∧·
0 c(Xt) dt.

With 〈·, ·〉 denoting (sometimes, formally) inner product on Rm, let bk : E 7→ Rm, k ∈
{1, . . . ,m}, be a collection of functions such that

〈
bk, bl

〉
= ckl holds identically on E for k ∈

{1, . . . ,m} and l ∈ {1, . . . ,m}.6 Then, there exists an m-dimensional Brownian motion W on

(Ω, F, P) defined on the stochastic interval [[0, ζ[[, such that the formal dynamics

(1.3) dXk
t = ak(Xt) dt+

〈
bk(Xt), dWt

〉
, 0 ≤ t < ζ,

are valid for k ∈ {1, . . . ,m}. (Note that, under the assumptions previously made, the above

dynamics implicitly define the process W on [[0, ζ[[. Furthermore, W depends on the choice of b

only through local orthonormal transformations.)

The m factors will drive the prices of (d+1) financial assets, where d ∈ N. Let I = {0, 1, . . . , d};
the index “0” is reserved for a locally riskless asset, as it typical in the literature. In order to

avoid degeneracies in the market, it is assumed that d ≤ m. Consider the “short rate” function

r : E 7→ R, as well as “excess rate of return” functions µi : E 7→ R, and functions σi : E 7→ Rm for

i ∈ {1, . . . ,m}. All of the previously-defined functions are assumed locally bounded. For reasons

of unifying presentation, set also µ0 : E 7→ R and σ0 : E 7→ Rm to be identically equal to zero.

Once again, in order to avoid degeneracy we assume that the collection
{
σi | i ∈ {1, . . . , d}

}
is

linearly independent on E, which is equivalent to saying that the (d ×m) matrix-valued function

σ ≡ (σik)i∈{1,...,d}, k∈{1,...,m} has (full) rank d on E. Define processes Si, i ∈ I, satisfying Si ≡ 0 on

[[ζ,∞[[ for all i ∈ I , as well as formal dynamics

(1.4)
dSi

t

Si
t

=
(
r + µi

)
(Xt) dt+

〈
σi(Xt), dWt

〉
, 0 ≤ t < ζ,

5A function is locally bounded on E is and only if it is bounded on any compact subset of E.
6In other words, the (m×m) matrix-valued function (bkl)k∈{1,...,m},l∈{1,...,m} is a square root of c.
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where Si
0 > 0 for all i ∈ I. From the dynamics of the factors and the asset-price processes one

obtains
(
dSi

t/S
i
t

) (
dXk

t

)
=

〈
σi, bk

〉
(Xt) dt, 0 ≤ t < ζ, for i ∈ I and k ∈ {1, . . . ,m}; naturally, the

functions σi, i ∈ I, have to be appropriately chosen in order to reflect the local covariance between

the asset-price movement and the driving economic factors.

In order to define the stochastic discount factor, consider a locally bounded function θ : E 7→ Rm

such that7
〈
σi, θ

〉
= µi holds on E for all i ∈ I. Define the process Y satisfying Y0 = 1, Y = 0 on

[[ζ,∞[[, and formal dynamics

(1.5)
dYt

Yt
= −r(Xt) dt−

〈
θ(Xt), dWt

〉
, 0 ≤ t < ζ.

A straightforward use of the integration-by-parts formula shows that

d
(
YtS

i
t

)

YtS
i
t

=
〈 (

σi − θ
)
(Xt), dWt

〉
, 0 ≤ t < ζ,

for all i ∈ I . In particular, (Yζn∧tS
i
ζn∧t

)t∈R+ is a local martingale on (Ω, F, P) for all i ∈ I and

n ∈ N. Furthermore, the local boundedness assumptions on the involved functions coupled with

Novikov’s condition [KS91, Subsection 3.5.D] imply that the processes (Yζn∧tS
i
ζn∧t

)t∈R+ for all i ∈ I

and n ∈ N are actual martingales on (Ω, F, P). Therefore, one obtains the validity of Assumption

1.5 in this extremely versatile setting.

Remark 1.8. In the case where d = m, the only process Y with Y0 = 1 and Yt = 0 for t ≥ ζ that

is capable to render the local martingale property on (Ω, F, P) to the processes (Yζn∧tS
i
ζn∧t

)t∈R+

for all i ∈ I and n ∈ N is the one defined via the dynamics in (1.5) with θ = σ−1µ.

2. Valuation Probabilities and Asset Ratios

2.1. Valuation probabilities. As mentioned in Remark 1.6, the process Y of Assumption 1.5

plays the role of a stochastic discount factor in the market. As such, it will be used for valuation

of securities: the present (time zero) value a contract that pays an FT -measurable nonnegative

amount HT at time T ∈ T is EP [YTHT ;T < ζ]. It is customary to write valuation formulas in

terms of expectation under auxiliary valuation probabilities. In order to obtain the latter from

the representation in terms of expectations under P and stochastic discounting, a “baseline” (or

“numéraire”) asset has to be chosen in order to denominate wealth. Section 3 and Section 4 deal

with valuation and parity formulas for exchange options; for this reason, we refrain from choosing

a single asset to use as baseline; rather, a family of probabilities (Qi)i∈I will be introduced, one

for each asset indexed by i ∈ I being used as a baseline. Care has to be exercised in defining these

probabilities, since the candidate “density processes” that have to be used in defining them are

7A least one function θ : E 7→ Rm satisfying
〈

σi, θ
〉

= µi on E for all i ∈ I exists, since the matrix-valued process

σ is assumed to have full rank on E; the additional local boundedness is a mild assumption which will hold given

local boundedness conditions on µ and c−1.
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in general only local martingales on (Ω, F, P). However, the structure of the filtered probability

space described in Subsection 1.1 allows for such construction under Assumption 1.5. Full details

are given in the statement and proof of Theorem 2.1 below. Note that results of similar nature

have appeared previously—see, for example, [DS95], [PP10], [Ruf11] and [KKN12]. However, since

the present setting is more general (involving asset prices with jumps and possibility of individual

defaults before time ζ), and since Theorem 2.1 is used extensively in other results of the paper,

a complete treatment will be provided. Before the statement of Theorem 2.1, recall that Fτ− for

τ ∈ T represents the σ-algebra over Ω generated by F0 and the collection of all events of the form

A ∩ {s < τ} where s ∈ R+ and A ∈ Fs.

Theorem 2.1. Under Assumption 1.5, for each i ∈ I there exists a unique probability Qi on Fζ−

such that the following property is valid: for any nonnegative optional process H on (Ω, F),

(2.1) EP

[
YTHTS

i
T ;T < ζ

]
= Si

0EQi [HT ;T < ζ] holds for all T ∈ T .

Furthermore, the following properties are true:

• for all T ∈ T , Qi
[
Si
T = 0, T < ζ

]
= 0 holds;

• Qi [ζn < ζ, for all n ∈ N] = 1.

Proof. In the course of the proof, fix i ∈ I.

In view of Assumption 1.5, the process Li := Y Si/Si
0 is such that P

[
Li
ζn

≥ 0
]
= 1 and EP

[
Li
ζn

]
=

1 hold for all n ∈ N. Therefore, for all n ∈ N, there exists a probability Q̃i
n on F∞ such that Li

ζn

is the Radon-Nikodým derivative of Q̃i
n with respect to P. For each n ∈ N, let Qi

n denote the

restriction of Q̃i
n on the σ-algebra Fζn−. Note that Qi

n|F0 = P|F0 holds for all n ∈ N.

For the time being, assume that some probability Qi on Fζ− which satisfies (2.1) for any non-

negative optional process H on (Ω, F) exists. For A ∈ F0, let H = IAI[[0,0]]; using (2.1) with

T = 0 and the facts that Si
0 is P-a.s. a strictly positive constant (which in particular implies that

P [ζ > 0] = 1, in view of Assumption 1.5) and P [Y0 = 1] = 1, we obtain P [A] = Qi [A ∩ {ζ > 0}].
Since Qi is a probability, it follows that Qi should coincide with P on F0. Furthermore, for n ∈ N,

s ∈ R+ and A ∈ Fs, (2.1) combined with the fact that {s < ζn} ⊆ {s < ζ} gives

Qi [A ∩ {s < ζn}] = EP

[
Li
sIA; s < ζn

]
= EP

[
Li
ζn
IA; s < ζn

]
,

where the last equality follows from the fact that (Li
ζn∧t

)t∈R+ is a uniformly integrable martingale

on (Ω, F, P). Since Fζn− is generated by F0 and the class of sets A ∩ {s < ζn} for all s ∈ R+

and A ∈ Fs, it follows that the restriction of Qi (if the latter probability can be defined) on Fζn−

coincides with Qi
n for all n ∈ N. The previous discussion implies that the sequence (Qi

n)n∈N will

have to be utilized is order to construct Qi. This is done in the next paragraph.

Note the following consistency property: whenever N ∋ n ≤ m ∈ N, Qi
m|Fζn−

= Qi
n holds.

Therefore, one can indeed define a finitely-additive probability Qi on the algebra
⋃

n∈NFζn− with
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the property that Qi|Fζn−
= Qi

n holds for all n ∈ N. As the sequence of σ-algebras (Fζn−)n∈N is

a discrete-time standard system [Föl72, Remark 6.1], it follows from [Par67, Theorem V.4.1] that

Qi is countably additive on
⋃

n∈NFζn−; therefore, it can be extended uniquely into a probability

on
∨

n∈N Fζn−, the σ-algebra generated by
⋃

n∈N Fζn−. In view of Definition 1.1 and [HWY92,

Theorem III.3.4(10)], it holds that
∨

n∈NFζn− = Fζ−. The previous discussion shows that, under

the prescribed properties of Theorem 2.1, a unique candidate for Qi exists on Fζ−. However, the

properties claimed by Theorem 2.1 have yet to be established for Qi. (The validity of one property

was rather assumed in order to show how Qi should be defined.) The properties will be discussed

in the next couple of paragraphs.

Fix T ∈ T and a nonnegative optional process H on (Ω, F). Since HT is FT -measurable, for

all n ∈ N the random variable HT I{T<ζn} is Fζn−-measurable. Therefore, EP

[
YTS

i
THT ;T < ζn

]
=

Si
0EQi

n
[HT ;T < ζn] = Si

0EQi [HT ;T < ζn] holds for all n ∈ N. Taking limits as n goes to infin-

ity and using Assumption 1.5, (2.1) readily follows. Using (2.1) with H = I{Si=0} gives that

Qi
[
Si
T = 0, T < ζ

]
= 0.

It remains to show that Qi [ζn < ζ] = 1 holds for all n ∈ N, which is equivalent to the equal-

ity Qi [ζn < ζ, for all n ∈ N] = 1. Fix n ∈ N. For m ∈ N with n ≤ m, note that {ζn = ζm} =

Ω \{ζn < ζm} ∈ Fζm− holds; therefore, Qi [ζn = ζm] = EP

[
LζmI{ζn=ζm}

]
= EP

[
LζnI{ζn=ζm}

]
holds,

where the last equality follows from the fact that (Lζm∧t)t∈R+ is a uniformly integrable martin-

gale on (Ω, F, P) and {ζn = ζm} ∈ Fζn . It follows that Qi [ζn = ζ] = limm→∞Qi [ζn = ζm] =

limm→∞ EP

[
LζnI{ζn=ζm}

]
= EP

[
LζnI{ζn=ζ}

]
= EP

[
LζI{ζn=ζ}

]
Since ζn ≤ n and Li

ζ = YζS
i
ζ/S

i
0 = 0

holds on {ζ < ∞}, we obtain Qi [ζn = ζ] = 0, which completes the proof. �

Remark 2.2. Assumption 1.5 and a straightforward application of the conditional version of Fatou’s

lemma implies that Y Si is a (nonnegative) supermartingale on (Ω, F, P) for all i ∈ I. Using H ≡ 1

in (2.1) and taking T ∈ T to be equal to t ∈ R+, it follows that Si
0Q

i [t < ζ] = EP

[
YtS

i
t ; t < ζ

]
=

EP

[
YtS

i
t

]
holds for all t ∈ R+ and i ∈ I, where the last equation follows from the fact that Si

t = 0

holds on {t < ζ}. It then follows in a straightforward way that Qi [ζ = ∞] = 1 holds for some i ∈ I

if and only if the process (YtS
i
t)t∈R+ is an actual martingale on (Ω, F, P).

Remark 2.3. In the notation used in the proof of Theorem 2.1, Li
ζn

= Li
ζn
I{ζn<ζ} holds for all i ∈ I

and n ∈ N. Therefore, Li
ζn

is the density of Qi with respect to P on Fζn ∩ Fζ− for all i ∈ I and

n ∈ N. This fact can help in obtaining the behavior of processes under Qi for i ∈ I; see Example

2.6 below for an illustration.

Although Qi is absolutely continuous with respect to P on Fζn ∩ Fζ− for all i ∈ I and n ∈ N, it

should be noted that there is no general relationship between Qi and P on Fζ−.

Remark 2.4. In the setting of Subsection 1.2, there is a natural σ-isomorphism between the σ-

algebras Fζ− and F∞. In this case, and under Assumption 1.5, it follows that the probability Qi

in Theorem 2.1 is uniquely defined on F∞ for all i ∈ I.
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Remark 2.5. In general, ζ is not a predictable time on (Ω, F). (An exception is the situation

described in Remark 1.4.) However, as Theorem 2.1 implies, the T -valued sequence (ζn)n∈N Qi-

a.s. announces the default time ζ for all i ∈ I.

We proceed with an example that illustrates Theorem 2.1.

Example 2.6. Retain the framework and all notation of Subsection 1.4. Let Y satisfy the formal

dynamics in (1.5), and fix j ∈ I. A straightforward use of Girsanov’s theorem on each stochastic

interval [[0, ζn]], n ∈ N, shows that the coördinate factor process X under Qj solves the martingale

problem associated with the diffusion function c and drift function aQj : E 7→ Rm, where ak
Qj =

ak +
〈
bk, σj − θ

〉
holds for all k ∈ {1, . . . ,m}. More precisely, for k ∈ {1, . . . ,m} it holds that

dXk
t =

(
ak +

〈
bk, σj − θ

〉)
(Xt) dt+

〈
bk(Xt), dW

Qj

t

〉
, 0 ≤ t < ζ,

where WQj
is an m-dimensional Brownian motion (defined on [[0, ζ[[) on (Ω, F, Qj). In fact,

comparing the above formal factor dynamics with (1.3), the relationship between WQj

and W on

[[0, ζ[[ becomes immediate. Then, recalling (1.4), we obtain the formal dynamics

dSi
t

Si
t

=
(
r +

〈
σi, σj

〉)
(Xt) dt+

〈
σi(Xt), dW

Qj

t

〉
, 0 ≤ t < ζ,

for i ∈ I. The choice of the “risk-premium” function θ affects the stochastic behavior of each Si,

i ∈ I, on (Ω, F, Qj) indirectly through the dynamics of X.

In the setting of this example, note that

d
(
Si
t/S

j
t

)

Si
t/S

j
t

=
〈(
σi − σj

)
(Xt), dW

Qj

t

〉
, 0 ≤ t < ζ,

holds for all i ∈ I, which implies that the processes Si, when denominated in units of the asset

j ∈ I, become local martingales on (Ω, F, Qj) and the stochastic interval [[0, ζ[[. The behavior of

asset-price ratios in a general setting is taken up in Subsection 2.2 below.

2.2. Asset-price ratio processes. Define the family of nonnegative processes

(2.2) Rij :=

(
Si

Sj

)
I{Sj>0}, i ∈ I and j ∈ I.

In words, Rij represents the asset-price process i ∈ I denominated in units of the asset-price process

j ∈ I, as long as the latter asset has not defaulted . In the setting of Theorem 2.1, for any i ∈ I,

j ∈ I, and nonnegative optional process H on (Ω, F) and any T ∈ T , it holds that

(2.3) Sj
0EQj

[
Rij

T HT ;T < ζ
]
= EP

[
Si
THT ;S

j
T > 0, T < ζ

]
= Si

0EQi

[
HT ;S

j
T > 0, T < ζ

]
.

The next is a result in the spirit of the supermartingale optional sampling theorem.
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Proposition 2.7. Let σ ∈ T and τ ∈ T with σ ≤ τ . Under Assumption 1.5,

(2.4) EQj

[
Rij

τ ; τ < ζ
]
≤ EQj

[
Rij

σ ; σ < ζ
]

holds for all i ∈ I and j ∈ I.

Proof. In the course of the proof, fix i ∈ I and j ∈ I, as well as σ ∈ T and τ ∈ T with σ ≤ τ .

The first equality in (2.3) applied twice gives Sj
0EQj

[
Rij

σ ;σ < ζ
]
= EP

[
YσS

i
σ;S

j
σ > 0, σ < ζ

]

and Sj
0EQj

[
Rij

τ ; τ < ζ
]
= EP

[
YτS

i
τ ;S

j
τ > 0, τ < ζ

]
. Therefore, the inequality (2.4) is equivalent

to EP

[
YτS

i
τ ;S

j
τ > 0, τ < ζ

]
≤ EP

[
YσS

i
σ;S

j
σ > 0, σ < ζ

]
. Recall from Remark 2.2 that, under

Assumption 1.5, Y Sj is a nonnegative supermartingale on (Ω, F, P); therefore, it follows that

P
[
Sj
σ = 0, Yτ > 0, Sj

τ > 0, τ < ζ
]
= 0. The last fact combined with {τ < ζ} ⊆ {σ < ζ} implies the

string of inequalities Yτ I{Sj
τ>0, τ<ζ} ≤ Yτ I{Sj

σ>0, τ<ζ} ≤ Yτ I{Sj
σ>0, σ<ζ}, holding modulo P. In turn,

the last fact implies the first inequality in

EP

[
YτS

i
τ ;S

j
τ > 0, τ < ζ

]
≤ EP

[
YτS

i
τ ;S

j
σ > 0, σ < ζ

]
≤ EP

[
YσS

i
σ;S

j
σ > 0, σ < ζ

]
,

where the second equality follows from the fact that the process Y Si is a supermartingale on

(Ω, F, P). The proof is complete. �

In Section 3, we shall make use of the family of random variables

(2.5) ρij := lim inf
n→∞

Rij
ζn
, i ∈ I and j ∈ I.

By Definition 1.1 and Assumption 1.5, Rij
ζn

= Rij
ζn
I{ζn<ζ} holds; in particular, Rij

ζn
is (Fζn ∩ Fζ−)-

measurable for all n ∈ N, i ∈ I and j ∈ I. Since Qj [ζn < ζ, for all n ∈ N] = 1 holds for all

j ∈ I under Assumption 1.5 by Theorem 2.1, it follows in a straightforward way from Propo-

sition 2.7 that (Rij
ζn
)n∈N is a nonnegative supermartingale on the discrete-time stochastic basis

(
Ω, (Fζn ∩ Fζ−)n∈N, Q

j
)
for all i ∈ I and j ∈ I. Therefore, in view of the nonnegative super-

martingale convergence theorem, for all i ∈ I and j ∈ I, on (Ω, F, Qj) the Fζ−-measurable random

variable ρij is R+-valued and the “lim inf” in (2.5) is an actual limit.

3. Valuation Formulas for Exchange Options

3.1. Valuation formulas for European-style exchange options. Given the stochastic dis-

count factor Y of Assumption 1.5, define the value of a European option to exchange asset i ∈ I

for asset j ∈ I at time T ∈ T as

(3.1) EX
ij(T ) := EP

[
YT (S

j
T − Si

T )+;T < ζ
]
.

In view of Theorem 2.1, under Assumption 1.5 note the validity of the relationships EX
ij(T ) ≤

EP

[
YTS

j
T ;T < ζ

]
= Sj

0Q
j
[
T < ζ

]
≤ Sj

0 for all i ∈ I, j ∈ I and T ∈ T .

Remark 3.1. Under Assumption 1.5, Si
T = 0 holds on {ζ ≤ T} for all i ∈ I. It follows that the

indicator of the event {T < ζ} inside the expectation in (3.1) may be omitted. The same holds
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for several equations that will appear below (although not all); we choose to keep the indicator in

order to explicitly reinforce the convention that no claims are honored from time ζ onwards.

The next result gives several representations for the value of European-style exchange options.

Recall from (2.2) the definition of the collection of processes Rij for i ∈ I and j ∈ I.

Proposition 3.2. For all i ∈ I, j ∈ I and T ∈ T , the following formulas are valid:

EX
ij(T ) = Sj

0Q
j
[
Si
T < Sj

T , T < ζ
]
− Si

0Q
i
[
Si
T < Sj

T , T < ζ
]

= Sj
0Q

j
[
Si
T ≤ Sj

T , T < ζ
]
− Si

0Q
i
[
Si
T ≤ Sj

T , T < ζ
]

= Sj
0EQj

[(
1−Rij

T

)
+
;T < ζ

]

= Si
0EQi

[(
Rji

T − 1
)
+
;T < ζ

]
+ Sj

0Q
j
[
Si
T = 0, T < ζ

]
.

Proof. Fix i ∈ I and j ∈ I. Since (Sj − Si)+ = SjI{Si<Sj} − SiI{Si<Sj} = SjI{Si≤Sj} − SiI{Si≤Sj},

the first two equalities follow in a straightforward way from (2.1). Continuing note that (Sj−Si)+ =

(Sj−Si)+I{Sj>0} = Sj(1−Rij)+ holds. UsingH = (1−Rij)+ in (2.1) (with j replacing i there), the

third equality follows immediately. Furthermore, upon noting that (Sj−Si)+ = (Sj−Si)+I{Si>0}+

SjI{Si=0} = Si(Rji− 1)++SjI{Si=0} and using (2.1) twice, once with H = (Rji− 1)+ and another

time with H = I{Si=0} (and j replacing i there), the last equality follows. �

Remark 3.3. Fix j ∈ I and suppose that Qj [ζ < ∞] = 0 holds, which in view of Remark 2.2 is

equivalent to the process (YtS
j
t )t∈R+ being an actual martingale on (Ω, F, P). In that case, since

Qj [T < ζ] = 1 holds for all T ∈ T with T < ∞, a combination of Proposition 2.7 and Proposition

3.2, the convexity of the function R ∋ x 7→ x+ ∈ R+ and Jensen’s inequality give EXij(σ) ≤ EX
ij(τ)

whenever σ ∈ T and τ ∈ T are such that σ ≤ τ < ∞ holds. It follows that the value EX
ij(T ) of

the European exchange option is non-decreasing for finite maturities T ∈ T .

In contrast to the situation where ζ is Qj-a.s. infinite for some j ∈ I, when Qj [ζ < ∞] > 0 the

previous monotonicity property need not hold, due to the non-triviality of the indicator of the event

{T < ζ} in the expression EX
ij(T ) = Sj

0EQj

[(
1−Rij

T

)
+
;T < ζ

]
. The latter event is nonincreasing

in T and may result in reversal of the inequality EX
ij(σ) ≤ EX

ij(τ) whenever σ ∈ T and τ ∈ T
are such that σ ≤ τ < ∞ holds. In fact, an example presented in [PP10] shows a case where the

function R+ ∋ T 7→ EX
ij(T ) is initially strictly increasing and then strictly decreasing.

Remark 3.4. The representation EX
ij(T ) = Sj

0EQj

[(
1 − Rij

T

)
+
;T < ζ

]
gives the value of the

exchange option in terms of a put option on the asset i ∈ I by considering asset j ∈ I as a numéraire.

Similarly, the expression EX
ij(T ) = Si

0EQi

[(
Rji

T −1
)
+
;T < ζ

]
+Sj

0Q
j
[
Si
T = 0, T < ζ

]
follows from

the use of asset i ∈ I as a numéraire, in terms of a call option on asset j ∈ I. Note however, an

asymmetry between the two representations, since the equality EX
ij(T ) = Si

0EQi

[(
Rji

T −1
)
+
;T < ζ

]

is actually valid only if Qj
[
Si
T = 0, T < ζ

]
= 0 for T ∈ T .
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3.2. Valuation formulas for American-style exchange options. For T ∈ T define T[0,T ] as

the class of all τ ∈ T such that 0 ≤ τ ≤ T holds. Given the process Y of Assumption 1.5, the

value of an American option to exchange asset i ∈ I for asset j ∈ I up to time T is defined to be

(3.2) AX
ij(T ) := sup

τ∈T[0,T ]

EP

[
Yτ (S

j
τ − Si

τ )+; τ < ζ
]
= sup

τ∈T[0,T ]

EX
ij(τ).

The inequalities EX
ij(T ) ≤ AX

ij(T ) ≤ Sj
0 hold for all i ∈ I, j ∈ I and T ∈ T . Proposition 3.5

provides, inter alia, a formula for the early exercise premium AX
ij(T )− EX

ij(T ) of the American

versus the European option. Recall from (2.5) the random variables ρij for i ∈ I and j ∈ I.

Proposition 3.5. Fix i ∈ I, j ∈ I and T ∈ T . Under Assumption 1.5, the following are true:

(1) The sequence
(
EX

ij(T ∧ ζn)
)
n∈N

is nondecreasing. Furthermore,

(3.3) AX
ij(T ) = lim

n→∞
EX

ij(T ∧ ζn).

(2) The early exercise premium is given by

(3.4) AX
ij(T )− EX

ij(T ) = Sj
0EQj

[(
1− ρij

)
+
; ζ ≤ T

]
.

Proof. In the course of the proof, fix i ∈ I, j ∈ I and T ∈ T.

(1). Let τ ∈ T[0,T ]. By Proposition 3.2, and since Qj [ζn < ζ] = 1 holds by Theorem 2.1,

EX
ij(τ ∧ ζn) = Sj

0EQj

[(
1−Rij

τ∧ζn

)
+
; τ ∧ ζn < ζ

]
= Sj

0EQj

[(
1−Rij

τ∧ζn

)
+

]
.

The fact Qj [ζn < ζ] = 1 and Proposition 2.7 imply the inequality EQj

[
Rij

τ∧ζm

]
≤ EQj

[
Rij

τ∧ζn

]

whenever N ∋ n ≤ m ∈ N. The convexity of the function R ∋ x 7→ x+ ∈ R+ and Jensen’s

inequality imply that EX
ij(τ ∧ ζn) ≤ EX

ij(τ ∧ ζm) holds whenever N ∋ n ≤ m ∈ N, which

shows that the sequence
(
EX

ij(τ ∧ ζn)
)
n∈N

is nondecreasing. Furthermore, in view of the fact that

limn→∞ ζn = ζ, it Qj-a.s. holds that (1 − Rij
τ )+I{τ<ζ} ≤ lim infn→∞

(
(1 − Rij

τ∧ζn
)+

)
. This fact,

coupled with Fatou’s lemma, implies that

EX
ij(τ) = EQj

[
(1−Rij

τ )+; τ < ζ
]
≤ EQj

[
lim inf
n→∞

(
(1−Rij

τ∧ζn
)+

)]
≤ lim

n→∞
EX

ij(τ ∧ ζn).

In a similar way as was reasoned above, Proposition 2.7 and the facts that Qj [ζn < ζ] = 1

for all n ∈ N and τ ≤ T give EX
ij(τ ∧ ζn) ≤ EX

ij(T ∧ ζn) for all n ∈ N; therefore, EX
ij(τ) ≤

limn→∞ EX
ij(T ∧ ζn) holds for all τ ∈ T[0,T ]. Equation (3.3) immediately follows.

(2). Since limn→∞Rij
T∧ζn

= ρijI{ζ≤T} +Rij
T I{T<ζ} holds Qj-a.s., the dominated convergence theo-

rem gives

AX
ij(T ) = lim

n→∞
EX

ij(T ∧ ζn) = Sj
0EQj

[(
1− ρij

)
+
; ζ ≤ T

]
+ Sj

0EQj

[(
1−Rij

T

)
+
;T < ζ

]
.

By Proposition 3.2, the second term in the right-hand-side of the the above equation is equal to

EX
ij(T ); therefore, (3.4) has been established. �
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Remark 3.6. Proposition 3.5 implies that, for any T ∈ T , the supremum in (3.2) for AX
ij(T ) is

monotonically achieved through the sequence (T ∧ ζn)n∈N of stopping times in T[0,T ], this being

true for all combinations of i ∈ I and j ∈ I. This fact has the important consequence that a parity

relation for American exchange options follows from the corresponding parity relation for European

options—see the statement and proof of Proposition 4.1.

Remark 3.7. While in the Black-Scholes-Merton modeling environment discussed in [Mar78] it

is never optimal to exercise an American-style exchange option before a finite maturity T ∈ T ,

Proposition 3.5 implies that, if Qj [ζ ≤ T ] > 0 holds, it is not optimal to keep an American option

to exchange any asset i ∈ I for some asset j ∈ I until maturity T ∈ T . Instead, (3.3) reasonably

suggests that one should keep the option until maturity T ∈ T provided that default of the whole

economy does not appear imminent; otherwise, early exercise may be preferable.

Remark 3.8. Using the (self-explanatory) notation Rij

T∧(ζ−)
= Rij

T I{T<ζ}+ρijI{ζ≤T} for i ∈ I, j ∈ I

and T ∈ T , it follows by a combination of Proposition 3.2 and Proposition 3.5 that

AX
ij(T ) = Sj

0EQj

[(
1−Rij

T∧(ζ−)

)
+

]
,

which provides a direct representation for the value of American-style exchange options.

An interesting special case in Proposition 3.5 is when Qj
[
ρij = 0

]
= 1 holds for some i ∈ I

and j ∈ I; this is, for example, true in the case in the Black-Scholes-Merton model where the

logarithms of asset-price processes are (not perfectly) correlated drifted Brownian motions. When

Qj
[
ρij = 0

]
= 1 holds for i ∈ I and j ∈ I, the simpler formula AX

ij(T ) − EX
ij(T ) = Sj

0Q
j[ζ ≤ T ]

for the early exercise premium holds for all T ∈ T . The next result gives several equivalent

formulations of the latter condition.

Proposition 3.9. Fix i ∈ I and j ∈ I. Under Assumption 1.5, the following statements are equiv-

alent:

(1) limn→∞ AX
ij(ζn) = Sj

0.

(2) limn→∞ EX
ij(ζn) = Sj

0.

(3) limn→∞Qj
[
Sj
ζn

≤ Si
ζn

]
= 0 and limn→∞Qi

[
Si
ζn

≤ Sj
ζn

]
= 0.

(4) Qj
[
ρij = 0

]
= 1.

(5) AX
ij(T )− EX

ij(T ) = Sj
0Q

j [ζ ≤ T ] holds for all T ∈ T .

Proof. Fix i ∈ I and j ∈ I. By Proposition 3.5, AXij(ζn) = limm→∞ EX
ij(ζn ∧ ζm) = EX

ij(ζn)

holds for all n ∈ N. This shows the equivalence of statements (1) and (2). Furthermore, since

Qi [ζn < ζ] = 1 and Qj [ζn < ζ] = 1 holds by Theorem 2.1, Proposition 3.2 gives EX
ij(ζn) =

Sj
0Q

j
[
Si
ζn

< Sj
ζn

]
− Si

0Q
i
[
Si
ζn

< Sj
ζn

]
. Therefore, limn→∞ EX

ij(ζn) = Sj
0 is equivalent to the

validity of both limn→∞Qj
[
Sj
ζn

≤ Si
ζn

]
= 0 and limn→∞Qi

[
Si
ζn

< Sj
ζn

]
= 0. Since

Sj
0Q

j
[
Sj
ζn

= Si
ζn

]
= P

[
Sj
ζn

= Si
ζn
, ζn < ζ

]
= Si

0Q
j
[
Sj
ζn

= Si
ζn

]
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holds in view of Theorem 2.1, limn→∞ EX
ij(ζn) = Sj

0 is equivalent to limn→∞Qj
[
Sj
ζn

≤ Si
ζn

]
= 0

and limn→∞Qi
[
Si
ζn

≤ Sj
ζn

]
= 0. This shows the equivalence of (2) and (3). Therefore, the equiva-

lence of conditions (1), (2) and (3) has been established. Continuing, a combination of Proposition

3.2 and the dominated convergence theorem give limn→∞ EX
ij(ζn) = Sj

0EQj

[
(1− ρij)+

]
. There-

fore, conditions (2) and (4) are equivalent. The fact that condition (4) implies condition (5) follows

from (3.4). Furthermore, if (5) holds then (3.4) with T = ζ gives EQj

[ (
1− ρij

)
+

]
= 1, which is

equivalent to Qj
[
ρij = 0

]
= 1, i.e., condition (4). �

Remark 3.10. Note that condition (3) of Proposition 3.9 is symmetric in i ∈ I and j ∈ I. This means

that conditions (1), (2), (4) and (5) of Proposition 3.9 are also equivalent to the corresponding

conditions where the roles of i and j are interchanged.

Remark 3.11. Fix i ∈ I and j ∈ I. Under any of the equivalent conditions of Proposition 3.9,

the equality AX
ij(T ) = Sj

0 holds whenever T ∈ T is such that T ≥ ζ. In fact, one can get a

nice expression for the difference Sj
0 − AX

ij(T ) for all T ∈ T . Assuming any of the equivalent

conditions of Proposition 3.9, Sj
0 − AX

ij(T ) = Sj
0Q

j [T < ζ] − EX
ij(T ) holds for all T ∈ T . Since

EX
ij(T ) = Sj

0EQj

[
(1−Rij

T )+;T < ζ
]
holds by Proposition 3.2, we obtain

Sj
0 − AX

ij(T ) = Sj
0EQj

[
1 ∧Rij

T ;T < ζ
]
= Sj

0Q
j
[
Rij

T ≥ 1, T < ζ
]
+ Sj

0EQj

[
Rij

T ;R
ij
T < 1, T < ζ

]
.

Now, Qj
[
Rij

T ≥ 1, T < ζ
]
= Qj

[
Sj
T ≤ Si

T , S
j
T > 0, T < ζ

]
= Qj

[
Sj
T ≤ Si

T , T < ζ
]
, the last

equality following from Qj
[
Sj
T = 0, T < ζ

]
= 0 in Theorem 2.1. Furthermore, note that (2.3) gives

Sj
0EQj

[
Rij

T ;R
ij
T < 1, T < ζ

]
= Si

0Q
i
[
Si
T < Sj

T , S
j
T > 0, T < ζ

]
= Si

0Q
i
[
Si
T < Sj

T , T < ζ
]
,

the last equality following from the nonnegativity of Si. It follows that

Sj
0 − AX

ij(T ) = Sj
0Q

j
[
Sj
T ≤ Si

T , T < ζ
]
+ Si

0Q
i
[
Si
T < Sj

T , T < ζ
]
.

4. Parities Involving Exchange Options

4.1. Parity formulas. The following result gives two parity relations—one regarding European-

style and another regarding American-style exchange options.

Proposition 4.1. Let i ∈ I and j ∈ I, as well as T ∈ T . Under Assumption 1.5, the following

parity relations hold:

EX
ij(T ) + Si

0Q
i [T < ζ] = EX

ji(T ) + Sj
0Q

j [T < ζ] ,(4.1)

AX
ij(T ) + Si

0 = AX
ji(T ) + Sj

0.(4.2)

Proof. Combining the relationships EX
ij(T ) = Sj

0Q
j
[
Si
T < Sj

T , T < ζ
]
− Si

0Q
i
[
Si
T < Sj

T , T < ζ
]

and EX
ji(T ) = Si

0Q
i
[
Sj
T ≤ Si

T , T < ζ
]
− Sj

0Q
j
[
Sj
T ≤ Si

T , T < ζ
]
, both following from Proposition

3.2, one obtains EX
ij(T ) − EX

ji(T ) = Sj
0Q

j [T < ζ] − Si
0Q

i [T < ζ], which shows (4.1). Replacing
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T by T ∧ ζn and using the fact that Qi [ζn < ζ] = 1 = Qj [ζn < ζ] holds for all n ∈ N that follows

from Theorem 2.1, we obtain EX
ij(T ∧ ζn) + Si

0 = EX
ji(T ∧ ζn) + Sj

0. Sending n to infinity and

using (3.3), (4.2) follows. �

Remark 4.2. An alternative, more direct proof of (4.1) utilizes the equality

(4.3) (Sj − Si)+ + Si = (Si − Sj)+ + Sj , for i ∈ I and j ∈ I.

Applying (4.3) with the processes sampled at T ∈ T on the event {T < ζ}, multiplying both sides

by YT and taking expectation with respect to P, one obtains (4.1) by Proposition 3.2, given the

equalities EP

[
YTS

i
T ;T < ζ

]
= Si

0Q
i [T < ζ] and EP

[
YTS

j
T ;T < ζ

]
= Sj

0Q
j [T < ζ] that follow from

(2.1).

For i ∈ I, the quantity Si
0Q

i [T < ζ] is the value of the contract that pays Si
T at time T ∈ T when

T < ζ. Being a European-style contract, its value may be strictly less than Si
0, which happens

exactly when Qi [ζ ≤ T ] > 0. In contrast, the value of the corresponding “American” option that

pays Si
τ at any chosen time τ ∈ T[0,T ] for T ∈ T would be

(4.4) sup
τ∈T[0,T ]

EP

[
YτS

i
τ ; τ < ζ

]
= sup

τ∈T[0,T ]

Si
0Q

i [τ < ζ] = Si
0Q

i [ζ > 0] = Si
0,

since Qi [ζ > 0] = 1 holds in view of Theorem 2.1. In models where no “bubbles” exist, in the sense

that Qi [ζ < ∞] = 0 is valid for all i ∈ I, EXij(T ) = AX
ij(T ) holds for all i ∈ I, j ∈ I and T ∈ T

with T < ∞. Then, (4.2) becomes a parity relation for both European-style and American-style

exchange options. The fact that (4.1), instead of (4.2), holds for European options has sometimes

lead to claims that the “usual” parity is not valid in markets where bubbles exist. Of course, in

order for a parity relation to hold, the contracts used have to be of similar type. In this sense, (4.1)

is the correct and perfectly valid parity relation for European options; this has already been made

clear in [Hul10], in the setting of the example of Subsection 4.2 below. On the other hand, when

American-style exchange options are involved, American-style contracts that pay off the stock price

have to be used in both sides; in view of (4.4), (4.2) is the parity relation to be expected. As noted

in Remark 3.6 and demonstrated in the proof of Proposition 4.1, the American parity relationship

(4.2) follows from the validity of (4.1) and the fact that the approximating sequence (T ∧ ζn)n∈N

is the same for all choices of i ∈ I and j ∈ I.

In the special case where any of the equivalent conditions of Proposition 3.9 hold, two more

parity relations are valid, mixing European and American options.

Proposition 4.3. Under Assumption 1.5 and the validity of any of the equivalent conditions of

Proposition 3.9, the following parity relations hold:

AX
ij(T ) + Si

0Q
i [T < ζ] = EX

ji(T ) + Sj
0,

EX
ij(T ) + Si

0 = AX
ji(T ) + Sj

0Q
j [T < ζ] .
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Proof. Since Proposition 3.9 gives AX
ij(T ) = EX

ij(T ) + Sj
0Q

j [T < ζ] and AX
ji(T ) = EX

ji(T ) +

Si
0Q

i [T < ζ], both relationships follow directly from (4.1). �

4.2. An illustrative example involving the three-dimensional Bessel process. In the set-

ting of Subsection 1.4 (continued in Example 2.6), let m = 1, E = (0,∞) and suppose that

P [X0 = 1] = 1, a(x) = 1/x and c(x) = 1 holds for x ∈ (0,∞). One can choose En = (1/n, n + 1)

for all n ∈ N. In this case, X under P is behaving like a three-dimensional Bessel process with unit

initial value. Note that P [ζ < ∞] = 0. Let I = {0, 1}, and suppose that S0 = KI[[0,ζ[[ for some

K ∈ (0,∞) and S1 ≡ XI[[0,ζ[[. It can be shown in a straightforward way that Y = (1/X)I[[0,ζ[[ is

the (essentially) unique process such that Y Si is a local martingale on (Ω, F, P) for i ∈ I. In fact,

if one defines (ζn)n∈N through (1.2), it is easily seen that
(
Yζn∧tS

i
ζn∧t

)
t∈R+

is an actual martingale

on (Ω, F, P) for all n ∈ N and i ∈ I. Clearly Q1 = P, while Q0 can be seen to coincide with the

probability on F∞ such that X is Brownian motion starting from one and stopped when it reaches

zero. The equality Q1
[
ρ01 = 0

]
= P [limt→∞Xt = ∞] = 1 follows from the fact that X behaves

like three-dimensional Bessel process under P. In particular, we obtain all relations of Proposition

3.9 when i = 0 and j = 1, as well as when i = 1 and j = 0.

As Q1 [ζ < ∞] = P [ζ < ∞] = 0, it follows that AX
01(T ) = EX

01(T ) holds for all T ∈ R+.

Furthermore, Proposition 3.2 gives EX
01(T ) = P [XT > K] − KQ0 [XT > K, ζ > T ] for T ∈ R+.

Let Φ : R 7→ (0, 1) denote the cumulative distribution function of the standard normal law, and

set Φ = 1− Φ. The joint distribution of Brownian motion and its minimum gives

Q0 [XT > K, ζ > T ] = Φ

(
1−K√

T

)
−Φ

(
1 +K√

T

)
, T ∈ R+.

Furthermore, from properties of the non-central chi-squared distribution one can obtain that

P [XT > K] = Φ

(
1−K√

T

)
+Φ

(
1 +K√

T

)
+

√
2T

π
exp

(
−1 +K2

2T

)
sinh

(
K

T

)
, T ∈ R+.

(For the last formula see also [Hul10, Proposition 1].) It then follows that

EX
01(T ) = (1+K)Φ

(
1 +K√

T

)
+(1−K)Φ

(
1−K√

T

)
+

√
2T

π
exp

(
−1 +K2

2T

)
sinh

(
K

T

)
, T ∈ R+,

with the same equality valid for AX01(T ). Equation (4.2) gives AX10(T ) = AX
01(T )− (1−K), i.e.,

AX
10(T ) = (1+K)Φ

(
1 +K√

T

)
−(1−K)Φ

(
1−K√

T

)
+

√
2T

π
exp

(
−1 +K2

2T

)
sinh

(
K

T

)
, T ∈ R+.

Furthermore, the law of the minimum of Brownian motion gives Q0 [ζ ≤ T ] = 2Φ(1/
√
T ) holding

T ∈ R+, which implies that EX10(T ) = AX
10(T )− 2KΦ(1/

√
T ) holds for T ∈ R+.

Note that the previous closed-form expressions give limT→∞ EX
01(T ) = 1 = limT→∞ AX

01(T ),

as well as limT→∞ EX
10(T ) = 0 < K = limT→∞ AX

10(T ).
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