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Abstract

In this paper we are concerned with substructuring methods for the second-order
elliptic problems in three-dimensional domains. We first design a simple and completely
explicit nearly harmonic extension for the constant-like basis function (i.e., the face basis
function), and then define a coarse subspace based on this nearly harmonic extension.
Own to the resulting coarse solver, we develop a kind of substructuring preconditioner
with inexact solvers. We show that the condition number of the preconditioned system
grows only as the logarithm of the dimension of the local problem associated with an
individual substructure, and is independent of possible jumps of the coefficient in the
elliptic equation. Numerical experiments confirms the theoretical results.

Key words. domain decomposition, coarse subspace, constant-like basis,
nearly harmonic extension, preconditioner, inexact solvers, condition number

AMS(MOS) subject classification 65F10, 65N30, 65N55

1 Introduction

Non-overlapping domain decomposition methods (DDMs) have been shown to be pow-
erful techniques for solving partial differential equations, especially for the case with large
jump coefficients. One’s main task in non-overlapping DDMs is the construction of an effi-
cient substructuring preconditioner for discretization system associated with the underlying
partial differential equations. The construction of this preconditioner has been investigated
from various ways and to various models in literature, see, for example, [1]-[11], [13]-[18],
[20]-[24], [26]-[27], [29].

Most non-overlapping DDMs studied so far require exact subdomain solvers; we refer
[28] and [32] (and the references cited therein). Such a requirement severely degrade the
efficiency of the methods. There are only a few works studying substructuring methods
with inexact subdomain solvers [3], [4], [11] and [6]. The essential difficulty is that discrete
harmonic extensions on each subdomain are used in non-overlapping domain decomposition
methods. In [3], analysis and numerical experiments with inexact algorithms of Neumann-
Dirichlet type was done under the additional assumption of high accuracy of the inexact
solvers. In [4], the harmonic extension on a subdomain was replaced by a simple average
extension, and substructuring preconditioners with the average extension are constructed.
Because of such average extension, nearly optimal convergence can not be gotten for these
substructuring preconditioners. To avoid harmonic extensions, [11] considered so called ap-
proximate harmonic basis functions, which still involve high accuracy of the inexact solvers.
Another way to construct substructuring preconditioner with inexact solvers was consid-
ered in [6] (mainly for two dimensions). In this preconditioner, overlapping face subspaces
are used, and harmonic extension is used only in the definition of coarse subspace. How to
design nearly harmonic extensions involved in the coarse subspace is the core problem in
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the construction of such substructuring preconditioner. In the case with three dimensions,
the coarse subspace may consist of the edge basis and face basis, which are constant-like
functions. Then, one needs only to define suitable extensions for constant-like functions on
faces. Such extensions, which depend on the geometric shapes of the subdomains, was first
studied in [8].

In the present paper we introduce a new variant of substructuring preconditioner with
inexact solvers considered in [6] (see also [32]). The main contribution of the paper is the
design of a simple and completely explicit extension for the constant-like basis function.
This extension plays a key role in the substructuring preconditioner with inexact solvers.
We show that the new substructuring preconditioner possesses nearly optimal convergence,
which is independent of possible large jumps of the coefficient across the interface. For the
new method, no additional assumption is required.

The outline of the remainder of the paper is as follows. In Section 2, we introduce some
notation and our motive. In Section 3, we present an explicit extension of the constant-
like function. The results on the substructuring preconditioner with inexact solvers are
described in Section 4. In Section 5, we prove the stability of the extension of constant-like
function, which is used in Section 4. Some numerical results are reported in Section 6.

2 Preliminaries

2.1 Domain decomposition

Let Ω be a bounded polyhedron in R3. Consider the model problem
{−div(ω∇u) = f, in Ω,

u = 0, on ∂Ω,
(2.1)

where ω ∈ L∞(Ω) is a positive function.
Let H1

0 (Ω) denote the standard Sobolev space, and let (·, ·) denote the L2(Ω)-inner
product. The weak formulation of (2.1) in H1

0 (Ω) is then given by the following.
Find u ∈ H1

0 (Ω) such that

A(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.2)

where (·, ·) is the scalar product in L2(Ω), and

A(u, v) =
∫

Ω
ω∇u · ∇vdp.

We will apply a kind of non-overlapping domain decomposition method to solving (2.2).
For simplicity of exposition, we consider only the case with matching grids in this paper.

Let Th = {τi} be a regular and quasi-uniform triangulation of Ω with τ ′is being non-
overlapping simplexes of size h (∈ (0, 1]). The set of notes of Th is denoted by Nh. We then
define Vh(Ω) to be the piecewise linear finite element subspace of H1

0 (Ω) associated with
Th:

Vh(Ω) = {v ∈ H1
0 (Ω) : v|τ ∈ P1 ∀τ ∈ Th},

where P1 is the space of linear polynomials. Then the finite element approximation for
(2.2) is to find uh ∈ Vh(Ω) such that

A(uh, vh) = (f, vh), ∀vh ∈ Vh(Ω). (2.3)

Let Ω be decomposed into the union of n polyhedrons Ω1, · · · ,Ωn, which satisfy Ωi∩Ωj =
∅ when i 6= j. We assume that each ∂Ωk can be written as a union of boundaries of
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elements in Th, and all Ωk are of size H in the usual sense (see [5] and [32]). Without loss of
generality, we assume that the coefficient ω(p) is piecewise constant, then each subdomain
Ωk is chosen such that ω(p) equals to a constant ωk in Ωk. Note that {Ωk} may not
constitute a triangulation of Ω.

The common part of two neighboring subdomains Ωi and Ωj may be a vertex, an edge
or a face. In particular, we denote by Γij the common face of two neighboring subdomains
Ωi and Ωj (i.e., Γij = ∂Ωi ∩ ∂Ωj). The union of all Γij is denoted by Γ, which is called the
interface. In this paper, we choose Dirichlet data as the interface unknown.

Define the operator Ah : Vh(Ω) → Vh(Ω) by

(Ahv, w) = A(v, w) =
N∑

k=1

ωk

∫

Ωk

∇v · ∇wdx, v ∈ Vh(Ω), ∀w ∈ Vh(Ω).

The equation (2.3) can be written as

Ahuh = fh, uh ∈ Vh(Ω). (2.4)

The goal of this paper is to construct a substructuring preconditioner for Ah based on the
domain decomposition described above.

2.2 Notations

To introduce the new method, we need some more notations. Throughout this paper, a
subset G of Ω are always understood as an open set.
• subdomain spaces

For subdomain Ωk, define

Vh(Ωk) = {v|Ωk
: ∀v ∈ Vh(Ω)},

and
V p

h (Ωk) = {vh ∈ Vh(Ω) : supp vh ⊂ Ωk}.
Set

Ωij = Ωi ∪ Γij ∪ Ωj ,

and define
V p

h (Ωij) = {vh ∈ Vh(Ω) : supp vh ⊂ Ωij}.
• interface space and face spaces

As usual, we define the (global) interface space by

Wh(Γ) = {v|Γ : ∀v ∈ Vh(Ω)}.

For each ∂Ωk, set
Wh(∂Ωk) = {v|∂Ωk

: ∀v ∈ Wh(Γ)}.
For a face f = Γij , define

W̃h(f) = {φh ∈ Wh(Γ) : supp φh ⊂ f}.

• interpolation-type operator and constant-like basis
For a subset G of Γ, define the interpolation-type operator I0

G : Wh(Γ) → Wh(Γ) as

(I0
Gφh)(p) =

{
φh(p), if p ∈ Nh ∩G,

0, if p ∈ Nh ∩ (Γ\G).
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In particular, we have

(I0
G1)(p) =

{
1, if p ∈ Nh ∩G,
0, if p ∈ Nh ∩ (Γ\G).

If G is an edge or a face generated by the domain decomposition, we call φG = I0
G1 to be

constant-like basis function on G, which will be used repeatedly.
• integration average and algebraic average

For a function ϕh ∈ Wh(Γ), let γG(ϕh) denote the integration average of ϕh on G, and
let γh,G(ϕ) denote the algebraic average of the values of ϕ on the nodes in G.
• sets of faces, edges, vertices and subdomains

For convergence, let FΓ denote the set of all the faces Γij . Besides, let EΓ and VΓ denote
the set of the interior edges and the set of interior vertices generated by the decomposition

Ω̄ =
⋃

Ω̄k,

respectively. For an edge e ∈ EΓ, let Qe denote the set of the indices k of the subdomains
Ωk which contain e as an edge. Namely,

Qe = {k : e ⊂ ∂Ωk}.

Define
Ωe =

⋃

k∈Qe

Ωk, e ∈ EΓ.

• face inner-products, scaling norm and interface norm
For a subset G of Γ, let 〈·, ·〉G denote the L2 inner product on G. In particular, the

〈·, ·〉Γ is abbreviated as 〈·, ·〉. Let ‖ · ‖0, G denote the norm induced from 〈·, ·〉G.
For a sub-faces G of Γ, let HG denote the “size” of G. Define the scaled norm

‖φ‖ 1
2
, G = (|φ|21

2
, G

+ H−1
G ‖φ‖2

0, G)
1
2 , ∀φ ∈ H

1
2 (G).

For convenience, define

‖φh‖∗,Γ = (
n∑

k=1

ωk|φh|21
2
,∂Ωk

)
1
2 , ∀φh ∈ Wh(Γ).

• discrete norms
Discrete norms (or semi-norms) of finite element functions will be used repeatedly in

this paper, since the discrete norms are defined on a set of nodes only, and do not depend
on the geometric shape of the underlying domain.

We first give definitions of two well known discrete norms (refer to [32]), which are
equivalent to their respective continuous norms. For vh ∈ Vh(Ωk), the discrete H1 semi-
norm is defined by

|vh|21, h, Ωk
= h3

∑

pi, pj∈Nh∩Ωk

|vh(pi)− vh(pj)|2,

where pi and pj denote two neighboring nodes. Similarly, the discrete L2 norm on an edge
e of Ωk is defined by

‖vh‖2
0, h, e = h

∑

p∈Nh∩e
|vh(p)|2.

• H
1
2
00 norms
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For ϕh ∈ W̃h(f) with f = Γij , define

‖ϕh‖2

H
1
2
00(f)

= |ϕh|21
2
, f +

∫

f

|ϕh(x)|2
dist(x, ∂f)

ds(x).

Hereafter, dist(x, ∂f) denotes the shortest distance from a point x ∈ f to the boundary
∂f. It is known that

‖ϕh‖2

H
1
2
00(f)

=∼ |ϕ̃h|21
2
, Ωi

=∼ |ϕ̃h|21
2
, Ωj

,

where ϕ̃h ∈ Wh(Γ) denotes the zero extension of ϕh. Moreover, we have

‖ϕh‖2

H
1
2
00(f)

=∼
∫

f

|ϕh(x)|2
dist(x, ∂f)

ds(x).

The corresponding discrete semi-norm is defined by

‖ϕh‖2

h, H
1
2
00(f)

= h2
∑

p∈Nh∩f

|ϕh(p)|2
dist(p, ∂f)

.

• spectrally equivalences
For simplicity, we will frequently use the notations <∼ and =∼ . For any two non-negative

quantities x and y, x <∼ y means that x ≤ Cy for some constant C independent of mesh
size h, subdomain size d and the related parameters. x =∼ y means x <∼ y and y <∼ x.

2.3 Motivation

We first recall the main ideas of the existing substucturing preconditioners.
Let Ek : Wh(∂Ωk) → Vh(Ωk) be the discrete harmonic extension. Define the harmonic

subspace

V Γ
h (Ω) = {vh ∈ Vh(Ω) : vh|Ωk

= Ek(φh|∂Ωk
) (k = 1, · · · ,n) for some φh ∈ Wh(Γ)}.

Then, we have the initial space decomposition

Vh(Ω) =
n∑

k=1

V p
h (Ωk) + V Γ

h (Ω).

Let Ah,k : V p
h (Ωk) → V p

h (Ωk) be the restriction of the operator Ah on the local space
V p

h (Ωk), and let Bh,Γ : V Γ
h (Ω) → V Γ

h (Ω) be a symmetric and positive definite operator which
is spectrally equivalent to the restriction of the operator Ah on the harmonic subspace
V Γ

h (Ω). Then, the classical substructuring preconditioner (refer to [5]) can be defined in
the rough form

B−1
old =

N∑

k=1

A−1
h,kQk + B−1

h,ΓQΓ, (2.5)

where Qk and QΓ denote the standard L2 projectors into their respective subspaces. For
the preconditioner Bold, we have (see [5])

cond(B−1
oldAh) <∼ log2(H/h). (2.6)

In many applications, the subspaces V p
h (Ωk) still have high dimensions, so it is expensive

to use the exact solvers A−1
h,k.
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It was shown in [3] that substructuring preconditioners with inexact solvers B−1
h,k still

possess nearly optimal convergence, if each Bh,k has some spectrally approximation to Ah,k

(the usual spectrally equivalence is not enough). Hereafter, “inexact” means that Bh,k is
only spectrally equivalent to Ah,k, for example, Bh,k is a multigrid preconditioner for Ah,k. It
seems difficult to design an efficient substructuring preconditioner with completely inexact
solvers B−1

h,k, instead of A−1
h,k itself or its approximation. In essence, one has to modify the

harmonic subspace V Γ
h (Ω) by replacing each harmonic extension Ek with another extension.

In [4], a substructuring preconditioner B−1
bpv with inexact solvers was been designed by

replacing each harmonic extension Ek with a simple average extension. It has been shown
that the condition number of the resulting preconditioned system can be estimated by

cond(B−1
bpvAh) <∼ H/h. (2.7)

In [11], another substructuring preconditioner B−1
hlm with inexact solvers was been de-

signed by replacing each harmonic extension Ek with an approximate harmonic extension.
If the approximate harmonic extension is exact enough, then

cond(B−1
blmAh) <∼ log2(H/h). (2.8)

The approximate harmonic extension can be defined by approximate harmonic basis func-
tions. It is not practical to compute all the approximate harmonic basis functions. Because
of this, an alternative method, which still require high accuracy of Bh,k, was considered in
[11].

Another way to construct substructuring preconditioner with inexact solvers was con-
sidered in [6] (mainly for two dimensions).

Let Ŵ 0
h (Γ) be a subspace of Wh(Γ), such that a function ϕ ∈ Ŵ 0

h (Γ) equals a constant
Cf at every nodes in each face f of Γ. Define the coarse subspace

V̂ 0
h (Ω) = {vh ∈ Vh(Ω) : vh|Ωk

= Ek(φh|∂Ωk
) (k = 1, · · · ,n) for some φh ∈ Ŵ 0

h (Γ)}.

Then, we have the space decomposition

Vh(Ω) = V̂ 0
h (Ω) +

∑

Γij

V p
h (Ωij).

Let B0 : V̂ 0
h (Ω) → V̂ 0

h (Ω) and Bij : V p
h (Ωij) → V p

h (Ωij) be symmetric and positive
definite operators which are spectrally equivalent to the restrictions of the operator Ah on
the coarse subspace V̂ 0

h (Ω) and the local subspace V p
h (Ωij), respectively. Then, we can

define a substructuring preconditioner as (refer to [6] and [32])

B−1
dw = B−1

0 Q0 +
∑

Γij

B−1
ij Qij , (2.9)

where Q0 and Qij denote the standard L2 projectors into their respective subspaces. For
the preconditioner Bdw, we have (refer to [6] and [32])

cond(B−1
dwAh) <∼ log2(H/h). (2.10)

As pointed out in [32], the advantage of the preconditioner Bdw is that one can use
inexact solver Bij for the restriction of Ah on V p

h (Ωij), but an inexact solver B−1
0 is hard

to come by as harmonic extensions in the definition of V̂ 0
h (Ω) mean an exact solver. As an

alternate method, one can use a nearly harmonic extension to replace the exact harmonic
extension Ek. However, the design of such approximate harmonic extension is also difficult
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for the general case that either the subdomain Ωk is a general polyhedron or Th is a gen-
eral quasi-uniform triangulation (an attempt for two dimension is given in [19]). From the
definition of the coarse subspace V̂ 0

h (Ω), we know that one needs only to design such exten-
sion for functions in the subspace Ŵ 0

h (Γ). In essence, one needs only to define a suitable
extension for the constant-like basis function on each face of Γ. This kind of extension was
first studied in [8]. For the purpose of applications, the definition of such extension would
be sufficiently simple, otherwise, the action of B−1

0 is difficult to implement.
In this paper, we construct a completely explicit extension for the constant-like basis

function on each face of Γ. As we will see, the implementation of the new extensions is very
convenient and cheap. We can define a new variant of the coarse subspace V̂ 0

h (Ω) based
on the extensions. Then, we use the new coarse subspace to construct a substructuring
preconditioner with inexact solvers.

2.4 Basic tools

In the analysis later, we will use some basic estimates on H
1
2 norms.

The following results are well-known (see, for example, [32]).

Lemma 2.1 Let e and f be an edge and a face of Ωk. Then,

‖φh‖0,∂f <∼ log
1
2 (H/h)‖φh‖ 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk), (2.11)

‖I0
eφh‖ 1

2
,∂Ωk

<∼ log
1
2 (H/h)‖φh‖ 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk) (2.12)

and
‖I0

fφh‖
H

1
2
00(f)

<∼ log(d/h)‖φh‖ 1
2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk). (2.13)

2

The following result can be proved as in Lemma 6.2 in [18], together with the standard
technique.

Lemma 2.2 Let e be an edge of Ωk. Then,

‖φh − γh,e(φh)‖ 1
2
,∂Ωk

<∼ log
1
2 (H/h)|φh| 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk). (2.14)

2

3 Extensions for particular functions

As in Subsection 2.3, the desired coarse subspace of Vh(Ω) is always associated with an
interface coarse subspace. Let I0

f1 and I0
e1 denote the constant-like basis functions on the

face f and the coarse edge e, respectively (see Subsection 2.2). In this paper, we consider
the interface coarse subspace

W 0
h (Γ) = span{I0

F 1, I0
e1, ϕp : F ∈ FΓ, e ∈ EΓ, p ∈ VΓ}.

Hereafter, ϕp denotes the nodal basis function on the node p ∈ Nh ∩ Ω.
In this section, we construct an approximation for the restriction of the discrete har-

monic extension Ek on W 0
h (Γ). For convenience, let f denote a general face Γij , and let

φf = I0
f1 ∈ W̃h(F ) be the constant-like basis function on f.
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3.1 An explicit extension of φf

In this subsection, we define a stable extension Efφf ∈ V p
h (Ωij), which satisfies (Efφf)(p) =

φf(p) when p ∈ f̄.
For a node p in Ωij\f, let p′ denote the projection of p on the plane containing f. Besides,

when p′ ∈ f, we use p′′ to denote a point on the boundary ∂f, such that |p′p′′| = dist(p′, ∂f),
which is the shortest distance from p′ to the boundary ∂f (see Figure 1).

Figure 1: illustration for the notations

In short words, we define the extension Efφf such that the values (Efφf)(p) decrease
gradually when the lengths |pp′| increase, or the lengths |p′p′′| decrease. Although this
property holds also for the extension designed in [8], we will use a different idea from [8].

For simplicity of exposition, we make an assumption:
Assumption 3.1: when p ∈ ∂Ωij with p′ ∈ f, |pp′| ≥ |p′p′′|.

This assumption means that each subdomain Ωk is not too thin. As we will see in
Appendix, we need only to revise slightly the definition of the extension for the general
situation without this assumption. To give the exact definition of Efφf with f = Γij , we
set

Λf = {p ∈ Nh ∩ (Ωij\f) : p′ ∈ f, |pp′| ≤ |p′p′′|}.
For a face f = Γij , define the extension Efφf ∈ V p

h (Ωij) as follows:

(Efφf)(p) =





1, if p ∈ f,

1− |pp′|
|p′p′′| , if p ∈ Λf,

0, otherwise.
(3.15)

In particular, we have (Efφf)(p) = φf(p) when p ∈ f̄.
For rectangular face f with uniform triangulation, the values of Efφf at some nodes

are given in Figure 2.

Figure 2: extension of φf for particular case
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Set
df = max

q∈f
dist(q, ∂f).

It is clear that df is just the radium of the largest circle contained in f, and df =∼ H.
It is easy to see that the extension operator Ef possesses the properties:
(i) the support set Ωf of Efφf is a simply connected domain with the size df. In fact,

Ωf like a cone with the bottom f.
(ii) the calculation of Efφf possesses the optimal complexity O(nf) with nf = (df/h)3

being the number of the nodes in Ωf.
Besides, the extension Ef is stable in the following sense

Theorem 3.1 The extension Ef defined by (3.15) satisfies the stability condition

|Efφf|21,Ωi
, |Efφf|21,Ωj

<∼ H log(H/h) =∼ |φf|2
H

1
2
00(f)

(f = Γij). (3.16)

Since proof of the result is technical, we prove this theorem in Section 5.

Remark 3.1 The definition of the extension Ef not only is simple and completely explicit,
but also is identical to different geometric shape (tetrahedron, hexahedron or other polyhe-
drons) of the two subdomains containing f as a face. Thus, the action of Ef is easy to
implement.

3.2 A nearly harmonic extension of φ ∈ W 0
h (Γ)

Let R0
k : Wh(∂Ωk) → Vh(Ωk) denote the zero extension operator in the sense that R0

kφ = φ
on ∂Ωk, and R0

kφ vanishes at all internal nodes of Ωk for φ ∈ Wh(∂Ωk). For ψ ∈ W 0
h (Γ),

we have

ψ = γh,∂Ωk
(ψ) + I0

Wk
(ψ − γh,∂Ωk

(ψ)) +
∑

f⊂∂Ωk

γh,f(ψ − γh,∂Ωk
(ψ))φf, on ∂Ωk.

Hereafter, Wk denotes the wire-basket set of Ωk, i.e., the union of all the edges of Ωk. Note
that γh,f(ψ − γh,∂Ωk

(ψ)) is just the (constant) value of ψ − γh,∂Ωk
(ψ) at the interior nodes

of f. Then, we define on each Ωk

E0ψ = γh,∂Ωk
(ψ) + R0

k[I
0
Wk

(ψ − γh,∂Ωk
(ψ))] +

∑

f⊂∂Ωk

γh,f(ψ − γh,∂Ωk
(ψ))Efφf. (3.17)

It is easy to see that E0ψ = ψ on Γ.

The extension E0 is nearly harmonic in the following sense
Proposition 3.1 The global coarse extension E0 satisfies

n∑

k=1

ωk|E0φ0|21,Ωk
<∼ log(H/h)‖φ0‖2

∗,Γ, ∀φ0 ∈ W 0
h (Γ). (3.18)

Proof. By the definition of E0, we have

|E0φ0|21,Ωk
<∼ |R0

k[I
0
Wk

(φ0 − γh,∂Ωk
(φ0))]|21,Ωk

+
∑

f⊂∂Ωk

|γh,f(φ0 − γh,∂Ωk
(φ0))|2 · |Efφf|21,Ωk

<∼ ‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk
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+
∑

f⊂∂Ωk

(H−2‖φ0 − γh,∂Ωk
(φ0)‖2

0,∂Ωk
· |Efφf|21,Ωk

). (3.19)

Using (2.11) and Friedrichs’ inequality, yields

‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk
<∼ log(H/h)|φ0|21

2
,∂Ωk

. (3.20)

On the other hand, we deduce by (3.16) and Friedrichs’ inequality

H−2‖φ0 − γh,∂Ωk
(φ0)‖2

0,∂Ωk
· |Efφf|21,Ωk

<∼ H−1 log(H/h)‖φ0 − γh,∂Ωk
(φ0)‖2

0,∂Ωk

<∼ log(H/h)|φ0|21
2
,∂Ωk

.

Substituting (3.20) and the above inequality into (3.19), we get (3.18).
2

4 A substructuring method with inexact solvers

This section is devoted to construction of a substructuring preconditioner with inexact
solvers. The new preconditioner is based on the extension designed in the last section.

4.1 Space decomposition for Vh(Ω)

In this subsection, we define a space decomposition of Vh(Ω).
For each subdomain Ωij containing Γij , let V p

h (Ωij) be the subspace given in Subsection
2.2. Namely,

V p
h (Ωij) = span{ϕp : p ∈ Nh ∩ Ωij}.

For the extension E0 : W 0
h (Γ) → Vh(Ω) described in the last section, define

V 0
h (Ω) = {vh ∈ Vh(Ω) : vh = E0φ for some φh ∈ W 0

h (Γ)}.

For e ∈ EΓ, define
Vh(Ωe) = span{ϕp : p ∈ e ∩Nh}.

Then, we have the space decomposition

Vh(Ω) = V 0
h (Ω) +

∑

e∈EΓ
Vh(Ωe) +

∑

Γij

V p
h (Ωij).

Remark 4.1 Since the new extension E0 described in the last section is used in V 0
h (Ω),

the coarse subspace V 0
h (Ω) is different from the one in [8].

4.2 A substructuring preconditioner

Based on the space decomposition in the last subsection, we can define a preconditioner in
the standard way.

Define symmetric and positive definite operators as follows:
• the global coarse solver B0 : V 0

h (Ω) → V 0
h (Ω) satisfies:

(B0vh, vh) =∼ (Ahvh, vh), ∀vh ∈ V 0
h (Ω); (4.1)

• the edge solver Be : Vh(Ωe) → Vh(Ωe) satisfies:

(Bevh, vh) =∼ (Ahvh, vh), ∀vh ∈ Vh(Ωe); (4.2)
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• the interface solver Bij : V p
h (Ωij) → V p

h (Ωij) satisfies:

(Bijvh, vh) =∼ (Ahvh, vh), ∀vh ∈ V p
h (Ωij). (4.3)

In applications, the interface solver Bij is usually chosen as a symmetric multigrid
preconditioner for the restriction of Ah on V p

h (Ωij). Since all the subspaces V 0
h (Ω) and

Vh(Ωe) have low dimensions, the solvers B0 and Be can be simply defined as the restriction
operators of Ah on their respective subspaces.

Now, the desired domain decomposition preconditioner for Ah is defined as

B−1
h = B−1

0 Q0 +
∑

e∈EΓ
B−1

e Qe +
∑

Γij

B−1
ij Qij , (4.4)

where Q0 : Vh(Ω) → V 0
h (Ω), Qe : Vh(Ω) → Vh(Ωe) and Qij : Vh(Ω) → V p

h (Ωij) denote L2

projectors.

4.3 Implementation

Before describing our algorithms, we give exact definitions of the edge solver Be and
the coarse solver B0.
• the edge solver

It is known that

|∇v|0,Ωk
=∼ ‖v‖0,e, ∀v ∈ Vh(Ωe) (e ⊂ ∂Ωk).

Then,
(Ahv, v) =∼

∑

k∈Qe

ωk‖v‖2
0,e, ∀v ∈ Vh(Ωe).

We can define Be : Vh(Ωe) → Vh(Ωe) by

(Bev, w) = (
∑

k∈Qe

ωk)〈v, w〉e, ∀w ∈ Vh(Ωe).

The stiffness of Be is just a scaling of the mass matrix associated with e.
• the coarse solver
As we will see in Section 5, we have

|E0φf|21,Ωk
=∼ H log(H/h).

As in Proposition 3.1, one can verify that

|v0
h|21,Ωk

=∼ ‖v0
h−γh,∂Ωk

(v0
h)‖2

0,Wk
+H log(H/h)

∑

f⊂∂Ωk

|γh,f(v0
h−γh,∂Ωk

(v0
h))|2, ∀v0

h ∈ V 0
h (Ω).

Hence, we have for any v0
h ∈ V 0

h (Ω)

(Ahv0
h, v0

h) =∼
N∑

k=1

ωk{‖v0
h − γh,∂Ωk

(v0
h)‖2

0,Wk
+ H log(H/h)

∑

f⊂∂Ωk

|γh,f(v0
h − γh,∂Ωk

(v0
h))|2}.

This means that B0 can be defined as

(B0v
0
h, w0

h) =
N∑

k=1
ωk{〈v0

h − γh,∂Ωk
(v0

h), w0
h − γh,∂Ωk

(w0
h)〉h,Wk

+H log(H/h)
∑

f⊂∂Ωk

γh,f(v0
h − γh,∂Ωk

(v0
h)) · γh,f(w0

h − γh,∂Ωk
(w0

h))},
v0
h ∈ V 0

h (Ω),∀w0
h ∈ V 0

h (Ω).

11



Then, the stiffness matrix of B0 is calculated by B0 = (brl)L0×L0 with

brl = (B0(E0ψ
0
r ), E0ψ

0
l ) =

N∑
k=1

ωk{〈ψ0
r − γh,∂Ωk

(ψ0
r ), ψ

0
l − γh,∂Ωk

(ψ0
l )〉h,Wk

+H log(H/h)
∑

f⊂∂Ωk

γh,f(ψ0
r − γh,∂Ωk

(ψ0
r )) · γh,f(ψ0

l − γh,∂Ωk
(ψ0

l ))}.
(r, l = 1, · · · , L0)

Remark 4.2 Note that our coarse solver B0 is different from the one described in Algo-
rithm 6.10 of [8]. The coarse solver in [8] involves N extra unknowns (see also [5]), which
need to be solved by a special technique (see [32]). The coarse solver B0 is similar with the
one given in Subsection 4.3 of [7], in which stability of the coarse solver was not proved
(We do not know why the article [7] cited directly the stability result of the coarse solver in
[8]).

The action of B−1
h can be described by the following algorithm

Algorithm 4.1. For g ∈ Vh(Ω), the solution ug ∈ Vh(Ω) satisfying

(Bhug, vh) = (g, vh), ∀vh ∈ Vh(Ω)

can be gotten as follows:
Step 1. Computing u0 ∈ V 0

h (Ω) by

(B0u0, vh) = (g, vh), ∀vh ∈ V 0
h (Ω);

Step 2. Computing ue ∈ Vh(Ωe) in parallel by

(Beue, vh) = (g, vh), ∀vh ∈ Vh(Ωe);

Step 3. Computing up
ij ∈ V p

h (Ωij) in parallel by

(Biju
p
ij , vh) = (g, vh), ∀vh ∈ V p

h (Ωij);

Step 4. Set
ug = u0 +

∑

e∈EΓ
ue +

∑

Γij

up
ij .

Remark 4.3 The efficiency of the preconditioner Bh strongly depends on the action of the
coarse solver B0. The face basis extensions Efφf play a key role in the definition of B0.
This is why we focus on the design of the extension Ef in this paper.

In the rest of this subsection, we consider an acceleration of Algorithm 4.1 (see [16] for
the detailed discussion on this kind of acceleration). For convenience, set V = Vh(Ω), and
define

V1 = V 0
h (Ω) +

∑

Γij

V p
h (Ωij) and V2 =

∑

e∈EΓ
Vh(Ωe).

Let V ⊥
2 denote the orthogonal complement of V2 with respect to the inner product (Ah·, ·).

It is clear that
V = V1 + V2.

Let Ae : Vh(Ωe) → Vh(Ωe) denote the restriction of Ah on Vh(Ωe). Define

B−1
1 = B−1

0 Q0 +
∑

Γij

B−1
ij Qij .
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The following algorithm can be viewed as a combination between the CG method and
the multiplicative Schwarz method with the above decomposition for solving (2.4).
Algorithm 4.2 (multiplicative Schwarz-CG) Let u1 ∈ V be an initial guess such that the
error uh− u1 ∈ V ⊥

2 (for example, u1 can be chosen as u1 =
∑

e∈EΓ
A−1
e Qefh ∈ V2). When an

approximation un ∈ V has been gotten, we look for un+1 ∈ V as follows (n ≥ 1):
Step 1. Solve εn1 ∈ V1 by

εn1 = B−1
1 (fh −Ahun).

If εn1 = 0, then the iteration is terminated; otherwise, goto Step 2:
Step 2. Compute ue ∈ Vh(Ωe) in parallel by

(Aeue, v) = (fh −Ah(un + εn1), v), ∀v ∈ Vh(Ωe).

Define εn2 ∈ V2 by
εn2 =

∑

e∈EΓ
ue,

and set
εn = εn1 + εn2.

Step 3. Compute

αn = εn − (εn, Ahαn−1)
‖αn−1‖2

Ah

αn−1, (α0 = 0)

and
un+1 = un +

(fh −Ahun, αn)
‖αn‖2

Ah

αn.

Remark 4.4 Step 1 in Algorithm 4.2 would be implemented by Step 1 and Step 3 in Algo-
rithm 4.1. Since each Vh(Ωe) has a very low dimension, which equals the number of nodes
in the coarse edge e, Step 2 in Algorithm 4.2 is also very cheap.

4.4 Convergence

The following result gives an estimate of cond(B−1
h Ah).

Theorem 4.1 Let the extension be defined by Subsection 3.1. For the preconditioner Bh

defined in Subsection 4.3, we have

cond(B−1
h Ah) ≤ C log2(H/h), (4.5)

where C is a constant independent of h, H and the jumps of the coefficient ω across the
faces Γij.

The convergence of Algorithm 4.2 involves the subspace V ⊥
2 . Define T ∗ = (B−1

1 Ah)|V ⊥2 .
It is clear that T ∗ is symmetric and positive definite with respect to the inner product
(Ah·, ·).

Theorem 4.2 [16] Let the sequence un+1 be defined by Algorithm 4.2. Then

‖uh − un+1‖Ah
< 2(

√
κ(T ∗)− 1√
κ(T ∗) + 1

)n‖uh − u1‖Ah
, (4.6)

where κ(T ∗) denotes the condition number of the operator T ∗. Moreover, we have κ(T ∗) <
cond(B−1

h Ah).
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Remark 4.5 Algorithm 4.2 is as cheap as PCG method for solving (2.4) with the precondi-
tioner Bh. However, Theorem 4.2 indicates that the former has a faster convergence speed
than the later.

Before proving Theorem 4.1, we need to derive a new estimate of the extension E0. For
φ ∈ Wh(Γ), define φ0 ∈ W 0

h (Γ) by

φ0 =
∑

f∈FΓ

γh,f(φ)I0
f1 +

∑

e∈EΓ
γh,e(φ)I0

e1 +
∑

p∈VΓ

φ(p)ϕp. (4.7)

Lemma 4.1 Let φ ∈ Wh(Γ), and let φ0 be defined by (4.7). Then,

‖φ0 − γh,∂Ωk
(φ)‖2

0,Wk
<∼ ‖φ− γh,∂Ωk

(φ)‖2
0,Wk

, (4.8)

and
|γh,∂Ωk

(φ0 − γh,∂Ωk
(φ))|2 <∼ H−2‖φ− γh,∂Ωk

(φ)‖2
0,∂Ωk

. (4.9)

Proof. Since
1 =

∑

f⊂∂Ωk

I0
f1 +

∑

e⊂∂Ωk

I0
e1 +

∑

p∈∂Ωk∩VΓ

φp on ∂Ωk,

we have

γh,∂Ωk
(φ) =

∑

f⊂∂Ωk

γh,∂Ωk
(φ)I0

f1 +
∑

e⊂∂Ωk

γh,∂Ωk
(φ)I0

e1 +
∑

p∈∂Ωk∩VΓ

γh,∂Ωk
(φ)ϕp on ∂Ωk.

Then,

φ0 − γh,∂Ωk
(φ) =

∑

f⊂∂Ωk

(γh,f(φ)− γh,∂Ωk
(φ))I0

f1 +
∑

e⊂∂Ωk

(γh,e(φ)− γh,∂Ωk
(φ))I0

e1

+
∑

p∈∂Ωk∩VΓ

(φ(p)− γh,∂Ωk
(φ))ϕp

=
∑

f⊂∂Ωk

γh,f(φ− γh,∂Ωk
(φ))I0

f1 +
∑

e⊂∂Ωk

γh,e(φ− γh,∂Ωk
(φ))I0

e1

+
∑

p∈∂Ωk∩VΓ

(φ(p)− γh,∂Ωk
(φ))ϕp on ∂Ωk. (4.10)

Furthermore, we get by the direct calculation and the inverse estimates

‖φ0 − γh,∂Ωk
(φ)‖2

0,Wk
<∼ H

∑

e⊂∂Ωk

|γh,e(φ− γh,∂Ωk
(φ))|2 + h‖φ− γh,∂Ωk

(φ)‖2
0,∞,Wk

<∼ ‖φ− γh,∂Ωk
(φ)‖2

0,Wk
, (4.11)

and

‖φ0 − γh,∂Ωk
(φ)‖2

0,∂Ωk
<∼ H2

∑

f⊂∂Ωk

|γh,f(φ− γh,∂Ωk
(φ))|2 + h2‖φ− γh,∂Ωk

(φ)‖2
0,∞,∂Ωk

<∼ ‖φ− γh,∂Ωk
(φ)‖2

0,∂Ωk
. (4.12)

It can be verified that

|γh,∂Ωk
(φ0 − γh,∂Ωk

(φ))|2 <∼ H−2‖φ0 − γh,∂Ωk
(φ)‖2

0,∂Ωk
,

which, together with (4.12), gives (4.9).
2

14



Lemma 4.2 Let φ ∈ Wh(Γ), and let φ0 be defined by (4.7). Then,

n∑

k=1

ωk|E0φ0|21,Ωk
<∼ log(H/h)‖φ‖2

∗,Γ. (4.13)

Proof. It suffices to estimate (3.19) more carefully. It is easy to see that

φ0 − γh,∂Ωk
(φ0) = (φ0 − γh,∂Ωk

(φ))− γh,∂Ωk
(φ0 − γh,∂Ωk

(φ)).

By the triangle inequality, we deduce

‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk
<∼ ‖φ0 − γh,∂Ωk

(φ)‖2
0,Wk

+ ‖γh,∂Ωk
(φ0 − γh,∂Ωk

(φ))‖2
0,Wk

<∼ ‖φ0 − γh,∂Ωk
(φ)‖2

0,Wk
+ H|γh,∂Ωk

(φ0 − γh,∂Ωk
(φ))|2,

and

‖φ0 − γh,∂Ωk
(φ0)‖2

0,∂Ωk
<∼ ‖φ0 − γh,∂Ωk

(φ)‖2
0,∂Ωk

+ ‖γh,∂Ωk
(φ0 − γh,∂Ωk

(φ))‖2
0,∂Ωk

<∼ ‖φ0 − γh,∂Ωk
(φ)‖2

0,∂Ωk
+ H2|γh,∂Ωk

(φ0 − γh,∂Ωk
(φ))|2.

Substituting (4.8)-(4.9) and (4.12) into the above two inequalities, yields

‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk
<∼ ‖φ− γh,∂Ωk

(φ)‖2
0,Wk

+ H−1‖φ− γh,∂Ωk
(φ)‖2

0,∂Ωk
, (4.14)

and
‖φ0 − γh,∂Ωk

(φ0)‖2
0,∂Ωk

<∼ ‖φ− γh,∂Ωk
(φ)‖2

0,∂Ωk
. (4.15)

Combining (4.14) with (2.11), leads to

‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk
<∼ log(H/h)H−1‖φ− γh,∂Ωk

(φ)‖2
1
2
,∂Ωk

. (4.16)

Plugging (4.16) and (4.15) in (3.19), and using Friedrichs’ inequality, leads to (4.13).
2

Proof of Theorem 4.2. The idea of the proof is standard. But, for readers’ convenience,
we still give a complete proof of this theorem below. One needs to establish a suitable
decomposition for vh ∈ Vh(Ω)

vh = v0 +
∑

e∈EΓ
ve +

∑

Γij

vij , (4.17)

with
v0 ∈ V 0

h (Ω), ve ∈ Vh(Ωe) and vij ∈ V p
h (Ωij).

This decomposition should satisfy the stability condition

(B0v0, v0) +
∑

e∈EΓ
(Beve, ve) +

∑

Γij

(Bijvij , vij) <∼ log2(H/h)(Ahvh, vh). (4.18)

Set φh = vh|Γ, and define φ0 ∈ W 0
h (Γ) as in (4.7). For e ∈ EΓ and f = Γij ∈ FΓ, set

φe = I0
e[φh − γh,e(φh)], and φij = I0

f[φh − γh,f(φh)].

It is clear that φe ∈ W̃h(e) and φij ∈ W̃h(f). It is easy to see that

φh = φ0 +
∑

e∈EΓ
φe +

∑

Γij

φij . (4.19)
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Let ve be the zero extension of φe, and set v0 = E0φ0. Then,

ve ∈ Vh(Ωe) and v0 ∈ V 0
h (Ω).

Let vH
ij ∈ V p

h (Ωij) be defined such that vH
ij |Γij = φij , and vH

ij is discrete harmonic on Ωi and
Ωj . Set

vp
k = (vh − v0 −

∑

e∈EΓ
ve −

∑

Γij

vH
ij )|Ωk

. (4.20)

Then, we have vk ∈ V p
h (Ωk) by (4.19). For each k, let mk be the number of faces that

belong to ∂Ωk. Define
vij = vH

ij + vp
i /mi + vp

j /mj .

It suffices to verify (4.18) for the functions defined above. For convenience, set

G(vh) = (B0v0, v0) +
∑

e∈EΓ
(Beve, ve) +

∑

Γij

(Bijv
H
ij , vH

ij ).

Using (4.1), (4.13) and the trace Theorem, we get

(B0v0, v0) <∼ log(H/h)(Ahvh, vh). (4.21)

Moreover, we have by (4.2), (2.12) and (2.14)

(Beve, ve) <∼ ‖ve‖2
0,e <∼ log2(H/h)

∑

k∈Qe

ωk

∫

Ωk

|∇vh|2dp. (4.22)

Here, we have used the discrete norm to derive the first inequality for ve vanishing at all
nodes outside e. Besides, we deduce by (4.3), the definition of vH

ij and (2.13)

(Bijv
H
ij , vH

ij ) <∼ (ωi + ωj)‖φij‖2

H
1
2
00(Γij)

<∼ log2(H/h)(ωi|vh|21,Ωi
+ ωj |vh|21,Ωj

). (4.23)

This, together with (4.21) and (4.22), leads to

G(vh) <∼ log2(H/h)(Ahvh, vh). (4.24)

On the other hand, it follows by (4.20) that

|vp
k|21,Ωk

<∼ |vh|21,Ωk
+ |v0|21,Ωk

+
∑

e∈EΓ
|ve|21,Ωk

+
∑

Γij

|vH
ij |21, Ωk

.

Combing this with (4.1)-(4.3), yields

n∑

k=1

ωk|vp
k|21,Ωk

<∼ (Ahvh, vh) + G(vh).

This, together with (4.24), leads to

∑

Γij

(Bij(v
p
i /mi + vp

j /mj), v
p
i /mi + vp

j /mj) <∼
n∑

k=1

ωk|vp
k|21,Ωk

<∼ log2(H/h)(Ahvh, vh).

By the definition of vij , (4.23) and the above inequality, we further get
∑

Γij

(Bijvij , vij) <∼ log2(H/h)(Ahvh, vh).

Now, (4.18) is a direct consequence of the above inequality, together with (4.24).
2
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5 Analysis for the stability of the extension Ef

This section is devoted to verification of the stability condition (3.16), which has been used
in Lemma 4.2. Since quasi-uniform meshes are considered, the analysis is a bit technical.
Our basic idea is to introduce a suitable “approximate” extension of Ef. This auxiliary
extension is defined by positive integers, so that its stability can be verified more easily by
estimating two finite sums associated with the discrete H1 semi-norm.

5.1 An auxiliary extension

For face f = Γij and a node in Ωij , let p′, p′′, df and Λf be defined as in Subsection 4.1.
Without loss of generality, we assume that h ≤ min{|pp′| : p ∈ Nh∩(Ωij\f)}. For a positive
number x, let [x] denote the integer part of x. Set nf = [df

h ]. For any node p ∈ Ωij\f with
p′ ∈ f, define

mp = [
|pp′|
h

] and np = [
|p′p′′|

h
].

To understand the meaning of the integers mp and np more intuitively, we image that the
segments pp′ and p′p′′ are divided into some smaller segments with the size h. Then, mp

and np can be viewed roughly as the numbers of the division points on the segments pp′

and p′p′′, respectively.
By the definition of the set Λf, it is easy to see that the positive integers mp and np

possess the properties:
Property A. For each node p ∈ Λf, we have 1 ≤ mp ≤ np ≤ nf;
Property B. For two integers r and k satisfying 1 ≤ r ≤ k ≤ nf, there are at most

O(nf) nodes p ∈ Λf, such that these nodes p define the same mp = r and np = k;
Property C. For an integer k satisfying 1 ≤ k ≤ nf, there are at most O(mpnf) nodes

p ∈ Λf, such that these nodes p define the same np = k.
For the constant-like basis function φf = I0

f1, define the auxiliary extension

(E′
fφf)(p) =





1, if p ∈ f,
1− mp

np
, if p ∈ Λf,

0, otherwise.
(5.1)

For the verification of the stability (3.16), one needs to prove the following two inequalities

|(Ef − E′
f)φf|21,Ωi

<∼ df log(df/h) (5.2)

and
|E′

fφf|21,Ωi
<∼ df log(df/h). (5.3)

5.2 Auxiliary results

In this subsection, we estimate two finite sums, which will be used to verify the inequality
(5.3).

In the rest of this section, p1 and p2 always denote two neighboring nodes. Since
the triangulation Th is quasi-uniform, there exists a (fixed) positive integer k0, such that
|p1p2| ≤ k0h for any two neighboring nodes p1 and p2. Then, it can be verified, by the
definitions of mp and np, that

|mp1 −mp2 |, |np1 − np2 | ≤ k0 + 1. (5.4)
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Lemma 5.1 Let Λ∂
f be the set of nodes p, at which the extension Efφf vanish. Namely,

Λ∂
f = {p ∈ Nh ∩ Ω̄ij : p 6∈ f, p 6∈ Λf}.

Then,
h

∑

p1∈Λ∂
f

∑

p2∈Λf

(1− mp2

np2

)2 <∼ df. (5.5)

Note that p1 and p2 above denote two neighboring nodes.

Proof. For a node p2 ∈ Λf, there are at most finite nodes p1 ∈ Λ∂
f, such that p1 and p2 are

neighboring each other. Then,

h
∑

p1∈Λ∂
f

∑

p2∈Λf

(1− mp2

np2

)2 <∼ h
∑

p2∈Λ̃f

(1− mp2

np2

)2, (5.6)

where

Λ̃f = {p ∈ Λf : there is p∗ ∈ Λ∂
f such that p and p∗ are neighboring}.

For p ∈ Λ̃f, let p∗ ∈ Λ∂
f denote a neighboring node with p, and let p′∗ be the projection of

p∗ on the plane containing f. Set

Λ̃(1)
f = {p ∈ Λ̃f : p′∗ ∈ f} and Λ̃(2)

f = {p ∈ Λ̃f : p′∗ /∈ f}.

Then,
Λ̃f = Λ̃(1)

f ∪ Λ̃(2)
f .

It is easy to see that the set Λ̃(2)
f contains O(nf) nodes at most. It follows by (5.6) that

h
∑

p1∈Λ∂
f

∑

p2∈Λf

(1− mp2

np2

)2 <∼ h
∑

p∈Λ̃
(1)

f

(1− mp

np
)2 + h

∑

p∈Λ̃
(2)

f

(1− mp

np
)2

<∼ h
∑

p∈Λ̃
(1)

f

(1− mp

np
)2 + df. (5.7)

Let p ∈ Λ̃(1)
f . From the definition of Λ∂

f, we know that either p∗ ∈ ∂Ωij\∂f or |p∗p′∗| > |p′∗p′′∗|,
where p′′∗ is defined as in Subsection 3.1. By Assumption 3.1, we have mp∗ ≥ np∗ in any
case. Then, we deduce, by (5.4), that

mp ≥ mp∗ − (k0 + 1) ≥ np∗ − (k0 + 1) ≥ np − 2(k0 + 1).

This implies that
max{1, np − k∗} ≤ mp ≤ np, ∀p ∈ Λ̃(1)

f ,

with k∗ = 2(k0 + 1). Thus, we have from Property A and Property B

∑

p∈Λ̃
(1)

f

(1− mp

np
)2 <∼ nf





k∗∑

np=1

k∗∑

mp=1

(1− mp

np
)2 +

nf∑

np=k∗+1

np∑

mp=np−k∗
(1− mp

np
)2





<∼ nf



(k∗)2 +

nf∑

np=k∗+1

np∑

mp=np−k∗
(1− mp

np
)2



 . (5.8)
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It is easy to see that

np∑

mp=np−k∗
(1− mp

np
)2 ≤

np∑

mp=np−k∗
(1− np − k∗

np
)2 ≤ (k∗)3 · 1

n2
p

.

Plugging this in (5.8), and note that k∗ is a constant, leads to

h
∑

p∈Λ̃
(1)

f

(1− mp

np
)2 <∼ df


(k∗)2 + (k∗)3

nf∑

np=k∗+1

1
n2

p


 <∼ df.

Combining (5.7) with the above inequality, gives the desired result.
2

Lemma 5.2 The following inequality holds for two neighboring nodes p1 and p2

h
∑

p1,p2∈Λf

(
mp1

np1

− mp2

np2

)2 <∼ df log(df/h). (5.9)

Proof. For p1 ∈ Λf, define

Λf,p1 = {p ∈ Λf : p is neighboring with p1}.

Let k0 be defined by (5.4). Then, we have from Property A and Property B

h
∑

p1,p2∈Λf

(
mp1

np1

− mp2

np2

)2 <∼ h · df
h

nf∑

np1=1

np1∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

= df

k0+1∑

np1=1

np1∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

+ df

nf∑

np1=k0+2

k0∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

+ df

nf∑

np1=k0+2

np1∑

mp1=k0+1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

= I1 + I2 + I3. (5.10)

It is clear that I1 <∼ df. When mp1 ≤ k0, we deduce from (5.4) that mp2 ≤ 2k0 + 1 for
p2 ∈ Λf,p1 . Note that k0 is a constant, we get

I2 <∼ df

nf∑

np1=k0+2

∑

p2∈Λf,p1

(
1

n2
p1

+
1

n2
p2

)

<∼ df

nf∑

np1=k0+2

(
1

n2
p1

+
1

(np1 − k0 − 1)2

)
<∼ df. (5.11)

It follows by (5.4) that

I3 <∼ df

nf∑

np1=k0+2

np1∑

mp1=k0+1

k0+1∑

k=−k0−1

k0+1∑

r=−k0−1

(
mp1

np1

− mp1 + r

np1 + k

)2
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= df

nf∑

np1=k0+2

np1∑

mp1=k0+1

k0+1∑

k=−k0−1

k0+1∑

r=−k0−1

(
kmp1 − rnp1

np1(np1 + k)

)2

<∼ df

nf∑

np1=k0+2

np1∑

mp1=k0+1

m2
p1

+ n2
p1

n2
p1

(np1 − k0 − 1)2

<∼ df

nf∑

np1=k0+2

np1

(np1 − k0 − 1)2
<∼ df log nf.

Plugging (5.11) and the above inequality in (5.10), leads to

h
∑

p1,p2∈Λf

(
mp1

np1

− mp2

np2

)2 <∼ df log(df/h).

2

5.3 Proof of Theorem 4.1

It suffices to verify that

|Efφf|21,Ωi
, |Efφf|21,Ωj

<∼ df log(df/h) =∼ |φf|2
H

1
2
00(f)

. (5.12)

Let E′
fφf be the auxiliary extension defined by Subsection 5.1.

Step 1. Verify the inequality (5.2)
Let p ∈ Λf. Then, we have

|(Efφf − E′
fφf)(p)| = | |pp′|

|p′p′′| − [
|pp′|
h

]/[
|p′p′′|

h
]|. (5.13)

Since
|pp′|
h

/(
|p′p′′|

h
+ 1) ≤ [

|pp′|
h

]/[
|p′p′′|

h
] ≤ (

|pp′|
h

+ 1)/
|p′p′′|

h
,

we get
|pp′|

|p′p′′|+ h
≤ [

|pp′|
h

]/[
|p′p′′|

h
] ≤ |pp′|+ h

|p′p′′| .

Plugging this in (5.13), leads to

|(Efφf − E′
fφf)(p)| ≤ h

|p′p′′| ≤
1
np

. (5.14)

By the inverse estimate and the discrete L2-norm, we get

|(Ef − E′
f)φf|21,Ωi

<∼ h−2‖(Ef − E′
f)φf|20,Ωi

=∼ h
∑

p∈Λf

(Efφf − E′
fφf)2(p).

This, together with (5.14), yields

|(Ef − E′
f)φf|21,Ωi

<∼ h
∑

p∈Λf

1
n2

p

. (5.15)

By Property A and Property C, we get

∑

p∈Λf

1
n2

p

<∼ nf

nf∑

np=1

mp

n2
p

≤ nf

nf∑

np=1

np

n2
p

<∼ nf log nf.
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Plugging this in (5.15), gives (5.2).
Step 2. Verify the inequality (5.3)
For simplicity of exposition, let Λ∗f denote the set of neighboring node paring (p1, p2),

which satisfies (E′
fφf)(p1)− (E′

fφf)(p2) 6= 0. By the discrete H1 semi-norm, we have

|E′
fφf|21,Ωi

=∼ h
∑

(p1, p2)∈Λ∗f

|(E′
fφf)(p1)− (E′

fφf)(p2)|2. (5.16)

For ease of notation, define

Λf, b = {p ∈ Nh ∩ f : p closes ∂f}.

It is easy to see that the set Λ∗f can be decomposed into several groups: (a) p1 ∈ Λf,b and
p2 ∈ ∂f; (b) p1 ∈ f and p2 ∈ Λf; (c) p1 ∈ Λ∂

f and p2 ∈ Λf; (d) p1, p2 ∈ Λf. It is certain
that one can also consider the inverse situation with exchanging the positions of p1 and p2,
but this will not affect the result.

It follows by (5.16) that

|E′
fφf|21,Ωi

=∼ h
∑

p1∈Λf,b

∑

p2∈∂f
(1− 0)2 + h

∑

p1∈f

∑

p2∈Λf

(
mp2

np2

)2

+ h
∑

p1∈Λ∂
f

∑

p2∈Λf

(1− mp2

np2

)2 + h
∑

p1,p2∈Λf

(
mp1

np1

− mp2

np2

)2. (5.17)

It is clear that the set Λf,b contains only O(nf) nodes. Then, we get for two neighboring
nodes p1 and p2

h
∑

p1∈Λf,b

∑

p2∈∂f
(1− 0)2 <∼ h · df

h
= df. (5.18)

When p2 ∈ Λf is neighboring with some p1 ∈ f, we have

mp2 ≤ |p2p
′
2|/h ≤ |p1p2|/h ≤ k0.

Besides, for any p2 ∈ Λf, there are at most finite nodes p1 ∈ f, such that p1 and p2 are
neighboring each other. Thus, we deduce by Property A and Property B

h
∑

p1∈f

∑

p2∈Λf

(
mp2

np2

)2 <∼ h · df
h

k0∑

l=1

nf∑

np2=1

(
l

np2

)2 <∼ df. (5.19)

Substituting (5.18)-(5.19), (5.5) and (5.9) into (5.17), yields (5.3).
Step 3. Prove the desired result (5.12)
Combining (5.2) and (5.3), yields

|Efφf|21,Ωi
<∼ df log(df/h).

In the same way, we can prove that

|Efφf|21,Ωj
<∼ df log(df/h).

On the other hand, it can be verified, by the discrete semi-norm in Subsection 2.2, that

|φf|2
H

1
2
00(f)

=∼ df log(df/h).

2
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6 Numerical experiments

In this section, we give some numerical results to confirm our theoretical results described
in section 4.

Consider the elliptic problem (2.1) with Ω being the cube Ω = [0, 1]3, and the coefficient
a(x, y, z) being defined by

a(x, y, z) = 10−5, if x, y ≤ 0.5 or x, y ≥ 0.5;
a(x, y, z) = 1, otherwise.

The source function f is chosen in a suitable manner.
Let Ω be decomposed into n cube subdomains with the edge length H. To illustrate wide

practicality of the new method, we consider tetrahedron elements instead of hexahedron
elements. Let each subdomain be divided into tetrahedron elements with the size h in the
standard way, and use the usual P1 finite element approximate space.

We solve the algebraic system associated with the equation (2.4) by PCG iteration with
the preconditioner Bh defined in Section 4 or Algorithm 4.2. Here, each local solver Bij is
chosen as the symmetric multigrid preconditioner for the restriction of Ah on the subspace
V 0

h (Ωij). The iteration terminates when the relative remainder is less than 1.0D − 5. The
iteration counts are listed as the following tables.

Table 6.1
iteration counts for PCG with Bh

H/h H = 1/4 H = 1/6 H = 1/8
8 29 32 32
16 40 42 42
32 50 51 52

Table 6.2
iteration counts for Algorithm 4.2

H/h H = 1/4 H = 1/6 H = 1/8
8 24 26 26
16 31 33 33
32 39 41 41

These numerical results indicates that the convergence of the new preconditioner is
stable with the subdomain number N , and depends slightly on the ratio H/h. These are
just predicted by Theorem 4.1 and Theorem 4.2. Besides, the numerical results show that
Algorithm 4.2 is indeed more efficient than the standard PCG.

7 Appendix

In this Appendix, we revise the definition of the extension Ef for the general case without
Assumption 3.1.
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Let of ∈ f denote the center of the largest circle2 contained in f. Then, of satisfies
dist(of, ∂f) = df. Through the center of, we draw the perpendicular line L of f. Let
q∂
1 , q∂

2 ∈ ∂Ωij denote the two intersection points of L with ∂Ωij . Set

sf = min{|ofq∂
1 |, |ofq∂

2 |}.
Set rf = df/sf. Since Ωi and Ωj are regular and convex domains, the ratio rf is uniformly
bounded for every f. With the same notations in Subsection 3.1, set

Λf = {p ∈ Nh ∩ (Ωij\f) : p′ ∈ f, rf|pp′| ≤ |p′p′′|}.
For a face f = Γij , we revise the extension Ef as :

(Efφf)(p) =





1, if p ∈ f,

1− rf|pp′|
|p′p′′| , if p ∈ Λf,

0, otherwise.
(7.1)

For such revision, the proof of Theorem 3.1 is almost the same with that in Section 5.
We revise the definition of the positive integer mp for p ∈ Ωij\f (p′ ∈ f) as

mp = [
rf|pp′|

h
],

but reserve the definition of the auxiliary extension E′
f given in (5.1). We need only to

revise slightly the proof of Lemma 5.1. Below is the changes needed to make.
The inequality (5.4) now becomes to be

|mp1 −mp2 | ≤ rfk0 + 1, |np1 − np2 | ≤ k0 + 1, (7.2)

for two neighboring nodes p1 and p2.
Let Λ∂

f and Λ̃f be defined in Lemma 5.1. For p ∈ Λ̃f, let p∗ ∈ Λ∂
f be some neighboring

node with p. When p∗ ∈ ∂Ωij , we deduce that rf|p∗p′∗| ≥ |p′∗p′′∗| by the definition of rf and
the convexity of Ωi and Ωj . Then, we have mp∗ ≥ np∗ for p∗ ∈ Λ∂

f. For p ∈ Λ̃f, we get by
(7.2)

mp ≥ mp∗ − (rfk0 + 1) ≥ np∗ − (rfk0 + 1) ≥ np − (rf + 1)k0 − 2.

This implies that
max{1, np − k∗} ≤ mp ≤ np, ∀p ∈ Λ̃f,

with k∗ = (rf + 1)k0 + 2.

Remark 7.1 It is easy to see that the above revision is needed only for the case with rf > 1,
since rf ≤ 1 implies that Assumption 3.1 is satisfied. When rf ≤ 1, the use of the original
definition of Ef (see Subsection 3.1) can reduce the cost for calculating Efφf.

8 Conclusions

We have developed a kind of simple nearly harmonic extension for the constant-like basis
function. This extension is used to define a coarse subspace, and then is applied to construct
a substructuring preconditioner with inexact subdomain solvers. The simplicity of the
extension guarantees that the resulting preconditioner is easy to implement.

2If f possesses two parallel edges, then there may exist infinite largest circles contained in f. For this
case, one needs to consider two such circles, which are tangent with three or more edges of f. Besides, the
point of can be also chosen as any “central” point of f. Different choices of of will result in different values
of the constant in the right side of (5.5).
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