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Abstract

We shall establish a discrete weighted Helmholtz decomposition in edge element
spaces, which is stable uniformly with respect to the jumps in the discontinuous weight
function. The stable decomposition is then applied to show that the preconditioned
edge element system for solving saddle-point Maxwell equations by a non-overlapping
domain decomposition preconditioner developed in [22] is nearly optimal, i.e., its con-
dition number grows only as the logarithm of the dimension of the local subproblem
associated with an individual subdomain; more importantly, the condition number is
also independent of the jumps of coefficients across the interfaces between any two
subdomains.

Key words. Maxwell’s equations, Nédélec finite elements, weighted Helmholtz decom-
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1 Introduction

In the numerical simulation of electromagnetic wave propagation, one needs to repeatedly
solve the following saddle-point Maxwell system at each time step [9] [10] [14] [23] [28] [29]
[30]:

{
curl(α curl u) + γ0βu = f in Ω,
div(βu) = g in Ω .

(1.1)

The system will be complemented with the following boundary condition:

u× n = 0 on ∂Ω. (1.2)

We shall consider Ω to be a simply-connected open domain in R3 with a Lipschitz boundary
∂Ω and the unit outward normal direction n on ∂Ω. The source functions f ∈ L2(Ω)3 and
g ∈ L2(Ω) satisfy the compatibility condition γ0 g = ∇ · f . The coefficients α(x) and β(x)
are two positive bounded functions in Ω. In applications, the ratio α(x)/β(x) = c(x) is
the speed of light in the concerned medium. It is known that c(x) is a constant in each
medium, and it changes only slightly in different media. The constant γ0 is non-negative,
i.e., γ0 ≥ 0, and it is allowed to be identically zero. It is this extreme case that causes the
most troublesome technical difficulty to be dealt with in the subsequent analysis.

Edge finite element methods have been widely used for numerical solution of the sys-
tem (1.1)-(1.2) in recent years, see, e.g., [9] [10] [24]. As is well-known, the algebraic
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systems arising from the discretization by edge element methods are quite different from
the ones arising from the discretization by standard nodal finite element methods. Thus
the construction of efficient solvers such as multigrid and domain decomposition meth-
ods for the nodal element systems, which has been well developed for the second order
elliptic problems in the past two decades, does not work for edge element discretization
of the equations (1.1)-(1.2) in general, especially in three dimensions. One major techni-
cal difficulty in handling the Maxwell system (1.1), compared to the second order elliptic
equations, lies in the fact that the curl operator has a much larger null space than the
one for the gradient. A fundamental tool, which may treat the larger null space and at
the same time take the advantage of some existing methodologies in developing effective
multigrid and domain decomposition methods for elliptic equations, is the Helmholtz-type
decompositions (see, for example, [11] and [2]). Based on these decompositions, many
variants of efficient multigrid and domain decomposition methods have been constructed
and analyzed for the edge element systems arising from the discretization of the Maxwell
equations; see [2] [12] [14] [15] [21] [22] [29] and the references therein.

However, all the existing Helmholtz-type decompositions do not involve any coefficients
in the Maxwell system (1.1), so they may not help analyze how the convergence of the
existing methods depend on the coefficients or their jumps across interfaces. In this work
we shall establish a weighted Helmholtz decomposition, that is stable uniformly with
respect to the concerned discontinuous coefficients. This seems to be the first weighted
Helmholtz decomposition in the literature.

The stable Helmholtz decomposition is then applied to investigate the convergence of
the non-overlapping domain decomposition preconditioner developed in [22] for solving
the saddle-point Maxwell equations (1.1). It has been shown in [22] that the resulting
preconditioned system is nearly optimal in the sense that its condition number grows only
as the logarithm of the ratio between the subdomain diameter and the finite element mesh
size. And it is important for us to emphasize that when the lower order term is present in
the Maxwell system (1.1), i.e., γ0 > 0, the condition number of the resulting preconditioned
system is also independent of the jumps in the coefficients across the interfaces between
any two subdomains (see the proof of Theorem 3.2 in [22]). But when the lower order term
is missing in the Maxwell system (1.1), i.e., γ0 = 0, or when γ0 is positive but relatively
much smaller than α in (1.1), we do not know how the condition number of the global
preconditioned system depends on the jumps of coefficients. In the present paper we shall
apply the new stable weighted Helmholtz decomposition mentioned above to show that
for this case the condition number is still independent of the jumps of the coefficients.

The outline of the paper is as follows. In Section2, we describe a triangulation and the
edge elements, and introduce some basic formulae and definitions. The discrete weighted
Helmholtz decomposition will be constructed and analyzed in Section 3. The construction
of a non-overlapping domain decomposition preconditioner is carried out in Section 4,
while the condition number of the preconditioned system is estimated in Sections 4 and 5.

2 Edge elements and domain decomposition

This section shall be devoted to the introduction of the edge elements which will be used
in Section 4 for discretization of the system (1.1)-(1.2) and a few fundamental concepts to
be used in the subsequent sections for construction and analysis of a weighted Helmholtz
decomposition and a non-overlapping domain decomposition preconditioner.
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2.1 Edge element discretization

We start with the introduction of some subdomains and the triangulation of domain Ω,
as well as the edge elements.

Subdomains in terms of the coefficient. For a given positive discontinuous func-
tion β(x), we assume that the entire domain Ω is decomposed into the union of N0 convex
polyhedra Ω0

1,Ω
0
2, · · · ,Ω0

N0
such that the coefficient β does not vary much on each Ω0

r , i.e.,
its function values and derivatives are bounded on each Ω0

r from above and below by two
constants whose ratio is of order O(1).

Without loss of generality, we assume that for r = 1, . . . , N0,

β(x) = βr, ∀x ∈ Ω0
r ,

where βr is a constant.
Edge and nodal element spaces. Next, we further divide each Ω0

r into smaller
tetrahedral elements of size h so that elements from any two neighboring subdomains are
consistent with each other on their common face. Let Th be the resulting triangulation
of the domain Ω, which we assume is quasi-uniform. By Eh and Nh we denote the set of
edges of Th and the set of nodes in Th respectively. Then the Nédélec edge element space,
of the lowest order, is a subspace of piecewise linear polynomials defined on Th (cf. [11]
[26]):

Vh(Ω) =
{
v ∈ H0(curl; Ω); v |K∈ R(K), ∀K ∈ Thk

}
,

where R(K) is a subset of all linear polynomials on the element K of the form:

R(K) =
{
a + b× x; a,b ∈ R3, x ∈ K

}
.

It is known that for any v ∈ Vh(Ω), its tangential components are continuous on all
edges of each element in the triangulation Th, and v is uniquely determined by its moments
on each edge e of Th: {

λe(v) =
∫

e
v · teds; e ∈ Eh

}

where te denotes the unit vector on the edge e.
As we will see, the edge element analysis involves frequently the nodal element space.

By Zh(Ω) we will denote the continuous piecewise linear finite element space of H1
0 (Ω) on

the mesh Th.

2.2 Some edge and nodal element subspaces

We shall often need to consider the restriction of the edge element space Vh(Ω) on a
subdomain or a part of its boundary.

Let Ω̂ denote a generic polyhedra subdomain of Ω. The faces and vertices of a sub-
domain Ω̂ will be denoted by f and v respectively. Let G be either the entire boundary
Γ̂ = ∂Ω̂ or a face f of Γ̂, then we define the restriction space of the tangential components
of the functions in Vh(Ω) on G by

Vh(G) =
{
ψ ∈ L2(G)3; ψ = v × n on G for some v ∈ Vh(Ω)

}
.

The restrictions of Vh(Ω) on each subdomain Ω̂ is denoted by Vh(Ω̂). From now on, the
notation e, with e ⊂ G ⊂ Γ̂, always means that e is an edge of Th and lies on G. The
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following local subspaces of Vh(Ω̂) and Vh(f) will be important to our analysis:

V 0
h (Ω̂) =

{
v ∈ Vh(Ω̂); v × n = 0 on Γ̂

}
,

V 0
h (f) =

{
Φ = v × n ∈ Vh(f); λe(v) = 0, ∀ e ⊂ ∂f ∩ Eh

}
.

Similarly, the restrictions of Zh(Ω) in a subdomain Ω̂, on Γ̂ and on a face f, are written as
Zh(Ω̂), Zh(Γ̂), and Zh(f), respectively. For a subset G of Γ̂, we define a “local” subspace

Z0
h(G) = {v ∈ Zh(Γ̂); v = 0 at all nodes on Γ̂\G}.

We end this subsection with two frequently used extension operators related to a
subdomain Ω̂. The first is the discrete curl curl-extension operator R̂h : Vh(Γ̂) → Vh(Ω̂)
defined as follows: For any Φ ∈ Vh(Γ̂), R̂hΦ satisfies R̂hΦ× n = Φ on Γ̂ and solves

(curl R̂hΦ, curl vh) = 0, ∀vh ∈ V 0
h (Ω̂).

The second extension is the discrete harmonic extension operator R̂h : Zh(Γ̂) → Zh(Ω̂).
For any wh ∈ Zh(Γ̂), R̂hwh ∈ Zh(Ω̂) satisfies R̂hw = wh on Γ̂ and solves

(∇R̂hwh,∇vh) = 0, ∀ vh ∈ Zh(Ω̂) ∩H1
0 (Ω̂) .

3 A stable weighted Helmholtz-type decomposition

We devote this section to the construction of a discrete weighted Helmholtz-type decom-
position, that is stable in certain norm, uniformly with respect to the jumps of a given
weight coefficient function β(x). This decomposition will play a fundamental role in the
subsequent analysis of the condition number of the preconditioned edge element system
by means of a non-overlapping domain decomposition preconditioner.

From now on, we shall frequently use the notations <∼ and =∼ . For any two non-negative
quantities x and y, x <∼ y means that x ≤ Cy for some constant C independent of mesh
size h, subdomain size d and the possible large jumps of some related coefficient functions
across the interface between any two subdomains. x =∼ y means x <∼ y and y <∼ x.

3.1 Assumptions and results

We need to introduce a few concepts in order to describe the relation between different
subdomains from {Ω0

r}N0
r=1, which are described in Section 2.1, in terms of the coefficient

function β(x).

Definition 3.1 For a polyhedron Ω0
r, another polyhedron Ω0

r′ is called a “son” of Ω0
r if

Ω0
r′ ∩ Ω0

r 6= ∅ and βr′ < βr. In this case, the subdomain Ω0
r is called a “mother” of Ω0

r′.

Now we make an assumption on the coefficients, and the assumption seems mild and
reasonable for most applications. For a polyhedron Ω0

r , we shall assume that they satisfies
either of the following two conditions:

Condition A. At most two “ mother ” subdomains of Ω0
r do not intersect each other.

Here a “ mother ” subdomain may be the union of all mother subdomains of Ω0
r on which

β(x) take the same value.
Condition B. The union of the intersection sets of Ω0

r with each of its mother subdo-
mains forms a connected set.
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Theorem 3.1 Assume that either Condition A or Condition B holds for each subdo-
main Ω0

r, and that vh is a function such that vh ∈ Vh(Ω) and

(βvh,∇qh) = 0, ∀qh ∈ Zh(Ω) , (3.1)

then we have the following estimate

‖β 1
2 vh‖2

0,Ω ≤ C logm+1(1/h)‖β 1
2 curl vh‖2

0,Ω, (3.2)

where the constants m and C are independent of h and the possible large jumps of the
coefficient β, but may depend on the distribution of the polyhedra {Ω0

r}N0
r=1.

Theorem 3.1 implies the following corollary.

Theorem 3.2 Assume that either Condition A or Condition B holds for each sub-
domain Ω0

r. Then for any vh ∈ Vh(Ω), there exist ph ∈ Zh(Ω) and wh ∈ Vh(Ω) such
that

vh = ∇ph + wh

and
(βwh,∇qh) = 0, ∀ qh ∈ Zh(Ω). (3.3)

Moreover, ph and wh have the estimates

‖β 1
2∇ph‖2

0,Ω + ‖β 1
2 wh‖2

0,Ω ≤ C logm+1(1/h)(‖β 1
2 vh‖2

0,Ω + ‖β 1
2 curl vh‖2

0,Ω), (3.4)

where the constants m and C are independent of h and the possible large jumps of the
coefficient β, but may depend on the distribution of the polyhedra {Ω0

r}N0
r=1.

3.2 Several variants of the Helmholtz decomposition

This section is a preparatory section for the establishment of a weighted Helmholtz de-
composition. Throughout this subsection, we shall consider a convex polyhedron Ω̂ of size
O(1). Let Zh(Ω̂) and Vh(Ω̂) be the standard nodal and Nedelec finite element space on Ω̂
respectively.

Lemma 3.1 Let Γ̂ be either an empty set or a (closed) face of Ω̂ or the union of several
faces of Ω̂, and vh be a function in Vh(Ω̂) satisfying vh × n = 0 on Γ̂. Then there exist
ph ∈ Zh(Ω̂) and wh ∈ Vh(Ω̂) such that ph = 0, wh × n = 0 on Γ̂, and

vh = ∇ph + wh

where wh satisfies
‖wh‖0,Ω̂

<∼ ‖curlwh‖0,Ω̂.

Proof. Since vh ∈ Vh(Ω̂), we have vh · n ∈ L2(∂Ω̂). Let p ∈ H1(Ω̂) be the solution to the
system 




4p = div vh in Ω̂,
p = 0 on Γ̂,
∂p
∂n = vh · n on ∂Ω̂\Γ̂

and w = vh −∇p. Then we know w ∈ H(curl; Ω̂) ∩H(div; Ω̂), and w satisfies




curl w = curl vh in Ω̂,
div w = 0 in Ω̂,
w × n = 0 on Γ̂,
w · n = 0 on ∂Ω̂\Γ̂.
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As in the proof of Theorem 4.3 in [2], we can verify, with some obvious modifications, that

‖w‖δ,Ω̂
<∼ ‖curl w‖0,Ω̂ = ‖curl vh‖0,Ω̂,

where δ ∈ (1
2 , 1] depends on the geometric shape of Ω̂ only. Now applying the edge element

interpolation rh on both side of the decomposition vh = ∇p + w, one can see that the
desired finite element functions ph and wh in the lemma may be given by wh = rhw and
∇ph = rh∇p. ]

Lemma 3.2 For any face f of Ω̂, assume that vh ∈ Vh(Ω̂) satisfies vh · t∂f = 0 on ∂f.
Then there exist ph ∈ Zh(Ω̂), wh ∈ Vh(Ω̂) such that ph = wh · t∂f = 0 on ∂f, and

vh = ∇ph + wh, (3.5)

with the following estimate

‖wh‖0,Ω̂
<∼ log(1/h)‖curl wh‖0,Ω̂. (3.6)

The conclusion is also valid for the case when f is replaced by a union of several faces.

Proof We separate the proof into two steps.
Step 1: Establish the desired decomposition. First on the two-dimensional face f, we

can establish a Hodge-type decomposition. Define vh,f ∈ Vh(f) such that

vh,f =
{

n× (vh × n), on f,
0, on ∂Ω̂\f.

Then, by Lemma 7.12 of [30], there exist ph,f ∈ Zh(Ω̂) and wh,f ∈ Vh(Ω̂), such that

vh,f = ∇S ph,f + wh,f, on f,

where ∇S is the two-dimensional surface gradient, ph,f and wh,f satisfy ph,f = wh,f = 0
on ∂Ω̂\f, and have the estimate

‖wh,f‖0,Ω̂ + ‖curl wh,f‖0,Ω̂
<∼ ‖divτ (n× vh,f)‖− 1

2
,f , (3.7)

where divτ is the so-called tangential divergence; see [1] and [2] for its definition.
Then we define

v∂
h,f = vh − (∇ph,f + wh,f). (3.8)

One can easily see v∂
h,f×n = 0 on f. By Lemma 3.1, there are p∂

h ∈ Zh(Ω̂) and w∂
h ∈ Vh(Ω̂)

such that p∂
h = 0 and w∂

h × n = 0 on f, and we have the following decomposition

v∂
h,f = ∇p∂

h + w∂
h (3.9)

and the estimate
‖w∂

h‖0,Ω̂
<∼ ‖curl w∂

h‖0,Ω̂. (3.10)

Now by defining
ph = ph,f + p∂

h and wh = wh,f + w∂
h,

we get the expected decomposition

vh = ∇ph + wh (3.11)
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where ph and wh satisfy ph = wh · t∂f = 0 on ∂f.
Step 2: Verify the desired estimate (3.6) for the decomposition (3.11).
Using the inequality (3.7), the known face H− 1

2 -extension (refer to [17] and [30]) and
the trace theorem, we obtain

‖wh,f‖0, Ω̂ + ‖curlwh,f‖0,Ω̂
<∼ ‖divτ (vh × n)‖− 1

2
, f

<∼ log(1/h)‖divτ (vh × n)‖− 1
2
, ∂Ω̂

<∼ log(1/h)‖curl vh‖0,Ω̂. (3.12)

Now using the definition of wh and the triangle inequality, we have

‖wh‖0, Ω̂
<∼ ‖wh,f‖0, Ω̂ + ‖w∂

h‖0, Ω̂.

This, together with (3.10)-(3.12) and (3.8)-(3.9), leads to

‖wh‖0, Ω̂
<∼ log(1/h)‖curl vh‖0,Ω̂ + ‖curl w∂

h‖0,Ω̂

≤ 2 log(1/h)‖curl vh‖0,Ω̂ + ‖curl wh,f‖0,Ω̂
<∼ log(1/h)‖curl vh‖0,Ω̂.

]

Lemma 3.3 Let e be a (closed) edge of Ω̂, and vh be a finite element function in Vh(Ω̂)
and satisfies vh · te = 0 on e. Then vh admits a decomposition

vh = ∇ph + wh, ph ∈ Zh(Ω̂), wh ∈ Vh(Ω̂)

such that ph = wh · te = 0 on e and

‖wh‖0,Ω̂
<∼ log(1/h)‖curl wh‖0,Ω̂. (3.13)

Proof. We separate the proof into three steps.
Step 1: Establish an edge decomposition.
Let f be a face containing the edge e, and we first consider a decomposition of the

normal component vh ·t∂f of vh on ∂f. For the ease of notation, we shall write e∂ = ∂f\e.
Following [30], we can construct a decomposition on e∂ :

vh · te∂ = φ′e∂ + Ce∂ ,

where Ce∂ and φe∂ are respectively a constant and a one-variable function given by

Ce∂ =
1
|e∂ |

∫

e∂
vh · te∂ds , φe∂ (t) =

∫

e∂
(vh · te∂ − Ce∂ )ds , t ∈ [0, |e∂ |].

Here t = 0 and t = |e∂ | correspond to the two endpoints v1 and v2 of e, and we see

φe∂ (v1) = φe∂ (v2) = 0.

Then we shall naturally extend φe∂ and Ce∂ by zero into e, then extend by zero into Ω̂
such that φ̃e∂ ∈ Zh(Ω̂) and C̃e∂ ∈ Vh(Ω̂). One can verify that

vh · t∂f = (∇φ̃e∂ ) · t∂f + C̃e∂ · t∂f. (3.14)
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Step 2: Construct the desired decomposition in the lemma. For the ease of notation,
we set

v∂
h,e = vh − (∇φ̃e∂ + C̃e∂ ).

By (3.14) we know v∂
h,e · t∂f = 0 on ∂f. Applying Lemma 3.2 for v∂

h,e, one can find two
functions p∂

h ∈ Zh(Ω̂) and w∂
h ∈ Vh(Ω̂) such that p∂

h = w∂
h · t∂f = 0 on ∂f, and

v∂
h,e = ∇p∂

h + w∂
h,

with the following estimate
‖w∂

h‖0,Ω̂
<∼ ‖curl w∂

h‖0,Ω̂. (3.15)

Now define
ph = φ̃e∂ + p∂

h and wh = C̃e∂ + w∂
h ,

which gives the final decomposition

vh = ∇ph + wh (3.16)

such that ph = wh · te = 0 on e.
Step 3: Derive the desired estimate in Lemma 3.3 for the decomposition (3.16).
Noting that vh · te = 0 on e, i.e., vh · t∂f = 0 on e, one can follow [30] to obtain the

estimate for the constant Ce∂ :

|Ce∂ | <∼ ‖divτ (vh × n)‖− 1
2
, f <∼ log(1/h)‖curl vh‖0,Ω̂.

Using this estimate and the definition of C̃e∂ we deduce

‖C̃e∂‖0,Ω̂ + ‖curl C̃e∂‖0,Ω̂
<∼ ‖C̃e∂ · t∂f‖0,∂f <∼ |Ce∂ | <∼ log(1/h)‖curlvh‖0, Ω̂. (3.17)

Now by the triangle inequality, we have

‖wh‖0,Ω̂
<∼ ‖C̃e∂‖0,Ω̂ + ‖w∂

h‖0,Ω̂.

This, together with (3.17) and (3.15), leads to

‖wh‖0,Ω̂
<∼ log(1/h)‖curlvh‖0,Ω̂ + ‖curlw∂

h‖0,Ω̂. (3.18)

Noting that
curl w∂

h = curl wh − curl C̃e∂ = curl vh − curl C̃e∂ ,

we obtain by using (3.17) that

‖curl w∂
h‖0,Ω̂

<∼ ‖curl vh‖0,Ω̂ + ‖curl C̃e∂‖0,Ω̂
<∼ log(1/h)‖curl vh‖0, Ω̂.

Combining this with (3.18) leads readily to the desired estimate (3.13). ]

Lemma 3.4 Let v be a vertex of Ω̂ and vh be a function in Vh(Ω̂). Then one can decom-
pose vh as

vh = ∇ph + wh, ph ∈ Zh(Ω̂), wh ∈ Vh(Ω̂)

such that ph(v) = 0 and

‖wh‖0,Ω̂
<∼ log(1/h)‖curl wh‖0,Ω̂.
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Proof. Consider a face f containing v as a vertex. Then following [30], one can decompose
vh · t∂f into the sum φ′∂f + C∂f on ∂f, such that the piecewise linear function φ∂f on ∂f
satisfies φ∂f(v) = 0. Then, the desired decomposition can be built as in Lemma 3.3.

]

Lemma 3.5 Let e be a (closed) edge of Ω̂, and v be a vertex of Ω̂ but v 6∈ e. Assume
that vh ∈ Vh(Ω̂) satisfies λe(vh) = 0 for e ⊂ e. Then, there is a decomposition

vh = ∇ph + wh, ph ∈ Zh(Ω̂), wh ∈ Vh(Ω̂)

such that
ph(v) = 0 , and ph = 0 on e, λe(wh) = 0 ∀ e ⊂ e,

and wh has the following estimate

‖wh‖0,Ω̂
<∼ log(1/h)‖curlwh‖0,Ω̂. (3.19)

Proof. Let f be a (closed) face, which has v as one of its vertices, but does not have e as
one of its edges. We first split vh · t∂f into the sum φ′∂f + C∂f on ∂f such that the φ∂f is
continuous on ∂f, and linear on each edge of f and satisfies φ∂f(v) = 0. Let φ̃∂f ∈ Zh(Ω̂)
and C∂f ∈ Vh(Ω̂) be the natural extensions of φ∂f and C∂f by zero, respectively.

We will treat the problem separately according to two different cases.
(i) There is a (closed) face f′ such that f′ ∩ f = ∅ and f′ has e as one of its edges. It

is the case when Ω̂ is a hexahedron.
In this case, we set e∂ = ∂f′\e, and directly decompose (vh · te∂ )|e∂ into the sum

φ′e∂ + Ce∂ as in Lemma 3.3. Let φ̃e∂ ∈ Zh(Ω̂) and C̃e∂ ∈ Vh(Ω̂) be the zero extensions of
φe∂ and Ce∂ , respectively. Then we define

v∂
h = vh − (∇φ̃∂f +∇φ̃e∂ + C̃∂f + C̃e∂ ).

It is clear to see
(v∂

h · t∂f)|∂f = (v∂
h · t∂f′)|∂f′ = 0.

Now applying Lemma 3.2 for v∂
h, one can get a decomposition of v∂

h based on the two
faces f and f′, and further construct the desired decomposition of vh.

(ii) The edge e has a common vertex with a (closed) edge e′ of f. This is the case
when Ω̂ is a tetrahedron. Then we set

v∂
h,v = vh − (∇φ̃∂f + C̃∂f).

By the assumption, we know v∂
h,v · tΓ = 0 on Γ, with Γ = e ∪ e′. Let f′ be the face with

e and e′ as two of its neighboring edges, and set Γ∂ = ∂f′\Γ. As in Lemma 3.3, we can
build a decomposition of v∂

h,v · tΓ∂ as follows:

v∂
h,v · tΓ∂ = φ′Γ∂ + CΓ∂ on Γ∂ ,

where φΓ∂ vanishes at the two endpoints of Γ∂ . Let φ̃Γ∂ ∈ Zh(Ω̂) and CΓ∂ ∈ Vh(Ω̂) be the
zero extensions of φΓ∂ and CΓ∂ , respectively. Then we set

v∂
h = vh − (∇φ̃∂f +∇φ̃Γ∂ + C̃∂f + C̃Γ∂ ).

One can easily check that

(v∂
h · t∂f)|∂f = (v∂

h · t∂f′)|∂f′ = 0.

Now applying Lemma 3.2 for v∂
h, one can get a decomposition of v∂

h based on the two
faces f and f′, and further get the desired decomposition of vh as in Lemma 3.3. ]

Following the same argument as that used for Lemma 3.5, we can show
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Lemma 3.6 Let Γ̂ be a connected subset of Ω̂, which is formed by several (closed) edges
and (closed) faces of Ω̂, and vh be a function in Vh(Ω̂) satisfying λe(vh) = 0 for e ⊂ Γ̂.
Then vh admits a decomposition

vh = ∇ph + wh, ph ∈ Zh(Ω̂), wh ∈ Vh(Ω̂),

such that
ph = 0 on Γ̂ and λe(wh) = 0 ∀ e ⊂ Γ̂,

and wh meets the estimate

‖wh‖0,Ω̂
<∼ log(1/h)‖curlwh‖0,Ω̂.

]

3.3 A stable decomposition for any function vh in Vh(Ω)

With the help of the preliminary results from Section 3.2, we are now ready to construct
an important weighted Helmholz-type decomposition for any function vh in Vh(Ω). We
start with a classification of all the polyhedra {Ω0

r}N0
r=1 based on the corresponding values

of the coefficient β(x) on them.
Let Σ1 be the set of all polyhedra Ω0

r which have no any mother subdomain. Namely,
Ω0

r ∈ Σ1 if and only if it holds that for any subdomain Ω0
r′ with r′ 6= r, either Ω̄0

r′ ∩ Ω̄0
r = ∅

or βr′ ≤ βr.
Let Σ2 denote a subset of the sons of all polyhedra belonging to Σ1 such that each

polyhedron in Σ2 has no mother subdomain in {Ω0
r}N0

r=1\Σ1.
Similarly, let Σ3 be a subset of the sons of all polyhedra belonging to Σ1 ∪ Σ2 such

that each polyhedron in Σ3 has no mother subdomain in {Ω0
r}N0

r=1\(Σ1 ∪ Σ2).
By the definition of Σi (i = 1, 2, 3) above, one can easily see that any two polyhedra

in Σi either do not intersect each other or the coefficients β(x) on both subdomains are
equal

Repeating the above procedure, one can define a series of Σl (l = 2, · · · ,m), which sat-
isfy the condition: (1) Σl consists of some sons of polyhedra belonging to ∪l−1

i=1Σi; (2) each
polyhedron in Σl has no mother subdomain in {Ω0

r}N0
r=1\(∪l−1

i=1Σi); (3) any two polyhedra
in Σl either do not intersect each other or the coefficients β(x) on both subdomains are
equal. We can readily see that

{Ω0
r}N0

r=1 =
m⋃

l=1

Σl.

Next, we set n0 = 0. Without loss of generality, we assume that

Σl = {Ω0
nl−1+1, Ω0

nl−1+2, · · · ,Ω0
nl
} (l = 1, · · · ,m) ,

and nl > nl−1. Clearly, we see nm = N0 and that Σl contains (nl − nl−1) polyhedra.
We are now ready to construct a desired decomposition for any vh in Vh(Ω), and will

achieve this by three steps.
Step 1: Decompose vh on all the polyhedra in Σ1.
We shall write vh,r = vh|Ω0

r
. For r = 1, 2, · · · , n1, we can follow the arguments of

Lemma 3.1 to decompose vh,r as follows:

vh,r = ∇pr + wr = ∇ph,r + rhwr := ∇ph,r + wh,r, (3.20)
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where pr ∈ H1(Ω0
r) and wr ∈ H(curl; Ω0

r) ∩H0(div0; Ω0
r). Moreover, we have

‖wh,r‖0,Ω0
r
+ ‖curl wh,r‖0,Ω0

r
<∼ ‖curl vh,r‖0,Ω0

r
, r = 1, · · · , n1. (3.21)

Let p̃h,r ∈ Zh(Ω) be the standard extensions of ph,r by zero onto Ω, and w̃h,r ∈ Vh(Ω)
be an extension of wh,r such that λe(w̃h,r) = 0 for every e ⊂ ∂Ω0

l \∂Ω0
r with all l such that

l 6= r, and w̃h,r is the discrete curl curl-extension on each Ω0
l . Then we define

ṽh,r = ∇p̃h,r + w̃h,r for all r with Ω0
r ∈ Σ1. (3.22)

We remark that if a subdomain Ω0
r in Σ1 intersects one or more than one other subdomains

in Σ1, then β(x) must take the same values in all these subdomains. In this case, we should
take the union of all these subdomains to replace Ω0

r when we do the extensions for p̃h,r

and w̃h,r above.
Step 2: Decompose vh on all the polyhedra in Σ2.
Consider a subdomain Ω0

r from Σ2. For the sake of exposition, we assume that Ω0
r

satisfies Condition A and has just two mother subdomains in Σ1, and both do not
intersect each other, say Ω0

r1
and Ω0

r2
. The case with Condition B will be handled in

Step 3. Without loss of generality, we assume that Ω0
r∩Ω0

r1
= v (a vertex) and Ω0

r∩Ω0
r2

= e
(an edge). Set

v∂
h,r = vh,r −

2∑

l=1

ṽh,rl
on Ω0

r .

It is easy to see that λe(v∂
h,r) = 0 for e ⊂ e. Then by Lemma 3.5, there exist p∂

h,r ∈ Zh(Ω0
r)

and w∂
h,r ∈ Vh(Ω0

r) such that

v∂
h,r = ∇p∂

h,r + w∂
h,r on Ω0

r , (3.23)

and
p∂

h,r(v) = 0 , p∂
h,r = 0 on e , and λe(w∂

h,r) = 0 for e ⊂ e. (3.24)

Moreover, for r = n1 + 1, · · · , n2, i.e., for all indices r with Ω0
r ∈ Σ2, it follows from (3.23)

and (3.22) that

‖curl w∂
h,r‖0,Ω0

r
= ‖curl v∂

h,r‖0,Ω0
r

= ‖curl (vh,r −
2∑

l=1

w̃h,rl
)‖0,Ω0

r

<∼ ‖curl vh,r‖0,Ω0
r
+

2∑

l=1

‖curl w̃h,rl
‖0,Ω0

r
. (3.25)

We further get by (3.19)

‖w∂
h,r‖0,Ω0

r
<∼ log(1/h)‖curl w∂

h,r‖0,Ω0
r

<∼ log(1/h)(‖curl vh,r‖0,Ω0
r
+

2∑

l=1

‖curl w̃h,rl
‖0,Ω0

r
). (3.26)

Now we can define the decomposition of vh on Ω0
r ∈ Σ2 as

vh,r = ∇(p∂
h,r +

2∑

l=1

p̃h,rl
) + w∂

h,r +
2∑

l=1

w̃h,rl
, (3.27)

11



where w̃h,r1 = 0 on Ω0
r , by noting that Ω0

r ∩ Ω0
r1

= v, with v being a single vertex.
For the functions p∂

h,r and w∂
h,r in (3.23), we shall extend them onto the entire domain

Ω. Let p̃∂
h,r ∈ Zh(Ω) be the standard extensions of p∂

h,r by zero onto Ω, and w̃∂
h,r ∈ Vh(Ω)

be an extension of w∂
h,r such that λe(w̃∂

h,r) = 0 for every e ⊂ ∂Ω0
l \∂Ω0

r with all l such that
l 6= r, and w̃h,r is the discrete curl curl-extension on each Ω0

l . Then we set

ṽ∂
h,r = ∇p̃∂

h,r + w̃∂
h,r for all r with Ω0

r ∈ Σ2. (3.28)

We remark that if a subdomain Ω0
r in Σ2 intersects one or more than one other subdomains

in Σ2, then β(x) must take the same value in all these subdomains. In this case, we should
take the union of all these subdomains to replace Ω0

r when we do the extensions for p̃∂
h,r

and w̃∂
h,r above.

Step 3: Obtain the final desired decomposition of vh.
We now consider the index l ≥ 3, and assume that the decompositions of vh on all

polyhedra belonging to Σ1 Σ2, · · · ,Σl−1 are done as in Steps 1 and 2. Next, we will build
up a decomposition of vh in all subdomains Ω0

r ∈ Σl.
Without loss of generality, we assume that Ω0

r satisfies Condition B. Then by Con-
dition B, we use Γr to denote the corresponding connected set, which is the union of
some edges and faces. For the ease of notation, we introduce two index sets:

Λ1
r = { i ; 1 ≤ i ≤ n1 such that ∂Ω0

i ∩ ∂Ω0
r 6= ∅}

and
Λl−1

r = { i ; n1 + 1 ≤ i ≤ nl−1 such that ∂Ω0
i ∩ ∂Ω0

r 6= ∅}.
Define

v∂
h,r = vh,r −

∑

i∈Λ1
r

ṽh,i −
∑

i∈Λl−1
r

ṽ∂
h,i on Ω0

r . (3.29)

By the definitions of ṽh,i and ṽ∂
h,i, we know λe(v∂

h,r) = 0 for all e ⊂ Γr. By Lemma 3.6,
one can find p∂

h,r ∈ Zh(Ω0
r) and w∂

h,r ∈ Vh(Ω0
r) such that

v∂
h,r = ∇p∂

h,r + w∂
h,r on Ω0

r , (3.30)

and
p∂

h,r = 0 on Γr and λe(w∂
h,r) = 0 for all e ⊂ Γr. (3.31)

Using (3.29) and (3.30), we have the following decomposition for vh on each Ω0
r ∈ Σl :

vh,r = ∇(p∂
h,r +

∑

i∈Λ1
r

p̃h,i +
∑

i∈Λl−1
r

p̃∂
h,i) + w∂

h,r +
∑

i∈Λ1
r

w̃h,i +
∑

i∈Λl−1
r

w̃∂
h,i on Ω0

r . (3.32)

Using (3.30) and the estimate for w∂
h,r in Lemma 3.6, one can verify for all Ω0

r ∈ Σl that
(refer to Step 2)

‖curl w∂
h,r‖0,Ω0

r
<∼ ‖curl vh,r‖0,Ω0

r
+

∑

i∈Λ1
r

‖curl w̃h,i‖0,Ω0
r
+

∑

i∈Λl−1
r

‖curl w̃∂
h,i‖0,Ω0

r
, (3.33)

and

‖w∂
h,r‖0,Ω0

r
<∼ log(1/h)(‖curl vh,r‖0,Ω0

r
+

∑

i∈Λ1
r

‖curl w̃h,i‖0,Ω0
r

+
∑

i∈Λl−1
r

‖curl w̃∂
h,i‖0,Ω0

r
). (3.34)

12



As it was done in Steps 1 and 2, we can extend p∂
h,r and w∂

h,r by zero onto the entire
domain Ω to get p̃∂

h,r and w̃∂
h,r. Then we define

ṽ∂
h,r = ∇p̃∂

h,r + w̃∂
h,r for all r with Ω0

r ∈ Σl. (3.35)

By the definition of ṽ∂
h,r and the property (3.31), we know λe(ṽ∂

h,r) = 0 for all e ∈ Γr.
Continuing with the above procedure for all l’s till l = m, we will have built up the

decomposition of vh over all the subdomains Ω0
1, Ω0

2, . . ., Ω0
N0

such that

vh =
n1∑

r=1

ṽh,r +
nm∑

r=n1+1

ṽ∂
h,r = ∇ph + wh (3.36)

where ph ∈ Zh(Ω) and wh ∈ Vh(Ω) are given by

ph =
n1∑

r=1

p̃h,r +
nm∑

r=n1+1

p̃∂
h,r and wh =

n1∑

r=1

w̃h,r +
nm∑

r=n1+1

w̃∂
h,r. (3.37)

3.4 Proof of the key auxiliary results

This section is devoted to the proof of Theorem 3.1. For this purpose a few important
concepts about the relation between different subdomains will be first introduced. It is
reminded that all the subdomains Ω0

1,Ω
0
2, . . ., Ω0

N0
, to be addressed below, are the same

as those described in Subsect. 3.1.

Definition 3.2 A mother of subdomain Ω0
r is called a level-1 ancestor of Ω0

r, and a mother
of a level-1 ancestor of Ω0

r is called a level-2 ancestor of Ω0
r. In general, a mother of a

level-j ancestor of Ω0
r is called a level-(j + 1) ancestor of Ω0

r.

Definition 3.3 A son of Ω0
r is called a level-1 offspring of Ω0

r, and a son of a level-1
offspring of Ω0

r is called a level-2 offspring of Ω0
r. In general, a son of a level-l offspring

of Ω0
r is called a level-(l + 1) offspring of Ω0

r.

By Λ(j)
r (a) we shall denote the set of all level-j ancestors of Ω0

r , and Lr(a) the number
of all the levels of the ancestors of Ω0

r . By Λ(l)
r (o) we shall denote the set of all l-level

offsprings of Ω0
r , and Lr(o) the number of all the levels of the offsprings of Ω0

r .

The following auxiliary estimates will be used in the proof of Theorem 3.1.

Lemma 3.7 For any subdomain Ω0
r from Σl (l ≥ 2), let w∂

h,r be defined as in Steps 2 and
3 for the construction of the decomposition of any vh ∈ Vh(Ω) in Subsect. 3.3. Then w∂

h,r

admits the following estimate

‖curlw∂
h,r‖0,Ω0

r
<∼ ‖curl vh‖0,Ω0

r
+

Lr(a)∑

j=1

logj(1/h)
∑

i∈Λ
(j)
r (a)

‖curl vh‖0,Ω0
i
. (3.38)

Proof. We prove this lemma by induction, and start with the case of l = 2. It follows from
(3.25) that

‖curl w∂
h,r‖0,Ω0

r
<∼ ‖curl vh,r‖0,Ω0

r
+

2∑

l=1

‖curl w̃h,rl
‖0,Ω0

r
. (3.39)
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Since w̃h,r2 is the discrete curl curl-extension in Ω0
r , we deduce by Lemmata 4.5 and 6.10

in [21] that

‖curl w̃h,r2‖0,Ω0
r

<∼ log
1
2 (1/h)‖w̃h,r2 × n‖0,e

<∼ log(1/h)‖curl wh,r2‖0,Ω0
r2

= log(1/h)‖curl vh‖0,Ω0
r2

.

This, combining with (3.39) and the fact that w̃h,r1 = 0 on Ω0
r , yields

‖curlw∂
h,r‖0,Ω0

r

<∼ ‖curl vh‖0,Ω0
r
+ log(1/h)‖curl vh‖0,Ω0

r2

<∼ ‖curl vh‖0,Ω0
r
+ log(1/h)

∑

i∈Λ
(1)
r (a)

‖curl vh‖0,Ω0
i
. (3.40)

So (3.38) is verified for all the subdomains Ω0
r in Σ2.

Now, assume that (3.38) is true for all subdomains Ω0
r ∈ Σl with l ≤ n. Then we need

to verify (3.38) for all subdomains Ω0
r ∈ Σn+1. It follows from (3.33) that

‖curlw∂
h,r‖0,Ω0

r
<∼ ‖curl vh,r‖0,Ω0

r
+

∑

i∈Λ1
r

‖curl w̃h,i‖0,Ω0
r

+
∑

i∈Λn
r

‖curl w̃∂
h,i‖0,Ω0

r
. (3.41)

Similarly, as it was done earlier one can check that for each i ∈ Λn
r ,

‖curl w̃h,i‖0,Ω0
r

<∼ log(1/h)‖curlwh,i‖0,Ω0
i

= log(1/h)‖curl vh,i‖0,Ω0
i
,

and
‖curl w̃∂

h,i‖0,Ω0
r

<∼ log(1/h)‖curlw∂
h,i‖0,Ω0

i
.

Combining these estimates with (3.41) gives

‖curlw∂
h,r‖0,Ω0

r
<∼ ‖curl vh,r‖0,Ω0

r
+ log(1/h)

∑

i∈Λ1
r

‖curl vh,i‖0,Ω0
i

+ log(1/h)
∑

i∈Λn
r

‖curlw∂
h,i‖0,Ω0

i
. (3.42)

Noting that for i ∈ Λn
r , we have Ω0

i ∈ Σl for some l ≤ n. Thus by the inductive assumption,
∑

i∈Λn
r

‖curlw∂
h,i‖0,Ω0

i

<∼
∑

i∈Λn
r

‖curl vh‖0,Ω0
i

+
∑

i∈Λn
r

Li(a)∑

j=1

logj(1/h)
∑

k∈Λ
(j)
i (a)

‖curl vh‖0,Ω0
k
. (3.43)

But for all subdomains Ω0
r ∈ Σn+1 and i ∈ Λn

r , we know Li(a) ≤ Lr(a) and Λ(j)
i (a) = ∅

for j > Li(a) by definition, so we have the relation

∑

i∈Λn
r

Li(a)∑

j=1

∑

k∈Λ
(j)
i (a)

=
Lr(a)∑

j=1

∑

i∈Λn
r

∑

k∈Λ
(j)
i (a)

. (3.44)
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It is easy to see that ∑

i∈Λn
r

∑

k∈Λ
(j)
i (a)

=
∑

k∈Λ
(j+1)
r (a)

.

Combining this with (3.44), and use the fact that Λ(j+1)
r (a) = ∅ for j ≥ Lr(a), we get

∑

i∈Λn
r

Li(a)∑

j=1

∑

k∈Λ
(j)
i (a)

=
Lr(a)−1∑

j=1

∑

k∈Λ
(j+1)
r (a)

.

Thus, it follows from (3.43) that
∑

i∈Λn
r

‖curlw∂
h,i‖0,Ω0

i

<∼
∑

i∈Λn
r

‖curl vh‖0,Ω0
i

+
Lr(a)∑

j=2

logj(1/h)
∑

k∈Λ
(j)
r (a)

‖curl vh‖0,Ω0
k
. (3.45)

Substituting this into (3.42), and using the relation
∑

i∈Λ1
r

+
∑

i∈Λn
r

=
∑

i∈Λ
(1)
r (a)

(Ω0
r ∈ Σn+1),

we can immediately derive that

‖curlw∂
h,r‖0,Ω0

r
<∼ ‖curl vh‖0,Ω0

r
+

Lr(a)∑

j=1

logj(1/h)
∑

k∈Λ
(j)
r (a)

‖curl vh‖0,Ω0
k
. (3.46)

This proves the validness of (3.38) for all subdomains Ω0
r ∈ Σn+1, thus completes the proof

of Lemma 3.7 by the mathematical induction. ]

Stability of the weighted Helmholtz-type decomposition. We are now ready
to demonstrate Theorem 3.1. The construction of the desired weighted Helmholtz-type
decomposition for any vh ∈ Vh(Ω) was given in (3.36), so it remains to show the stability
(3.2) of the decomposition.

By means of (3.36) and (3.1), we first see

(βvh,vh) = (βwh,wh)− (β∇ph,∇ph) ≤ (βwh,wh) =
N0∑

r=1

‖β 1
2 wh‖2

0,Ω0
r
. (3.47)

It suffices to estimate ‖β 1
2 wh‖2

0,Ω0
r

for each subdomain Ω0
r .

We start with the estimate of ‖β 1
2 wh‖2

0,Ω0
r
for each subdomain Ω0

r in Σ1, i.e., 1 ≤ r ≤ n1.
By the definition of w̃∂

h,i in (3.37), we have λe(w̃∂
h,i) = 0 for e ∈ ∂Ω0

r . Moreover, any
two of the subdomains Ω0

1, · · · ,Ω0
n1

do not intersect, so we have

‖β 1
2 wh‖2

0,Ω0
r

= ‖β 1
2 w̃h,r‖2

0,Ω0
r

= βr‖wh,r‖2
0,Ω0

r
.

This, along with (3.21), yields the following estimate for r = 1, · · · , n1,

‖β 1
2 wh‖2

0,Ω0
r

<∼ βr‖curl vh,r‖2
0,Ω0

r
= ‖β

1
2
r curl vh‖2

0,Ω0
r
. (3.48)
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Next, we consider all the subdomains Ω0
r in Σ2. As in Step 2 of the construction of

the stable decomposition for vh, we assume that Ω0
r satisfies Condition A and has just

two mother subdomains in Σ1, Ω0
r1

and Ω0
r2

, which satisfy that Ω0
r ∩ Ω0

r1
= v (a vertex)

and Ω0
r ∩ Ω0

r2
= e (an edge). Then we have

wh|Ω0
r

= w∂
h,r + w̃h,r2 |Ω0

r
.

By the triangle inequality,

‖wh‖0,Ω0
r

<∼ ‖w∂
h,r‖0,Ω0

r
+ ‖w̃h,r2‖0,Ω0

r
. (3.49)

Noting that w̃h,r2 is the discrete curl curl-extension in Ω0
r , we can deduce by using Lem-

mata 4.5 and 6.10 in [21] that

‖w̃h,r2‖0,Ω0
r

<∼ log
1
2 (1/h)‖w̃h,r2 × n‖0,e <∼ log(1/h)‖curl vh‖0,Ω0

r2
.

Using this estimate, (3.26) and (3.40) we derive from (3.49) that

‖wh‖0,Ω0
r

<∼ log(1/h)‖curl vh‖0,Ω0
r
+ log2(1/h)‖curl vh‖0,Ω0

r2
. (3.50)

Then by inserting the coefficient β, we readily have for all subdomains Ω0
r ∈ Σ2 that

‖β 1
2 wh‖0,Ω0

r
<∼ log(1/h)‖β

1
2
r curl vh‖0,Ω0

r
+ log2(1/h)‖β

1
2
r curl vh‖0,Ω0

r2

<∼ log(1/h)‖β
1
2
r curl vh‖0,Ω0

r
+ log2(1/h)

√
βr

βr2

‖β
1
2
r2curl vh‖0,Ω0

r2
(3.51)

Finally we consider all the subdomains Ω0
r from the general class Σl with l ≥ 3. By

the definition of wh we know the following relation holds on Ω0
r :

wh = w∂
h,r +

∑

i∈Λ1
r

w̃h,i +
∑

i∈Λl−1
r

w̃∂
h,i.

In an analogous way as deriving (3.50), one can verify by using (3.34) that

‖wh‖0,Ω0
r

<∼ log(1/h)‖curl vh‖0,Ω0
r
+ log2(1/h)

∑

i∈Λ1
r

‖curl vh‖0,Ω0
i

+ log2(1/h)
∑

i∈Λl−1
r

‖curl w∂
h,i‖0,Ω0

i
. (3.52)

But it follows from Lemma 3.7 that

‖curl w∂
h,i‖0,Ω0

i

<∼ ‖curl vh‖0,Ω0
i
+

Li∑

j=1

logj(1/h)
∑

k∈Λ
(j)
r (a)

‖curl vh‖0,Ω0
k
.

Then we further deduce from (3.52) that

‖wh‖0,Ω0
r

<∼ log(1/h)‖curl vh‖0,Ω0
r
+

Lr∑

j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (a)

‖curl vh‖0,Ω0
i
.

Inserting the coefficient β gives

‖β 1
2 wh‖0,Ω0

r
<∼ log(1/h)‖β 1

2 curl vh‖0,Ω0
r
+

Lr(a)∑

j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (a)

(
βr

βi
)

1
2 ‖β 1

2 curl vh‖0,Ω0
i
.
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Summing up this estimate with the ones in (3.48) and (3.51), we come to

‖β 1
2 wh‖2

0,Ω
<∼ log(1/h)‖β 1

2 curl vh‖2
0,Ω

+
N0∑

r=n1+1

Lr(a)∑

j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (a)

βr

βi
‖β 1

2 curl vh‖2
0,Ω0

i
. (3.53)

By the definitions of Lr(a), Λ(j)
r (a) and Λ(j)

r (o), we can verify that

N0∑

r=n1+1

Lr(a)∑

j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (a)

βr

βi
‖β 1

2 curl vh‖2
0,Ω0

i

=
N0∑

r=1

Lr(o)∑
j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (o)

βi

βr
‖β 1

2 curl vh‖2
0,Ω0

r

≤ logm+1(1/h)
N0∑

r=1

Cr‖β
1
2 curl vh‖2

0,Ω0
r
, (3.54)

where Cr is a constant given by

Cr =

Lr(p)∑
j=1

logj+1(1/h)
∑

i∈Λ
(j)
r (p)

βi

βr
.

Noting the facts that βi < βr for all i ∈ Λ(j)
r (o), Lr(p) is a finite number and the set

Λ(j)
r (o) contains only a few elements, the constant Cr must be uniformly bounded for all

r’s. Applying (3.54) to (3.53), we obtain

‖β 1
2 wh‖2

0,Ω
<∼ C logm+1(1/h)‖β 1

2 curl vh‖2
0,Ω

where C is a constant given by C = max
1≤r≤N0

Cr. ]

4 A non-overlapping domain decomposition method

In this section we shall apply the discrete weighted Helmholtz decomposition developed in
Section 3 to prove that the condition number of the preconditioned edge element system
by the non-overlapping domain decomposition preconditioner proposed in [22] is nearly
optimal, i.e., its condition number grows only as the logarithm of the dimension of the local
subproblem associated with an individual subdomain; more importantly, the condition
number is also independent of the jumps of coefficients across the interfaces between any
two subdomains.

Let us start with the weak formulation of the concerned equations (1.1)-(1.2). For this,
we define the following subspace of H(curl; Ω):

H0(curl; Ω) =
{
v ∈ H(curl; Ω); v × n = 0 on ∂Ω

}
.

By introducing a Lagrange multiplier p to deal with the divergence condition in (1.1) and
then by integration by parts, one can easily derive the variational saddle-point problem
associated with the system (1.1)-(1.2):
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Find (u, p) ∈ H0(curl; Ω)×H1
0 (Ω) such that

{
(αcurl u, curl v) + γ0(βu,v) + (∇p, βv) = (f ,v), ∀v ∈ H0(curl; Ω)
(βu,∇q) = (g, q), ∀ q ∈ H1

0 (Ω)
(4.1)

Let Th be the triangulation of Ω, and Vh(Ω) and Zh(Ω) be respectively the H(curl)-
conforming edge element space and the H1-conforming nodal element space on Th; see
Section 2 for the definitions of these discrete concepts as well as some others in the re-
maining part of this section. Then the saddle-point system (4.1) may be approximated as
follows: Find (uh, ph) ∈ Vh(Ω)× Zh(Ω) such that

{
(αcurl uh, curl vh) + γ0(βuh,vh) + (∇ph, βvh) = (f ,vh), ∀vh ∈ Vh(Ω)
(βuh,∇qh) = (g, qh), ∀ qh ∈ Zh(Ω).

(4.2)

Efficient substructuring preconditioners was proposed in [22] for solving the saddle-
point system (4.2), in combination with a preconditioned iterative Uzawa method. One
may easily observe that the block stiffness matrix corresponding to the first two terms
in (4.2) is singular when γ0 = 0. To overcome this difficulty, the saddle-point system
was first transformed in [22] into another equivalent saddle-point problem whose block
stiffness matrix corresponding to the prime variable u is positive definite. A substructuring
preconditioner for such equivalent saddle-point system was constructed in [22]. As pointed
out in Section 1, the resulting preconditioned system is nearly optimal in the sense that
its condition number grows only as the logarithm of the ratio between the subdomain
diameter and the finite element mesh size, but no conclusion has been achieved in [22]
about how the condition number of the global preconditioned system depends on the
jumps of coefficients (for the case of γ0 = 0). The unique task of this section is to
demonstrate that the condition number is also independent of the jumps of the coefficients.
The fundamental tool leading to the successful demonstration is the new stable weighted
Helmholtz decomposition developed in Section 3.

4.1 Augmented saddle-point system and Uzawa methods

In this and next subsection, we shall discuss how to solve the saddle-point problem (4.2)
effectively by making use of the non-overlapping domain decomposition preconditioner.
For the purpose, we write the system into an equivalent operator form by introducing the
operators Ā : Vh(Ω) → Vh(Ω) and B : Zh(Ω) → Vh(Ω) by

(Āuh,vh) = (α curl uh, curl vh), ∀uh,vh ∈ Vh(Ω) ,

(Bph,vh) = (∇ph, βvh), ∀ ph ∈ Zh(Ω), vh ∈ Vh(Ω),

and the dual operator Bt : Vh(Ω) → Zh(Ω) of B by

(Btuh, qh) = (β uh,∇qh), ∀qh ∈ Zh(Ω).

Let f̄h ∈ Vh(Ω) and gh ∈ Zh(Ω) be the L2-projections of f and g. Then, the system (4.2)
can be written as

{
(Ā + γ0 β I)uh + Bph = f̄h

Btuh = gh.
(4.3)

In the past decade, there is an rapidly increasing interest in finding effective iterative
methods for solving saddle-point problems like (4.3), see, for example, [4] [5] [19] [20]
[27]. But most existing methods require the stiffness matrix corresponding to the primal
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variable uh above to be nonsingular, so can not be applied to solve the saddle-point system
(4.3) with γ0 = 0, due to the singularity of the operator Ā in the space Vh(Ω). On the
other hand, even when γ0 6= 0, the stiffness matrix corresponding to the primal variable
uh above may be still nearly singular, by noting the fact that the speed c(x) of light is
very large, i.e., β(x)/α(x) = 1/c(x) ¿ 1. To overcome this difficulty, we shall introduce
another saddle-point system which has the same solution as the problem (4.3), but can be
solved by existing preconditioned iterative methods.

For the sake of exposition, we shall characterize the following two cases:

Property A. β(x)/α(x) = 1/c(x) ¿ 1;

Property B. β(x)/α(x) = 1/c(x) does not vary largely in the global Ω.

Let Ĉ : Zh(Ω) → Zh(Ω) be symmetric and positive definite, which should be chosen as
a preconditioner for the discrete Laplace operator on Zh(Ω), as we will see below. Then
we define

A = Ā + γ0 β I + r0BĈ−1Bt and fh = f̄h + r0BĈ−1gh , (4.4)

where r0 is some positive constant. One of the possible choices for r0 is the average value
of c(x) = α(x)/β(x).

Clearly, the system (4.3) has the same solution as the augmented saddle-point problem:
{

Auh + Bph = fh
Btuh = gh.

(4.5)

Let Â be a preconditioner for the operator A. Since A is symmetric and positive
definite, the system (4.5) can be solved by many existing iterative methods. Below is
a recently developed Uzawa-type algorithm with variable relaxation parameters (see [19]
and [20]):

Step 1. Choose a parameter ωi and compute

ui+1
h = ui

h + ωiÂ
−1[fh − (Aui

h + Bpi
h)];

Step 2. Choose a parameter τi and compute

pi+1
h = pi

h + τiĈ
−1(Btui+1

h − gh).

Remark 4.1 Some simple choices of parameters ωi and τi are given in [19] and [20] to
ensure the convergence of the algorithm. Noting the fact that

fh −Aui
h = f̄h − Āui

h − r0B[Ĉ−1(Btui
h − gh)]− γ0 β I

in the case of γ0 = 0, so the value Ĉ−1(Btui
h−gh) computed in Step 2 of the i-th iteration

can be used in Step 1 of the (i + 1)-th iteration. That is, the newly added term r0BĈ−1Bt

in the augmented saddle-point system (4.5) does not cause any extra cost in this Uzawa
algorithm as the action of Ĉ−1 is needed only once at each iteration.

As shown in [19] [20], the convergence rate of the above Uzawa algorithm is completely
determined by the condition numbers κ(Â−1A) and κ(Ĉ−1BtÂ−1B). In the following we
will recall two efficient preconditioners Â and Ĉ respectively for A and C developed in [22].
It was shown in [22] that the aforementioned two condition numbers are nearly optimal,
i.e. nearly independent of the subdomain size d and finite element mesh size h. But it is
unclear how the two condition numbers depend on the jumps of coefficients in (1.1). This
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will be the main target of the remaining part of this paper, to rigorously demonstrate the
independence of these condition numbers of the jumps in coefficients.

Let Ã : Vh(Ω) → Vh(Ω) be a self-adjoint operator defined by

(Ãu,v) = (α curl u, curl v) + (αu,v), u,v ∈ Vh(Ω) . (4.6)

One may note that both coefficients above are α(x), instead of the coefficient β(x) appear-
ing in the lower-order term of (1.1). The following theorem is an important observation
from [22], which indicates that the newly introduced augmented operator A in (4.4) is
spectrally equivalent to the operator Ã in (4.6), as long as Ĉ is spectrally equivalent to
the discrete Laplacian.

Theorem 4.1 Let G(·) ≥ 1 be some given function, and the operator Ĉ satisfy

(β∇φ,∇φ) <∼ (Ĉφ, φ) <∼ G(d/h)(β∇φ,∇φ), ∀φ ∈ Zh(Ω) , (4.7)

then we have

(Avh,vh) <∼ (Ãvh,vh) <∼ G(d/h) logm+1(1/h)(Ãvh,vh), ∀vh ∈ Vh(Ω) .

The proof of this theorem will be given in Section 5. With this result, it suffices for us
to construct a preconditioner for Ã, instead of A.

4.2 Construction of a preconditioner for Ã

In this section, we recall a substructuring preconditioner for Ã proposed in [22].
For this, we first give the definition of non-overlapping domain decomposition.
Domain decomposition. We decompose Ω into N non-overlapping tetrahedral sub-

domains {Ωk}N
k=1, with each Ωk of size d (see [3] [31]) such that

1. Each Ωk is a subdomain of some Ω0
r , i.e., each Ω0

r is the union of some subdomains
in {Ωk}N

k=1;

2. Each Ωk is the union of some elements of Th.

The common face of the subdomains Ωi and Ωj by Γij . Also we shall often write
Γ = ∪Γij , and Γi = Γ ∩ ∂Ωi, and Γ will be called the interface. For the definiteness, a
unique unit normal direction n is assigned to each face f of Γ, and this normal vector
is meant in any context whenever a unit normal direction is used on any face in the
subsequent analysis. As in Subsection 2.2, let Vh(Γ) denote the restriction space of the
tangential components of the functions in Vh(Ω) on Γ.

We then define a suitable space decomposition.
Space decomposition. We define two subspaces of Vh(Ω), one is basically local in

each subdomain, while the other is global in the entire domain Ω but discrete Ak-harmonic
in each subdomain:

V p(Ω) =
{
v ∈ Vh(Ω); v × n = 0 on Γ

}
=

N∏

k=1

V 0
h (Ωk),

V H(Ω) =
{
v ∈ Vh(Ω); v is the discrete Ak-extension of (v × n)|∂Ωk

in each Ωk

}
.

One can easily find that Vh(Ω) has the orthogonal decomposition with respect to the inner
product (Ã·, ·):

Vh(Ω) = V p(Ω)⊕ V H(Ω). (4.8)
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Furthermore, we define two subspaces of V H(Ω):

V ij(Ω) =
{
v ∈ V H(Ω); supp(v) ⊂ Ωij = Ωi ∪ Ωj ∪ Γij

}
,

V 0(Ω) =
{
v ∈ V H(Ω); λe(v) = 0 for each e ∈ f∂ with f ⊂ Γ

}
.

The space V 0(Ω) is called the coarse subspace. It is easy to see that the space Vh(Ω) has
the following decomposition (not a direct sum):

Vh(Ω) = V p(Ω)⊕ (V 0(Ω) +
∑

Γij

V ij(Ω)). (4.9)

Next, we define the desired substructuring preconditioner.
A substructuring preconditioner. We define the corresponding local and global

coarse solvers on the subspaces V p(Ω), V 0(Ω) and V ij(Ω) adopted in the decomposition
(4.9).

Let Âp : V p(Ω) → V p(Ω) and Âij : V ij(Ω) → V ij(Ω) be symmetric and positive
definite local solvers such that

(Âpv,v) =∼
N∑

k=1

(Akvk,vk)Ωk
, ∀v ∈ V p(Ω),

where vk = v|Ωk
for k = 1, 2, · · · , N and

(Âijv,v) =∼ (Aivi,vi)Ωi + (Ajvj ,vj)Ωj , ∀v ∈ V ij(Ω).

The global coarse solvers should be solvable in an efficient way on V 0(Ω). For the ease
of notation, we assume that the coefficient α(x) in (1.1) is piecewise constant, namely
α(x) = αi for x ∈ Ωi, with αi’s being constants. For any face f of Ωi, we shall use fb to
denote the union of all Th-induced (closed) triangles on f, which have either one single
vertex or one edge lying on ∂f, and f∂ to denote the open set f\fb. For any subdomain
Ωi, define

∆i =
⋃

f⊂Γi

fb, i = 1, · · · , N.

Then the following coarse solver Â0 : V 0(Ω) → V 0(Ω) was proposed in [22]: for any v,
w ∈ V 0(Ω),

(Â0v,w) = h[1 + log(d/h)]
N∑

i=1

αi

{
〈divτ (v× n)|Γi ,divτ (w× n)|Γi〉∆i + 〈v× n,w× n〉∆i

}
.

Let Qp : V p(Ω) → V p(Ω), Q0 : Vh(Ω) → V 0(Ω) and Qij : Vh(Ω) → V ij(Ω) be the
L2-projections. Then the following preconditioner Â for A:

Â−1 = Â−1
p Qp + Â−1

0 Q0 +
∑

Γij

Â−1
ij Qij . (4.10)

For this preconditioner, we have

Theorem 4.2 The condition number of the preconditioned system can be estimated by

cond(Â−1A) <∼ G(d/h)[1 + log(d/h)]2. (4.11)
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Theorem 4.2 was proved in [22] in the sense that the constant appearing in the upper
bound of estimate (4.11) is independent of the subdomain size d and the finite element
mesh size h, but possibly depending on the jumps of the coefficients in (1.1). Following
the proof of Theorem 3.2 in [22], one can come to the estimate

cond(Â−1Ã) <∼ [1 + log(d/h)]2, (4.12)

where the constant appearing in its upper bound is independent of the jumps of the
coefficient α(x). One can easily see that Theorem 4.2 is a consequence of Theorem 4.1
and (4.12). Hence it remains only to prove Theorem 4.1, which will be carried out in
Section 5.

Remark 4.2 The entries of the stiffness matrix associated with Â0 can be expressed as

h[1+log(d/h)]
N∑

i=1

αi

{
〈(curl Le)·n, (curl Le′)·n〉∆i +〈Le×n, Le′×n〉∆i

}
, e, e′ ∈

⋃

f⊂Γ

fb ,

see [22]. Here Le and Le′ are the basis functions of Vh(Ω) associated with the edges e and
e′ respectively. So the coarse solver Â0 involves computations only on ∆i, a very small
fraction of the interface Γ. And it is much simpler compared with the coarse solvers in
many existing substructuring preconditioners for standard elliptic problems, where some
optimization systems need to be solved [3] [31]. Preconditioner Â in (4.10) can be imple-
mented as in [3] and [31].

An alternative preconditioner. In some applications, especially when the lower
order term in (1.1) is present, i.e., γ0 = 1, it may be more convenient to precondition
directly the operator A∗ given by

(A∗u,v) = (αcurl u, curl v) + (βu,v), u,v ∈ Vh(Ω) ,

instead of A in (4.4). Set β∗k = β|Ωk
(compare Subsection 2.1). It is clear that β∗k = βl

when Ωk ⊂ Ω0
l . Assume that the coefficients α(x) and β(x) satisfy that

1 <∼
β∗i
αi

/
β∗j
αj

<∼ 1 for each face Γij , (4.13)

and
1 <∼ β∗k <∼ d−2αk k = 1, · · · , N. (4.14)

In this case, we may make some obvious modifications to the preconditioner Â in (4.10).
Namely, replacing Ak by A∗|Vh(Ωk), and replacing Â0 by

(Â∗0v,w) = h[1+log(d/h)]
N∑

k=1

{
αk〈divτ (v×n)|Γk

,divτ (w×n)|Γi〉∆i +β∗k〈v×n,w×n〉∆i

}
.

With this new preconditioner Â, we have

cond(Â−1A∗) <∼ G(d/h)[1 + log(d/h)]2. (4.15)

To demonstrate the estimate (4.15), we shall use the following norm defined on the
boundary Γk of a subdomain Ωk:

‖Φ‖XΓk
=

(
αk‖divτΦ‖2

−1/2, Γk
+ β∗k‖Φ‖2

− 1
2
, Γk

) 1
2 ∀ Φ ∈ Vh(Γk).
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Then the estimate (4.15) can be carried out in nearly the same manner as it was done in
the proof of Theorem 3.2 of [22]. The major changes are to use the relation αjβ

∗
i

=∼ αiβ
∗
j

in the estimate of the terms containing |pi
h|21,Ωi

and |pj
h|21,Ωj

on pages 54 and 56 of [22],
and to apply the following Lemmas 4.1 and 4.2 on page 55 of [22].

Lemma 4.1 For any Φ ∈ Vh(Γk), there exists an extension RkΦ ∈ Vh(Ωk), such that

αk‖curl(RkΦ)‖2
0,Ωk

+ β∗k‖RkΦ‖2
0,Ωk

<∼ ‖Φ‖2
XΓk

. (4.16)

Lemma 4.2 For any v ∈ Vh(Ωk), we have

‖v × n‖2
XΓk

<∼ αk‖curl v‖2
0, Ωk

+ β∗k‖v‖2
0, Ωk

. (4.17)

The proof of the above Lemma 4.1 follows the one of Lemma 4.9 in [22] by means of
assumption (4.14) and the inverse estimates for ‖divτΦ‖2

0,Γk
and ‖Φ‖2

0,Γk
, while the proof

of Lemma 4.2 above comes readily from the Green formulae and assumption (4.14) (e.g.,
see [1]).

A preconditioner for Schur complement. Assume that Ĉ is a preconditioner for
the discrete Laplacian and satisfies the condition (4.7), then we have

Theorem 4.3 The condition number of the preconditioned Schur complement system can
be estimated by

cond(Ĉ−1BtÂ−1B) <∼ G(d/h)[1 + log(d/h)]2. (4.18)

Remark 4.3 When Ĉ is chosen as the usual multigrid preconditioner, we have G(d/h) =
1; when Ĉ is chosen as the substructuring preconditioner (see [3], [31]), we have G(d/h) =
[1 + log(d/h)]2.

Remark 4.4 Theorem 4.1 and Theorem 4.3 still hold when β is replaced by β2/α in (4.7)
and r0 is chosen to be 1.

5 Proof of Theorem 4.1

As we pointed out right after Theorem 4.2, the major result of this paper, the theo-
rem is a immediate consequence of Theorem 4.1 and (4.12). We are now going to prove
Theorem 4.1.

For any vh ∈ Vh(Ω), we first decompose it as

vh = ∇qh ⊕wh, (5.1)

where qh ∈ Zh(Ω) satisfies

(β∇qh,∇ψh) = (βvh,∇ψh), ∀ψh ∈ Zh(Ω)

and wh is orthogonal to ∇qh in the scalar product (β·, ·). By the Cauchy-Schwarz inequal-
ity, we know

‖β 1
2∇qh‖0,Ω ≤ ‖β 1

2 vh‖0,Ω. (5.2)

Moreover, by applying Theorem 3.1 for wh we obtain

‖β 1
2 wh‖2

0,Ω
<∼ logm+1(1/h)‖β 1

2 curlwh‖2
0,Ω = logm+1(1/h)‖β 1

2 curlvh‖2
0,Ω. (5.3)
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Let J : Zh(Ω) → Zh(Ω) be the operator defined by

(Jφh, ψh) = (β∇φh,∇ψh), ∀φ, ψ ∈ Zh(Ω). (5.4)

Then, by the definitions of qh, and Bt and J in Section 4.1, we have

(β∇qh,∇qh) = (βvh,∇qh) = (Btvh, qh)
= (Jqh, J−1Btvh) = (β∇qh,∇(J−1Btvh))
= (βvh,∇(J−1Btvh)) = (Btvh, J−1Btvh) ,

that implies
(BJ−1Btvh,vh) = (β∇qh,∇qh). (5.5)

This, along with (5.2), leads to

(BJ−1Btvh,vh) ≤ (βvh,vh).

By Property B and the definition of r0, we have r0β =∼ α. Now it follows from (4.7) and
Property A that

(Avh,vh) <∼ (αcurl vh, curl vh) + γ0(βvh,vh) + r0(BJ−1Btvh,vh)
≤ (αcurlvh, curlvh) + (αvh,vh) + r0(βvh,vh)
<∼ (Ãvh,vh). (5.6)

On the other hand, by (5.5), (5.3) and (4.7) we can derive that

(αvh,vh) = r0(βvh,vh) = r0[(β∇qh,∇qh) + (βwh,wh)]
<∼ r0 logm+1(1/h)[(BJ−1Btvh,vh) + (βcurl vh, curl vh)]
<∼ max{1, G(d/h)} logm+1(1/h)(Avh,vh) <∼ G(d/h) logm+1(1/h)(Avh,vh),

which implies
(Ãvh,vh) <∼ G(d/h) logm+1(1/h)(Avh,vh).

This, along with (5.6), gives the desired estimates in Theorem 4.1. ]
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