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Abstract

We shall establish a discrete weighted Helmholtz decomposition in edge element
spaces, which is stable uniformly with respect to the jumps in the discontinuous weight
function. The stable decomposition is then applied to show that the preconditioned
edge element system for solving saddle-point Maxwell equations by a non-overlapping
domain decomposition preconditioner developed in [22] is nearly optimal, i.e., its con-
dition number grows only as the logarithm of the dimension of the local subproblem
associated with an individual subdomain; more importantly, the condition number is
also independent of the jumps of coefficients across the interfaces between any two
subdomains.
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1 Introduction

In the numerical simulation of electromagnetic wave propagation, one needs to repeatedly
solve the following saddle-point Maxwell system at each time step [9] [10] [14] [23] [28] [29]
[30]:

curl(acurlu) + ypfu=£f in O, (1.1)
div(fu) =g in Q. '

The system will be complemented with the following boundary condition:
uxn=0 on 0N (1.2)

We shall consider € to be a simply-connected open domain in R? with a Lipschitz boundary
0 and the unit outward normal direction n on d€2. The source functions f € L?(Q2)? and
g € L*(Q) satisfy the compatibility condition 79 g = V - f. The coefficients a(x) and B(x)
are two positive bounded functions in €. In applications, the ratio a(x)/3(x) = c(x) is
the speed of light in the concerned medium. It is known that ¢(x) is a constant in each
medium, and it changes only slightly in different media. The constant =y is non-negative,
i.e., 70 > 0, and it is allowed to be identically zero. It is this extreme case that causes the
most troublesome technical difficulty to be dealt with in the subsequent analysis.

Edge finite element methods have been widely used for numerical solution of the sys-
tem (1.1)-(1.2) in recent years, see, e.g., [9] [10] [24]. As is well-known, the algebraic
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systems arising from the discretization by edge element methods are quite different from
the ones arising from the discretization by standard nodal finite element methods. Thus
the construction of efficient solvers such as multigrid and domain decomposition meth-
ods for the nodal element systems, which has been well developed for the second order
elliptic problems in the past two decades, does not work for edge element discretization
of the equations (1.1)-(1.2) in general, especially in three dimensions. One major techni-
cal difficulty in handling the Maxwell system (1.1), compared to the second order elliptic
equations, lies in the fact that the curl operator has a much larger null space than the
one for the gradient. A fundamental tool, which may treat the larger null space and at
the same time take the advantage of some existing methodologies in developing effective
multigrid and domain decomposition methods for elliptic equations, is the Helmholtz-type
decompositions (see, for example, [11] and [2]). Based on these decompositions, many
variants of efficient multigrid and domain decomposition methods have been constructed
and analyzed for the edge element systems arising from the discretization of the Maxwell
equations; see [2] [12] [14] [15] [21] [22] [29] and the references therein.

However, all the existing Helmholtz-type decompositions do not involve any coefficients
in the Maxwell system (1.1), so they may not help analyze how the convergence of the
existing methods depend on the coefficients or their jumps across interfaces. In this work
we shall establish a weighted Helmholtz decomposition, that is stable uniformly with
respect to the concerned discontinuous coefficients. This seems to be the first weighted
Helmholtz decomposition in the literature.

The stable Helmholtz decomposition is then applied to investigate the convergence of
the non-overlapping domain decomposition preconditioner developed in [22] for solving
the saddle-point Maxwell equations (1.1). It has been shown in [22] that the resulting
preconditioned system is nearly optimal in the sense that its condition number grows only
as the logarithm of the ratio between the subdomain diameter and the finite element mesh
size. And it is important for us to emphasize that when the lower order term is present in
the Maxwell system (1.1), i.e., 79 > 0, the condition number of the resulting preconditioned
system is also independent of the jumps in the coefficients across the interfaces between
any two subdomains (see the proof of Theorem 3.2 in [22]). But when the lower order term
is missing in the Maxwell system (1.1), i.e., 79 = 0, or when g is positive but relatively
much smaller than « in (1.1), we do not know how the condition number of the global
preconditioned system depends on the jumps of coefficients. In the present paper we shall
apply the new stable weighted Helmholtz decomposition mentioned above to show that
for this case the condition number is still independent of the jumps of the coefficients.

The outline of the paper is as follows. In Section2, we describe a triangulation and the
edge elements, and introduce some basic formulae and definitions. The discrete weighted
Helmholtz decomposition will be constructed and analyzed in Section 3. The construction
of a non-overlapping domain decomposition preconditioner is carried out in Section 4,
while the condition number of the preconditioned system is estimated in Sections 4 and 5.

2 Edge elements and domain decomposition

This section shall be devoted to the introduction of the edge elements which will be used
in Section 4 for discretization of the system (1.1)-(1.2) and a few fundamental concepts to
be used in the subsequent sections for construction and analysis of a weighted Helmholtz
decomposition and a non-overlapping domain decomposition preconditioner.



2.1 Edge element discretization

We start with the introduction of some subdomains and the triangulation of domain £2,
as well as the edge elements.

Subdomains in terms of the coefficient. For a given positive discontinuous func-
tion fB(x), we assume that the entire domain 2 is decomposed into the union of Ny convex
polyhedra 99,09, - - -, Q?VO such that the coefficient 3 does not vary much on each QU i.e
its function values and derivatives are bounded on each QU from above and below by two
constants whose ratio is of order O(1).

Without loss of generality, we assume that for r = 1,..., Ny,

B(x) = B, Vxel,

where (3, is a constant.

Edge and nodal element spaces. Next, we further divide each Q¥ into smaller
tetrahedral elements of size h so that elements from any two neighboring subdomains are
consistent with each other on their common face. Let 7}, be the resulting triangulation
of the domain 2, which we assume is quasi-uniform. By &, and N}, we denote the set of
edges of 75, and the set of nodes in 7}, respectively. Then the Nédélec edge element space,
of the lowest order, is a subspace of piecewise linear polynomials defined on 7; (cf. [11]
126)):

Vi(©) = {v € Hy(curl; ); v k€ R(K), VK € Ty, },

where R(K) is a subset of all linear polynomials on the element K of the form:
R(K) = {a+b><x; a,b e R?, XGK}.

It is known that for any v € V,(Q), its tangential components are continuous on all
edges of each element in the triangulation 7, and v is uniquely determined by its moments
on each edge e of 7y:

{)\e(v) = /v ~teds; e € Eh}

€
where t. denotes the unit vector on the edge e.
As we will see, the edge element analysis involves frequently the nodal element space.
By Z1,(Q2) we will denote the continuous piecewise linear finite element space of H}(£2) on
the mesh 7j,.

2.2 Some edge and nodal element subspaces

We shall often need to consider the restriction of the edge element space V,(€2) on a
subdomain or a part of its boundary.

Let © denote a generic polyhedra subdomain of 2. The faces and vertices of a sub-
domain © will be denoted by F and Vv respectively. Let G be either the entire boundary
I = 90 or a face F of I, then we define the restriction space of the tangential components
of the functions in V4 (Q2) on G by

Vi(G) = {1[) € L*(G)% v =vxn on G forsome v €& Vh(Q)}.

The restrictions of V,(2) on each subdomain €2 is denoted by V(). From now on, the
notation e, with e C G C I', always means that e is an edge of 7; and lies on G. The



following local subspaces of V3, () and V;,(F) will be important to our analysis:
VY(©)
VAF) = {@=vxneVi(®); A(v) =0, YeCIrNE}.

{vEVh(Q); vxn=0 on f},

Similarly, the restrictions of Z(£2) in a subdomain Q, on I and on a face F, are written as
Zn(Q), Z,(T'), and Zj,(F), respectively. For a subset G of I, we define a “local” subspace

Z9(@) = {v € Zy(); v =0 at all nodes on I'\G}.

We end this subsection with two frequently used extension operators related to a
subdomain €. The first is the discrete curl curl-extension operator Rh Vh( ) — Vi(§2)
defined as follows: For any ® € Vh( ), Rh<I> satisfies Rh<I> xn=® on I' and solves

(curlR;®, curlvy) =0, Vv, € V2(Q).

The second extension is the discrete harmonic extension operator Ry« Zn(D) — Z,(Q).
For any wy, € Zh( ), Rywy, € Zh(Q) satisfies Rpw = wy, on I' and solves

(V}A%hwm Vvh) =0, VYo, € Zh(Q) N H&(Q) .

3 A stable weighted Helmholtz-type decomposition

We devote this section to the construction of a discrete weighted Helmholtz-type decom-
position, that is stable in certain norm, uniformly with respect to the jumps of a given
weight coefficient function 3(x). This decomposition will play a fundamental role in the
subsequent analysis of the condition number of the preconditioned edge element system
by means of a non-overlapping domain decomposition preconditioner.

From now on, we shall frequently use the notations < and . For any two non-negative
quantities z and y, © < y means that x < Cy for some constant C' independent of mesh
size h, subdomain size d and the possible large jumps of some related coefficient functions
across the interface between any two subdomains. x Z y means ¢ S y and y < x.

3.1 Assumptions and results

We need to introduce a few concepts in order to describe the relation between different
subdomains from {Q0}Y, which are described in Section 2.1, in terms of the coefficient
function ((x).

Definition 3.1 For a polyhedron Q2, another polyhedron Q2 is called a “son” of Q2 if
Qg, NQ0 # 0 and B < B,. In this case, the subdomain Q° is called a “mother” of Qg,.

Now we make an assumption on the coefficients, and the assumption seems mild and
reasonable for most applications. For a polyhedron 0, we shall assume that they satisfies
either of the following two conditions:

Condition A. At most two “ mother ” subdomains of Q20 do not intersect each other.
Here a “ mother ” subdomain may be the union of all mother subdomains of QY on which
B(x) take the same value.

Condition B. The union of the intersection sets of Q20 with each of its mother subdo-
mains forms a connected set.



Theorem 3.1 Assume that either Condition A or Condition B holds for each subdo-
main Q¥, and that vy, is a function such that vj, € V4(Q) and

(ﬂvh,th) =0, Vg€ Zh(Q), (3.1)
then we have the following estimate
182 Va3 o < Clog™ ! (1/h)[|B2 curl v 3 o, (3.2)

where the constants m and C are independent of h and the possible large jumps of the
coefficient 3, but may depend on the distribution of the polyhedra {Q?},{V:Ol.

Theorem 3.1 implies the following corollary.

Theorem 3.2 Assume that either Condition A or Condition B holds for each sub-
domain Q0. Then for any vi, € Vi(Q), there exist p, € Zn(Q) and wy, € Vi(Q) such
that

Vp = Vph + wy,

and
(Bwn,Van) =0, Yaqn € Zp(Q). (3.3)

Moreover, py, and wy, have the estimates

1 1
0.0 < Clog" ' (1/n)(I52vallg o + 182 curl vil§q),  (34)

1 1
152 Vorll§ o + 1162 wh

where the constants m and C are independent of h and the possible large jumps of the
coefficient 3, but may depend on the distribution of the polyhedra {Q?}iv:ol.

3.2 Several variants of the Helmholtz decomposition

This section is a preparatory section for the establishment of a weighted Helmholtz de-
composition. Throughout this subsection, we shall consider a convex polyhedron Q of size
O(1). Let Z,(Q) and V;,(2) be the standard nodal and Nedelec finite element space on 2
respectively.

Lemma 3.1 Let I be either an empty set or a (closed) face on or the union of several
faces of 0, and vy be a function in V() satisfying vy, x n = 0 on I'. Then there exist

ph € Zp(Q) and wy, € V() such that pp, =0, wp, xn=0 on I', and
Vi = Vpp +wp,

where wp, satisfies
IWallgq < llearlwh[g ¢

Proof. Since vy, € V,(Q), we have vy, -n € L*(99). Let p € H'(Q) be the solution to the
system

Ap=divv, in Q,

p=0 on f,

g—ﬁ:vh-n on 9O\

and w = vj, — Vp. Then we know w € H(curl; Q) N H(div; ), and w satisfies

curl w=curl vj;, in €,
divw=0 in Q,
wxn=0 on f,
w-n=0 on JO\L.
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As in the proof of Theorem 4.3 in [2], we can verify, with some obvious modifications, that

Iwlls g < leurl wlly o = leurl vill, o,

where § € (%, 1] depends on the geometric shape of Q only. Now applying the edge element
interpolation r; on both side of the decomposition v, = Vp 4+ w, one can see that the
desired finite element functions py and wy, in the lemma may be given by wj, = rpw and
Vpn =rpVp. §

Lemma 3.2 For any face F of Q, assume that vj, € Vh(Q) satisfies vy, - tgp = 0 on OF.

Then there exist pp, € Zp(Q2), wp € V() such that p, = wp, - tgrp = 0 on OF, and
v, = Vpp + Wy, (3.5)
with the following estimate
Iwilly.o < log(1/h)lleurl wally o. (3.6)
The conclusion is also valid for the case when ¥ is replaced by a union of several faces.

Proof We separate the proof into two steps.

Step 1: Establish the desired decomposition. First on the two-dimensional face F, we
can establish a Hodge-type decomposition. Define v, g € V3 (F) such that

S nx (vyxn), on F,
E = 0, on OO\F.

Then, by Lemma 7.12 of [30], there exist pjp € Z,(€) and wy, ¢ € V, (), such that
Vi,F = VSDhF +WpF, on F,

where Vg is the two-dimensional surface gradient, p; y and wy, r satisfy pp p = wp,p = 0
on IQ\F, and have the estimate

[Whrllgq + lleurl whplly g S [[dive(n < vap)l| 1 g, (3.7)

where div, is the so-called tangential divergence; see [1] and [2] for its definition.

Then we define
Vg,F =vp = (Vppr +Wir). (3.8)
One can easily see Vg,F xn = 0 on F. By Lemma 3.1, there are pg € Zh(f)) and wg € Vh(Q)

such that pg =0 and wg xn =0 on F, and we have the following decomposition
vi g = Vi +wj (3.9)

and the estimate
1o) 0
Wil o S lleurl wll - (3.10)

Now by defining
Dh = Dh,F +p7 and wj = wpF + wi,

we get the expected decomposition

vy, = Vpp + wy, (3.11)



where p, and wy, satisfy pp, = wy, - tgg = 0 on OF.
Step 2: Verify the desired estimate (3.6) for the decomposition (3.11).

Using the inequality (3.7), the known face H ~2-extension (refer to [17] and [30]) and
the trace theorem, we obtain

S ldive(vi xm)|| 1 g
< log(1/h)||dive (v, X D)H,% 56
S log(1/h)|[curl vyl o (3.12)

[whrlly, o + lcurlwppll o

Now using the definition of wj, and the triangle inequality, we have

IWallo, ¢ S IWnello, o + Wil o
This, together with (3.10)-(3.12) and (3.8)-(3.9), leads to

o
IWallo, log(1/h)[curl val o + [[curl Wi, ¢

<
< 2log(1/h)[lcurl vily o + [lcurl wip( g
< log(1/h)||curl Vh”()ﬁ-

f

Lemma 3.3 Let E be a (closed) edge of Q, and vy, be a finite element function in Vi, ()
and satisfies vy, - tg =0 on E. Then vy, admits a decomposition

Vi = Vpn+ Wi, b € Zu(Q), wi, € Vi(Q)
such that pp, = wp, -tg =0 on E and

[whllo,q < log(1/h)[[curl wyl, o (3.13)

Proof. We separate the proof into three steps.

Step 1: Establish an edge decomposition.

Let F be a face containing the edge E, and we first consider a decomposition of the
normal component vy, -tgr of v, on OF. For the ease of notation, we shall write E? = OF\E.
Following [30], we can construct a decomposition on E:

vy - tpe = (blEa + Cho,
where Cpo and ¢po are respectively a constant and a one-variable function given by
Crop = 1/ Vi tpods,  Gpolt) = / (Vi tpo — Co)ds, t€ [0, |E7].
B2| Je2 E?
Heret =0 and t = |E‘9] correspond to the two endpoints vi and vy of E, and we see

¢Ea (vi) = ¢Ea (Vg) =0.

Then we shall naturally extend ¢ps and Cpo by zero into E, then extend by zero into Q
such that qEEa € Z,(Q) and C’Ea € Vi(€). One can verify that

v - togr = (V(E)Ea) -tor + éEa “tor. (3.14)



Step 2: Construct the desired decomposition in the lemma. For the ease of notation,
we set ~
ng =v — (Voégo + Cpo).

By (3.14) we know ng -tgr = 0 on JF. Applying Lemma 3.2 for vg’E, one can find two
functions p¢ € Z,,(Q) and w? € V;,(2) such that p? = w? - tap = 0 on JF, and
viie = Vi + wi,

with the following estimate
o] 0
[Whllga < lleurl willy ¢ (3.15)

Now define B R
Ph = Qpo +p2 and wj, = Cpo —i—wg,

which gives the final decomposition
vy = Vpp + wp, (3.16)

such that p, = wy - tg =0 on E.

Step 3: Derive the desired estimate in Lemma 3.3 for the decomposition (3.16).
Noting that vy, - tg = 0 on E, i.e., vj, - tgp = 0 on E, one can follow [30] to obtain the
estimate for the constant Cpa:

|Cro| < ||dive(vy x n)||_%’ r Slog(1/h)|curl VhHO,Q.
Using this estimate and the definition of éEa we deduce

ICollo.o + lleurl Cuolly o  ICo - tor

00F S |Cpol Slog(1/h)|curlvy|ly . (3.17)
Now by the triangle inequality, we have
Whllog S 1Cg Ml + W7o -
This, together with (3.17) and (3.15), leads to
”WhHO,Q < log(l/h)chrlvhHOf2 + ||curlw2\|0’ﬁ. (3.18)

Noting that B R
curl wg = curl wy, — curl Cpo = curl v;, — curl Cpo,

we obtain by using (3.17) that

) _
leurl will; ¢ [eurl vp[ o + [Jeurl Crally q

<
S log(1/h)|curl v, ¢

Combining this with (3.18) leads readily to the desired estimate (3.13).

Lemma 3.4 Let v be a vertex of 2 and vy, be a function in Vh(Q). Then one can decom-
pose vV, as
Vi = Vph+Wh, pp € Zp(S2), wp € Vi()

such that pp(v) =0 and

[wallgq < log(1/h)[curl whll ¢



Proof. Consider a face F containing Vv as a vertex. Then following [30], one can decompose
vy, - top into the sum ¢ + Cor on OF, such that the piecewise linear function ¢spp on OF
satisfies ¢pgp(V) = 0. Then, the desired decomposition can be built as in Lemma 3.3.

i
Lemma 3.5 Let E be a (closed) edge of Q, and v be a vertex on but v € E. Assume

A~

that vi, € Vi,(Q) satisfies Ae(vy) = 0 for e C E. Then, there is a decomposition

N N

Vi =Vpn+ Wi,  pr € Zp(Q), wy € Vi(Q)

such that
pr(V) =0, and prb=0 on E, A(wp)=0 VeCE,

and wp, has the following estimate

HWhH(L(2 < log(l/h)chrlwhHoﬁ. (3.19)

Proof. Let F be a (closed) face, which has v as one of its vertices, but does not have E as
one of its edges. We first split v;, - top into the sum @ + Car on OF such that the ¢ is
continuous on JF, and linear on each edge of F and satisfies ¢sp (V) = 0. Let bor € Zh(Q)
and Cyp € Vh(fl) be the natural extensions of ¢pgr and Cyr by zero, respectively.

We will treat the problem separately according to two different cases.

(i) There is a (closed) face ¥’ such that F* N F = () and F’ has E as one of its edges. It
is the case when Q is a hexahedron.

In this case, we set E? = 9F/\E, and directly decompose (v}, - tpo)|go into the sum
@0 + Cgo as in Lemma 3.3. Let qZNJEa € Z,(Q) and C’Ea € Vi(Q) be the zero extensions of

¢po and Cpo, respectively. Then we define
vl = v, — (Voor + Vogo + Cor + Cgo).
It is clear to see
0 0
(Vi - tor)|or = (v}, - top)|orr = 0.
Now applying Lemma 3.2 for Vg, one can get a decomposition of vg based on the two
faces F and F/, and further construct the desired decomposition of vy,.

(ii) The edge E has a common vertex with a (closed) edge E' of F. This is the case
when () is a tetrahedron. Then we set

vy =vi — (Véor + Cor).

By the assumption, we know ng tpr=0on T, with' = EUE". Let F' be the face with

E and E as two of its neighboring edges, and set ' = 9F’ \I'. As in Lemma 3.3, we can
build a decomposition of vzv -tro as follows:

ng . tpa - (25%6 -+ Cpa on Fa,

where ¢ro vanishes at the two endpoints of I'?. Let ¢ro € Z5,(€2) and Cpo € Vj,(€2) be the
zero extensions of ¢ra and Cra, respectively. Then we set

Vi = v, — (Voor + Véro + Cor + Cro).
One can easily check that
(vi, - tor)lor = (V] - top)|or = O,

Now applying Lemma 3.2 for Vg, one can get a decomposition of vﬁ based on the two
faces F and F/, and further get the desired decomposition of v; as in Lemma 3.3. f
Following the same argument as that used for Lemma 3.5, we can show



Lemma 3.6 Let I’ be a connected subset of Q, which is formed by several (closed) edges
and (closed) faces of ), and vy, be a function in V3 (Q2) satisfying Ae(vy) = 0 for e C T.
Then vy, admits a decomposition

Vi = Vpn+Wn,  ph € Zn(Q), wy € Vi(Q),

such that
prh=0 on I' and A(wp)=0 VecCT,

and wy, meets the estimate

[Wallg g < log(1/h)[[curlwhl], ¢
!

3.3 A stable decomposition for any function v, in V;(2)

With the help of the preliminary results from Section 3.2, we are now ready to construct
an important weighted Helmholz-type decomposition for any function vy in V(). We
start with a classification of all the polyhedra {Qg}i\[:ol based on the corresponding values
of the coefficient 3(x) on them.

Let 1 be the set of all polyhedra ¥ which have no any mother subdomain. Namely,
00 € ¥y if and only if it holds that for any subdomain QS, with v’ # r, either QE, NQY =10
or ﬁr’ < /Br-

Let X9 denote a subset of the sons of all polyhedra belonging to ¥; such that each
polyhedron in 5 has no mother subdomain in {Q9}0 \5;.

Similarly, let 33 be a subset of the sons of all polyhedra belonging to ¥; U ¥y such
that each polyhedron in ¥3 has no mother subdomain in {Q0}2° \(2; U ).

By the definition of ¥; (i = 1,2,3) above, one can easily see that any two polyhedra
in ¥; either do not intersect each other or the coefficients $(x) on both subdomains are
equal

Repeating the above procedure, one can define a series of 3; (I = 2,---,m), which sat-
isfy the condition: (1) 3; consists of some sons of polyhedra belonging to Ué;i Yi; (2) each
polyhedron in ¥; has no mother subdomain in {Q0}°,\ (UZ15;); (3) any two polyhedra
in ¥; either do not intersect each other or the coefficients §(x) on both subdomains are
equal. We can readily see that

N
{QO r= 01 = U 2.
Next, we set ng = 0. Without loss of generality, we assume that
0 0
Y= {in 141 in_1+23 t 7in} (l =1,-- ,TTL) s

and n; > n;_1. Clearly, we see n,, = Ny and that ¥; contains (n; — n;_1) polyhedra.

We are now ready to construct a desired decomposition for any vy, in V,(€), and will
achieve this by three steps.

Step 1: Decompose vy, on all the polyhedra in ;.

We shall write vy, = vh]QQ. For r = 1,2,---,n1, we can follow the arguments of
Lemma 3.1 to decompose vy, as follows:

Vhr = Vpr +w, = vph,r + TRWp = vph,’r + Whr, (320)
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where p, € H(Q?) and w, € H(curl; Q%) N Hy(divo; ). Moreover, we have

Iwnsllogs + leurl wisloon < lewrl vislloge, r=1,--m.  (3.21)

Let pp, € Zn(Q2) be the standard extensions of pj, by zero onto Q, and Wy, , € V,,(Q)
be an extension of wy, , such that Ac(Wy, ) = 0 for every e C 80?\099 with all [ such that
[ #r, and Wy, , is the discrete curl curl-extension on each Q?. Then we define

Vi = VPhy + Wh, for all r with QY € 3. (3.22)

We remark that if a subdomain QY in 3 intersects one or more than one other subdomains
in 31, then 5(x) must take the same values in all these subdomains. In this case, we should
take the union of all these subdomains to replace Q20 when we do the extensions for Dh.r
and wp, . above.

Step 2: Decompose vy, on all the polyhedra in 3.

Consider a subdomain Q¥ from Y5. For the sake of exposition, we assume that 0
satisfies Condition A and has just two mother subdomains in Xy, and both do not
intersect each other, say QY and QY. The case with Condition B will be handled in
Step 3. Without loss of generality, we assume that Q2NQY = v (a vertex) and Q2NQY, = E
(an edge). Set

2
0 < 0
Ve = Vhr — E Vi, on ).
=1

It is easy to see that /\e(vgr) =0 for e C E. Then by Lemma 3.5, there exist p‘ZJ, € Zn(2Y)
and wgr € Vi,(929) such that

vgr = Vp?w + wgﬂ, on QB , (3.23)
and
pgﬂﬂ(v) =0, p‘zm =0 on E, and )\e(wgﬂa) =0 for e CE. (3.24)
Moreover, for r = nj + 1, - -, ng, i.e., for all indices r with Q¥ € 3y, it follows from (3.23)
and (3.22) that
leurl wf [loae = [lcurl vil, o0

2
= |[leurl (v, — Z‘i’h,rz)HO,QQ
=1

2
< flewrl viloge + 3 lleurl w5 oo (3.25)
=1
We further get by (3.19)

Wi lloge < log(1/h)|lcurl wi,[loqo

2
< log(1/h)(leurl vi,flooo + ) lleurl Wy, llo.00)- (3.26)
=1

Now we can define the decomposition of v on Q? € Yo as

2 2
Vir = Vi, + Y Phr) + Wi + Y Wi s (3.27)
=1 =1
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where Wy, ,, = 0 on QY, by noting that QY N QY = v, with v being a single vertex.

For the functions p‘z’r and W,?ﬂ, in (3.23), we shall extend them onto the entire domain
Q. Let 1527T € Zn(Q) be the standard extensions of pgﬂ, by zero onto €2, and v~v,‘?7r € Vn(Q)
be an extension of ng such that /\e(vifgr) = 0 for every e C 9Q9\9N? with all [ such that
l # r, and Wy, , is the discrete curl curl-extension on each Q?. Then we set

Vi, =Vpy,+wp, forallr with Q0 € ¥, (3.28)

We remark that if a subdomain QY in 3 intersects one or more than one other subdomains
in Yo, then 3(x) must take the same value in all these subdomains. In this case, we should
take the union of all these subdomains to replace Q20 when we do the extensions for }5277,
and vNVQ » above.

Steio 3: Obtain the final desired decomposition of vy,.

We now consider the index [ > 3, and assume that the decompositions of v, on all
polyhedra belonging to ¥ Yo, - -+, ¥;_1 are done as in Steps 1 and 2. Next, we will build
up a decomposition of vy, in all subdomains Q0 € 3.

Without loss of generality, we assume that 0 satisfies Condition B. Then by Con-
dition B, we use I', to denote the corresponding connected set, which is the union of
some edges and faces. For the ease of notation, we introduce two index sets:

Al ={i; 1<i<mnysuchthat 9QY NaNL £ P}

and
A7t =i ny+1<i<mn_qsuch that 9QY N aNL +# p}.
Define
ng =Vh, — Z Vhi — Z \727@' on QO (3.29)
ieA; ieAl!

By the definitions of vj; and \72,1-, we know )\e(vgr) =0 for all e C I',. By Lemma 3.6,
one can find p%T € Z,(29) and wg’r € Vi (QY) such that

vzr = Vp,aw + wgﬂ, on QB , (3.30)

and
pgyr =0 on I, and )\e(wgr) =0 forallecCT,. (3.31)

Using (3.29) and (3.30), we have the following decomposition for v, on each Q0 € 3; :

Vhr = v(pg,r + Z ﬁh,i + Z ﬁg,z) + Wg,r + Z VNVh,i + Z wg,l on Qg (332)
€A} iEAL? €A} ieAl?

Using (3.30) and the estimate for wg,r in Lemma 3.6, one can verify for all QY € ¥; that
(refer to Step 2)

leurl wi llo.00 S llewrl v floon + 3 lleurl Waillogr + 37 lleurl %9 oqo, (3.33)
ieAl it

and

Wi lloas < log(1/R)(leurl vialloge + D lleurl Wiillo.oo
i€AL

+ Z |curl vayiHO’Qg). (3.34)
ieal™!
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As it was done in Steps 1 and 2, we can extend pgr and wzr by zero onto the entire
domain 2 to get ﬁ(Z,r and va,r‘ Then we define

v, =V, +wj, forallr with Qe (3.35)

By the definition of {’gr and the property (3.31), we know )\6(‘72,7“) =0 for all e € T,.
Continuing with the above procedure for all {’s till [ = m, we will have built up the

decomposition of v, over all the subdomains O, 9, ..., Q(J)Vo such that
ni Nm
vy = Z{,h:r + Z {,2,1” = Vpn +wyp (3.36)
r=1 r=ni+1

where pp, € Z,(Q2) and wy, € V() are given by

ni Nm ni Tom
Ph = Zﬁhﬂ« + Z ﬁ(z’r and wp = Z Wh,,« + Z Wl?,r' (337)
r=1 r=ni1+1 r=1 r=ni+1

3.4 Proof of the key auxiliary results

This section is devoted to the proof of Theorem 3.1. For this purpose a few important
concepts about the relation between different subdomains will be first introduced. It is
reminded that all the subdomains Q9,Q9, ..., Q?VO, to be addressed below, are the same
as those described in Subsect. 3.1.

Definition 3.2 A mother of subdomain Q¥ is called a level-1 ancestor of Q0, and a mother
of a level-1 ancestor of Q0 is called a level-2 ancestor of Q0. In general, a mother of a
level-j ancestor of Q2 is called a level-(j + 1) ancestor of QU.

Definition 3.3 A son of QU is called a level-1 offspring of Q°, and a son of a level-1
offspring of Q0 is called a level-2 offspring of QV. In general, a son of a level-l offspring
of Q0 is called a level-(1 + 1) offspring of Q2.

By AY )(a) we shall denote the set of all level-j ancestors of QY, and L, (a) the number
of all the levels of the ancestors of QV. By Ag)(o) we shall denote the set of all I-level
offsprings of 0, and L,(0) the number of all the levels of the offsprings of QV.

The following auxiliary estimates will be used in the proof of Theorem 3.1.

Lemma 3.7 For any subdomain Q0 from ¥, (1 > 2), let W,?ﬂ, be defined as in Steps 2 and

3 for the construction of the decomposition of any vy € V() in Subsect. 3.3. Then w,‘ir
admits the following estimate

Ly (a)
Jeurlwil flo.00 S lleurlvillpoo + 3 log/(1/h) Y fleurlvyllogo.  (3.38)
i=1 ieAY (a)

Proof. We prove this lemma by induction, and start with the case of I = 2. It follows from

(3.25) that
2

Jeurl wil,[lo.00 < llewrl vi, oo + 3 lleur] Wy llo.ao. (3.39)
=1

13



Since Wy, ., is the discrete curl curl-extension in 09 we deduce by Lemmata 4.5 and 6.10
in [21] that

log? (1/h)[[Wh.r, x 1

[curl wy, HO,QQ lo,E

S
S log(1/h)[leurl Wi, [lo,0o,

= log(1/h)||curl vy,

0,09, -

This, combining with (3.39) and the fact that Wy, = 0 on 2, yields

||Curlwg,r 0,00
S lleurl vilono +log(1/h)|lcurl vi oo
S [leurl vy lo oo + log(1/h) > |curl Vhllo,00- (3.40)

ieAM (a)

So (3.38) is verified for all the subdomains QY in Y.
Now, assume that (3.38) is true for all subdomains QU € ¥; with I < n. Then we need
to verify (3.38) for all subdomains QY € ¥,,,1. It follows from (3.33) that

leurlwi oo S lleurlviglloo + > leurl oo
1€AL
+ 37 [leurl % o.00- (3.41)

iEAT
Similarly, as it was done earlier one can check that for each i € A7,
leurl Wi illo.00 < log(1/h)|lcurlwy g go = log(1/h)||lcurl va |l oo,

and
leurlwf ;o gn < log(L/h)[leurl willp.oo-

Combining these estimates with (3.41) gives

leurlwf Jloge S lleurlvi floge +1og(1/h) D leurlvaflgqo
1€AL
+ log(1/h) D~ fleurlwy ;[lo a0 (3.42)

1EAT
Noting that for i € A”, we have QY € 3, for some [ < n. Thus by the inductive assumption,

1o}
S fleurlwlflor < 3 leurl vl

i€AT i€An
Li(a)
+ 3 > log/(1/h) D feurlvifogo.  (3.43)

But for all subdomains QY € ¥,,.1 and i € A", we know L;(a) < L,(a) and Agj)(a) =0

T

for j > L;(a) by definition, so we have the relation

Li(a)

Y Y Yy oy 44

(€A G=1 pep@(q) =1 AEAT pep () (g
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It is easy to see that

2. 2 = X

€A keAD (@) keAVT(a)

Combining this with (3.44), and use the fact that A£j+1)(a) = for j > L.(a), we get

Li(a) Ly(a)—1
1€EAT j=1 kEAEﬂ(a) 7j=1 kEA,(ajJFl)(a)

Thus, it follows from (3.43) that

o
Y lleurlwifloge S D leurlvi|ggo

i€EAD 1EAT
Ly (a)
+ Zlogj(l/h) Z ||curlvhH0’Q2. (3.45)
j=2 keAY) (a)

Substituting this into (3.42), and using the relation

Y4Y = Y (@esa),

ZGA,}, ZGA? ZGAS)((Z)

we can immediately derive that

Ly(a)
Jeurlwf, oo < lleurl wllogo + Y- log/(1/h) Y lleurlvillgar.  (3.46)
J=1 keAY (a)

This proves the validness of (3.38) for all subdomains Q0 € ¥,,, 1, thus completes the proof
of Lemma 3.7 by the mathematical induction. 4

Stability of the weighted Helmholtz-type decomposition. We are now ready
to demonstrate Theorem 3.1. The construction of the desired weighted Helmholtz-type
decomposition for any vy € Vj(£2) was given in (3.36), so it remains to show the stability
(3.2) of the decomposition.

By means of (3.36) and (3.1), we first see

No
(BYh, Vi) = (Bwh, Wi) = (BVpn, Von) < (BwWn, wi) = > [82wWallf qo- (3.47)
r=1

: 1 :
It suffices to estimate HﬂzwhH?LW for each subdomain QV.

We start with the estimate of Hﬂ%whHg o for each subdomain Q¥ in ¥y, i.e., 1 <7 < njy.
By the definition of v~v2ﬂ- in (3.37), we have )\e(vvgi) = 0 for e € 900, Moreover, any
two of the subdomains QY- -, 9911 do not intersect, so we have

1 1 _
187 wal2 0 = 185W50 12 00 = B Wi I30-

This, along with (3.21), yields the following estimate for r =1, -+ ny,

1
3’99 = ||3?curl VhHg’QQ. (3.48)

1
18Zwnl§ a0 S Brllcurl va,
’ T
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Next, we consider all the subdomains QY in ¥5. As in Step 2 of the construction of
the stable decomposition for v, we assume that QU satisfies Condition A and has just

two mother subdomains in ¥y, QY and Qf, which satisfy that Q) N Q% = v (a vertex)

and Q2N QY =E (an edge). Then we have
Whlao = Wi, + Wi lao-
By the triangle inequality,
Iwalloao < Wi llo.ao + W, llo,ao- (3.49)

Noting that Wy, ., is the discrete curl curl-extension in ¥, we can deduce by using Lem-
mata 4.5 and 6.10 in [21] that

- 1 -
[Whrolloge < log>(1/h)[[Whr, x 1

~

0. Slog(1/h)||curl Vh||07992.
Using this estimate, (3.26) and (3.40) we derive from (3.49) that
IWnllogo < log(1/h)eurl vallo oo +log?(1/h)|eurl vallo g - (3.50)

Then by inserting the coefficient 3, we readily have for all subdomains Q¥ € Y5 that

1 1 1
‘|B§WhHO,QQ S log(1/h)[| 37 curl VhHo,QQ =+ logQ(l/h)Hﬂy? curl VhHo,QQ2

1 1
S log(1/) |3 curlviloop +1og*(1/h)| S| Fheurlvalloy, (351)
T2

Finally we consider all the subdomains Q0 from the general class ¥; with [ > 3. By
the definition of wj, we know the following relation holds on QU:

0 ~ ~ 0
Wh=Who+ ) Whit ) Wi
i€A; ekt

In an analogous way as deriving (3.50), one can verify by using (3.34) that

Iwnllogs < log(1/h)lleurl vallo o +log*(1/h) D [leurl vig oo

1€AL
+ log?(1/h) Y~ fleurl willoqo- (3.52)
ieAl=t
But it follows from Lemma 3.7 that
L;
9 < J
leurl wil llo.qy < lleurl vallogo + 3 _log?(1/h) 3 fleurl vallo gp-
i=1 keA?) (a)

Then we further deduce from (3.52) that

L,
[Whllono S log(1/h)|[curl vy llogo + > log’ ' (1/h) " |lcurl Vhllo,ao-

=1 ieA? (a)
Inserting the coefficient G gives
1 1 W j+1 Brii, 1
8% walloqg S log(1/m)|3¥curl valogg + - log™(1/0) 3= () I8%curl villgp.
i=1 ieAD (@)
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Summing up this estimate with the ones in (3.48) and (3.51), we come to

1 1
|52 willie < log(1/h)||BZcurl villi g
No Lr(a)

+ 0> > o/t (1/n) > &Hﬂécurlvhﬂgyﬂg. (3.53)

r=ni+1 j=1 iEAgj)(a)

By the definitions of L,(a), AY )(a) and AV (0), we can verify that

No L.(a)
S S et am) Y Dsteurt vi2 o
r=n1+1 j=1 ieAY) (a) & Z

L (o) 1
W &l s

Jj= ieA (o
-y e vi g
r=1 "

No

<log™*'(1/h) Y Cy||B7 curl Vall§ 00, (3.54)

r=1

where C, is a constant given by

Ly (p) )
> log/t(1/h) X B
=1 ieA?) (p)

Cr =
Br

Noting the facts that §; < 3, for all ¢ € A7(»j )(0), L.(p) is a finite number and the set

AY )(0) contains only a few elements, the constant C, must be uniformly bounded for all
r’s. Applying (3.54) to (3.53), we obtain

1 1
182 will§ o S Clog™ ! (1/h)| 87 curl v4f§ o

where C is a constant given by C = max C,. f
1<r<No

4 A non-overlapping domain decomposition method

In this section we shall apply the discrete weighted Helmholtz decomposition developed in
Section 3 to prove that the condition number of the preconditioned edge element system
by the non-overlapping domain decomposition preconditioner proposed in [22] is nearly
optimal, i.e., its condition number grows only as the logarithm of the dimension of the local
subproblem associated with an individual subdomain; more importantly, the condition
number is also independent of the jumps of coefficients across the interfaces between any
two subdomains.

Let us start with the weak formulation of the concerned equations (1.1)-(1.2). For this,
we define the following subspace of H(curl; Q):

Hy(curl; Q) = {v € H(curl;Q); vxn=0on 89} :
By introducing a Lagrange multiplier p to deal with the divergence condition in (1.1) and

then by integration by parts, one can easily derive the variational saddle-point problem
associated with the system (1.1)-(1.2):
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Find (u,p) € Ho(curl; Q) x H}(£2) such that

{ (acurl u, curl v) + v (Bu,v) + (Vp, pv) = (f,v), Vv € Hy(curl; Q)
(Bu,Vq) = (9,9), Vg€ Hi()

Let 7;, be the triangulation of 2, and Vj,(Q2) and Z,(Q2) be respectively the H(curl)-
conforming edge element space and the H'-conforming nodal element space on Tj; see
Section 2 for the definitions of these discrete concepts as well as some others in the re-
maining part of this section. Then the saddle-point system (4.1) may be approximated as

follows:  Find (up,pp) € Vi(Q) x Z,(Q2) such that

(4.1)

{ (acurl uy, curl vi,) + yo(Bup, vy) + (Vor, Bvin) = (f,vy), Vv, € V3(Q) (4.2)

(Bun, Van) = (9, qn), Van € Zp(2).

Efficient substructuring preconditioners was proposed in [22] for solving the saddle-
point system (4.2), in combination with a preconditioned iterative Uzawa method. One
may easily observe that the block stiffness matrix corresponding to the first two terms
in (4.2) is singular when 79 = 0. To overcome this difficulty, the saddle-point system
was first transformed in [22] into another equivalent saddle-point problem whose block
stiffness matrix corresponding to the prime variable u is positive definite. A substructuring
preconditioner for such equivalent saddle-point system was constructed in [22]. As pointed
out in Section 1, the resulting preconditioned system is nearly optimal in the sense that
its condition number grows only as the logarithm of the ratio between the subdomain
diameter and the finite element mesh size, but no conclusion has been achieved in [22]
about how the condition number of the global preconditioned system depends on the
jumps of coefficients (for the case of 79 = 0). The unique task of this section is to
demonstrate that the condition number is also independent of the jumps of the coefficients.
The fundamental tool leading to the successful demonstration is the new stable weighted
Helmholtz decomposition developed in Section 3.

4.1 Augmented saddle-point system and Uzawa methods

In this and next subsection, we shall discuss how to solve the saddle-point problem (4.2)
effectively by making use of the non-overlapping domain decomposition preconditioner.
For the purpose, we write the system into an equivalent operator form by introducing the
operators A : V,(Q) — V,(Q) and B : Z,(Q) — Vi, (Q) by

(Aup,vy) = (acurl uy,curl vy,), Yuy, vy € V4(Q),
(Bph,Vh) = (Vphaﬁvh)a Vph € Zh(Q)> v € Vh(Q)v

and the dual operator B' : V},(Q) — Z,(Q2) of B by

(Btuh7qh) = (/8 Up, VQh)v VQh € Zh(Q)

Let f;, € Vi,(Q) and g, € Zy(Q) be the L:-projections of f and g. Then, the system (4.2)
can be written as

(A+~0B1)uy + Bpy, = £,
¢ (4.3)
Buy, = gp.

In the past decade, there is an rapidly increasing interest in finding effective iterative
methods for solving saddle-point problems like (4.3), see, for example, [4] [5] [19] [20]
[27]. But most existing methods require the stiffness matrix corresponding to the primal
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variable uy, above to be nonsingular, so can not be applied to solve the saddle-point system
(4.3) with 9 = 0, due to the singularity of the operator A in the space V3(£2). On the
other hand, even when ~y # 0, the stiffness matrix corresponding to the primal variable
u;, above may be still nearly singular, by noting the fact that the speed c¢(z) of light is
very large, i.e., 3(x)/a(x) = 1/¢(x) < 1. To overcome this difficulty, we shall introduce
another saddle-point system which has the same solution as the problem (4.3), but can be
solved by existing preconditioned iterative methods.
For the sake of exposition, we shall characterize the following two cases:

Property A. 3(x)/a(x) =1/c(x) < 1;
Property B. ((x)/a(x) = 1/c(x) does not vary largely in the global 2.

Let C : Zy(2) — Zp(Q) be symmetric and positive definite, which should be chosen as
a preconditioner for the discrete Laplace operator on Z,(€2), as we will see below. Then

we define X B A
A=A+~ BI+1oBC'B' and £, =f, +roBC gy, (4.4)

where r( is some positive constant. One of the possible choices for 7y is the average value

of ¢(x) = a(x)/6(x).

Clearly, the system (4.3) has the same solution as the augmented saddle-point problem:

{ Au? + Bpp, =13, (4.5)
B*uy, = gp.
Let A be a preconditioner for the operator A. Since A is symmetric and positive
definite, the system (4.5) can be solved by many existing iterative methods. Below is
a recently developed Uzawa-type algorithm with variable relaxation parameters (see [19]
and [20]):
Step 1. Choose a parameter w; and compute

w = ), + w Ay — (Auj, + Bpj);
Step 2. Choose a parameter 7; and compute
i = ph, + mC TN (B - gp).

Remark 4.1 Some simple choices of parameters w; and ; are given in [19] and [20] to
ensure the convergence of the algorithm. Noting the fact that

frn— AW} = fi, — Aul, — roB[CTH (B}, — g)] — 10 81

in the case of yo = 0, so the value C'_I(Btuﬁl —gn) computed in Step 2 of the i-th iteration
can be used in Step 1 of the (i + 1)-th iteration. That is, the newly added term roBC~1Bt
in the augmented saddle-point system (4.5) does not cause any extra cost in this Uzawa
algorithm as the action of C1 s needed only once at each iteration.

As shown in [19] [20], the convergence rate of the above Uzawa algorithm is completely
determined by the condition numbers k(A1 A) and x(C~'B*A~'B). In the following we
will recall two efficient preconditioners A and C respectively for A and C developed in [22].
It was shown in [22] that the aforementioned two condition numbers are nearly optimal,
i.e. nearly independent of the subdomain size d and finite element mesh size h. But it is
unclear how the two condition numbers depend on the jumps of coefficients in (1.1). This
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will be the main target of the remaining part of this paper, to rigorously demonstrate the
independence of these condition numbers of the jumps in coefficients.

Let A : Vj,(Q) — Vi(Q) be a self-adjoint operator defined by
(Au,v) = (acurlu,curlv) 4+ (au,v), u,ve V(). (4.6)

One may note that both coefficients above are a(z), instead of the coefficient 5(x) appear-
ing in the lower-order term of (1.1). The following theorem is an important observation
from [22], which indicates that the newly introduced augmented operator A in (4.4) is
spectrally equivalent to the operator A in (4.6), as long as C is spectrally equivalent to
the discrete Laplacian.

Theorem 4.1 Let G(-) > 1 be some given function, and the operator C satisfy
(BV6,V9) < (Co,0) S G(d/h)(BVe, V), Vo€ Zn(Q), (4.7)
then we have
(Avi,vi) S (Avi, vi) S G(d/h)log™ ™ (1/h)(Avy, vi), Vvi € Vi(Q).

The proof of this theorem will be given in Section 5. With this result, it suffices for us
to construct a preconditioner for A, instead of A.

4.2 Construction of a preconditioner for A

In this section, we recall a substructuring preconditioner for A proposed in [22].
For this, we first give the definition of non-overlapping domain decomposition.
Domain decomposition. We decompose 2 into N non-overlapping tetrahedral sub-
domains {Q}5_;, with each Qy of size d (see [3] [31]) such that

0

Y i.e., each QY is the union of some subdomains

1. Each € is a subdomain of some (2
in {Qk}/]yzﬁ

2. Each § is the union of some elements of 7},.

The common face of the subdomains 2; and €2; by I';;. Also we shall often write
I' = Uly;, and I'; = I' N 9€;, and I' will be called the interface. For the definiteness, a
unique unit normal direction n is assigned to each face F of I', and this normal vector
is meant in any context whenever a unit normal direction is used on any face in the
subsequent analysis. As in Subsection 2.2, let V;,(I") denote the restriction space of the
tangential components of the functions in V4,(2) on I'.

We then define a suitable space decomposition.

Space decomposition. We define two subspaces of V},(2), one is basically local in
each subdomain, while the other is global in the entire domain 2 but discrete Ax-harmonic
in each subdomain:

N
VP(Q) = {v e V(@) vxn=0onT}= ] V(),
k=1
VH(Q) = {v € Vi(2); v is the discrete Ap-extension of (v x n)|aq, in each Qk}

One can easily find that V;,(£2) has the orthogonal decomposition with respect to the inner

product (A-,-):
Vi(Q) = VP(Q) & VE(Q). (4.8)
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Furthermore, we define two subspaces of V7 (Q):
Vi(Q) = {v e V7(Q); supp(v) C 2y = % UQ; ULy},

V(@) = {v e VH(Q); A(v) =0 for cach ¢ €ry with r CT}.

The space V9(Q) is called the coarse subspace. It is easy to see that the space V() has
the following decomposition (not a direct sum):

V() =VP(Q) & (VO(Q) + Y VYI(Q)). (4.9)

Next, we define the desired substructuring preconditioner.

A substructuring preconditioner. We define the corresponding local and global
coarse solvers on the subspaces V?(Q), V°(Q) and V¥ (Q) adopted in the decomposition
(4.9).

Let A, : VP(Q) — VP(Q) and 4;; : V¥ (Q) — V¥(Q) be symmetric and positive
definite local solvers such that

N
pV V = Z Akvk,vk Qk, Vv € Vp(Q),

where v, = v|q, for k=1,2,---, N and

(Aijv,v) = (Aivi, vi)a, + (4;v5,v))q,, Vv eVY(Q).

The global coarse solvers should be solvable in an efficient way on V(). For the ease
of notation, we assume that the coefficient «(x) in (1.1) is piecewise constant, namely
a(z) = a; for z € Q;, with «;’s being constants. For any face F of §2;, we shall use Fp to
denote the union of all 7j-induced (closed) triangles on F, which have either one single
vertex or one edge lying on JF, and Fy to denote the open set F\F;,. For any subdomain
Q;, define

A= J F, i=1,---,N.
Fcr;

Then the following coarse solver Ag : VO(Q) — VO(Q) was proposed in [22]: for any v,
w e V9(Q),

N
(Agv,w) = h[1 + log(d/h)] Za { (dive(v x n)|p,,div. (W X n)|r,)a, + (VX n, W X n)A, }
=1

Let Qp : VP(Q) — VP(Q), Qo : Vi(Q2) — VO(Q) and Q;j : Vi(Q2) — V¥ (Q) be the
L?-projections. Then the following preconditioner A for A:

ATV = AJ1Q, + Ayl Qo + Z Ale” (4.10)
2]

For this preconditioner, we have

Theorem 4.2 The condition number of the preconditioned system can be estimated by

cond(A~YA) < G(d/R)[1 + log(d/R)]?. (4.11)
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Theorem 4.2 was proved in [22] in the sense that the constant appearing in the upper
bound of estimate (4.11) is independent of the subdomain size d and the finite element
mesh size h, but possibly depending on the jumps of the coefficients in (1.1). Following
the proof of Theorem 3.2 in [22], one can come to the estimate

cond(A~LA) < [1 + log(d/h))?, (4.12)

where the constant appearing in its upper bound is independent of the jumps of the
coefficient a(x). One can easily see that Theorem 4.2 is a consequence of Theorem 4.1
and (4.12). Hence it remains only to prove Theorem 4.1, which will be carried out in
Section 5.

Remark 4.2 The entries of the stiffness matriz associated with Ay can be expressed as

N
h[l—f—log(d/h)]Zai{((curl L.)-n, (curl Le/)-n)Ai—i—(Lexn,LBf><n>Al.}, e, e €,
i=1 FCT

see [22]. Here L. and L. are the basis functions of Vi,(€2) associated with the edges e and
€’ respectively. So the coarse solver Ay involves computations only on A;, a very small
fraction of the interface I'. And it is much simpler compared with the coarse solvers in
many existing substructuring preconditioners for standard elliptic problems, where some
optimization systems need to be solved [3] [31]. Preconditioner A in (4.10) can be imple-
mented as in [3] and [31].

An alternative preconditioner. In some applications, especially when the lower
order term in (1.1) is present, i.e., 79 = 1, it may be more convenient to precondition
directly the operator A* given by

(A*u,v) = (acurl u,curl v) + (fu,v), u,ve V4(Q),

instead of A in (4.4). Set 5 = [Blq, (compare Subsection 2.1). It is clear that 3; = 3
when Q; C QY. Assume that the coefficients a(x) and 8(x) satisfy that

5 G
1<=/=L <1 for each face Iy, (4.13)
(673 Oéj
and
1<Bi<d?a k=1,---,N. (4.14)

In this case, we may make some obvious modifications to the preconditioner A in (4.10).
Namely, replacing Az by A*|Vh(Qk), and replacing Ag by

N

(Agv, w) = hl1+log(d/h)] 3 {an(dive (v xm)[r,, dive (wxn)[r,)a, + B (v x 1, wxn)a, }.
k=1

With this new preconditioner A, we have

cond(A~1A*) < G(d/h)[1 + log(d/h)]?. (4.15)

To demonstrate the estimate (4.15), we shall use the following norm defined on the
boundary I'j of a subdomain y:

1
|@llx, = (anlldive®@l o, +BEIRI%s 1 )° ¥ @ € Va(Th).
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Then the estimate (4.15) can be carried out in nearly the same manner as it was done in
the proof of Theorem 3.2 of [22]. The major changes are to use the relation ;3] = i3}

in the estimate of the terms containing [p},|3, and \pﬁb\%% on pages 54 and 56 of [22],
and to apply the following Lemmas 4.1 and 4.2 on page 55 of [22].

Lemma 4.1 For any ® € V,,(T'y), there exists an extension Ry ® € Vi (Qy), such that

ai||curl(R;®)

6.0 T Bk IR®I[5 0, S l191%, - (4.16)
Lemma 4.2 For any v € Vj,(Q), we have
v x 0%, < axlleurl v[§ o, + GEIVIE, «- (4.17)

The proof of the above Lemma 4.1 follows the one of Lemma 4.9 in [22] by means of
assumption (4.14) and the inverse estimates for HdiVT(I)H%,Fk and H<I>H%7Fk, while the proof
of Lemma 4.2 above comes readily from the Green formulae and assumption (4.14) (e.g.,
see [1]).

A preconditioner for Schur complement. Assume that C is a preconditioner for
the discrete Laplacian and satisfies the condition (4.7), then we have

Theorem 4.3 The condition number of the preconditioned Schur complement system can

be estimated by ) R
cond(C™1B'A™1B) < G(d/h)[1 + log(d/h)]?. (4.18)

Remark 4.3 When C' is chosen as the usual multigrid preconditioner, we have G(d/h) =
1; when C' is chosen as the substructuring preconditioner (see [3], [31]), we have G(d/h) =
(14 log(d/h))%.

Remark 4.4 Theorem 4.1 and Theorem 4.3 still hold when 3 is replaced by 32 /a in (4.7)

and rg 1s chosen to be 1.

5 Proof of Theorem 4.1

As we pointed out right after Theorem 4.2, the major result of this paper, the theo-
rem is a immediate consequence of Theorem 4.1 and (4.12). We are now going to prove
Theorem 4.1.

For any v, € V(Q2), we first decompose it as

Vi = Van & wp, (5.1)
where gp, € Z(2) satisfies
(BVan, Vibn) = (Bva, Vibn),  Viby € Zp(Q)

and wy, is orthogonal to Vg, in the scalar product (3-,-). By the Cauchy-Schwarz inequal-
ity, we know

1 1
182V anllo < |82 valloo- (5.2)

Moreover, by applying Theorem 3.1 for wj, we obtain

1 1 1
183wal2q < log™ ! (1/h)| 87 curlwy |3 q = log™ ' (1/h) |z eurlvalZg.  (5.3)
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Let J : Zp(Q2) — Z,(2) be the operator defined by

(Jon,vn) = (BVén, Viby), YV, ¥ € Zp(Q). (5.4)

Then, by the definitions of ¢, and B! and .J in Section 4.1, we have

(BVan,Van) = (Bva, Vap) = (B'va, qn)
= (Jan, J ' B'vy) = (BVan, V(J ' B'vy))
= (Bvn,V(J'B'vy)) = (B'vs, J ' Blvy,),

that implies
(BJ ' B'vi, vi) = (6Van, Van). (5.5)
This, along with (5.2), leads to

(BJlech, Vh) < (ﬂvh, Vh).

By Property B and the definition of ry, we have 793 = a. Now it follows from (4.7) and
Property A that

(Avy,vp) (acurl vy, curl v,) +0(Bvh, vi) + 1o(BJ ' Blvy, vi)
(acurlvy, curlvy) + (avy, vy) + ro(BVh, Vi)

(AVh,Vh). (56)

IANVANRIA

On the other hand, by (5.5), (5.3) and (4.7) we can derive that

ro(Bvh, va) = 1ol(BVan, Van) + (Bwh, wh)]
7o log™ ™ (1/h)[(BJ ! Blvy, vi,) + (Beurl vy, curl vy,)]

max{1,G(d/h)}log™ " (1/h)(Avy,vi) < G(d/h)log™  (1/R)(Avy, Vi),

(OéVh, Vh)

S
S

which implies

(Avy,vi) < G(d/h)log™ L (1/h)(Avy, v).

This, along with (5.6), gives the desired estimates in Theorem 4.1.
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