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Abstract

In this paper we are concerned with non-overlapping domain decomposition methods
for the second-order elliptic problems in three-dimensional domains. We develop a
new kind of substructuring method, in which one can use an inexact solver both in
each subdomain and on each local interface. The main ideas are to decompose the
interface space into the sum of small local subspaces and a series of coarse subspaces
spanned by constant-like basis functions, and to design a cheap approximate harmonic
extension of the constant-like function. It will be shown that the condition number of
the preconditioned system grows only as the logarithm of the dimension of the local
problem associated with an individual substructure, and is independent of possible
jumps of the coefficient in the elliptic equation.
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1 Introduction

Non-overlapping domain decomposition methods (DDMs) have been shown to be pow-
erful techniques for solving large-scale partial differential equations, especially for solving
partial differential equations with large jump coefficients, and for solving coupled partial
differential equations. One’s main task in non-overlapping DDMs is the construction of an
efficient substructuring preconditioner for discretization system associated with the partial
differential equations. The construction of this preconditioner has been investigated from
various ways and to various models in literature, see, for example, [1]-[9], [11]-[15], [17]-][21],
[23]-[24], [26].

Most non-overlapping DDMs studied so far require exact subdomain solvers; we refer
[25] and [29] (and the references cited therein). Such a requirement severely degrade the ef-
ficiency of the methods. There are only a few works studying substructuring methods with
inexact subdomain solvers [3], [4] and [9]. In [3], analysis and numerical experiments with
inexact algorithms of Neumann-Dirichlet type was done under the additional assumption
of high accuracy of the inexact solvers. The essential difficulty is that discrete harmonic
extensions on each subdomain are used in non-overlapping domain decomposition methods.
In [4], the harmonic extension on a subdomain was replaced by a simple average extension,
and substructuring preconditioners with the average extension are constructed. Because of
such average extension, nearly optimal convergence can not be gotten for these substruc-
turing preconditioners. To avoid harmonic extensions, [9] considered so called approzimate
harmonic basis functions, which still involve high accuracy of the inexact solvers. It seems
difficult to construct a nearly optimal substructuring preconditioner with inexact solvers
without any additional assumption.
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of Natural Science Foundation of China G10531080, and National Basic Research Program of China
G2005CB321702. (email: hqy@lsec.cc.ac.cn)



In the present paper, inspired by [9] and [4], we make a new attempt for the design
of substructuring preconditioner with inexact solvers. The core work is the construction
of a kind of multilevel nearly harmonic basis on general quasi-uniform meshes. The main
ingredients in our construction are: (i) develop a special multilevel space decomposition to
the interface space; (ii) design a cheap nearly harmonic extension for each basis function of
the subspaces involved in the decomposition. It will be shown that the new substructuring
preconditioner possesses nearly optimal convergence, which is independent of possible large
jumps of the coefficient across the interface. For the new method, no additional assumption
is required , and the total computational complexity is optimal.

The outline of the remainder of the paper is as follows. In Section 2, we introduce
some notation and our motive. In Section 3, we present a multilevel decomposition for the
interface space. The main results on the substructuring preconditioner are described in
Section 4. In Section 5, we give an analysis of the convergence of the preconditioner. In
section 6, we prove the stability of the extension of constant-like function, which is used in
Section 5. Some numerical results are reported in Section 7.

2 Preliminaries

2.1 Domain decomposition

Let Q be a bounded polyhedron in R3. Consider the model problem

{—dz’v(qu) =f, in Q,

u=0, on 09, (2.1)

where w € L*>(Q) is a positive function.

Let H{(Q) denote the standard Sobolev space, and let (-,-) denote the L?(£2)-inner
product. The weak formulation of (2.1) in Hg () is then given by the following.

Find v € H}(Q) such that

A(u,v) = (f,v) Yve HQ), (2.2)

where (-, ) is the scalar product in L?(f), and
A(u,v) = / wVu - Vudp.
Q

We will apply a kind of non-overlapping domain decomposition method to solving (2.2).
For simplicity of exposition, we consider only the case with matching grids in this paper.
Let 75, = {7;} be a regular and quasi-uniform triangulation of { with 7/s being non-
overlapping simplexes of size h (€ (0,1]). The set of notes of 73, is denoted by Nj. We then
define V},(2) to be the piecewise linear finite element subspace of HE () associated with
1y
Vi(Q)={ve H}(Q): v|, € Py V7 €T},

where P is the space of linear polynomials. Then the finite element approximation for
(2.2) is to find up € V3, () such that
A(uh,vh) = (f, Uh), Vvh S Vh(Q) (23)

Let €2 be decomposed into the union of N polyhedrons €21, - - -, Qn, which satisfy (;NQ; =
() when i # j. We assume that each € can be written as a union of boundaries of
elements in 7, and all ), are of size H in the usual sense (see [5] and [29]). Without loss of



generality, we assume that the coefficient w(p) is piecewise constant, then each subdomain
Q is chosen such that w(p) equals to a constant wy in Q. Note that {Qx} may not
constitute a triangulation of €.

The common part of two neighboring subdomains €2; and €; may be a vertex, an edge
or a face. In particular, we denote by I';; the common face of two neighboring subdomains
Q; and Q; (ie., I';; = 0Q; N 0Q;). The union of all I';; is denoted by I', which is called the
interface. In this paper, we choose Dirichlet data as the interface unknown.

Define the operator Ay : V4, (2) — V4 (2) by

N
(Apv, w) = A(v,w) = Zwk Vo - Vwdz, ve Vy(Q), Yw e V,(Q).
k=1 7%

The equation (2.3) can be written as
Apup, = fr, un € V(). (2.4)

The goal of this paper is to construct a substructuring preconditioner for A; based on the
domain decomposition described above.

2.2 Notations

To introduce the new method, we need some more notations. Throughout this paper, a
subset G of 2 are always understood as an open set. The closure of G is denoted by G.
e subdomain spaces

For subdomain €, define

Vh(Qk) = {'U|Qk : Yo € Vh(Q)},

and
VP (%) = {vn € V() : supp vp C U}
Set
Qij =0 U Fij U Qj,
and define

VP (Qj) = {vn, € Vi(Q) : supp v, C Q4j}.

e interface space and face spaces
As usual, we define the (global) interface space by

Wi(T) = {vlr : Vv e Vi()}.

For each 0§, set
Wh(an) = {U‘agk : Yo € Wh(F)}.

For a subset G of I', define
Wi(G) = {¢n, € Wi(T) : supp ¢, C GY.

In particular, for G = T';;, the face space Wh(I‘Z’j) will be used repeatedly.
e interpolation-type operator and constant-like basis
For a subset G of I, define the interpolation-type operator Ig : Wj,(I') — W,(T') as

[ nlp), ifpeN,NG,
(I?;%)(P)—{ h()’ iprNhg(F\G).



In particular, we have N
1, ifpe NG
0 _ ) p h )
N0 ={0 it N (G

If G is just the union of some elements on I', we call ¢ = I%l to be constant-like basis
function on G, which will be used repeatedly.
e integration average and algebraic average

For a function ¢, € Wy(T'), let vg(¢n) denote the integration average of ¢p on G, and
let v, () denote the algebraic average of the values of ¢ on the nodes in G.
e sets of faces, edges, vertices and subdomains

For convergence, let Fr denote the set of all the faces I';;. Besides, let & and Vr denote
the set of the interior edges and the set of interior vertices generated by the decomposition

Q=
respectively. For an edge E € &r, let Qg denote the set of the indices k of the subdomains
Q) which contain E as an edge. Namely,
Op ={k: E C OQ}.

Define
Op = U Qr, EE€&p.
keQx
e face inner-products, scaling norm and interface norm
For a subset G of T', let (-,-)¢ denote the L? inner product on G. In particular, the
(-,-)r is abbreviated as (-,-). Let || - ||o, ¢ denote the norm induced from (-, -)g.
For a sub-faces G of I', let Hg denote the “size” of GG. Define the scaling norm

loll1, ¢ = (913, ¢ + Hg'llo

For convenience, define

2 )2, Ve H2(Q).

N
1
[énller = - welonl} oo, )2 Von € Wi(D).
k=1

e discrete norms and discrete inner-product

Discrete norms (or semi-norms) of finite element functions will be used repeatedly in
this paper, since the discrete norms are defined on a set of nodes only, and do not depend
on the geometric shape of the underlying domain.

We first give definitions of three well known discrete norms (refer to [29]), which are
equivalent to their respective continuous norms. For v;, € V}, (), the discrete H' semi-
norm is defined by

%, h, Qp = h? Z o (pi) — Uh(Pj)’27
Pis PjENRNQ

|vn

where p; and p; denote two neighboring nodes. Similarly, the discrete L? norm on an edge
E of 0 is defined by
2 2
lonlls, n, e =h Y lon(@)*
peNLNE

Let G C T';; be the union of some elements. Define the discrete H > semi-norm on Wi(G)
by

Y Oy lon(p) — enlq)|?
? PENLNG gENZNG P—q



where p and ¢ denote two different nodes on G.
Then, we define a discrete inner-product. For each 0€), set

(G o0, = > (¢(p) — ¢(a))(¥(p) — ¥(q))

!
PENENON, GENLNOQ, \p q\

’ ¢a T/J € Wh(aﬂk)a

where p and ¢ denote two different nodes on 0. Define discrete H 3 inner-product on
Wi (I) by

N
<¢7w>h,f‘ = Z wk<¢>w>h,aﬂkv d)a ¢ S Wh(r)
k=1

1
e Hy, norms

Let G C I';; be the union of some elements. For a function ¢y, satisfying supp @5 C G,

define on )|2
_ 2 Pr{T
= lenls et | Gstca, o @)

It is known that

where @y, € Wj (') denotes the zero extension of ¢p. Moreover, we have
2
= $nlZ
ol = [ Aol

d .
H020(G) ~ G dis(w, 8G) 5($)

The corresponding discrete semi-norm is defined by

len(p)[?
lon> 1 = T
h, HOQO(G) pel\z[h:ﬁG dlS(p, aG)

e spectrally equivalences

For simplicity, we will frequently use the notations < and Z. For any two non-negative
quantities x and y, v < y means that x < C'y for some constant C' independent of mesh
size h, subdomain size d and the related parameters. z Z y means z < y and y < z.

2.3 Motivation

We first recall the main ideas of the existing substucturing preconditions.
Let By : W,(0Q%k) — Vi(2k) be the discrete harmonic extension. Define the harmonic
subspace

V}F(Q) = {vp, € Vi(Q) : vplo, = Ex(dnloa,) (k=1,---,N) for some ¢, € Vj,(I')}.

Then, we have the initial space decomposition

N
Va(Q) = > V(%) + Vi ().
k=1

Let Ay« VP(Q) — VIP(Qk) be the restriction of the operator Aj on the local space
VP (Q), and let By, r : ViF(Q) — VI(€2) be a symmetric and positive definite operator which
is spectrally equivalent to the restriction of the operator Aj; on the harmonic subspace



ViE(Q). Then, the classical substructuring preconditioner (refer to [5]) can be defined in
the rough form

N
Byl =" A,.Qk + By 1Qr, (2.5)
k=1
where @ and Qr denote the standard L? projectors into their respective subspaces. For
the preconditioner By, we have (see [5])

cond(B; ' Ay) < log?(H/h). (2.6)

In many applications, the subspaces V() still have high dimensions, so it is expensive
to use the exact solvers A;}g.

It was shown in [3] that substructuring preconditioners with inexact solvers B,;,lc still
possess nearly optimal convergence, if each By, has some spectrally approzimation to Ay, j,
(the usual spectrally equivalence is not enough). Hereafter, “inexact” means that By is
only spectrally equivalent to Ay, i, for example, By, ;, is a multigrid preconditioner for Ay, . It
seems difficult to design an efficient substructuring preconditioner with completely inexact
solvers B,; ,{;, instead of A,:}g itself or its approximation. In essence, one has to modify the
harmonic subspace V;I'(Q) by replacing each harmonic extension Ej with another extension.

In [4], a substructuring preconditioner B; ! with inexact solvers was been designed by
replacing each harmonic extension Fj with a simple average extension. It has been shown
that the condition number of the resulting preconditioned system can be estimated by

cond(B; ' Ay,) < H/h. (2.7)

In [9], another substructuring preconditioner B W ! with inexact solvers was been designed
by replacing each harmonic extension Fj with an approximate harmonic extension. If the
approximate harmonic extension is exact enough, then

cond(B; ' Ap) < log?(H/h). (2.8)

The approximate harmonic extension can be defined by approximate harmonic basis func-
tions. It is not practical to compute all the approximate harmonic basis functions. Because
of this, an alternative method, which still require high accuracy of By, ;,, was considered in
[9].

The main idea of this paper is to avoid approrimate harmonic basis functions by con-
structing multilevel nearly harmonic basis functions on general quasi-uniform triangulations
75,. The new method contains three main ingredients (refer to [12] and [13] for the original
versions):

e decompose each face space Wh(F ij) into the sum of multilevel coarse subspaces and
small local subspaces, such that each coarse subspace is spanned by several constant-like
basis functions as Igl, and each local subspace contains only a few nodal basis functions;

e define an explicit extension for each constant-like basis function I%l of coarse sub-
spaces, and use the average extension for each nodal basis function of local subspaces.

e build a multilevel space decomposition to the global space V;,(€2) by using the decom-
position of the interface space and the basis extensions.

Based on these, we construct a multilevel substructuring preconditioner with completely
inexact solvers. As we will see, the new substructuring preconditioner not only possesses a
nearly optimal convergence, but also possesses optimal computational complexity.



3 A multilevel space decomposition for W (T")

In this section we establish a new kind of multilevel decomposition for W} (I'). To this end,
we first give several basic auxiliary results.

3.1 Basic tools

The following results can be found in [29].

Lemma 3.1 Let E and F be an edge and a face of Q. Then,

1
[onlloor < log> (H/h)|6nll1 o, Yon € Wi(0) (3.1)

and
1
HRn 11 00, S logZ (H/h)|nll1 o0, Von € Wa(0k). (32)

]
The following result can be proved as in Lemma 6.2 in [15], together with the standard
technique.

Lemma 3.2 Let E be an edge of Q. Then,

lén = 1e(@n) 11 po, S 1082 (H/R)|6nl1 po,r  Yon € Wa(0%%), (33)

O

Let ¥ denote a face I';; itself or a sub-face of I';;. We assume that F is just the union of
some elements 7 on the face I';;, and possesses the size d in the usual sense. Here, we do
not require that F is a usual polygon.

Lemma 3.3 Let F be defined above. Then,

1
2

1P|
HOO

| % loa(d/m)nlly . Vo € Wae) (3.4)

Proof. We can prove the result directly by using the discrete norms described in Subsection
2.2 (note that F may be a nonstandard polygon). But, the proof will involve some compli-
cated formulas. Because of this, we try to use another simpler proof. Our idea is to map F
into a rectangle on the plane of F, and to use an existing result on rectangles.

Choose four nodes p1, p2, ps and py on OF in order. Assume that |pipa|, |peps|, |psp4l
and |pgp1| has almost the same length. Let ¢ denote the straight line through p; and ps,
and let ¢/ denote the straight line through ps and ps. The unique intersection of £ and ¢’ is
denoted by o, which is almost the barycenter of F by the assumption. Make a sufficiently
small rectangle D containing F, so that £ and ¢ are just two diagonal lines of D. Moreover,
we require that o is the center of D. It is clear that the size of D is also d. For each node
p € F (p # o), draw a line ¢, through o and p. Let p’ and p” denote the intersection of £,
with OF and with 0D, respectively. Define the well known projection-type mapping F by
//‘

’p, Vp e Ny NF (p # o).

lop
F =
2 lop/

If 0 is just a node, then define F'(0) = o. It is easy to see that F' maps OF onto 0D, and
maps the meshes on F onto a quasi-uniform and regular meshes on D. Moreover, the four
vertices of D equal to F(p;) (¢ = 1,2,3,4), which are just four nodes of such resulting
triangulation Z;P (with the diameter h).



Let W3, (D) denote the linear finite element space associated with ’Z}LD . For ¢y, € Wp(F),

define Fop, € Wy (D) by

(Fon)(F(p) = ¢n(p), Yp € NyNF.

By the discrete norm, one can verify that

Ronl 1 Z|IY(Fen)| 1 . 3.5
I |H020(F) 11D ( )|H020(D) (3.5)

It is known that (see [5] and [29])

IY(F < log(d/h)|| F :

B (Eo,3 ) SToB@/MIFonl

Plugging this in (3.5), and using the discrete norm again, gives (3.4).
O

Similar mapping with F' has been used to construct an explicit harmonic extension by
[16].

3.2 Initial space decomposition for W;(I")

This subsection is devoted to introduction of an initial stable space decomposition for
Wi (T'). There are various ways to design this kind of decomposition (refer to [5], [6] and
[29]). How to design this decomposition is not the main interest of this paper, since our
multilevel method has no essential dependence on such a concrete decomposition. In the
subsection we consider only an example of this kind of decomposition.

For ease of notation, let I’ € F1 denote a generic interface I';; throughout this Section.
Let ¢, denote the nodal basis function on the node p € N}, N Q. Define the global coarse
subspace

WP (T) = span{Ipl, IR1, ¢,: F € Fr, E€Er, p € Vr}.

Note that I%l and I%l denotes the constant-like basis functions on the face F' and the
coarse edge E, respectively.

Let Wi (E) and Wj,(F) be the local spaces defined as in Subsection 2.2. Then, we have
the space decomposition

Wi(T) = WR(T) + > Wi(B)+ Y Wi(F). (3.6)
Eeer FeFr

The following result gives a stability of the above space decomposition of Wj(T').

Theorem 3.1 For any ¢, € Wi (I'), there exists a decomposition

dh=do+ Y dp+ > ¢ (3.7)
Ecér FeFr
with ) )
¢o € Wi (T); ¢u € Wi(B) and ¢r € Wi(F),
such that

lollZr+ D loelZr + > llorlir <log®(H/h)|¢nl - (3.8)

Eeér FeFr



Proof. The idea of the proof is standard. But, for readers’ convenience, we still give a

complete proof of this theorem below. For E € &t and F € Fr, set

o8 = Ig[on — ve(¢n)], and ¢ = Ip[¢n — vr(on)).
It is clear that ¢ € W, (E) and ¢ € W,(F). Define ¢ € W2(T) by

én(p), if pe Npynir,
bo(p) = {')’E(¢h): if pe NyNE (E € &),
Yr(on), if pe NyNF (F € Fr).

It is easy to see that
dh=c¢o+ Y. g+ > op.

Eeér FeFr
Then, we have by (3.2)
loellr = Y wk!¢E|2%,an
keQg

S log(H/h) Y willén —vm(dn)li o, -
keQp 2

This, together with (3.3), yields
> llgelir S log®(H/R) 3 > wilenli h,

Eeér Eeér ke QE

N
Ing(H/h) Z wk‘d)h’éagk
k=1

= log(H/h)||¢nll? p-
On the other hand, one gets by (3.4) (with F = F') and Poincare inequality

"?F’%,mi S log(H/h)H¢h—’YF(%)”%,aQi
S log(H/h)|énl1 po,

A

Similarly, we have
|¢F|%,Qj S 10g(H/h)|¢h|%,an-
Combining (3.11) and (3.12), leads to
6812 < 1o (H/B)eilonl3 o, + 310n13 oo |

Thus,

2
e A

N
S 6l < 10g>(H/R) 3" wrlénl? o, = 6

FeFr k=1
It follows by (3.9) that

lgollZr < llon

ol D0 eelin +1 D0 orllir

Eeér FeFr
S llenlie+ D0 lloeliv+ D llowllir
Eeér FeFr

This, together with (4.4) and (3.13), leads to
l¢ollZr < log?(H/h)l|¢nll2 -

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Now, the inequality (3.8) is a direct consequence of (4.4), (3.13) and the above inequality.

d

In the rest of this section, we construct a multilevel space decomposition to each W, (Tyj).



3.3 Multilevel decomposition for each I';;

In this subsection, we describe a multilevel decomposition for each face F' = I';;. In
short words, we make a multilevel decomposition for F', such that each sub-face generated
by the final level contains a few nodes.

For a positive integer mi, we first decompose F' into the union of non-overlapping

)

polygons Fl(l), s F,Sl in the standard way. As usual, we assume that the decomposition

is conforming, and all the polygons Fr(l) have the same “size” d; € (0, H). Note that 13’7«(1)
may not be the union of some elements on F'.

Let J and my (k = 1,---,J) be given positive integers. Set My = my ---my for k =
1,--+,J. As we will see, My denotes the total number of all the sub-faces generated from
the k-level decomposition for F'. Successively continuing the above procedure, we get the
following hierarchical decompositions of F' (see Figure 1).

e the first level decomposition

3

1

F=|]FW.

T

r=1

e the second level decomposition
Let each Fr(l) be further decomposed into the union of mgy sub-polygons of Fr(l)

(1) _ £ (2) _
FV=JF)yy (r=1-m)
I=1
Thus,
mi1 ma2 9 M2
- (2
F= ma(r—1)+1 U F""( )
r=1l=1 r=1

Figure 1: A simple decomposition of F

e the k level decomposition for 2 < k < J
fr(k—1)

After generating Fr(k_l) from the k£ — 1 level decomposition, we decompose each F;

into the union of my sub-polygons of Z*:'T(k_l)

(r=1--Mg_1).

mg
f(k—1) _ (k)
FT( )= lU ka(r—l)—i-l
=1

10



Then, we get a multilevel decomposition of F'

mi My_1my ~ My
F=J Fi=...= U UF7$IJJ)(7'—1)+I =U F.
r=1 r=1 [=1 r=1
Sine the sub-polygons Fr(k) above may not be the union of some elements on F', it is
inconvenient to make a detailed theoretical analysis for the multilevel method introduced
later. Then, for the purpose of analysis, we define a perturbation Fr(k) for each polygon

k) as follows (see Figure 2)

where ¢, denotes the nodal basis function on the node p. It is clear that Fr(l) C Fr(l). In

particular, if I:}(k) is just the union of some elements on F', then Fr(k) = ﬁ'r(k). It is clear
that these Fr(k) still constitute a decomposition of Fr(kfl):
mg
FED = (JRy oy =1k =1,---,). (3.15)

Figure 2: the decomposition of F' for exposition

Finally, we get another multilevel decomposition for F’

3 mi B MJ—l mj —(J) MJ 3
F= U FM =... = B = U FD,
r=1 r=1 [=1 r=1

For a fixed k, the sub-faces Fr(k) (r=1,---,My) satisfy the following conditions:
(a) each £ i just the union of some elements on F';
(b) each Fr(k) has the same size dj for some di, € (h, di_1) (set dy = H);
(c) the union of all F_’,Sk) (r=1,---,My) constitute a decomposition of F.

Remark 3.1 In general the sub-face Fr(k) is not a usual polygon yet, except for some par-

ticular situations. It is clear that the sub-faces ol satisfying the conditions (a)-(c) can be
generated directly if the grids on F' have some particular structure.

)

Remark 3.2 In applications, we use only basis functions on the nodes in Fr(k , instead of
Fr(k) itself. Since Fr(k) contains the same nodes with F,gk), one needs not to actually generate

Fr(k) when implementing the method introduced later (i.e., ~T(k) is ok.).

11



3.4 Multilevel decomposition for Wh(f‘ij)

In this subsection, we define a multilevel space decomposition for each Wh(I’ij) based
on the decomposition given in the last subsection.

For convenience, define Mg = 1 and Fl(o) = F. For k > 0, let f,gk) denote the set of all
the sub-faces generated by the decomposition

Mmi+1
k) _ (k+1) _
FT( = ZLJ1 ka+1(r—1)+l (r=1---Mp). (3'16)
Namely,
(k) _ g(k+1) (k+1) (k)
fT‘ - {ka+1(7”—1)+17 mk+1(7”_1)+27 7ka+1r}.

If the common edge of two sub-polygons generated by the decomposition

Mk

+1
(k) _ p(k+1) —
FT( )= U ka+1(r71)+l (T =1 Mk)
=1

contains a node at least, then we call the common edge to be a “real” edge of the decom-
position (3.16). Similarly, if the common vertex of several sub-polygons generated by the

decomposition
mg

+1
EW = stktll)(r—l)—i-l (r=1---My)

I=1
is just a node, then we call the common vertex to be a “real” vertex of the decomposition
(3.16). Let 8,§k) and Vﬁk) denote the sets of “real” edges and “real” vertices of the decom-
position (3.16).
e the local subspaces

As before, let ¢, denote the nodal basis function on the node p € Ny NT. Set

Wi(F®) = span{p, : pe Ny N (EYNOF)} (r=1,---,Mp; k=0,---,.J).

It is clear that Wh(Fl(O)) = Wi (F) (Mg = 1). Moreover, for each 1 < k < .J, the sum of all

the local subspaces Wh(F,Sk)) (r=1,---,My) gives a decomposition of Wy, (F).
e local coarse subspaces
For a sub-face Fr(k), define

WR(FE®) = span{Ip1, 121, ¢, : Fe FM, Be WM, pe V)
(r=1,---,Mg; k=0,---,J—1).

Note that W,g(F,gk)) is a subspace of Wh(Fr(k)) If both &Ek) and V;k) are empty set, then
we have
W(E®) = span{I21: ¥ € FM}.

In this case, the dimensions of the subspace W,?(E«(k)) equal the number my4, of the sub-

faces generated by the first decomposition of Fr(k).
e the final decomposition
It is easy to see that

B J—1 My M, _
Wi(F) = >3 WR(ER) + 3 Wi (FY). (3.17)
k=0r=1 r=1
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Remark 3.3 In the above space decomposition, the spaces Wh(Fr(J)) (r=1,---,My) are

the finest local subspaces. The spaces W ( 7@) (r =1,---,Mg), which can be viewed as
extensions of W,?(F) defined in subsection 3.2, are the coarse subspaces associated with the

first level decomposition of Fr(k) (k=0,---,J —1). Note that each function in W}?(Fr(k))
vanishes at all nodes in F\F,gk)

Remark 3.4 In applications, the multilevel decomposition would be generated in a suitable
manner such that both each local subspace Wh(Fﬁ‘])) and each coarse subspace W,?(F,Sk))

has a low dimension. As will see, we usually set my = m (a fized positive integer).

3.5 Stability of the multilevel space decomposition

For convenience, set
WR(T) = WR(T) + Y Wi(B).
Eeér

From (3.6) and (3.17), we get a multilevel space decomposition of W}, (T")

J—1 Mg My
Wi =W + > DS wER) + 3 Wi (£
FeFr h=0r=1 =1

This subsection is devoted to analysis of the stability of the above multilevel space decom-
position.

Before giving the main result, we prove two auxiliary results for a generic face F' € Fr.
For simplicity of exposition, we assume that both &(’k) and Vﬁk) are empty set for each Fr(k),
where &gk) and ngk) were defined in the last subsection. Then, we need only to consider
sub-face interpolations in the construction of a stable multilevel decomposition. If the
assumption does not hold, we need also to consider edge interpolations as in Subsection
3.2, and to make some obvious modifications in the following construction. But, this change
will not increase any essential difficulty of the analysis.

We first construct a decomposition for the generic face F'.

For k satisfying 1 < k < J, let Ig(k) denote the interpolation-type operator defined in

Subsection 2.2 with G = ng) (r=1,---,M). For ease of notation, set
o) = I%k) (r=1,---,Mp).
Under the assumption mentioned above, the union of ng)(r_l) IRTRER ,Fr(ri)(r_l) - gives an
open cover of F,n(kfl). Then, the operators
k ~ k 4 _
O r—1y0 : WilD) = Wa(Ep 1)) © Wa(FETD) (1= 1,0 my)
satisfy
my,
k 5 _
ani(r_lw =1 on Wip(E# D) (r=1, - Mu_p;k=1,---,J). (3.18)
=1

For ¢p, € Wy(T), let ¢F € Wh(F) be defined in the proof of Theorem 3.1. For conve-
nience, set ¢§0) = ¢p. Define

o) = 0 [on — 0 (o)) € Wi(F) (1< k< J;r=1,---,0m) (3.19)
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and

my,
¢£{€61) = g — ZQZ)ESZ(Pl)H (I<k<Jyr=1, Mp1). (3.20)
=1

By the definition of ¢, the equality (3.19) is also valid for K = 0 (r = 1). The following
result indicates that they constitute a decomposition of ¢p.

Lemma 3.4 Let ¢ and ¢{"" (k=1,---,J) be defined above. Then,

o) e WOEF D) (1<k<J;r=1,-- ,My1). (3.21)

Moreover, we have

ZZqﬁ’“) +Z¢>J) (3.22)

k=0r=1

Proof. By (3.19) and (3.18), we have
Pt = gk [¢h_7p(k 1 (én)]

- Z Hmk(rfl)Jrle?("k_l [6h = o= (61)]
=1
mg
k
= 07(n;2(r—1)+l [Pn — V=1 (¢n)].
=1

Substituting this into (3.20), and using (3.19) for ¢7(:Z( yields

r—1)+0

my
k—1
¢5~, 0) = Zemk(r 1+l — Tpk-1) (¢n)] Z (r— 1)+l ’VFW( I)H(‘f)hﬂ
=1 =1 "
mp

= Z (r—1)11 ’YFUe) (@n) = ¥ pte-1 (dn)]-

— k(r=1)+l

Since 7 ) (¢n) = V-1 (¢n) is a constant, we further get
my (r—1)+1 T
my,
k—1 k
B0 = rpw (90) = v (G018 L

=1 mk(r 1)+

This gives (3.21).
Using (3.20) for £ =1 and k = 2, we deduce

or =0 = o\ +Z¢ +Z¢(1) +ZZ¢m2<r 1)+ (3.23)

r=11=1

It follows by (3.15) that

m1 ma

>3 b = Z o).

r=11[=1
Substituting this into (3.23), and using (3.20) repeatedly, yields

b = <0>+Z¢ +Z¢ +Z¢<3

14



0 W oy My
- ”+Z¢ro+ DI rRED
r=1 r=1

This implies (3.22).
O
The following result shows the stability of the decomposition (3.22).

Lemma 3.5 Let qb,(f)o and d)&” be defined in (3.19) and (3.20). Then,

J—1 My

>3l o|2% ) +Z|¢ W)5J[1+log<H/h>]2|¢h@,F (J=1). (324)

k=0 r=1

7‘

Proof. Tt follows by (3.20) that

(k=1)2
|¢) 0 | 1 >~
L) H020(F»,£k71>)

2
( (k 1)) |Z¢mkr 1+l| F(k 1))

2(|p V2
Ho =1 )

0

(k—1) 2
S VR, 1)+Z|¢W1+l| b )

( my (r—1)+1

One needs to estimate each semi-norm in the right side of the above inequality.
Using (3.4) with F = F* 7V yields (dy = H)

[ | b pkony S 10g2(dk—1/h)||¢h—7F7gk—1>(¢h)”; e
0
5 10g2(dk‘—1/h)‘¢h’2l FR)s r= ]-a"'ka‘—l-
27 ™
Then,
My_1
Z oY 3, S log(di—1/M)|onl3 p (1< k<), (3.26)
Let r=1,---,Mg_1; I =1,---,my. By (3.4) with F = Fﬁz(ril)ﬂ, one can verify that
|¢>m il < log®(di/R)|lon — ¥ pew @n)l3 oo
e(r=1)+ ao( 7('513(?—1)“) ka(Tfl) % wfk('r—1)+l
< log?(di/h)lonls o
27 mk(r 1)+

This, together with (3.15) and the discrete H 2 semi-norm, leads to

(ka(r 1)+1 22T
We further get
Mk—l mi (k)
SN Py . Slgd/MIel p (<E<T). (327)
r=1 [=1 HOO(ka(r—1)+l ?

Combining (3.25) with (3.26)-(3.27), leads to

My 1 (kl M1 ( Mg_1 my
k—1) 2
0 r r=1 0 r=1 =1 mk(r 1)+1
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S log2(dk’—l/h)‘d)h@7 F (k = 17 o 7‘])

Thus,

J—1 My

> S 6 m)wzlog (@e/Wonld < Tlog>(H/Monl o (3:28)

k=0 r=1 00

On the other hand, using (3.19) (with £ = J) and (3.4), we deduce

162, <10g2(dj/h)‘¢h’21 O
29 r

OO( (J))

Then,

Z |62 g S < log?(dy/h)énl3,

00 Fr

Now, the inequality (3.24) follows by (3.28) and and the above inequality.
(]

Now, we give the stability of the multilevel space decomposition of Wp(T).
For ¢y, € Wi (I), let ¢g and ¢ be defined by Subsection 3.2. For simplicity of exposition,
we define

doo = do+ > dE-

Eeér

The decomposition (3.7) can be written as

On=cdoo+ Y or. (3.29)

FeFr

Then, the following result is a direct consequence of Lemma 3.4 and Lemma 3.5.

Theorem 3.2 For any ¢p, € Wi(1), let ¢oo € WP(T') be defined above. Then, there exist
functions

¢§;)T‘, 0 € W}?(ng)r) (OS ké J_la r= 1a"'7 ) and gbzg r € W (ng)r) (’I“: 17"'7MJ)7
such that
J—1 Mg
o=+ 1> o), D+Z¢m (3.30)
Ii; k=0r=1

Moreover, we have

Z Z Z H¢z], r ,OH I + Z Hgi)z] T

Iy k=0r=1

I2.r] S JIL+log(H/h)PllgnllZr (2 1) (3:31)

]
Remark 3.5 We conjecture that the factor J in (3.81) (and (3.24)) can be dropped. Un-
fortunately, we fail to prove this conjecture.
4 A substructuring method with inexact subdomain solvers

This section is devoted to construction of a new substructuring preconditioner with inexact
subdomain solvers. The new preconditioner is based on a multilevel decomposition of V4,(2).
This multilevel decomposition of V},(§2) depends on the multilevel decomposition of W}, (I")
developed in the last section and various nearly harmonic extension operators.
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4.1 Nearly harmonic extensions

In this subsection, we define various extension operators, which will play a key role in the
new preconditioner.

As in the last section, let F' denote a face I';;, and let F,Sk) be defined in Subsection
3.3. For convenience, we use F to denote the face F' or a sub-face Fr(k) (r=1,---,Mg;
k =0,---,J). Throughout this section, we always use ¢p = I21 € Wh(F) to denote the
constant-like basis function on F.

e an explicit extension for the constant-like basis function ¢p

Since F may not be a polygon, a stable extension of the constant-like basis ¢p is trick
to design.

Let or be a central node on F, and let dp denote the “size” of F in the standard sense
(dp = di if F = Fr(k)) For a node p in €, let p’ denote the projection of p on F. Besides,
we use [, to denote the straight line drawing from o to p’ (if p’ # op), and use ¢ € OF to
denote the intersection point of I, with OF (see Figure 3).

Figure 3: illustration for the notations

In short words, we define the extension Ep¢p such that the values (Ep¢r)(p) decrease
gradually when the length |pp/| or |opp/| increases. To give the exact definition of Er¢p,
we set

A,%” ={peN,NQy;: p =or, pp'| <dr}

and

2 T
A%) ={peN,NQj: p eF, p #op, |pp| <|pql- |0FQ|}.

For a face or a sub-face F, define the extension operator Fp as

(bF(p ) if JAS ?a( )
1 [l ifpe Al
d ) F »
(Erdr)(p) = oral oy (4.1)
_ lopal Jpp'| (2)
1 dp " Ipdl it pe Ay,
0, otherwise.

For rectangular face ¥ with uniform triangulation, the values of Frp¢p at some nodes
are given in Figure 4.
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Figure 4: extension of ¢p for particular case

It is easy to see that the extension operator Ep possesses the properties:

(i) the support set Qp of Ex¢r is a simply connected domain with the size dp;

(ii) the implementation of Er possesses the optimal computational complexity O(np)
with ng = (dp/h)? being the number of the nodes in Q.

Besides, the extension Eg is nearly harmonic in the following sense

Theorem 4.1 The extension Ew defined by (4.1) satisfies the stability condition

|Erorli g, |EF¢F|%,Q]- Slopl® s
H020

(4.2)

The proof of this theorem will be given in Section 6.
e extensions associated with thg finest sub-faces
For F =Ty, define B, - Wy(F”)) — V4 (Qy)) as follows (r = F”)

e(p), if peF, )
(B o) (p) = {’th((p), itpe ADUAD  (peN Ny, pe Wi(ED))  (4.3)
0, otherwise.
e an extension on the global coarse space
Let R) : Wi(0Q) — Vi(Q%) denote the zero extension operator in the sense that

RY% = ¢ on 9Q%, and R)¢ vanishes at all internal nodes of Qy, for ¢ € Wy,(9€). For
¢ € WQ(T), we have

¥ = Yho0, () + Iy, (0 = Yoo, () + Y Yr® — o0, () dr, on 0.
FCoQy,

Hereafter, W denotes the wire-basket set of (i, i.e., the union of all the edges of ;. Then,
we define on each €,

Eot) = 00, (¥) + Ry, (¥ — yhoo, W)+ D e — o, () Ergp.  (4.4)
FCoQ,

It is easy to see that Egy = ¢ on I
e extensions on the local coarse spaces

Let G,(nk) denote the union of the “real” edges and the “real” vertices generated by the

first decomposition of £ (see Subsection 3.4). For ¢ € W,?(F,gk)), let ap(¢)) denote the
(constant) value of 1 at the interior nodes in F. It is easy to see that

Y= gﬁk)@ﬁ—l- Z ap()pp, on EF).

Fer )
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Note that Ig(k)w =0if G,(nk) is an empty set. Then, we define on Q; (I =¢,7)

f¢ﬁ7vo¢ Ri( Gu»¢ )+ Y. ap(¥)Erdr. (4.5)
Fer®

As we will see in Section 5, all the extension operators defined above keep the stability
of the exact harmonic extension, and so they are called nearly harmonic extensions.

4.2 Multilevel decomposition for V()

In this subsection, we define a series of “nearly harmonic” subspaces of V},(€2) by using
the extension operators described in the last subsection.
For E € &r, let Eg : Wi(E) — V,(9) denote the standard zero extension operator.
Define
Vh(QE) = {Uh € Vh(Q) . v = Egoy for some ¢, € Wh(E)}

Namely,
Vi(Qg) = span{y, : p € Ny NE}.

For the extension Ey : WP(T') — V,(2), define
VA(Q) = {v, € Vi(Q) : vj, = Eyé for some ¢, € W (T)}.

As before, let F' = I';;. For each Fr(k) (k =0,---,J; 7 = 1,---,My), let El(])r 0
W}B(Fr(k)) — Vp(Qj) (k=1,---,J —1) and JoISO VNVh(Fr(J)) — V3 (€4;) be the extension

operators defined in the last subsection. Set

Qz(f,)r = U suwp Ei(]'-f),., o0 (k=0,---,J—1)
YeW(FM)
and ;
ol = U supp BV
PeWL (R

Define the subspaces

VO ) = {on € Vi(Qi) + vn = B, oo for ¢ € WREM)} (k=1,---,J ~1)

and
VA(24;),) = {vn € Va(Q) = on = B 6 for o € Wi(ELD)).

17, T

The functions in the subspaces defined in this subsection are not harmonic yet, but they
still keep the energy stability (see Section 5). Thus, the basis functions of these subspaces
are called nearly harmonic basis functions.

Since we have

J—1 Mg
Wih(D) = W) + > Wae) + Y DS w(EHR) +2Wh (F),
Eecér FeFr k=0r=1 r=1
the space decomposition holds
N J—1 Mg J
Vh(Q):ZV(Qk —l—Vh —l—ZVhQE —l—ZZZVh zyr +ZVhQZ(jT‘
k=1 Eeér Ty k=0r=1
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4.3 New substructuring preconditioner

Based on the space decomposition in the last subsection, we can define a preconditioner in
the standard way.

Define symmetric and positive definite operators as follows:
e the subdomain solver By, : V/(Q) — V/(Q) satisfies:

(B, vn)a, = Wk/Q \Vun|?dp, Yo, € VP(Q); (4.6)

k

e the global coarse solver By : V2(Q) — V,2() satisfies:
(Bovh,vn) < (Anvn,vn), Yon € V(); (4.7)

e the edge solver By : Vi,(Qr) — V4 (QE) satisfies:

(Bevn, vn)og < (Anvh,vn),  Vun € Va(Qg); (4.8)
e local coarse solver Bi(ﬁ)n 0: VP (ng)r) -V (QEJ)T) (k=0,---,J —1) satisfies
(B, gvnson) T (Anon, o), Vou € VO, (4.9)
e the finest local solver BZ( ) Vh(QZ(;{) ) = Vi (QZ(] )T) satisfies
(BZ(]J)th, vp) = (Apop,vp), Vo € Vh(QZ(] )T) (4.10)

In applications, the subdomain solver Bj is usually chosen as a symmetric multigrid

preconditioner. Since all the subspaces V,)(Q), Vi (Qg), V2 (ng)r) and Vh(QEJ )r) have low
(k)

dimensions, the solvers By, Bg, B; i 0 and BZ(]{)T can be simply defined as the restriction
operators of Ay, on their respective subspaces.
Now, the desired multilevel preconditioner for Ay is defined as

N
> B 'Qr+B;'Qo+ > By'Qg

k=1 Eeér
J—1 Mg (k
—1 —1
+ ZZZ Z],TO QZJTU+Z Z]T Qur]
Ii; k=0r=1

where Qs+ VA(8) — VY(S%), Qo : V(@) VOQ), Qe : Vi(Q) — Va(©r), Q. :
V() = VoO® Yy (k=0,---,J—1), and Q' : Vi () — V3,0

i T ;7 ) denote L? projectors.

z]r

4.4 Implementation

Let By, By, BE, Bi(jli)r, o(k=0,---,J—1) and Bz(j )T, be defined as in the last subsection.

The action of B;l can be described by the following algorithm
Algorithm 4.1. For g € V,,(2), the solution ug € V}(2) satisfying

(Bjug,vp) = (g,vs), Yop € Vi(Q)

can be gotten as follows:
Step 1. Computing u} € V() in parallel by
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Step 2. Computing ug € V2(£2) by

(Bouo,vn) = (g,vn), Yon € V3 (Q);
Step 3. Computing ug € V() in parallel by

(Bgug,vn) = (g9,vn), Yup € Vi(QR);

Step 4. Computing uz(]) ro€ VY (Ql(]) ;) (1=0,---,J —1) in parallel by

BY il o v) = (gv)gw . Yon e VIQD )

ij, T, Oul] r, 07 ij, T
ij, r, 0

)

’Lj’f’

Step 5. Computing u( ) , € Vh( ) in parallel by

(B @D ) = (9,vn) g > Yon € Va(Q));

17, Ty, T Z] T
1] T

Step 6. Set

Zuk+u0+ Z UE+Z ZZUU,T 0+ZUU,

Eecér FJZIT’I

Remark 4.1 Before implementing the above algomthm one needs to compute the nearly
harmonic basis Egon, Eron, Z(Jk)r o®n and E ZJ T,gbh for each basis function ¢p of Wh( ),
Wi(E), Wh(FT{k)O) or of Wh(Fr(J)) (F =Ty;). As we will see in the next subsection, the
complexity of computing all the extension is optimal. When all the harmonic basis functions

are gotten, the cost for implementing Step 2-Step 5 is very cheap, since each subspace
involved in these steps has very low dimension.

Algorithm 4.1 can be also described in term of interface solvers. To this end, we need
to define a series of solvers on interface subspaces.
e The global coarse solver

A symmetric operator My : W2(T') — W)(I') satisfying

(Movn, vn) Z llvall?, vy Yo € WR(9).

e The edge solver
A symmetric operator My : W, (E) :— Wj(E) satisfying

(Mgvp, vn)e < llonll2r,  Yon € Wi(R).

e The local coarse solver

A symmetric operator MZ(] )r 0" W,?(Fr(k)) — W (k)) (F =Ty;) satisfying

k —
<M(g )1“7 ovhavh>F7E’“) = (w; +wj)‘vh‘2%7ri]’7 Yo, € WO(EWR).

27,

e The finest local solver . .
A symmetric operator Mz‘(j,])r : Wh(FT(J)) — Wh(Fr(J)) (F' =T}j) satisfying

; B .
<M2‘(j7)rvhavh>FT(J) S (@it wlonld o von € Wi(E).
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All the above operators can be defined by the discrete H > inner-product (see Subsection
2.2) on their respective subspaces of W}, (T") (see [14] and [13] for the details). Under suitable
assumptions, the local operators can be also defined explicitly (see [12]).

The following algorithm can be viewed as a variant of Algorithm 4.1
Algorithm 4.2. For g € V,,(Q), the solution u, € V3 () satisfying

(Bjug,vr) = (g,v1), Vup € Vi(Q)

can be gotten as follows:
Step 1. Computing uf, € V}’(Q) in parallel by

(Bku}l::’vh)gk = (97 Uh)Qka v'Uh e V]f(Qk)7
Step 2. Computing ¢ € W(I') by

(Mogo, Yn)r = (g,vh), vh = Eotbn, Vo, € WP(T);

Step 3'. Computing ¢g € Wh(E) in parallel by
(Mgop, ¥n)E = (9,vn)0g, v = Egtn, Vo € Wy(E);

Step 4'. Computing d)fé) r o€ W,?(Fr(l)) (1=0,---,J —1) in parallel by (F = T};)

<Mz(]l, T, D(bl], T, 0 wh>F£l) (gvvh)Q(l) y Uh = ErL(Jl? T, 0¢h7 V¢h € Wf?(FT(l)%

ij, r, 0

Step 5. Computing ¢ € Wh(F,SJ)) in parallel by (F' =T';)

Zj’f’

(MZSJ)T%] ro Un) o = (9, 0n) g 5 vn —EZ(] Un, Vb € Wi(F);

ij, T
Step 6. Computing

l {
UOZEO¢07 UEZEE(bEa U,E]? r, 0 1],)7~ (](z)m,'r 0 ( 2077']_1)

and
(J)

uij, ro 1] r¢zy,

Step 7. Set

1

J-
Zuk+vo+ > uet) D
=1

Eeér FrL]

My,
Zuw, T 0+Z zJ,
1

r=

4.5 Computational complexity

When implementing an existing substructuring method with ezxact subdomain solvers, one
needs to compute harmonic extension Eppn, € Vi(Q) for some ¢, € Wp(0Q) (K =
1,---,N). Since each Q has O((H/h)3) nodes, the optimal complexity for computing
all such extensions is O(N x (H/h)3) (but, there seems no optimal harmonic extension in
literature, except that the triangulation 7, possesses particular structure). For our sub-
structuring method with inezract subdomain solvers, we need not to compute such harmonic
extensions, but we have to compute all the nearly harmonic basis functions before imple-
menting Algorithm 4.1 (or Algorithm 4.2). A natural question is: whether the complexity
for computing all the nearly harmonic basis functions is much greater than the complexity
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for computing the original harmonic extensions? If yes, the advantage of inexact subdomain
solvers is not obvious. The following result gives an answer to this question.

Let N(J) denote the total complexity for computing all the nearly harmonic basis
functions.
Proposition 4.1. Let m > 4 be a given positive integer. If J and my are defined by

J Zlog m(H/R) and mq =---=m;=m, (4.11)

then
N(J) <N x (H/R)?, (4.12)

which is optimal. Moreover, the complexity for implementing Step 3-Step 5 in Algorithm
4.1 (or Step 3'-Step 5 in Algorithm 4.2) equals O((H/h)?) for each T;;, which is also the
optimal.

Proof. We first derive a general estimate of N(J). It is clear that the global coarse space
WP () has the dimensions O(N). Using (4.4), together with the property (ii) in Subsection
4.1, we know that the cost for computing Ey¢p with all basis functions ¢y, of W,? (I") equals

No = O(~ x (H/h)?). (4.13)

Since Ef is chosen as the simple zero extension, the cost for computing Er¢, with all
basis functions ¢, of each W, (E) is

Ng = O(H/h).
Note that the number of the coarse edges E € & equals to O(N), we have

> Ng=O0O(Nx H/h). (4.14)
Eeér

For a face F' = I';;, let n;; denote the number of the nodes in I';;. It is easy to see that
(k) (k)

the number of nodes in Frk i
(nij/Mk)% with Mg =1 (k = 0,---,J). By the definition of W}?(Fr(k)), the dimensions of
each W) (F,Sk)) equal O(mg41) (E=0,---,J—1). Moreover, the number of the local coarse
subspaces W,?(Fr(k)) equals My (k=0,---,J—1). Besides, the dimensions of each Wh(F,SJ))
equal n;;/My. Since the cost for computing each local harmonic extension is optimal, the

is about n;;/My, and so the number of nodes in ;. is about

complexity for computing all the harmonic basis functions of V}! (Ql(f)r) and Vh(QEj)r) is
about

J-1

N;i. 3 Nii 3 Mis
YoM ()2 ] +Mg[(S2)2 - 2 (4.15)
k=0 Mg My~ My

This, together with (4.13) and (4.14), leads to

<N H 3 H =1 Ngj .3 Mg
N X(ﬁ) +NXW+NX{ZMk'[(M*k)2'mk+1]+MJ[(E) M,
k=0

nij

(S

I} (4.16)

Now, we verify the desired result by (4.16). By the choices of J and my, in (4.11), we
have

M =mF, mpp=m (k=0,---,J—1) and My =m’ = (H/h)?.
Then,
N5\ 3 _ 3 1 nij.s mny,_ 5 H 4
Mk-[(m)2.mk+1]—m ng - (=)" and MJ[(NTJ)z E]Nn13’<ﬁ) .



Substituting these into (4.16), and note that nQJ
The number of subspaces V}! (Q( ) ) and V()

ij, T

O(H/h), we deduce (4.12).
)

,) equals

@,\ ||

My + Mg + My = m/ = O((H/h)2) ~ Nij-

Note that each subspace has almost the fixed dimension m, we get the second conclusion.
O

4.6 Convergence

Now, we give an estimate of cond(B;'4y).

Theorem 4.2 Let J and my be defined as in Proposition 4.1, and let the extensions be
defined by Subsection 4.1. For the preconditioner By defined in Subsection 4.3, we have

cond(B;Ay) < CJlog®(H/h), (4.17)

where C is a constant independent of h, H, di and the jumps of the coefficient w across
the faces I'y;.

A proof of the above theorem will be given in the next section.

5 Analysis

This section is devoted to a proof of Theorem 4.1. We first to prove several auxiliary results,
which involve stabilities of the extensions defined in Subsection 4.1.
5.1 Auxiliary results

The following result can be verified directly by the discrete semi-norms described in
Subsection 2.2.

Lemma 5.1 The coarse edge extension Eg satisfies

E: *Fv V¢E EI&%(E) (51)
keQp

O
Lemma 5.2 Let my, and J be defined in Proposition 4.1. For F' =T';;, we have

wilES onl? o, + wj B Von € Wi(F)). (5.2)

Proof. Using the discrete H' semi-norm of finite element functions, together with the

(/)

definition of the extension E; -,

yields

J dy
B o, S ALY (onlp) = mr(en)) + (5 Imr(en)
planNh 2 2
S T lllen = mrlen)lior + [lenllsrl- (5.3)
Since ¢y, vanishes on I';;\F, we get by Friedrich’s inequality

len = (en) 5 lenldr S dilenll o, (5:4)
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It is easy to see that

dy (
h - My
Then, we deduce by the assumption d;/h = O(1). Plugging (5.4) in (5.3), leads to

)3 = = /(- my)

H
h
J 2 2
B enlta, S lonl3 o
Similarly, we have
J 2 2
ES enlta, S lenlk go,-

Then, we deduce (5.2) by the definition of | - ||« .
O

Lemma 5.3 The global coarse extension Eqy satisfies
N
> wilEogoli g, < log(H/h)||dollZr, Vo € W(T). (5.5)
k=1

Proof. By the definition of Ey, we have

|Bogolto, S |BRILY, (60 — o, (@0))]lf 0,

+ > (@0 — o, (90) I - |Erdrlig, - (5.6)
FCoQy,

Using the discrete norm, together with (3.1) and Poincare inequality, yields

|RYIy, (60 — Yh00, (¢0))]

[0 — Y00, ($0) 15,
10g(H/h)\¢0|2%,an‘ (5.7)

2

Lo S
<
~Y

On the other hand, we have

Y, (D0 — Yho, (00))1F S H?|¢o — vh.00, (¢0)115 00,

and (by (4.2))
|Erorli o, Slovl*y < Hlog(H/h).
Hio(F)

00

Thus,

7 F (60 — Y00, (@) - | Erorlio, < H *log(H/h)ll¢o — 00, (0)lI6 00,
< log(H/h)|éol? 46,

Substituting (5.7) and the above inequality into (5.6), we get (5.5).
O

Lemma 5.4 Let F") be associated with F = I'i;. The local coarse extensions Ei(ﬁ)r, 0
satisfy

k k
Wi|Ei(j,)7«, 0BhlT 0, + wj\Ez‘(j,)r, o¢h|§,Qj
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Proof. Without loss of generality, we assume that Fr(k) is a quadrilateral, which is just
decomposed into four quadrilaterals in the standard way.
It follows by (4.5) that

k
B oonlta, S BN ISwenia, + D lan(én)? - [Bedel o, (5.9)
Fert)

We first estimate ‘EF¢F|%QZ for each r € FP. Using (4.2) and the discrete norm given
in Subsection 2.2, yields

1
Ergrlia, SIorl* s Zlorl* 1 = — 5.10
|[Erorlio, S |¢F|H§)(F) ~ |¢F|h7 . perm:Nh dis(p, OF) (5.10)
Set (see Figure 5)
Lp =9rNOF® D ={per: dis(p,0F) = dis(p, Lp)} and D? =F\D.
'L'E‘ﬁ‘.
VAV VAV
WAV YY)
WAV AVAVA
Figure 5: illustration to Ly, D and D?
Then,
> . S > L > S — (5.11)
dis(p, OF) dis(p, Ly) dis(p, OF)

peFNNG, pEDNN, pEDINNG,

Since the triangulation is quasi-uniform, the domains D and D? have the same “size”. For
each p € D? NN}, there exist a p’ € D NN}, such that

dis(p, OF) = dis(p', OF) = dis(p', Lg).

Thus, we have by (5.11)

1 1 1
I -~ =
2 dis(p, OF) ~ 2 dis(p, Ly) ™~

. k)N
pEFNNG, pEDNNG, pEDNN, dzs(p, 3Fr( ))

Plugging this in (5.10), leads to

ar(én)|? o3 (p
lar (o) - |Eror|ia, S Z Lh)‘(k) < Z %
peDrw;, dis(p, OB e dis(p, OF:)
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We further get by the discrete norm

2
e (on)? | Brorlia, 5 [ ) 2P dsip) < o

— OhP) L (5.12)
Y dis(p, 8Fr(k)) HE(F™)

Now, we estimate |RY (Ig(mﬁbh)\% q,- It can be verified, by the discrete norm again, that

\R?(Iggk@h)ﬁ,ﬂ 17 <k>¢h| HE (FP)

This, together with the relation

Iggmﬁh =on— > ap(én)or,

Fer®)

yields

’R?(Iggc)%) 1o, S ’¢h’2

(k))Jr > lar(en)l - lorl

Y
Hao FcF® Moo

(k))

Then, we obtain by the above proof

’R?(Ig,(ﬁ)ﬁ{’h)ﬁ,ﬂi S ’¢h| %( (k))
Hgg

Plugging this and (5.12) in (5.9), leads to

EP onlia < lénl? .
’ ij, v, 0 |17Q,L ~ ’ ’H()jl()(F’lgk))

Similarly, we have

|E1j, T, Od)h’lfl B |¢h| 2 (k))

Combining the two inequalities, gives (5.8).
O

5.2 Proof of Theorem 4.2

One needs to establish a suitable decomposition for v, € Vj(2)

1M
ka+UO+ZUE+ZZZ ]TO+ZUZ]7= (513)
Eeér F” =0 r=1
with
v € VP(Q) (k=1,---,N), vo€ V2(Q), vg € Vi(Qm),
and )
vl(]l) r o€ Vi (Q’E]) ,) (1=0,---,J—1) and vfj‘])r e Vh(Qz(}{)r‘

This decomposition should satisfy the stability condition

N
Z (Brvk, vi)a, + (Bovo, vo) + Y, (Beve, vE)ag
k=1 Eeér

J-1

M;
l l 1) J) ~(J ~(J
+ Z(Bz(J,)r Ovz(J)T 0 l(J T 0) Z BZ(J r 137)7“’ 1(1 )7“)]
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< J1og” (H/R)(Apvn, vn). (5.14)

Set ¢, = vp|r, and decompose ¢j, into

1

J—1 M,
¢h—¢0+ZQZ)E‘FZZZ@LTO—FZQJT (5.15)

Eeér Fl] =0 r=1

Hereafter, ¢g, ¢, ¢; n) (l=0,---,J—1) and (b

i 7 0 are defined by Theorem 3.2. Define

zgr

J
vo = Eogo, vE = EEoE, ’L]) r, 0= 1],) T, O¢’Lj, r, 0 ( 0,---, J_l) and Uz(j )r - Ez(] )rqbgj,)r'
Moreover, we set for each 2

M,
Uk_{vh_vo_ Z UE_ZZZ Z], O+Zvly 7'}|Qk (516)
Eeér Fz; =0 r=1

Then, we have v, € V() by (5.15). It suffices to verify (5.14) for the functions defined
above.
For convenience, set

G(¢n) = (Bovo,v0) + Y (Brug, vr)ay
Eeér

+ Z Z Z z(jl,)'r Ovz(jl, r, 00 zg, r, 0 +Z iJ, rNZJJT’~z(]J)r)}

By (4.7)-(4.10) and Lemma 5.1-Lemma 5.4, we deduce

G(on) < log(H/h)|

Eeér
1M M, ",
+ Z Z Z 13, r, 0|| r+ Z ||¢ij, r”i r)- (5.17)
Iij 1=0r=1 r=1
Here, we have used the fact that (F' =T};)

1
89 N‘qsh‘ L0800 v¢h€H020(Fr(l)) (lZO,”-,J; TZl,‘-',Ml).

|¢h| (l)

00 Ey

Substituting (3.8) and (3.31) into (5.17), and note that J < log(H/h), yields

G(¢n) S log(H/R) | énll2r

Using the trace theorem, we further get

G(on) < log®(H/h)(Anvn, vp). (5.18)
Besides, it follows by (5.16) that

|Uk|iszk S |Uh|iQ,€ +‘U0|%,Qk + Z |UE|%,Q,€

Eeér
J 1 M;
T, z 0r=1
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This, together with (4.6)-(4.10), leads to

N

> (Brvk, vi)ay, S (Apvn, va) +J G(n).
k=1

Now, (5.14) is a direct consequence of the above inequality, together with (5.18).

On the other hand, one can derive the strength Cauchy-Schwarz inequality by using
(4.6)-(4.10).

Finally, we deduce (4.17) by the convergence theory [28].

O

6 Analysis for the stability of the extension Fp

This section is devoted to verification of the stability condition (4.2), which has been used
in Lemma 4.2-Lemma 4.3. Since general sub-face F and general quasi-uniform meshes
are considered, the analysis is a bit technical. Our basic idea is to introduce a suitable
“approximate” extension of Fr. This auxiliary extension is defined by positive integers, so
that its stability can be verified more easily by estimating two finite sums associated with
the discrete H! semi-norm.

6.1 An auxiliary extension

For a sub-face F C T'yj, let op, dp, p’ and ¢ be defined as in Subsection 4.1. Without loss of
generality, we assume that h < min{|pp| : p € N} NQy;}. For a positive number z, let [z]

denote the integer part of z. Set np = [dTF] For any node p in ;;\F, define

i

_ [!pp

d / .
e . )

lorg| A
For convenience, set n, = np if p’ = op. To understand the meaning of the integers m, and

n, more intuitively, we image that the segments pp’ and p’q are divided into some smaller

segments with the size h and h - % respectively. Then, m, and n, can be viewed roughly

as the numbers of the division points on the segments pp’ and p’q respectively. In particular,
the position of a node p can be determined by the two integers m, and n, roughly.

By the definition of the sets Ag ) and Ag ), it is easy to see that the positive integers m,,
and n, possess the properties:

Property A. For each node p € Ag) U Ag), we have 1 < m, < n, < ny;

Property B. For two integers r and k satisfying 1 < r < k < np, there are at most
O(ng) nodes p € A%l) U A%Q), such that these nodes p define the same m,, = r and n, = k;

Property C. For an integer k satisfying 1 < k < np, there are at most O(m,np) nodes

pE Ag ), such that these nodes p define the same n, = k.
For the constant-like basis function ¢p = Igl, define the auxiliary extension

¢r(p), if p€F,

11— ifpe Al
(Eror)(p) = "E ) (6.1)
1-— n—;’, if pe Ap”,
0, otherwise.

For the verification of the stability (4.2), one needs to prove the following two inequalities

((Er — Eg)ép|iq, S drlog(dp/h) (6.2)
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and
|Erop|T o, S drlog(de/h). (6.3)

6.2 Auxiliary results

In this subsection, we estimate two finite sums, which will be used to verify the inequality
(6.3).

In the rest of this section, p; and ps always denote two neighboring nodes. Since
the triangulation 7, is quasi-uniform, there exists a (fixed) positive integer ko, such that
|p1p2| < koh for any two neighboring nodes p; and py. Then, it can be verified, by the
definitions of m,, and n,, that

|mp, —myp,| <ko+1 and [ny —np| <rg+1 (6.4)
with p
F
ro = |2kg max + 1.
R Tora]

Lemma 6.1 Let A%S) be the set of nodes p, at which the extension Er¢r vanish. Namely,

3):{p€thQij5 péEF, pgA(Fl)UA(Fm}-

Then,
he ). >, (- T2 y2 < . (6.5)

n
(3) (1) A (2) P2
p1€AF pQGAF UAF
Note that p1 and pa above denote two neighboring nodes.

Proof. For a node py € Ag) U A%Q), there are at most finite nodes p; € Ag))

and po are neighboring each other. Then,

Y a-Imeop 3o Dy (6.6)

Tpy * P2
preA poeAy U P2E€AL

, such that p;

where
Ar={p€ Ag) U A(F2) : there is p* € Ag) such that p and p* are neighboring}.

(3)

For py € A%, let p1 € Ay be a neighboring node with ps. Then, we deduce, by (6.4), that

mPQZmpl_(k0+1)anl_(k0+1)2np2_(r0+k0+2)'

This implies that
max{1l, ny, — k*} <my, <ng,, Vp2 €A,

with k* = rg + kg + 2. Thus, we have from Property A and Property B

Y - Tmp < { S Y -y DS <1—-”%”>2}

n
npy=1 mp2—1 Ny =k*+1 mp, =np, —k* P2

< nF{(k*)2+ Z Z (1—%)2}. (6.7)

n
Npy =k*+1 Mpy=npy —k* P2
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It is easy to see that

Tipgy Tpgy r
Z (1 _ Mpy )2 < Z (1 o M)Q < (k*)3 iz
Mpg =Npy —k* "p2 Mipg =Tpy —k* "p2 Ty

Plugging this in (6.7), and note that k* is a constant, leads to

ng
.m N " 1
hy (1 p”SdF((k)2+(k>3 > nQ)SdF.
P2

pQEA* p2 anZk*+1

Combining (6.6) with the above inequality, gives the desired result.
O

Lemma 6.2 The following inequality holds for two neighboring nodes p1 and po

m m
heo ) (S = E2)P S dplog(dr/h). (6.8)
pl,pzeAg)UAg) P1 P2

Proof. For py € A%l) U Ag), define

App ={p€ Ag) U A%z) : p is neighboring with p;}.

Let ko and 7o be defined by (6.4). Then, we have from Property A and Property B

npl

bR ol S Wy (Mg

n n n
P1,P2 GA%})UA%) " " npl =tmp =1p2€Ap P2

ro+1  Tpy

=2 2 2 ok

71 mpl—l pQEAF p1

Fae Y Y Y (M ep

n
Npy —ro+2 mp; =1 pa€Ap o Tpy P2

Npq

e Y Y Y (M My

Npy =r0+2 my, =ho+1 ;€A | Mipy Tipy
= I1+IQ+I3 (69)

It is clear that I1 < dp. When my, < ko, we deduce from (6.4) that m,, < 2ky + 1 for
p2 € App,. Note that kg is a constant, we get

ng
1 1
L < dp > > (n7+n2)
np1:T0+2p2€AF,p1 p1 D2

AN

°F 1 1
dp Y. |5+ | S (6.10)

np,=ro+2 \''P1 (np, =710 — 1)
It follows by (6.4) that

Tpy ro+1 ko+1 <

IsSdFZ > >, 2

2
Mp, My, + r)
np1*7"0+2mp1—k‘0+1 k=—ro—1r=—ko—1

Ty Tipy + k
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Tpy

S

ro+1

Z k‘il (kmpl — TNy, ) 2
npy (Npy + k)

npy =ro+2mp, =ko+1 k=—ro—1r=—ko—1

2 2
my, + 1y,

ng T'py
Sdr ) D
np =ro+2mp, =ko+1
< dp nZF "lpy
- Npy =T0+2 (nm —To= 1)2

n%l (np, —ro —1)2

5 dF log ng.

Plugging (6.10) and the above inequality in (6.9), leads to

ey (I

n
P1
P17P2€A§)UA%?)

O

6.3 Proof of Theorem 4.1
It suffices to verify that

|Erorli g, |Erdr

_ Mpy

)? < dp log(dp/h).

Tpy

10, Sdrlog(dr/h) S |¢F‘Z%(F)-
00

Let EL¢r be the auxiliary extension defined by Subsection 6.1.

Step 1. Verify the inequality (6.2)
Let p € A%l ), Then, we have

|(Er¢r — Epgr)(p)| = |

lep| _ lorl}) de,

dp h 't h
/ / / /
< max{lplerh_lppl, lpp'|  |pp|
dp dp ~ dp  dp+h
< h/dp.

For the case with p € A%Q ), one can verify similarly that

|(Er¢r — Epor)(p)| S

h|OFQ| < 1

drlp'q| ~ ”p'

By the inverse estimate and the discrete L?-norm, we get

(Er — Ep)orlia, S

~
~

+

h=2(|(Er — Ep)érlsq,
h > (Ergr — Epor)*(p)
;DEA%>

h > (Eror — Epor)*(p).

(2)
pEAF

This, together with (6.12) and (6.13), yields

N2 < h? 1 _ K 1
[(Ep — Ep)érlio, Sh = th S S—+h Y —
) “F o Mo~ dr © "

pEAF peAF pEAF

Here, we have used the fact that the set Ag )

contains O(ng) nodes only.
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By Property A and Property C, we get

1 i
> 5 SnE )

@ ''p np=1
peEA P
F

@3
% < ng Z % < nylognr.
p np=1""P
Plugging this in (6.14), gives (6.2).
Step 2. Verify the inequality (6.3)
For simplicity of exposition, let Arp denote the set of neighboring node paring (p1, p2),
which satisfies (ERér)(p1) — (ER¢r)(p2) # 0. By the discrete H! semi-norm, we have

|Exorlia, =h Y.  |(Epdr)(p1) — (Epér)(p2)|. (6.15)
(p1, p2)EAR
For ease of notation, define
Ar p={peN,NF: p closes OF}.
It is easy to see that the set Ap can be decomposed into several groups: (a) p1 € Apy
and py € OF; (b) p1 € F and p2 € Ag) UA%Z); (c) ;€ A%B) and pa € A%l) UAg); (d)
p1,p2 € AS ) U Ag ). It is certain that one can also consider the inverse situation with

exchanging the positions of p; and ps, but this will not affect the result.
It follows by (6.15) that

Bporlla, = b S S a-02+nY S (Bmy

n
pleAF’b p2E0F pIEFPQGAS)UAg) P2
m m m
+ hY > (- n—f”?)2 +h > (n—p1 — —n”)?.(ﬁ.w)
P2 P1 P2
preAy) preA U pLp2eAR UALY

It is clear that the set Apj contains only O(ng) nodes. Then, we get for two neighboring

nodes p; and po
dp
h 1-02<h-— =dp. 6.17
> Y a-0rgn o (6.17)

P1EAR }, p2€0F
When ps € A%l) U Ag) is neighboring with some p; € F, we have
My, < |p2ps|/h < [p1pa|/h < ko.

Besides, for any ps € Ag U A(F2 ), there are at most finite nodes p; € F, such that p; and p
are neighboring each other. Thus, we deduce by Property A and Property B

ko MF
nY Y PEpcn TS Pz (6.18)

n n
pi1€EF (1), 42 P2 =1 np,=1 ' P2
pQGAF UAF 2

Substituting (6.17)-(6.18), (6.5) and (6.8) into (6.16), yields (6.3).
Step 3. Prove the desired result (6.11)
Combining (6.2) and (6.3), yields

|Erorli o, < dplog(dp/h).
In the same way, we can prove that
|Erdrltq, S drlog(drp/h).
On the other hand, it can be verified, by the discrete semi-norm in Subsection 2.2, that

l¢p> 1 = dgplog(dp/h).
Ho(F)
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7 Numerical experiments

In this section, we give some numerical results to confirm our theoretical results described
in section 4.

Consider the elliptic problem (2.1) with Q being the cube Q = [0, 1]2, and the coefficient
a(x,y, z) being defined by

a(z,y,z) = 107°, if x,y<0.5 or z,y>0.5;

a(z,y,z) = 1, otherwise.

The source function f is chosen in a suitable manner.

Let 2 be decomposed into N cube subdomains with the edge length H. To illustrate wide
practicality of the new method, we consider tetrahedron elements instead of hexahedron
elements. Let each subdomain be divided into tetrahedron elements with the size h in the
standard way, and use the usual P, finite element approximate space.

We solve the algebraic system associated with the equation (2.4) by PCG iteration with
the preconditioner B;l defined in Section 4. Here, each local solver By is chosen as the
symmetric multigrid preconditioner for the restriction of A; on V}’(Q), and decompose

each Fg’l (k < J —1) into four squares with the same size (i.e., my = 4). The iteration
terminates when the relative remainder is less than 1.0D —5. The iteration counts are listed
as the following table.

Table 7.1
iteration counts(Tol.=1.0D — 5)

H/h |H=1/A|H=1/6| H=1/8
16 (J=2)| 36 38 38
32(J=3)| 45 47 46

These numerical results indicates that the convergence of the new preconditioner is
stable with the subdomain number N, and depends slightly on the ratio H/h. This is just
predicted by Theorem 4.1.

8 Conclusions

We have developed a substructuring method with inexact subdomain solvers by building
a new multilevel space decomposition of V;,(€2). The new substructuring method not only
possesses nearly optimal convergence but also has almost optimal computational complexity.
For the new method, traditional nested grids are unnecessary. Our idea can be extended
to some other equations, for example, Maxwell’s equations.
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