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Abstract

In this paper we are concerned with non-overlapping domain decomposition methods
for the second-order elliptic problems in three-dimensional domains. We develop a
new kind of substructuring method, in which one can use an inexact solver both in
each subdomain and on each local interface. The main ideas are to decompose the
interface space into the sum of small local subspaces and a series of coarse subspaces
spanned by constant-like basis functions, and to design a cheap approximate harmonic
extension of the constant-like function. It will be shown that the condition number of
the preconditioned system grows only as the logarithm of the dimension of the local
problem associated with an individual substructure, and is independent of possible
jumps of the coefficient in the elliptic equation.
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1 Introduction

Non-overlapping domain decomposition methods (DDMs) have been shown to be pow-
erful techniques for solving large-scale partial differential equations, especially for solving
partial differential equations with large jump coefficients, and for solving coupled partial
differential equations. One’s main task in non-overlapping DDMs is the construction of an
efficient substructuring preconditioner for discretization system associated with the partial
differential equations. The construction of this preconditioner has been investigated from
various ways and to various models in literature, see, for example, [1]-[9], [11]-[15], [17]-[21],
[23]-[24], [26].

Most non-overlapping DDMs studied so far require exact subdomain solvers; we refer
[25] and [29] (and the references cited therein). Such a requirement severely degrade the ef-
ficiency of the methods. There are only a few works studying substructuring methods with
inexact subdomain solvers [3], [4] and [9]. In [3], analysis and numerical experiments with
inexact algorithms of Neumann-Dirichlet type was done under the additional assumption
of high accuracy of the inexact solvers. The essential difficulty is that discrete harmonic
extensions on each subdomain are used in non-overlapping domain decomposition methods.
In [4], the harmonic extension on a subdomain was replaced by a simple average extension,
and substructuring preconditioners with the average extension are constructed. Because of
such average extension, nearly optimal convergence can not be gotten for these substruc-
turing preconditioners. To avoid harmonic extensions, [9] considered so called approximate
harmonic basis functions, which still involve high accuracy of the inexact solvers. It seems
difficult to construct a nearly optimal substructuring preconditioner with inexact solvers
without any additional assumption.

1The work is was supported by Natural Science Foundation of China G10771178, The Key Project
of Natural Science Foundation of China G10531080, and National Basic Research Program of China
G2005CB321702. (email: hqy@lsec.cc.ac.cn)
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In the present paper, inspired by [9] and [4], we make a new attempt for the design
of substructuring preconditioner with inexact solvers. The core work is the construction
of a kind of multilevel nearly harmonic basis on general quasi-uniform meshes. The main
ingredients in our construction are: (i) develop a special multilevel space decomposition to
the interface space; (ii) design a cheap nearly harmonic extension for each basis function of
the subspaces involved in the decomposition. It will be shown that the new substructuring
preconditioner possesses nearly optimal convergence, which is independent of possible large
jumps of the coefficient across the interface. For the new method, no additional assumption
is required , and the total computational complexity is optimal.

The outline of the remainder of the paper is as follows. In Section 2, we introduce
some notation and our motive. In Section 3, we present a multilevel decomposition for the
interface space. The main results on the substructuring preconditioner are described in
Section 4. In Section 5, we give an analysis of the convergence of the preconditioner. In
section 6, we prove the stability of the extension of constant-like function, which is used in
Section 5. Some numerical results are reported in Section 7.

2 Preliminaries

2.1 Domain decomposition

Let Ω be a bounded polyhedron in R3. Consider the model problem
{−div(ω∇u) = f, in Ω,

u = 0, on ∂Ω,
(2.1)

where ω ∈ L∞(Ω) is a positive function.
Let H1

0 (Ω) denote the standard Sobolev space, and let (·, ·) denote the L2(Ω)-inner
product. The weak formulation of (2.1) in H1

0 (Ω) is then given by the following.
Find u ∈ H1

0 (Ω) such that

A(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.2)

where (·, ·) is the scalar product in L2(Ω), and

A(u, v) =
∫

Ω
ω∇u · ∇vdp.

We will apply a kind of non-overlapping domain decomposition method to solving (2.2).
For simplicity of exposition, we consider only the case with matching grids in this paper.

Let Th = {τi} be a regular and quasi-uniform triangulation of Ω with τ ′is being non-
overlapping simplexes of size h (∈ (0, 1]). The set of notes of Th is denoted by Nh. We then
define Vh(Ω) to be the piecewise linear finite element subspace of H1

0 (Ω) associated with
Th:

Vh(Ω) = {v ∈ H1
0 (Ω) : v|τ ∈ P1 ∀τ ∈ Th},

where P1 is the space of linear polynomials. Then the finite element approximation for
(2.2) is to find uh ∈ Vh(Ω) such that

A(uh, vh) = (f, vh), ∀vh ∈ Vh(Ω). (2.3)

Let Ω be decomposed into the union of n polyhedrons Ω1, · · · ,Ωn, which satisfy Ωi∩Ωj =
∅ when i 6= j. We assume that each ∂Ωk can be written as a union of boundaries of
elements in Th, and all Ωk are of size H in the usual sense (see [5] and [29]). Without loss of
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generality, we assume that the coefficient ω(p) is piecewise constant, then each subdomain
Ωk is chosen such that ω(p) equals to a constant ωk in Ωk. Note that {Ωk} may not
constitute a triangulation of Ω.

The common part of two neighboring subdomains Ωi and Ωj may be a vertex, an edge
or a face. In particular, we denote by Γij the common face of two neighboring subdomains
Ωi and Ωj (i.e., Γij = ∂Ωi ∩ ∂Ωj). The union of all Γij is denoted by Γ, which is called the
interface. In this paper, we choose Dirichlet data as the interface unknown.

Define the operator Ah : Vh(Ω) → Vh(Ω) by

(Ahv, w) = A(v, w) =
N∑

k=1

ωk

∫

Ωk

∇v · ∇wdx, v ∈ Vh(Ω), ∀w ∈ Vh(Ω).

The equation (2.3) can be written as

Ahuh = fh, uh ∈ Vh(Ω). (2.4)

The goal of this paper is to construct a substructuring preconditioner for Ah based on the
domain decomposition described above.

2.2 Notations

To introduce the new method, we need some more notations. Throughout this paper, a
subset G of Ω are always understood as an open set. The closure of G is denoted by Ḡ.
• subdomain spaces

For subdomain Ωk, define

Vh(Ωk) = {v|Ωk
: ∀v ∈ Vh(Ω)},

and
V p

h (Ωk) = {vh ∈ Vh(Ω) : supp vh ⊂ Ωk}.
Set

Ωij = Ωi ∪ Γij ∪ Ωj ,

and define
V p

h (Ωij) = {vh ∈ Vh(Ω) : supp vh ⊂ Ωij}.
• interface space and face spaces

As usual, we define the (global) interface space by

Wh(Γ) = {v|Γ : ∀v ∈ Vh(Ω)}.

For each ∂Ωk, set
Wh(∂Ωk) = {v|∂Ωk

: ∀v ∈ Wh(Γ)}.
For a subset G of Γ, define

W̃h(G) = {φh ∈ Wh(Γ) : supp φh ⊂ G}.

In particular, for G = Γij , the face space W̃h(Γij) will be used repeatedly.
• interpolation-type operator and constant-like basis

For a subset G of Γ, define the interpolation-type operator I0
G : Wh(Γ) → Wh(Γ) as

(I0
Gφh)(p) =

{
φh(p), if p ∈ Nh ∩G,

0, if p ∈ Nh ∩ (Γ\G).
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In particular, we have

(I0
G1)(p) =

{
1, if p ∈ Nh ∩G,
0, if p ∈ Nh ∩ (Γ\G).

If G is just the union of some elements on Γ, we call φG = I0
G1 to be constant-like basis

function on G, which will be used repeatedly.
• integration average and algebraic average

For a function ϕh ∈ Wh(Γ), let γG(ϕh) denote the integration average of ϕh on G, and
let γh,G(ϕ) denote the algebraic average of the values of ϕ on the nodes in G.
• sets of faces, edges, vertices and subdomains

For convergence, let FΓ denote the set of all the faces Γij . Besides, let EΓ and VΓ denote
the set of the interior edges and the set of interior vertices generated by the decomposition

Ω̄ =
⋃

Ω̄k,

respectively. For an edge e ∈ EΓ, let Qe denote the set of the indices k of the subdomains
Ωk which contain e as an edge. Namely,

Qe = {k : e ⊂ ∂Ωk}.
Define

Ωe =
⋃

k∈Qe

Ωk, e ∈ EΓ.

• face inner-products, scaling norm and interface norm
For a subset G of Γ, let 〈·, ·〉G denote the L2 inner product on G. In particular, the

〈·, ·〉Γ is abbreviated as 〈·, ·〉. Let ‖ · ‖0, G denote the norm induced from 〈·, ·〉G.
For a sub-faces G of Γ, let HG denote the “size” of G. Define the scaling norm

‖φ‖ 1
2
, G = (|φ|21

2
, G

+ H−1
G ‖φ‖2

0, G)
1
2 , ∀φ ∈ H

1
2 (G).

For convenience, define

‖φh‖∗,Γ = (
n∑

k=1

ωk|φh|21
2
,∂Ωk

)
1
2 , ∀φh ∈ Wh(Γ).

• discrete norms and discrete inner-product
Discrete norms (or semi-norms) of finite element functions will be used repeatedly in

this paper, since the discrete norms are defined on a set of nodes only, and do not depend
on the geometric shape of the underlying domain.

We first give definitions of three well known discrete norms (refer to [29]), which are
equivalent to their respective continuous norms. For vh ∈ Vh(Ωk), the discrete H1 semi-
norm is defined by

|vh|21, h, Ωk
= h3

∑

pi, pj∈Nh∩Ωk

|vh(pi)− vh(pj)|2,

where pi and pj denote two neighboring nodes. Similarly, the discrete L2 norm on an edge
e of Ωk is defined by

‖vh‖2
0, h, e = h

∑

p∈Nh∩e
|vh(p)|2.

Let G ⊂ Γij be the union of some elements. Define the discrete H
1
2 semi-norm on Wh(G)

by

|ϕh|2h, 1
2
, G

=
∑

p∈Nh∩G

∑

q∈Nh∩G

|ϕh(p)− ϕh(q)|2
|p− q|3 , ϕh ∈ Wh(G),
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where p and q denote two different nodes on G.
Then, we define a discrete inner-product. For each ∂Ωk, set

〈φ, ψ〉h, ∂Ωk
=

∑

p∈Nh∩∂Ωk

∑

q∈Nh∩∂Ωk

(φ(p)− φ(q))(ψ(p)− ψ(q))
|p− q|3 , φ, ψ ∈ Wh(∂Ωk),

where p and q denote two different nodes on ∂Ωk. Define discrete H
1
2 inner-product on

Wh(Γ) by

〈φ, ψ〉h,Γ =
n∑

k=1

ωk〈φ, ψ〉h,∂Ωk
, φ, ψ ∈ Wh(Γ).

• H
1
2
00 norms
Let G ⊂ Γij be the union of some elements. For a function ϕh satisfying supp ϕh ⊂ G,

define

|ϕh|2
H

1
2
00(G)

= |ϕh|21
2
, G

+
∫

G

|ϕh(x)|2
dist(x, ∂G)

ds(x).

It is known that
|ϕh|2

H
1
2
00(G)

=∼ |ϕ̃h|21
2
, Ωi

=∼ |ϕ̃h|21
2
, Ωj

,

where ϕ̃h ∈ Wh(Γ) denotes the zero extension of ϕh. Moreover, we have

|ϕh|2
H

1
2
00(G)

=∼
∫

G

|ϕh(x)|2
dis(x, ∂G)

ds(x).

The corresponding discrete semi-norm is defined by

|ϕh|2
h, H

1
2
00(G)

=
∑

p∈Nh∩G

|ϕh(p)|2
dis(p, ∂G)

.

• spectrally equivalences
For simplicity, we will frequently use the notations <∼ and =∼ . For any two non-negative

quantities x and y, x <∼ y means that x ≤ Cy for some constant C independent of mesh
size h, subdomain size d and the related parameters. x =∼ y means x <∼ y and y <∼ x.

2.3 Motivation

We first recall the main ideas of the existing substucturing preconditions.
Let Ek : Wh(∂Ωk) → Vh(Ωk) be the discrete harmonic extension. Define the harmonic

subspace

V Γ
h (Ω) = {vh ∈ Vh(Ω) : vh|Ωk

= Ek(φh|∂Ωk
) (k = 1, · · · ,n) for some φh ∈ Vh(Γ)}.

Then, we have the initial space decomposition

Vh(Ω) =
n∑

k=1

V p
h (Ωk) + V Γ

h (Ω).

Let Ah,k : V p
h (Ωk) → V p

h (Ωk) be the restriction of the operator Ah on the local space
V p

h (Ωk), and let Bh,Γ : V Γ
h (Ω) → V Γ

h (Ω) be a symmetric and positive definite operator which
is spectrally equivalent to the restriction of the operator Ah on the harmonic subspace
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V Γ
h (Ω). Then, the classical substructuring preconditioner (refer to [5]) can be defined in

the rough form

B−1
h =

N∑

k=1

A−1
h,kQk + B−1

h,ΓQΓ, (2.5)

where Qk and QΓ denote the standard L2 projectors into their respective subspaces. For
the preconditioner Bh, we have (see [5])

cond(B−1
h Ah) <∼ log2(H/h). (2.6)

In many applications, the subspaces V p
h (Ωk) still have high dimensions, so it is expensive

to use the exact solvers A−1
h,k.

It was shown in [3] that substructuring preconditioners with inexact solvers B−1
h,k still

possess nearly optimal convergence, if each Bh,k has some spectrally approximation to Ah,k

(the usual spectrally equivalence is not enough). Hereafter, “inexact” means that Bh,k is
only spectrally equivalent to Ah,k, for example, Bh,k is a multigrid preconditioner for Ah,k. It
seems difficult to design an efficient substructuring preconditioner with completely inexact
solvers B−1

h,k, instead of A−1
h,k itself or its approximation. In essence, one has to modify the

harmonic subspace V Γ
h (Ω) by replacing each harmonic extension Ek with another extension.

In [4], a substructuring preconditioner B̂−1
h with inexact solvers was been designed by

replacing each harmonic extension Ek with a simple average extension. It has been shown
that the condition number of the resulting preconditioned system can be estimated by

cond(B̂−1
h Ah) <∼ H/h. (2.7)

In [9], another substructuring preconditioner B̃−1
h with inexact solvers was been designed

by replacing each harmonic extension Ek with an approximate harmonic extension. If the
approximate harmonic extension is exact enough, then

cond(B̃−1
h Ah) <∼ log2(H/h). (2.8)

The approximate harmonic extension can be defined by approximate harmonic basis func-
tions. It is not practical to compute all the approximate harmonic basis functions. Because
of this, an alternative method, which still require high accuracy of Bh,k, was considered in
[9].

The main idea of this paper is to avoid approximate harmonic basis functions by con-
structing multilevel nearly harmonic basis functions on general quasi-uniform triangulations
Th. The new method contains three main ingredients (refer to [12] and [13] for the original
versions):

• decompose each face space W̃h(Γij) into the sum of multilevel coarse subspaces and
small local subspaces, such that each coarse subspace is spanned by several constant-like
basis functions as I0

G1, and each local subspace contains only a few nodal basis functions;
• define an explicit extension for each constant-like basis function I0

G1 of coarse sub-
spaces, and use the average extension for each nodal basis function of local subspaces.

• build a multilevel space decomposition to the global space Vh(Ω) by using the decom-
position of the interface space and the basis extensions.

Based on these, we construct a multilevel substructuring preconditioner with completely
inexact solvers. As we will see, the new substructuring preconditioner not only possesses a
nearly optimal convergence, but also possesses optimal computational complexity.
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3 A multilevel space decomposition for Wh(Γ)

In this section we establish a new kind of multilevel decomposition for Wh(Γ). To this end,
we first give several basic auxiliary results.

3.1 Basic tools

The following results can be found in [29].

Lemma 3.1 Let e and f be an edge and a face of Ωk. Then,

‖φh‖0,∂f <∼ log
1
2 (H/h)‖φh‖ 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk) (3.1)

and
‖I0

eφh‖ 1
2
,∂Ωk

<∼ log
1
2 (H/h)‖φh‖ 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk). (3.2)

2

The following result can be proved as in Lemma 6.2 in [15], together with the standard
technique.

Lemma 3.2 Let e be an edge of Ωk. Then,

‖φh − γe(φh)‖ 1
2
,∂Ωk

<∼ log
1
2 (H/h)|φh| 1

2
,∂Ωk

, ∀φh ∈ Wh(∂Ωk). (3.3)

2

Let f denote a face Γij itself or a sub-face of Γij . We assume that f is just the union of
some elements τ on the face Γij , and possesses the size d in the usual sense. Here, we do
not require that f is a usual polygon.

Lemma 3.3 Let f be defined above. Then,

|I0
fφh|

H
1
2
00(f)

<∼ log(d/h)‖φh‖ 1
2
,f, ∀φh ∈ Wh(f). (3.4)

Proof. We can prove the result directly by using the discrete norms described in Subsection
2.2 (note that f may be a nonstandard polygon). But, the proof will involve some compli-
cated formulas. Because of this, we try to use another simpler proof. Our idea is to map f
into a rectangle on the plane of f, and to use an existing result on rectangles.

Choose four nodes p1, p2, p3 and p4 on ∂f in order. Assume that |p1p2|, |p2p3|, |p3p4|
and |p4p1| has almost the same length. Let ` denote the straight line through p1 and p3,
and let `′ denote the straight line through p2 and p4. The unique intersection of ` and `′ is
denoted by o, which is almost the barycenter of f by the assumption. Make a sufficiently
small rectangle D containing f, so that ` and `′ are just two diagonal lines of D. Moreover,
we require that o is the center of D. It is clear that the size of D is also d. For each node
p ∈ f̄ (p 6= o), draw a line `p through o and p. Let p′ and p′′ denote the intersection of `p

with ∂f and with ∂D, respectively. Define the well known projection-type mapping F by

F (p) =
|op′′|
|op′| p, ∀p ∈ Nh ∩ f̄ (p 6= o).

If o is just a node, then define F (o) = o. It is easy to see that F maps ∂f onto ∂D, and
maps the meshes on f onto a quasi-uniform and regular meshes on D. Moreover, the four
vertices of D equal to F (pi) (i = 1, 2, 3, 4), which are just four nodes of such resulting
triangulation T D

h (with the diameter h).
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Let Wh(D̄) denote the linear finite element space associated with T D
h . For φh ∈ Wh(f̄),

define Fφh ∈ Wh(D̄) by

(Fφh)(F (p)) = φh(p), ∀p ∈ Nh ∩ f.

By the discrete norm, one can verify that

|I0
fφh|

H
1
2
00(f)

=∼ |I0
D(Fφh)|

H
1
2
00(D)

. (3.5)

It is known that (see [5] and [29])

|I0
D(Fφh)|

H
1
2
00(D)

<∼ log(d/h)‖Fφh‖ 1
2
,D.

Plugging this in (3.5), and using the discrete norm again, gives (3.4).
2

Similar mapping with F has been used to construct an explicit harmonic extension by
[16].

3.2 Initial space decomposition for Wh(Γ)

This subsection is devoted to introduction of an initial stable space decomposition for
Wh(Γ). There are various ways to design this kind of decomposition (refer to [5], [6] and
[29]). How to design this decomposition is not the main interest of this paper, since our
multilevel method has no essential dependence on such a concrete decomposition. In the
subsection we consider only an example of this kind of decomposition.

For ease of notation, let F ∈ FΓ denote a generic interface Γij throughout this Section.
Let ϕp denote the nodal basis function on the node p ∈ Nh ∩ Ω. Define the global coarse
subspace

W 0
h (Γ) = span{I0

F 1, I0
e1, ϕp : F ∈ FΓ, e ∈ EΓ, p ∈ VΓ}.

Note that I0
F 1 and I0

e1 denotes the constant-like basis functions on the face F and the
coarse edge e, respectively.

Let W̃h(e) and W̃h(F ) be the local spaces defined as in Subsection 2.2. Then, we have
the space decomposition

Wh(Γ) = W 0
h (Γ) +

∑

e∈EΓ
W̃h(e) +

∑

F∈FΓ

W̃h(F ). (3.6)

The following result gives a stability of the above space decomposition of Wh(Γ).

Theorem 3.1 For any φh ∈ Wh(Γ), there exists a decomposition

φh = φ0 +
∑

e∈EΓ
φe +

∑

F∈FΓ

φF (3.7)

with
φ0 ∈ W 0

h (Γ); φe ∈ W̃h(e) and φF ∈ W̃h(F ),

such that
‖φ0‖2

∗,Γ +
∑

e∈EΓ
‖φe‖2

∗,Γ +
∑

F∈FΓ

‖φF ‖2
∗,Γ ≤ log2(H/h)‖φh‖2

∗,Γ. (3.8)
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Proof. The idea of the proof is standard. But, for readers’ convenience, we still give a
complete proof of this theorem below. For e ∈ EΓ and F ∈ FΓ, set

φe = I0
e[φh − γe(φh)], and φF = I0

F [φh − γF (φh)].

It is clear that φe ∈ W̃h(e) and φF ∈ W̃h(F ). Define φ0 ∈ W 0
h (Γ) by

φ0(p) =





φh(p), if p ∈ Nh ∩ VΓ,
γe(φh), if p ∈ Nh ∩ e (e ∈ EΓ),
γF (φh), if p ∈ Nh ∩ F (F ∈ FΓ).

It is easy to see that
φh = φ0 +

∑

e∈EΓ
φe +

∑

F∈FΓ

φF . (3.9)

Then, we have by (3.2)

‖φe‖2
∗,Γ =

∑

k∈Qe

ωk|φe|21
2
,∂Ωk

<∼ log(H/h)
∑

k∈Qe

ωk‖φh − γe(φh)‖2
1
2
,∂Ωk

.

This, together with (3.3), yields
∑

e∈EΓ
‖φe‖2

∗,Γ <∼ log2(H/h)
∑

e∈EΓ

∑

k∈Qe

ωk|φh|21
2
,∂Ωk

<∼ log2(H/h)
n∑

k=1

ωk|φh|21
2
,∂Ωk

= log2(H/h)‖φh‖2
∗,Γ. (3.10)

On the other hand, one gets by (3.4) (with f = F ) and Poincare inequality

|φF | 1
2
,∂Ωi

<∼ log(H/h)‖φh − γF (φh)‖ 1
2
,∂Ωi

<∼ log(H/h)|φh| 1
2
,∂Ωi

. (3.11)

Similarly, we have
|φF | 1

2
,Ωj

<∼ log(H/h)|φh| 1
2
,∂Ωj

. (3.12)

Combining (3.11) and (3.12), leads to

‖φF ‖2
∗,Γ <∼ log2(H/h)[ωi|φh|21

2
,∂Ωi

+ ωj |φh|21
2
,∂Ωj

].

Thus,
∑

F∈FΓ

‖φF ‖2
∗,Γ <∼ log2(H/h)

n∑

k=1

ωk|φh|21
2
,∂Ωk

= ‖φh‖2
∗,Γ. (3.13)

It follows by (3.9) that

‖φ0‖2
∗,Γ <∼ ‖φh‖2

∗,Γ + ‖
∑

e∈EΓ
φe‖2

∗,Γ + ‖
∑

F∈FΓ

φF ‖2
∗,Γ

<∼ ‖φh‖2
∗,Γ +

∑

e∈EΓ
‖φe‖2

∗,Γ +
∑

F∈FΓ

‖φij‖2
∗,Γ.

This, together with (4.4) and (3.13), leads to

‖φ0‖2
∗,Γ <∼ log2(H/h)‖φh‖2

∗,Γ. (3.14)

Now, the inequality (3.8) is a direct consequence of (4.4), (3.13) and the above inequality.
2

In the rest of this section, we construct a multilevel space decomposition to each W̃h(Γij).
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3.3 Multilevel decomposition for each Γij

In this subsection, we describe a multilevel decomposition for each face F = Γij . In
short words, we make a multilevel decomposition for F , such that each sub-face generated
by the final level contains a few nodes.

For a positive integer m1, we first decompose F into the union of non-overlapping
polygons F̃

(1)
1 , · · · , F̃ (1)

m1 in the standard way. As usual, we assume that the decomposition
is conforming, and all the polygons F̃

(1)
r have the same “size” d1 ∈ (0, H). Note that F̃

(1)
r

may not be the union of some elements on F .
Let J and mk (k = 1, · · · , J) be given positive integers. Set mk = m1 · · ·mk for k =

1, · · · , J . As we will see, mk denotes the total number of all the sub-faces generated from
the k-level decomposition for F . Successively continuing the above procedure, we get the
following hierarchical decompositions of F (see Figure 1).

• the first level decomposition

F =
m1⋃

r=1

F̃ (1)
r .

• the second level decomposition
Let each F̃

(1)
r be further decomposed into the union of m2 sub-polygons of F̃

(1)
r

F̃ (1)
r =

m2⋃

l=1

F̃
(2)
m1(r−1)+l (r = 1, · · · ,m1).

Thus,

F =
m1⋃

r=1

m2⋃

l=1

F̃
(2)
m2(r−1)+l =

m2⋃

r=1

F̃ (2)
r .

Figure 1: A simple decomposition of F

• the k level decomposition for 2 ≤ k ≤ J

After generating F̃
(k−1)
r from the k− 1 level decomposition, we decompose each F̃

(k−1)
r

into the union of mk sub-polygons of F̃
(k−1)
r

F̃ (k−1)
r =

mk⋃

l=1

F̃
(k)
mk(r−1)+l (r = 1 · · ·mk−1).

10



Then, we get a multilevel decomposition of F

F =
m1⋃

r=1

F̃ (1)
r = · · · =

mJ−1⋃

r=1

mJ⋃

l=1

F̃
(J)
mJ (r−1)+l =

mJ⋃

r=1

F̃ (J)
r .

Sine the sub-polygons F̃
(k)
r above may not be the union of some elements on F , it is

inconvenient to make a detailed theoretical analysis for the multilevel method introduced
later. Then, for the purpose of analysis, we define a perturbation F

(k)
r for each polygon

F̃
(k)
r as follows (see Figure 2)

F (k)
r =

⋃

p∈Nh∩F̃
(k)
r

supp ϕp, 1 ≤ r ≤ mk; 1 ≤ k ≤ J,

where ϕp denotes the nodal basis function on the node p. It is clear that F̃
(1)
r ⊂ F

(1)
r . In

particular, if F̃
(k)
r is just the union of some elements on F , then F

(k)
r = F̃

(k)
r . It is clear

that these F
(k)
r still constitute a decomposition of F

(k−1)
r :

F (k−1)
r =

mk⋃

l=1

F
(k)
mk(r−1)+l (r = 1 · · ·mk−1; k = 1, · · · , J). (3.15)

Figure 2: the decomposition of F for exposition

Finally, we get another multilevel decomposition for F

F̄ =
m1⋃

r=1

F̄ (1)
r = · · · =

mJ−1⋃

r=1

mJ⋃

l=1

F̄
(J)
mJ (r−1)+l =

mJ⋃

r=1

F̄ (J)
r .

For a fixed k, the sub-faces F
(k)
r (r = 1, · · · ,mk) satisfy the following conditions:

(a) each F
(k)
r is just the union of some elements on F ;

(b) each F
(k)
r has the same size dk for some dk ∈ (h, dk−1) (set d0 = H);

(c) the union of all F̄
(k)
r (r = 1, · · · ,mk) constitute a decomposition of F̄ .

Remark 3.1 In general the sub-face F
(k)
r is not a usual polygon yet, except for some par-

ticular situations. It is clear that the sub-faces F
(k)
r satisfying the conditions (a)-(c) can be

generated directly if the grids on F have some particular structure.

Remark 3.2 In applications, we use only basis functions on the nodes in F
(k)
r , instead of

F
(k)
r itself. Since F̃

(k)
r contains the same nodes with F

(k)
r , one needs not to actually generate

F
(k)
r when implementing the method introduced later (i.e., F̃

(k)
r is ok.).

11



3.4 Multilevel decomposition for W̃h(Γij)

In this subsection, we define a multilevel space decomposition for each W̃h(Γij) based
on the decomposition given in the last subsection.

For convenience, define m0 = 1 and F
(0)
1 = F . For k ≥ 0, let F (k)

r denote the set of all
the sub-faces generated by the decomposition

F (k)
r =

mk+1⋃

l=1

F
(k+1)
mk+1(r−1)+l (r = 1 · · ·mk). (3.16)

Namely,
F (k)

r = {F (k+1)
mk+1(r−1)+1, F

(k+1)
mk+1(r−1)+2, · · · , F (k)

mk+1r}.
If the common edge of two sub-polygons generated by the decomposition

F̃ (k)
r =

mk+1⋃

l=1

F̃
(k+1)
mk+1(r−1)+l (r = 1 · · ·mk)

contains a node at least, then we call the common edge to be a “real” edge of the decom-
position (3.16). Similarly, if the common vertex of several sub-polygons generated by the
decomposition

F̃ (k)
r =

mk+1⋃

l=1

F̃
(k+1)
mk+1(r−1)+l (r = 1 · · ·mk)

is just a node, then we call the common vertex to be a “real” vertex of the decomposition
(3.16). Let E(k)

r and V(k)
r denote the sets of “real” edges and “real” vertices of the decom-

position (3.16).
• the local subspaces

As before, let ϕp denote the nodal basis function on the node p ∈ Nh ∩ Γ. Set

W̃h(F (k)
r ) = span{ϕp : p ∈ Nh ∩ (F̄ (k)

r \∂F )} (r = 1, · · · ,mk; k = 0, · · · , J).

It is clear that W̃h(F (0)
1 ) = W̃h(F ) (m0 = 1). Moreover, for each 1 ≤ k ≤ J , the sum of all

the local subspaces W̃h(F (k)
r ) (r = 1, · · · ,mk) gives a decomposition of W̃h(F ).

• local coarse subspaces
For a sub-face F

(k)
r , define

W 0
h (F (k)

r ) = span{I0
f1, I0

e1, φp : f ∈ F (k)
r , e ∈ E(k)

r , p ∈ V(k)
r }

(r = 1, · · · ,mk; k = 0, · · · , J − 1).

Note that W 0
h (F (k)

r ) is a subspace of W̃h(F (k)
r ). If both E(k)

r and V(k)
r are empty set, then

we have
W 0

h (F (k)
r ) = span{I0

f1 : f ∈ F (k)
r }.

In this case, the dimensions of the subspace W 0
h (F (k)

r ) equal the number mk+1 of the sub-
faces generated by the first decomposition of F

(k)
r .

• the final decomposition
It is easy to see that

W̃h(F ) =
J−1∑

k=0

mk∑

r=1

W 0
h (F (k)

r ) +
mJ∑

r=1

W̃h(F (J)
r ). (3.17)
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Remark 3.3 In the above space decomposition, the spaces W̃h(F (J)
r ) (r = 1, · · · ,mJ) are

the finest local subspaces. The spaces W 0
h (F (k)

r ) (r = 1, · · · ,mk), which can be viewed as
extensions of W 0

h (Γ) defined in subsection 3.2, are the coarse subspaces associated with the
first level decomposition of F

(k)
r (k = 0, · · · , J − 1). Note that each function in W 0

h (F (k)
r )

vanishes at all nodes in F\F̄ (k)
r .

Remark 3.4 In applications, the multilevel decomposition would be generated in a suitable
manner such that both each local subspace Wh(F (J)

r ) and each coarse subspace W 0
h (F (k)

r )
has a low dimension. As will see, we usually set mk = m (a fixed positive integer).

3.5 Stability of the multilevel space decomposition

For convenience, set
W 00

h (Γ) = W 0
h (Γ) +

∑

e∈EΓ
Wh(e).

From (3.6) and (3.17), we get a multilevel space decomposition of Wh(Γ)

Wh(Γ) = W 00
h (Γ) +

∑

F∈FΓ

[
J−1∑

k=0

mk∑

r=1

W 0
h (F (k)

r ) +
mJ∑

r=1

W̃h(F (J)
r )].

This subsection is devoted to analysis of the stability of the above multilevel space decom-
position.

Before giving the main result, we prove two auxiliary results for a generic face F ∈ FΓ.
For simplicity of exposition, we assume that both E(k)

r and V(k)
r are empty set for each F

(k)
r ,

where E(k)
r and V(k)

r were defined in the last subsection. Then, we need only to consider
sub-face interpolations in the construction of a stable multilevel decomposition. If the
assumption does not hold, we need also to consider edge interpolations as in Subsection
3.2, and to make some obvious modifications in the following construction. But, this change
will not increase any essential difficulty of the analysis.

We first construct a decomposition for the generic face F .
For k satisfying 1 ≤ k ≤ J , let I0

F
(k)
r

denote the interpolation-type operator defined in

Subsection 2.2 with G = F
(k)
r (r = 1, · · · ,mk). For ease of notation, set

θ(k)
r = I0

F
(k)
r

(r = 1, · · · ,mk).

Under the assumption mentioned above, the union of F
(k)
mk(r−1)+1, · · · , F

(k)
mk(r−1)+mk

gives an

open cover of F
(k−1)
r . Then, the operators

θ
(k)
mk(r−1)+l : Wh(Γ) → W̃h(F (k)

mk(r−1)+l) ⊂ W̃h(F (k−1)
r ) (l = 1, · · · ,mk)

satisfy

mk∑

l=1

θ
(k)
mk(r−1)+l = i on W̃h(F (k−1)

r ) (r = 1, · · · ,mk−1; k = 1, · · · , J). (3.18)

For φh ∈ Wh(Γ), let φF ∈ W̃h(F ) be defined in the proof of Theorem 3.1. For conve-
nience, set φ

(0)
1 = φF . Define

φ(k)
r = θ(k)

r [φh − γ
F

(k)
r

(φh)] ∈ W̃h(F (k)
r ) (1 ≤ k ≤ J ; r = 1, · · · ,mk) (3.19)
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and

φ
(k−1)
r, 0 = φ(k−1)

r −
mk∑

l=1

φ
(k)
mk(r−1)+l (1 ≤ k ≤ J ; r = 1, · · · ,mk−1). (3.20)

By the definition of φF , the equality (3.19) is also valid for k = 0 (r = 1). The following
result indicates that they constitute a decomposition of φF .

Lemma 3.4 Let φ
(J)
r and φ

(k−1)
r, 0 (k = 1, · · · , J) be defined above. Then,

φ
(k−1)
r, 0 ∈ W 0

h (F (k−1)
r ) (1 ≤ k ≤ J ; r = 1, · · · ,mk−1). (3.21)

Moreover, we have

φF =
J−1∑

k=0

mk∑

r=1

φ
(k)
r, 0 +

mJ∑

r=1

φ(J)
r . (3.22)

Proof. By (3.19) and (3.18), we have

φ(k−1)
r = θ(k−1)

r [φh − γ
F

(k−1)
r

(φh)]

=
mk∑

l=1

θ
(k)
mk(r−1)+lθ

(k−1)
r [φh − γ

F
(k−1)
r

(φh)]

=
mk∑

l=1

θ
(k)
mk(r−1)+l[φh − γ

F
(k−1)
r

(φh)].

Substituting this into (3.20), and using (3.19) for φ
(k)
mk(r−1)+l, yields

φ
(k−1)
r, 0 =

mk∑

l=1

θ
(k)
mk(r−1)+l[φh − γ

F
(k−1)
r

(φh)]−
mk∑

l=1

θ
(k)
mk(r−1)+l[φh − γ

F
(k)

mk(r−1)+l

(φh)]

=
mk∑

l=1

θ
(k)
mk(r−1)+l[γF

(k)

mk(r−1)+l

(φh)− γ
F

(k−1)
r

(φh)].

Since γ
F

(k)

mk(r−1)+l

(φh)− γ
F

(k−1)
r

(φh) is a constant, we further get

φ
(k−1)
r, 0 =

mk∑

l=1

[γ
F

(k)

mk(r−1)+l

(φh)− γ
F

(k−1)
r

(φh)]θ(k)
mk(r−1)+l1.

This gives (3.21).
Using (3.20) for k = 1 and k = 2, we deduce

φF = φ
(0)
1 = φ

(0)
1, 0 +

m1∑

r=1

φ(1)
r = φ

(0)
1, 0 +

m1∑

r=1

φ
(1)
r, 0 +

m1∑

r=1

m2∑

l=1

φ
(2)
m2(r−1)+l. (3.23)

It follows by (3.15) that
m1∑

r=1

m2∑

l=1

φ
(2)
m2(r−1)+l =

m2∑

r=1

φ(2)
r .

Substituting this into (3.23), and using (3.20) repeatedly, yields

φF = φ
(0)
1, 0 +

m1∑

r=1

φ
(1)
r, 0 +

m2∑

r=1

φ
(2)
r, 0 +

m3∑

r=1

φ(3)
r = · · ·

14



= φ
(0)
1, 0 +

m1∑

r=1

φ
(1)
r, 0 + · · ·+

mJ−1∑

r=1

φ
(J−1)
r, 0 +

mJ∑

r=1

φ(J)
r .

This implies (3.22).
2

The following result shows the stability of the decomposition (3.22).

Lemma 3.5 Let φ
(k)
r, 0 and φ

(J)
r be defined in (3.19) and (3.20). Then,

J−1∑

k=0

mk∑

r=1

|φ(k)
r, 0|2

H
1
2
00(F

(k)
r )

+
mJ∑

r=1

|φ(J)
r |2

H
1
2
00(F

(k)
r )

<∼ J [1 + log(H/h)]2|φh|21
2
, F

(J ≥ 1). (3.24)

Proof. It follows by (3.20) that

|φ(k−1)
r, 0 |2

H
1
2
00(F

(k−1)
r )

≤ 2(|φ(k−1)
r |2

H
1
2
00(F

(k−1)
r )

+ |
mk∑

l=1

φ
(k)
mk(r−1)+l|2

H
1
2
00(F

(k−1)
r )

)

<∼ |φ(k−1)
r |2

H
1
2
00(F

(k−1)
r )

+
mk∑

l=1

|φ(k)
mk(r−1)+l|2

H
1
2
00(F

(k)

mk(r−1)+l
)
. (3.25)

One needs to estimate each semi-norm in the right side of the above inequality.
Using (3.4) with f = F

(k−1)
r , yields (d0 = H)

|φ(k−1)
r |2

H
1
2
00(F

(k−1)
r )

<∼ log2(dk−1/h)‖φh − γ
F

(k−1)
r

(φh)‖2
1
2
, F

(k)
r

<∼ log2(dk−1/h)|φh|21
2
, F

(k)
r

, r = 1, · · · ,mk−1.

Then,
mk−1∑

r=1

|φ(k−1)
r |2

H
1
2
00(F

(k−1)
r )

<∼ log(dk−1/h)|φh|21
2
, F

(1 ≤ k ≤ J). (3.26)

Let r = 1, · · · ,mk−1; l = 1, · · · ,mk. By (3.4) with f = F
(k)
mk(r−1)+l, one can verify that

|φ(k)
mk(r−1)+l|2

H
1
2
00(F

(k)

mk(r−1)+l
)

<∼ log2(dk/h)‖φh − γ
F

(k)

mk(r−1)+l

(φh)‖2
1
2
, F

(k)

mk(r−1)+l

<∼ log2(dk/h)|φh|21
2
, F

(k)

mk(r−1)+l

.

This, together with (3.15) and the discrete H
1
2 semi-norm, leads to

mk∑

l=1

|φ(k)
mk(r−1)+l|2

H
1
2
00(F

(k)

mk(r−1)+l
)

<∼ log2(dk/h)|φh|21
2
, F

(k−1)
r

.

We further get

mk−1∑

r=1

mk∑

l=1

|φ(k)
mk(r−1)+l|2

H
1
2
00(F

(k)

mk(r−1)+l
)

<∼ log2(dk/h)|φh|21
2
, F

(1 ≤ k ≤ J). (3.27)

Combining (3.25) with (3.26)-(3.27), leads to

mk−1∑

r=1

|φ(k−1)
r, 0 |2

H
1
2
00(F

(k−1)
r )

≤
mk−1∑

r=1

|φ(k−1)
r |2

H
1
2
00(F

(k−1)
r )

+
mk−1∑

r=1

mk∑

l=1

|φ(k)
mk(r−1)+l|2

H
1
2
00(F

(k)

mk(r−1)+l
)
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<∼ log2(dk−1/h)|φh|21
2
, F

(k = 1, · · · , J).

Thus,

J−1∑

k=0

mk∑

r=1

|φ(k)
r, 0|2

H
1
2
00(F

(k)
r )

<∼
J−1∑

k=0

log2(dk/h)|φh|21
2
, F

<∼ J log2(H/h)|φh|21
2
, F

. (3.28)

On the other hand, using (3.19) (with k = J) and (3.4), we deduce

|φ(J)
r |2

H
1
2
00(F

(J)
r )

<∼ log2(dJ/h)|φh|21
2
, F

(J)
r

.

Then,
mJ∑

r=1

|φ(J)
r |2

H
1
2
00(F

(J)
r )

<∼ log2(dJ/h)|φh|21
2
, F

.

Now, the inequality (3.24) follows by (3.28) and and the above inequality.
2

Now, we give the stability of the multilevel space decomposition of Wh(Γ).
For φh ∈ Wh(Γ), let φ0 and φe be defined by Subsection 3.2. For simplicity of exposition,

we define
φ00 = φ0 +

∑

e∈EΓ
φe.

The decomposition (3.7) can be written as

φh = φ00 +
∑

F∈FΓ

φF . (3.29)

Then, the following result is a direct consequence of Lemma 3.4 and Lemma 3.5.

Theorem 3.2 For any φh ∈ Wh(Γ), let φ00 ∈ W 00
h (Γ) be defined above. Then, there exist

functions

φ
(k)
ij, r, 0 ∈ W 0

h (Γ(k)
ij, r) (0 ≤ k ≤ J−1; r = 1, · · · ,mk) and φ

(J)
ij, r ∈ W̃h(Γ(J)

ij, r) (r = 1, · · · ,mJ),

such that

φh = φ00 +
∑

Γij

[
J−1∑

k=0

mk∑

r=1

φ
(k)
ij, r ,0 +

mJ∑

r=1

φ
(J)
ij, r]. (3.30)

Moreover, we have

∑

Γij

[
J−1∑

k=0

mk∑

r=1

‖φ(k)
ij, r ,0‖2

∗,Γ +
mJ∑

r=1

‖φ(J)
ij, r‖2

∗,Γ] <∼ J [1 + log(H/h)]2‖φh‖2
∗,Γ (J ≥ 1). (3.31)

2

Remark 3.5 We conjecture that the factor J in (3.31) (and (3.24)) can be dropped. Un-
fortunately, we fail to prove this conjecture.

4 A substructuring method with inexact subdomain solvers

This section is devoted to construction of a new substructuring preconditioner with inexact
subdomain solvers. The new preconditioner is based on a multilevel decomposition of Vh(Ω).
This multilevel decomposition of Vh(Ω) depends on the multilevel decomposition of Wh(Γ)
developed in the last section and various nearly harmonic extension operators.
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4.1 Nearly harmonic extensions

In this subsection, we define various extension operators, which will play a key role in the
new preconditioner.

As in the last section, let F denote a face Γij , and let F
(k)
r be defined in Subsection

3.3. For convenience, we use f to denote the face F or a sub-face F
(k)
r (r = 1, · · · ,mk;

k = 0, · · · , J). Throughout this section, we always use φf = I0
f1 ∈ W̃h(F ) to denote the

constant-like basis function on f.
• an explicit extension for the constant-like basis function φf

Since f may not be a polygon, a stable extension of the constant-like basis φf is trick
to design.

Let of be a central node on f, and let df denote the “size” of f in the standard sense
(df = dk if f = F

(k)
r ). For a node p in Ωij , let p′ denote the projection of p on f. Besides,

we use lp to denote the straight line drawing from of to p′ (if p′ 6= of), and use q ∈ ∂f to
denote the intersection point of lp with ∂f (see Figure 3).

Figure 3: illustration for the notations

In short words, we define the extension Efφf such that the values (Efφf)(p) decrease
gradually when the length |pp′| or |ofp′| increases. To give the exact definition of Efφf,
we set

Λ(1)
f = {p ∈ Nh ∩ Ωij : p′ = of, |pp′| ≤ df}

and
Λ(2)
f = {p ∈ Nh ∩ Ωij : p′ ∈ f, p′ 6= of, |pp′| ≤ |p′q| · df

|ofq|}.

For a face or a sub-face f, define the extension operator Ef as

(Efφf)(p) =





φf(p), if p ∈ f̄,

1− |pp′|
df

, if p ∈ Λ(1)
f ,

1− |ofq|
df

· |pp′|
|p′q| , if p ∈ Λ(2)

f ,

0, otherwise.

(4.1)

For rectangular face f with uniform triangulation, the values of Efφf at some nodes
are given in Figure 4.
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Figure 4: extension of φf for particular case

It is easy to see that the extension operator Ef possesses the properties:
(i) the support set Ωf of Efφf is a simply connected domain with the size df;
(ii) the implementation of Ef possesses the optimal computational complexity O(nf)

with nf = (df/h)3 being the number of the nodes in Ωf.
Besides, the extension Ef is nearly harmonic in the following sense

Theorem 4.1 The extension Ef defined by (4.1) satisfies the stability condition

|Efφf|21,Ωi
, |Efφf|21,Ωj

<∼ |φf|2
H

1
2
00(f)

. (4.2)

The proof of this theorem will be given in Section 6.
• extensions associated with the finest sub-faces

For F = Γij , define E
(J)
ij, r : W̃h(F (J)

r ) → Vh(Ωij) as follows (f = F
(J)
r )

(E(J)
ij, rϕ)(p) =





ϕ(p), if p ∈ f̄,

γh,f(ϕ), if p ∈ Λ(1)
f ∪ Λ(2)

f ,
0, otherwise.

(p ∈ Nh ∩ Ωij , ϕ ∈ W̃h(F (J)
r )) (4.3)

• an extension on the global coarse space
Let R0

k : Wh(∂Ωk) → Vh(Ωk) denote the zero extension operator in the sense that
R0

kφ = φ on ∂Ωk, and R0
kφ vanishes at all internal nodes of Ωk for φ ∈ Wh(∂Ωk). For

ψ ∈ W 0
h (Γ), we have

ψ = γh,∂Ωk
(ψ) + I0

Wk
(ψ − γh,∂Ωk

(ψ)) +
∑

f⊂∂Ωk

γh,f(ψ − γh,∂Ωk
(ψ))φf, on ∂Ωk.

Hereafter, Wk denotes the wire-basket set of Ωk, i.e., the union of all the edges of Ωk. Then,
we define on each Ωk

E0ψ = γh,∂Ωk
(ψ) + R0

k[I
0
Wk

(ψ − γh,∂Ωk
(ψ))] +

∑

f⊂∂Ωk

γh,f(ψ − γh,∂Ωk
(ψ))Efφf. (4.4)

It is easy to see that E0ψ = ψ on Γ.
• extensions on the local coarse spaces

Let G
(k)
r denote the union of the “real” edges and the “real” vertices generated by the

first decomposition of F
(k)
r (see Subsection 3.4). For ψ ∈ W 0

h (F (k)
r ), let af(ψ) denote the

(constant) value of ψ at the interior nodes in f. It is easy to see that

ψ = I0

G
(k)
r

ψ +
∑

f∈F(k)
r

af(ψ)φf, on F (k)
r .
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Note that I0

G
(k)
r

ψ ≡ 0 if G
(k)
r is an empty set. Then, we define on Ωl (l = i, j)

E
(k)
ij, r, 0ψ = R0

l (I
0

G
(k)
r

ψ) +
∑

f∈F(k)
r

af(ψ)Efφf. (4.5)

As we will see in Section 5, all the extension operators defined above keep the stability
of the exact harmonic extension, and so they are called nearly harmonic extensions.

4.2 Multilevel decomposition for Vh(Ω)

In this subsection, we define a series of “nearly harmonic” subspaces of Vh(Ω) by using
the extension operators described in the last subsection.

For e ∈ EΓ, let Ee : W̃h(e) → Vh(Ω) denote the standard zero extension operator.
Define

Vh(Ωe) = {vh ∈ Vh(Ω) : vh = Eeφh for some φh ∈ W̃h(e)}.
Namely,

Vh(Ωe) = span{ϕp : p ∈ Nh ∩ e}.
For the extension E0 : W 0

h (Γ) → Vh(Ω), define

V 0
h (Ω) = {vh ∈ Vh(Ω) : vh = E0φ for some φh ∈ W 0

h (Γ)}.

As before, let F = Γij . For each F
(k)
r (k = 0, · · · , J ; r = 1, · · · ,mk), let E

(k)
ij, r, 0 :

W 0
h (F (k)

r ) → Vh(Ωij) (k = 1, · · · , J − 1) and E
(J)
r : W̃h(F (J)

r ) → Vh(Ωij) be the extension
operators defined in the last subsection. Set

Ω(k)
ij, r =

⋃

ψ∈W 0
h
(F

(k)
r )

supp E
(k)
ij, r, 0ψ (k = 0, · · · , J − 1)

and
Ω(J)

ij, r =
⋃

ψ∈W̃h(F
(J)
r )

supp E(J)
r ψ .

Define the subspaces

V 0
h (Ω(k)

ij, r) = {vh ∈ Vh(Ωij) : vh = E
(k)
ij, r, 0φh for φh ∈ W 0

h (F (k)
r )} (k = 1, · · · , J − 1),

and
Ṽh(Ω(J)

ij, r) = {vh ∈ Vh(Ωij) : vh = E
(J)
ij, rφh for φh ∈ W̃h(F (J)

r )}.
The functions in the subspaces defined in this subsection are not harmonic yet, but they

still keep the energy stability (see Section 5). Thus, the basis functions of these subspaces
are called nearly harmonic basis functions.

Since we have

Wh(Γ) = W 0
h (Γ) +

∑

e∈EΓ
W̃h(e) +

∑

F∈FΓ

[
J−1∑

k=0

mk∑

r=1

W 0
h (F (k)

r ) +
mJ∑

r=1

W̃h(F (J)
r )],

the space decomposition holds

Vh(Ω) =
n∑

k=1

V p
h (Ωk) + V 0

h (Ω) +
∑

e∈EΓ
Vh(Ωe) +

∑

Γij

[
J−1∑

k=0

mk∑

r=1

V 0
h (Ω(k)

ij, r) +
mJ∑

r=1

Ṽh(Ω(J)
ij, r)].
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4.3 New substructuring preconditioner

Based on the space decomposition in the last subsection, we can define a preconditioner in
the standard way.

Define symmetric and positive definite operators as follows:
• the subdomain solver Bk : V p

h (Ωk) → V p
h (Ωk) satisfies:

(Bkvh, vh)Ωk
=∼ ωk

∫

Ωk

|∇vh|2dp, ∀vh ∈ V p
h (Ωk); (4.6)

• the global coarse solver B0 : V 0
h (Ω) → V 0

h (Ω) satisfies:

(B0vh, vh) =∼ (Ahvh, vh), ∀vh ∈ V 0
h (Ω); (4.7)

• the edge solver Be : Vh(Ωe) → Vh(Ωe) satisfies:

(Bevh, vh)Ωe
=∼ (Ahvh, vh), ∀vh ∈ Vh(Ωe); (4.8)

• local coarse solver B
(k)
ij, r, 0 : V 0

h (Ω(k)
ij, r) → V 0

h (Ω(k)
ij, r) (k = 0, · · · , J − 1) satisfies

(B(k)
ij, r, 0vh, vh) =∼ (Ahvh, vh), ∀vh ∈ V 0

h (Ω(k)
ij, r); (4.9)

• the finest local solver B̃
(J)
ij, r : Ṽh(Ω(J)

ij, r) → Ṽh(Ω(J)
ij, r) satisfies

(B(J)
ij, rvh, vh) =∼ (Ahvh, vh), ∀vh ∈ Ṽh(Ω(J)

ij, r). (4.10)

In applications, the subdomain solver Bk is usually chosen as a symmetric multigrid
preconditioner. Since all the subspaces V 0

h (Ω), Vh(Ωe), V 0
h (Ω(k)

ij, r) and Ṽh(Ω(J)
ij, r) have low

dimensions, the solvers B0, Be, B
(k)
ij, r, 0 and B̃

(J)
ij, r can be simply defined as the restriction

operators of Ah on their respective subspaces.
Now, the desired multilevel preconditioner for Ah is defined as

B−1
J =

n∑

k=1

B−1
k Qk + B−1

0 Q0 +
∑

e∈EΓ
B−1

e Qe

+
∑

Γij

[
J−1∑

k=0

mk∑

r=1

(B(k)
ij, r, 0)

−1Q
(k)
ij, r, 0 +

mJ∑

r=1

(B̃(J)
ij, r)

−1Q
(J)
ij, r],

where Qk : Vh(Ω) → V p
h (Ωk), Q0 : Vh(Ω) → V 0

h (Ω), Qe : Vh(Ω) → Vh(Ωe), Q
(k)
ij, r, 0 :

Vh(Ω) → V 0
h (Ω(k)

ij, r) (k = 0, · · · , J−1), and Q
(J)
ij, r : Vh(Ω) → Ṽh(Ω(J)

ij, r) denote L2 projectors.

4.4 Implementation

Let Bk, B0, Be, B
(k)
ij, r, 0 (k = 0, · · · , J−1) and B

(J)
ij, r be defined as in the last subsection.

The action of B−1
J can be described by the following algorithm

Algorithm 4.1. For g ∈ Vh(Ω), the solution ug ∈ Vh(Ω) satisfying

(BJug, vh) = (g, vh), ∀vh ∈ Vh(Ω)

can be gotten as follows:
Step 1. Computing up

k ∈ V p
k (Ωk) in parallel by

(Bku
p
k, vh)Ωk

= (g, vh)Ωk
, ∀vh ∈ V p

k (Ωk);
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Step 2. Computing u0 ∈ V 0
h (Ω) by

(B0u0, vh) = (g, vh), ∀vh ∈ V 0
h (Ω);

Step 3. Computing ue ∈ Vh(Ωe) in parallel by

(Beue, vh) = (g, vh), ∀vh ∈ Vh(Ωe);

Step 4. Computing u
(l)
ij, r, 0 ∈ V 0

h (Ω(l)
ij, r) (l = 0, · · · , J − 1) in parallel by

(B(l)
ij, r, 0u

(l)
ij, r, 0, v) = (g, vh)

Ω
(l)
ij, r, 0

, ∀vh ∈ V 0
h (Ω(l)

ij, r);

Step 5. Computing ũ
(J)
ij, r ∈ Ṽh(Γ(J)

ij, r) in parallel by

(B(J)
ij, rũ

(J)
ij, r, vh) = (g, vh)

Ω
(J)
ij, r

, ∀vh ∈ Ṽh(Ω(J)
ij, r);

Step 6. Set

ug =
n∑

k=1

up
k + u0 +

∑

e∈EΓ
ue +

∑

Γij

[
J−1∑

l=1

mk∑

r=1

u
(l)
ij, r, 0 +

mJ∑

r=1

ũ
(J)
ij, r].

Remark 4.1 Before implementing the above algorithm, one needs to compute the nearly
harmonic basis E0φh, Eeφh, E

(k)
ij, r, 0φh and E

(J)
ij, rφh for each basis function φh of W 0

h (Γ),

W̃h(e), W 0
h (F (k)

r, 0) or of W̃h(F (J)
r ) (F = Γij). As we will see in the next subsection, the

complexity of computing all the extension is optimal. When all the harmonic basis functions
are gotten, the cost for implementing Step 2-Step 5 is very cheap, since each subspace
involved in these steps has very low dimension.

Algorithm 4.1 can be also described in term of interface solvers. To this end, we need
to define a series of solvers on interface subspaces.
• The global coarse solver

A symmetric operator M0 : W 0
h (Γ) → W 0

h (Γ) satisfying

〈M0vh, vh〉 =∼ ‖vh‖2
∗, Γ, ∀vh ∈ W 0

h (Ω).

• The edge solver
A symmetric operator Me : Wh(e) :→ Wh(e) satisfying

〈Mevh, vh〉e =∼ ‖vh‖2
∗,Γ, ∀vh ∈ Wh(e).

• The local coarse solver
A symmetric operator M

(k)
ij, r, 0 : W 0

h (F (k)
r ) → W 0

h (F (k)
r ) (F = Γij) satisfying

〈M (k)
ij, r, 0vh, vh〉F (k)

r

=∼ (ωi + ωj)|vh|21
2
,Γij

, ∀vh ∈ W 0
h (F (k)

r ).

• The finest local solver
A symmetric operator M

(J)
ij, r : W̃h(F (J)

r ) → W̃h(F (J)
r ) (F = Γij) satisfying

〈M (J)
ij, rvh, vh〉F (J)

r

=∼ (ωi + ωj)|vh|21
2
,Γij

, ∀vh ∈ W̃h(F (J)
r ).
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All the above operators can be defined by the discrete H
1
2 inner-product (see Subsection

2.2) on their respective subspaces of Wh(Γ) (see [14] and [13] for the details). Under suitable
assumptions, the local operators can be also defined explicitly (see [12]).

The following algorithm can be viewed as a variant of Algorithm 4.1
Algorithm 4.2. For g ∈ Vh(Ω), the solution ug ∈ Vh(Ω) satisfying

(BJug, vh) = (g, vh), ∀vh ∈ Vh(Ω)

can be gotten as follows:
Step 1. Computing up

k ∈ V p
k (Ωk) in parallel by

(Bku
p
k, vh)Ωk

= (g, vh)Ωk
, ∀vh ∈ V p

k (Ωk);

Step 2′. Computing φ0 ∈ W 0
h (Γ) by

〈M0φ0, ψh〉Γ = (g, vh), vh = E0ψh, ∀ψh ∈ W 0
h (Γ);

Step 3′. Computing φe ∈ W̃h(e) in parallel by

〈Meφe, ψh〉e = (g, vh)Ωe , vh = Eeψh, ∀ψh ∈ W̃h(e);

Step 4′. Computing φ
(l)
ij, r, 0 ∈ W 0

h (F (l)
r ) (l = 0, · · · , J − 1) in parallel by (F = Γij)

〈M (l)
ij, r, 0φ

(l)
ij, r, 0, ψh〉F (l)

r
= (g, vh)

Ω
(l)
ij, r, 0

, vh = E
(l)
ij, r, 0ψh, ∀ψh ∈ W 0

h (F (l)
r );

Step 5′. Computing φ̃
(J)
ij, r ∈ W̃h(F (J)

r ) in parallel by (F = Γij)

〈M (J)
ij, rφ̃

(J)
ij, r, ψh〉F (J)

r
= (g, vh)

Ω
(J)
ij, r

, vh = E
(J)
ij, rψh, ∀ψh ∈ W̃h(F (J)

r );

Step 6′. Computing

u0 = E0φ0, ue = Eeφe, u
(l)
ij, r, 0 = E

(l)
ij, r, 0φ

(l)
ij, r, 0 (l = 0, · · · , J − 1)

and
ũ

(J)
ij, r = E

(J)
ij, rφ

(J)
ij, r.

Step 7. Set

ug =
n∑

k=1

up
k + v0 +

∑

e∈EΓ
ue +

∑

Γij

[
J−1∑

l=1

mk∑

r=1

u
(l)
ij, r, 0 +

mJ∑

r=1

ũ
(J)
ij, r].

4.5 Computational complexity

When implementing an existing substructuring method with exact subdomain solvers, one
needs to compute harmonic extension Ekϕh ∈ Vh(Ωk) for some ϕh ∈ Wh(∂Ωk) (k =
1, · · · ,n). Since each Ωk has O((H/h)3) nodes, the optimal complexity for computing
all such extensions is O(n × (H/h)3) (but, there seems no optimal harmonic extension in
literature, except that the triangulation Th possesses particular structure). For our sub-
structuring method with inexact subdomain solvers, we need not to compute such harmonic
extensions, but we have to compute all the nearly harmonic basis functions before imple-
menting Algorithm 4.1 (or Algorithm 4.2). A natural question is: whether the complexity
for computing all the nearly harmonic basis functions is much greater than the complexity
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for computing the original harmonic extensions? If yes, the advantage of inexact subdomain
solvers is not obvious. The following result gives an answer to this question.

Let N(J) denote the total complexity for computing all the nearly harmonic basis
functions.
Proposition 4.1. Let m ≥ 4 be a given positive integer. If J and mk are defined by

J =∼ log√m(H/h) and m1 = · · · = mJ = m, (4.11)

then
N(J) <∼ n× (H/h)3, (4.12)

which is optimal. Moreover, the complexity for implementing Step 3-Step 5 in Algorithm
4.1 (or Step 3′-Step 5′ in Algorithm 4.2) equals O((H/h)2) for each Γij , which is also the
optimal.
Proof. We first derive a general estimate of N(J). It is clear that the global coarse space
W 0

h (Γ) has the dimensions O(n). Using (4.4), together with the property (ii) in Subsection
4.1, we know that the cost for computing E0φh with all basis functions φh of W 0

h (Γ) equals

N0 = O(n× (H/h)3). (4.13)

Since Ee is chosen as the simple zero extension, the cost for computing Eeφh with all
basis functions φh of each W̃h(e) is

Ne = O(H/h).

Note that the number of the coarse edges e ∈ EΓ equals to O(n), we have
∑

e∈EΓ
Ne = O(n×H/h). (4.14)

For a face F = Γij , let nij denote the number of the nodes in Γij . It is easy to see that
the number of nodes in F

(k)
r is about nij/mk, and so the number of nodes in Ω(k)

ij, r is about

(nij/mk)
3
2 with m0 = 1 (k = 0, · · · , J). By the definition of W 0

h (F (k)
r ), the dimensions of

each W 0
h (F (k)

r ) equal O(mk+1) (k = 0, · · · , J −1). Moreover, the number of the local coarse
subspaces W 0

h (F (k)
r ) equals mk (k = 0, · · · , J−1). Besides, the dimensions of each W̃h(F (J)

r )
equal nij/mJ . Since the cost for computing each local harmonic extension is optimal, the
complexity for computing all the harmonic basis functions of V 0

h (Ω(k)
ij, r) and Ṽh(Ω(J)

ij, r) is
about

J−1∑

k=0

mk · [(nij

mk
)

3
2 ·mk+1] + mJ [(

nij

mJ
)

3
2 · nij

mJ
]. (4.15)

This, together with (4.13) and (4.14), leads to

N(J) <∼ n× (
H

h
)3 + n× H

h
+ n× {

J−1∑

k=0

mk · [(nij

mk
)

3
2 ·mk+1] + mJ [(

nij

mJ
)

3
2 · nij

mJ
]}. (4.16)

Now, we verify the desired result by (4.16). By the choices of J and mk in (4.11), we
have

mk = mk, mk+1 = m (k = 0, · · · , J − 1) and mJ = mJ =∼ (H/h)2.

Then,

mk · [(nij

mk
)

3
2 ·mk+1] = m · n

3
2
ij · (

1√
m

)k and mJ [(
nij

mJ
)

3
2 · nij

mJ
] =∼ n

5
2
ij · (

H

h
)−3.
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Substituting these into (4.16), and note that n
1
2
ij = O(H/h), we deduce (4.12).

The number of subspaces V 0
h (Ω(k)

ij, r) and Ṽh(Ω(J)
ij, r) equals

m1 + m2 + · · ·mJ
=∼ mJ+1 = O((H/h)2) =∼ nij .

Note that each subspace has almost the fixed dimension m, we get the second conclusion.
2

4.6 Convergence

Now, we give an estimate of cond(B−1
J Ah).

Theorem 4.2 Let J and mk be defined as in Proposition 4.1, and let the extensions be
defined by Subsection 4.1. For the preconditioner BJ defined in Subsection 4.3, we have

cond(B−1
J Ah) ≤ CJ log3(H/h), (4.17)

where C is a constant independent of h, H, dk and the jumps of the coefficient ω across
the faces Γij.

A proof of the above theorem will be given in the next section.

5 Analysis

This section is devoted to a proof of Theorem 4.1. We first to prove several auxiliary results,
which involve stabilities of the extensions defined in Subsection 4.1.

5.1 Auxiliary results

The following result can be verified directly by the discrete semi-norms described in
Subsection 2.2.

Lemma 5.1 The coarse edge extension Ee satisfies
∑

k∈Qe

ωk|Eeφe|21,Ωk
<∼ ‖φe‖2

∗,Γ, ∀φe ∈ W̃h(e). (5.1)

2

Lemma 5.2 Let mk and J be defined in Proposition 4.1. For F = Γij, we have

ωi|E(J)
ij, rϕh|21,Ωi

+ ωj |E(J)
ij, rϕh|21,Ωj

<∼ ‖φh‖2
∗,Γ, ∀ϕh ∈ W̃h(F (J)

r ). (5.2)

Proof. Using the discrete H1 semi-norm of finite element functions, together with the
definition of the extension E

(J)
ij, r, yields

|E(J)
ij, rϕh|21,Ωi

<∼ h[
∑

p∈f∩Nh

(ϕh(p)− γh,f(ϕh))2 + (
dJ

h
)2|γh,f(ϕh)|2]

<∼ h−1[‖ϕh − γh,f(ϕh)‖2
0,f + ‖ϕh‖2

0,f]. (5.3)

Since ϕh vanishes on Γij\f, we get by Friedrich’s inequality

‖ϕh − γh,f(ϕh)‖2
0,f, ‖ϕh‖2

0,f <∼ dJ |ϕh|21
2
,∂Ωi

. (5.4)
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It is easy to see that
dJ

h
= (

nij

mJ
)

1
2 =

H

h
/(m1 · · ·mJ)

1
2 .

Then, we deduce by the assumption dJ/h = O(1). Plugging (5.4) in (5.3), leads to

|E(J)
ij, rϕh|21,Ωi

<∼ |ϕh|21
2
,∂Ωi

.

Similarly, we have
|E(J)

ij, rϕh|21,Ωj
<∼ |ϕh|21

2
,∂Ωj

.

Then, we deduce (5.2) by the definition of ‖ · ‖∗,Γ.
2

Lemma 5.3 The global coarse extension E0 satisfies

n∑

k=1

ωk|E0φ0|21,Ωk
<∼ log(H/h)‖φ0‖2

∗,Γ, ∀φ0 ∈ W 0
h (Γ). (5.5)

Proof. By the definition of E0, we have

|E0φ0|21,Ωk
<∼ |R0

k[I
0
Wk

(φ0 − γh,∂Ωk
(φ0))]|21,Ωk

+
∑

f⊂∂Ωk

|γh,f(φ0 − γh,∂Ωk
(φ0))|2 · |Efφf|21,Ωk

. (5.6)

Using the discrete norm, together with (3.1) and Poincare inequality, yields

|R0
k[I

0
Wk

(φ0 − γh,∂Ωk
(φ0))]|21,Ωk

<∼ ‖φ0 − γh,∂Ωk
(φ0)‖2

0,Wk

<∼ log(H/h)|φ0|21
2
,∂Ωk

. (5.7)

On the other hand, we have

|γh,f(φ0 − γh,∂Ωk
(φ0))|2 <∼ H−3‖φ0 − γh,∂Ωk

(φ0)‖2
0,∂Ωk

and (by (4.2))
|Efφf|21,Ωk

<∼ |φf|2
H

1
2
00(f)

=∼ H log(H/h).

Thus,

|γh,f(φ0 − γh,∂Ωk
(φ0))|2 · |Efφf|21,Ωk

<∼ H−2 log(H/h)‖φ0 − γh,∂Ωk
(φ0)‖2

0,∂Ωk

<∼ log(H/h)|φ0|21
2
,∂Ωk

.

Substituting (5.7) and the above inequality into (5.6), we get (5.5).
2

Lemma 5.4 Let F
(k)
r be associated with F = Γij. The local coarse extensions E

(k)
ij, r, 0

satisfy

ωi|E(k)
ij, r, 0φh|21,Ωi

+ ωj |E(k)
ij, r, 0φh|21,Ωj

<∼ ‖φh‖2
∗,Γ, ∀φh ∈ W 0

h (F (k)
r ) (k = 1, · · · , J − 1). (5.8)

25



Proof. Without loss of generality, we assume that F
(k)
r is a quadrilateral, which is just

decomposed into four quadrilaterals in the standard way.
It follows by (4.5) that

|E(k)
ij, r, 0φh|21,Ωi

<∼ |R0
l (I

0

G
(k)
r

φh)|21,Ωi
+

∑

f∈F(k)
r

|af(φh)|2 · |Efφf|21,Ωi
. (5.9)

We first estimate |Efφf|21,Ωi
for each f ∈ F (k)

r . Using (4.2) and the discrete norm given
in Subsection 2.2, yields

|Efφf|21,Ωi
<∼ |φf|2

H
1
2
00(f)

=∼ |φf|2
h, H

1
2
00(f)

=∼
∑

p∈f∩Nh

1
dis(p, ∂f)

. (5.10)

Set (see Figure 5)

Lf = ∂f ∩ ∂F (k)
r , D = {p ∈ f : dis(p, ∂f) = dis(p, Lf)} and D∂ = f\D.

Figure 5: illustration to Lf, D and D∂

Then, ∑

p∈f∩Nh

1
dis(p, ∂f)

=
∑

p∈D∩Nh

1
dis(p, Lf)

+
∑

p∈D∂∩Nh

1
dis(p, ∂f)

. (5.11)

Since the triangulation is quasi-uniform, the domains D and D∂ have the same “size”. For
each p ∈ D∂ ∩Nh, there exist a p′ ∈ D ∩Nh such that

dis(p, ∂f) >∼ dis(p′, ∂f) = dis(p′, Lf).

Thus, we have by (5.11)

∑

p∈f∩Nh

1
dis(p, ∂f)

<∼
∑

p∈D∩Nh

1
dis(p, Lf)

=∼
∑

p∈D∩Nh

1

dis(p, ∂F
(k)
r )

.

Plugging this in (5.10), leads to

|af(φh)|2 · |Efφf|21,Ωi
<∼

∑

p∈D∩Nh

|af(φh)|2
dis(p, ∂F

(k)
r )

≤
∑

p∈F
(k)
r ∩Nh

φ2
h(p)

dis(p, ∂F
(k)
r )

.
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We further get by the discrete norm

|af(φh)|2 · |Efφf|21,Ωi
<∼

∫

F
(k)
r

φ2
h(p)

dis(p, ∂F
(k)
r )

ds(p) <∼ |φh|2
H

1
2
00(F

(k)
r )

. (5.12)

Now, we estimate |R0
l (I

0

G
(k)
r

φh)|21,Ωi
. It can be verified, by the discrete norm again, that

|R0
l (I

0

G
(k)
r

φh)|21,Ωi
<∼ |I0

G
(k)
r

φh|2
H

1
2
00(F

(k)
r )

.

This, together with the relation

I0

G
(k)
r

φh = φh −
∑

f∈F(k)
r

af(φh)φf,

yields
|R0

l (I
0

G
(k)
r

φh)|21,Ωi
<∼ |φh|2

H
1
2
00(F

(k)
r )

+
∑

f⊂F(k)
r

|af(φh)|2 · |φf|2
H

1
2
00(F

(k)
r )

.

Then, we obtain by the above proof

|R0
l (I

0

G
(k)
r

φh)|21,Ωi
<∼ |φh|2

H
1
2
00(F

(k)
r )

.

Plugging this and (5.12) in (5.9), leads to

|E(k)
ij, r, 0φh|21,Ωi

<∼ |φh|2
H

1
2
00(F

(k)
r )

.

Similarly, we have
|E(k)

ij, r, 0φh|21,Ωj
<∼ |φh|2

H
1
2
00(F

(k)
r )

.

Combining the two inequalities, gives (5.8).
2

5.2 Proof of Theorem 4.2

One needs to establish a suitable decomposition for vh ∈ Vh(Ω)

vh =
n∑

k=1

vk + v0 +
∑

e∈EΓ
ve +

∑

Γij

[
J−1∑

l=0

ml∑

r=1

v
(l)
ij, r ,0 +

mJ∑

r=1

ṽ
(J)
ij, r], (5.13)

with
vk ∈ V p

h (Ωk) (k = 1, · · · ,n), v0 ∈ V 0
h (Ω), ve ∈ Vh(Ωe),

and
v

(l)
ij, r, 0 ∈ V 0

h (Ω(l)
ij, r) (l = 0, · · · , J − 1) and v

(J)
ij, r ∈ Ṽh(Ω(J)

ij, r.

This decomposition should satisfy the stability condition

n∑

k=1

(Bkvk, vk)Ωk
+ (B0v0, v0) +

∑

e∈EΓ
(Beve, ve)Ωe

+
∑

Γij

[
J−1∑

l=0

ml∑

r=1

(B(l)
ij, r, 0v

(l)
ij, r, 0, v

(l)
ij, r, 0) +

mJ∑

r=1

(B(J)
ij, rṽ

(J)
ij, r, ṽ

(J)
ij, r)]
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<∼ J log3(H/h)(Ahvh, vh). (5.14)

Set φh = vh|Γ, and decompose φh into

φh = φ0 +
∑

e∈EΓ
φe +

∑

Γij

[
J−1∑

l=0

ml∑

r=1

φ
(l)
ij, r, 0 +

mJ∑

r=1

φ̃
(J)
ij, r]. (5.15)

Hereafter, φ0, φe, φ
(l)
ij, r, 0 (l = 0, · · · , J − 1) and φ̃

(J)
ij, r are defined by Theorem 3.2. Define

v0 = E0φ0, ve = Eeφe, v
(l)
ij, r, 0 = E

(l)
ij, r, 0φ

(l)
ij, r, 0 (l = 0, · · · , J−1) and ṽ

(J)
ij, r = E

(J)
ij, rφ̃

(J)
ij, r.

Moreover, we set for each Ωk

vk = {vh − v0 −
∑

e∈EΓ
ve −

∑

Γij

[
J−1∑

l=0

ml∑

r=1

v
(l)
ij, r ,0 +

mJ∑

r=1

ṽ
(J)
ij, r]}|Ωk

. (5.16)

Then, we have vk ∈ V p
h (Ωk) by (5.15). It suffices to verify (5.14) for the functions defined

above.
For convenience, set

G(φh) = (B0v0, v0) +
∑

e∈EΓ
(Beve, ve)Ωe

+
∑

Γij

[
J−1∑

l=0

ml∑

r=1

(B(l)
ij, r, 0v

(l)
ij, r, 0, v

(l)
ij, r, 0) +

mJ∑

r=1

(B(J)
ij, rṽ

(J)
ij, r, ṽ

(J)
ij, r)].

By (4.7)-(4.10) and Lemma 5.1-Lemma 5.4, we deduce

G(φh) <∼ log(H/h)‖φ0‖2
∗,Γ +

∑

e∈EΓ
‖φe‖2

∗,Γ

+
∑

Γij

[
J−1∑

l=0

ml∑

r=1

‖φ(l)
ij, r, 0‖2

∗, Γ +
mJ∑

r=1

‖φ̃(J)
ij, r‖2

∗, Γ]. (5.17)

Here, we have used the fact that (F = Γij)

|φh|
H

1
2
00(F

(l)
r )

=∼ |φh| 1
2
,∂Ωi

=∼ |φh| 1
2
,∂Ωj

, ∀φh ∈ H
1
2
00(F

(l)
r ) (l = 0, · · · , J ; r = 1, · · · ,ml).

Substituting (3.8) and (3.31) into (5.17), and note that J <∼ log(H/h), yields

G(φh) <∼ log3(H/h)‖φh‖2
∗,Γ

Using the trace theorem, we further get

G(φh) <∼ log3(H/h)(Ahvh, vh). (5.18)

Besides, it follows by (5.16) that

|vk|21,Ωk
<∼ |vh|21,Ωk

+ |v0|21,Ωk
+

∑

e∈EΓ
|ve|21,Ωk

+ J
∑

Γij

[
J−1∑

l=0

ml∑

r=1

|v(l)
ij, r, 0|21, Ωk

+
mJ∑

r=1

|ṽ(J)
ij, r|21, Ωk

].
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This, together with (4.6)-(4.10), leads to

n∑

k=1

(Bkvk, vk)Ωk
<∼ (Ahvh, vh) + J G(φh).

Now, (5.14) is a direct consequence of the above inequality, together with (5.18).
On the other hand, one can derive the strength Cauchy-Schwarz inequality by using

(4.6)-(4.10).
Finally, we deduce (4.17) by the convergence theory [28].
2

6 Analysis for the stability of the extension Ef

This section is devoted to verification of the stability condition (4.2), which has been used
in Lemma 4.2-Lemma 4.3. Since general sub-face f and general quasi-uniform meshes
are considered, the analysis is a bit technical. Our basic idea is to introduce a suitable
“approximate” extension of Ef. This auxiliary extension is defined by positive integers, so
that its stability can be verified more easily by estimating two finite sums associated with
the discrete H1 semi-norm.

6.1 An auxiliary extension

For a sub-face f ⊂ Γij , let of, df, p′ and q be defined as in Subsection 4.1. Without loss of
generality, we assume that h ≤ min{|pp′| : p ∈ Nh ∩ Ωij}. For a positive number x, let [x]
denote the integer part of x. Set nf = [df

h ]. For any node p in Ωij\f, define

mp = [
|pp′|
h

] and np = [
df
|ofq| ·

|p′q|
h

] (if p′ 6= of).

For convenience, set np = nf if p′ = of. To understand the meaning of the integers mp and
np more intuitively, we image that the segments pp′ and p′q are divided into some smaller
segments with the size h and h · |ofq|

df
respectively. Then, mp and np can be viewed roughly

as the numbers of the division points on the segments pp′ and p′q respectively. In particular,
the position of a node p can be determined by the two integers mp and np roughly.

By the definition of the sets Λ(1)
f and Λ(2)

f , it is easy to see that the positive integers mp

and np possess the properties:
Property A. For each node p ∈ Λ(1)

f ∪ Λ(2)
f , we have 1 ≤ mp ≤ np ≤ nf;

Property B. For two integers r and k satisfying 1 ≤ r ≤ k ≤ nf, there are at most
O(nf) nodes p ∈ Λ(1)

f ∪ Λ(2)
f , such that these nodes p define the same mp = r and np = k;

Property C. For an integer k satisfying 1 ≤ k ≤ nf, there are at most O(mpnf) nodes
p ∈ Λ(2)

f , such that these nodes p define the same np = k.
For the constant-like basis function φf = I0

f1, define the auxiliary extension

(E′
fφf)(p) =





φf(p), if p ∈ f̄,

1− mp

nf
, if p ∈ Λ(1)

f ,

1− mp

np
, if p ∈ Λ(2)

f ,
0, otherwise.

(6.1)

For the verification of the stability (4.2), one needs to prove the following two inequalities

|(Ef − E′
f)φf|21,Ωi

<∼ df log(df/h) (6.2)
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and
|E′

fφf|21,Ωi
<∼ df log(df/h). (6.3)

6.2 Auxiliary results

In this subsection, we estimate two finite sums, which will be used to verify the inequality
(6.3).

In the rest of this section, p1 and p2 always denote two neighboring nodes. Since
the triangulation Th is quasi-uniform, there exists a (fixed) positive integer k0, such that
|p1p2| ≤ k0h for any two neighboring nodes p1 and p2. Then, it can be verified, by the
definitions of mp and np, that

|mp1 −mp2 | ≤ k0 + 1 and |np1 − np2 | ≤ r0 + 1 (6.4)

with
r0 = [2k0 max

q∈∂f

df
|ofq| ] + 1.

Lemma 6.1 Let Λ(3)
f be the set of nodes p, at which the extension Efφf vanish. Namely,

Λ(3)
f = {p ∈ Nh ∩ Ωij : p 6∈ f, p 6∈ Λ(1)

f ∪ Λ(2)
f }.

Then,
h

∑

p1∈Λ
(3)

f

∑

p2∈Λ
(1)

f ∪Λ
(2)

f

(1− mp2

np2

)2 <∼ df. (6.5)

Note that p1 and p2 above denote two neighboring nodes.

Proof. For a node p2 ∈ Λ(1)
f ∪ Λ(2)

f , there are at most finite nodes p1 ∈ Λ(3)
f , such that p1

and p2 are neighboring each other. Then,

h
∑

p1∈Λ
(3)

f

∑

p2∈Λ
(1)

f ∪Λ
(2)

f

(1− mp2

np2

)2 <∼ h
∑

p2∈Λ∗f

(1− mp2

np2

)2, (6.6)

where

Λ∗f = {p ∈ Λ(1)
f ∪ Λ(2)

f : there is p∗ ∈ Λ(3)
f such that p and p∗ are neighboring}.

For p2 ∈ Λ∗f, let p1 ∈ Λ(3)
f be a neighboring node with p2. Then, we deduce, by (6.4), that

mp2 ≥ mp1 − (k0 + 1) ≥ np1 − (k0 + 1) ≥ np2 − (r0 + k0 + 2).

This implies that
max{1, np2 − k∗} ≤ mp2 ≤ np2 , ∀p2 ∈ Λ∗f,

with k∗ = r0 + k0 + 2. Thus, we have from Property A and Property B

∑

p2∈Λ∗f

(1− mp2

np2

)2 <∼ nf





k∗∑

np2=1

k∗∑

mp2=1

(1− mp2

np2

)2 +
nf∑

np2=k∗+1

np2∑

mp2=np2−k∗
(1− mp2

np2

)2




<∼ nf



(k∗)2 +

nf∑

np2=k∗+1

np2∑

mp2=np2−k∗
(1− mp2

np2

)2


 . (6.7)
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It is easy to see that

np2∑

mp2=np2−k∗
(1− mp2

np2

)2 ≤
np2∑

mp2=np2−k∗
(1− np2 − k∗

np2

)2 ≤ (k∗)3 · 1
n2

p2

.

Plugging this in (6.7), and note that k∗ is a constant, leads to

h
∑

p2∈Λ∗f

(1− mp2

np2

)2 <∼ df


(k∗)2 + (k∗)3

nf∑

np2=k∗+1

1
n2

p2


 <∼ df.

Combining (6.6) with the above inequality, gives the desired result.
2

Lemma 6.2 The following inequality holds for two neighboring nodes p1 and p2

h
∑

p1,p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp1

np1

− mp2

np2

)2 <∼ df log(df/h). (6.8)

Proof. For p1 ∈ Λ(1)
f ∪ Λ(2)

f , define

Λf,p1 = {p ∈ Λ(1)
f ∪ Λ(2)

f : p is neighboring with p1}.

Let k0 and r0 be defined by (6.4). Then, we have from Property A and Property B

h
∑

p1,p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp1

np1

− mp2

np2

)2 <∼ h · df
h

nf∑

np1=1

np1∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

= df

r0+1∑

np1=1

np1∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

+ df

nf∑

np1=r0+2

k0∑

mp1=1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

+ df

nf∑

np1=r0+2

np1∑

mp1=k0+1

∑

p2∈Λf,p1

(
mp1

np1

− mp2

np2

)2

= I1 + I2 + I3. (6.9)

It is clear that I1 <∼ df. When mp1 ≤ k0, we deduce from (6.4) that mp2 ≤ 2k0 + 1 for
p2 ∈ Λf,p1 . Note that k0 is a constant, we get

I2 <∼ df

nf∑

np1=r0+2

∑

p2∈Λf,p1

(
1

n2
p1

+
1

n2
p2

)

<∼ df

nf∑

np1=r0+2

(
1

n2
p1

+
1

(np1 − r0 − 1)2

)
<∼ df. (6.10)

It follows by (6.4) that

I3 <∼ df

nf∑

np1=r0+2

np1∑

mp1=k0+1

r0+1∑

k=−r0−1

k0+1∑

r=−k0−1

(
mp1

np1

− mp1 + r

np1 + k

)2
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= df

nf∑

np1=r0+2

np1∑

mp1=k0+1

r0+1∑

k=−r0−1

k0+1∑

r=−k0−1

(
kmp1 − rnp1

np1(np1 + k)

)2

<∼ df

nf∑

np1=r0+2

np1∑

mp1=k0+1

m2
p1

+ n2
p1

n2
p1

(np1 − r0 − 1)2

<∼ df

nf∑

np1=r0+2

np1

(np1 − r0 − 1)2
<∼ df log nf.

Plugging (6.10) and the above inequality in (6.9), leads to

h
∑

p1,p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp1

np1

− mp2

np2

)2 <∼ df log(df/h).

2

6.3 Proof of Theorem 4.1

It suffices to verify that

|Efφf|21,Ωi
, |Efφf|21,Ωj

<∼ df log(df/h) =∼ |φf|2
H

1
2
00(f)

. (6.11)

Let E′
fφf be the auxiliary extension defined by Subsection 6.1.

Step 1. Verify the inequality (6.2)
Let p ∈ Λ(1)

f . Then, we have

|(Efφf − E′
fφf)(p)| = | |pp′|

df
− [
|pp′|
h

]/[
df
h

]|

≤ max{|pp′|+ h

df
− |pp′|

df
,
|pp′|
df

− |pp′|
df + h

}
<∼ h/df. (6.12)

For the case with p ∈ Λ(2)
f , one can verify similarly that

|(Efφf − E′
fφf)(p)| <∼

h|ofq|
df|p′q|

<∼
1
np

. (6.13)

By the inverse estimate and the discrete L2-norm, we get

|(Ef − E′
f)φf|21,Ωi

<∼ h−2‖(Ef − E′
f)φf|20,Ωi

=∼ h
∑

p∈Λ
(1)

f

(Efφf − E′
fφf)2(p)

+ h
∑

p∈Λ
(2)

f

(Efφf − E′
fφf)2(p).

This, together with (6.12) and (6.13), yields

|(Ef − E′
f)φf|21,Ωi

<∼ h
∑

p∈Λ
(1)

f

h2

d2
f

+ h
∑

p∈Λ
(2)

f

1
n2

p

<∼
h2

df
+ h

∑

p∈Λ
(2)

f

1
n2

p

. (6.14)

Here, we have used the fact that the set Λ(1)
f contains O(nf) nodes only.
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By Property A and Property C, we get

∑

p∈Λ
(2)

f

1
n2

p

<∼ nf

nf∑

np=1

mp

n2
p

≤ nf

nf∑

np=1

np

n2
p

<∼ nf log nf.

Plugging this in (6.14), gives (6.2).
Step 2. Verify the inequality (6.3)
For simplicity of exposition, let Λf denote the set of neighboring node paring (p1, p2),

which satisfies (E′
fφf)(p1)− (E′

fφf)(p2) 6= 0. By the discrete H1 semi-norm, we have

|E′
fφf|21,Ωi

=∼ h
∑

(p1, p2)∈Λf

|(E′
fφf)(p1)− (E′

fφf)(p2)|2. (6.15)

For ease of notation, define

Λf, b = {p ∈ Nh ∩ f : p closes ∂f}.
It is easy to see that the set Λf can be decomposed into several groups: (a) p1 ∈ Λf,b

and p2 ∈ ∂f; (b) p1 ∈ f and p2 ∈ Λ(1)
f ∪ Λ(2)

f ; (c) p1 ∈ Λ(3)
f and p2 ∈ Λ(1)

f ∪ Λ(2)
f ; (d)

p1, p2 ∈ Λ(1)
f ∪ Λ(2)

f . It is certain that one can also consider the inverse situation with
exchanging the positions of p1 and p2, but this will not affect the result.

It follows by (6.15) that

|E′
fφf|21,Ωi

=∼ h
∑

p1∈Λf,b

∑

p2∈∂f
(1− 0)2 + h

∑

p1∈f

∑

p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp2

np2

)2

+ h
∑

p1∈Λ
(3)

f

∑

p2∈Λ
(1)

f ∪Λ
(2)

f

(1− mp2

np2

)2 + h
∑

p1,p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp1

np1

− mp2

np2

)2.(6.16)

It is clear that the set Λf,b contains only O(nf) nodes. Then, we get for two neighboring
nodes p1 and p2

h
∑

p1∈Λf,b

∑

p2∈∂f
(1− 0)2 <∼ h · df

h
= df. (6.17)

When p2 ∈ Λ(1)
f ∪ Λ(2)

f is neighboring with some p1 ∈ f, we have

mp2 ≤ |p2p
′
2|/h ≤ |p1p2|/h ≤ k0.

Besides, for any p2 ∈ Λ(1)
f ∪Λ(2)

f , there are at most finite nodes p1 ∈ f, such that p1 and p2

are neighboring each other. Thus, we deduce by Property A and Property B

h
∑

p1∈f

∑

p2∈Λ
(1)

f ∪Λ
(2)

f

(
mp2

np2

)2 <∼ h · df
h

k0∑

l=1

nf∑

np2=1

(
l

np2

)2 <∼ df. (6.18)

Substituting (6.17)-(6.18), (6.5) and (6.8) into (6.16), yields (6.3).
Step 3. Prove the desired result (6.11)
Combining (6.2) and (6.3), yields

|Efφf|21,Ωi
<∼ df log(df/h).

In the same way, we can prove that

|Efφf|21,Ωj
<∼ df log(df/h).

On the other hand, it can be verified, by the discrete semi-norm in Subsection 2.2, that

|φf|2
H

1
2
00(f)

=∼ df log(df/h).

2
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7 Numerical experiments

In this section, we give some numerical results to confirm our theoretical results described
in section 4.

Consider the elliptic problem (2.1) with Ω being the cube Ω = [0, 1]3, and the coefficient
a(x, y, z) being defined by

a(x, y, z) = 10−5, if x, y ≤ 0.5 or x, y ≥ 0.5;
a(x, y, z) = 1, otherwise.

The source function f is chosen in a suitable manner.
Let Ω be decomposed into n cube subdomains with the edge length H. To illustrate wide

practicality of the new method, we consider tetrahedron elements instead of hexahedron
elements. Let each subdomain be divided into tetrahedron elements with the size h in the
standard way, and use the usual P1 finite element approximate space.

We solve the algebraic system associated with the equation (2.4) by PCG iteration with
the preconditioner B−1

J defined in Section 4. Here, each local solver Bk is chosen as the
symmetric multigrid preconditioner for the restriction of Ah on V p

h (Ωk), and decompose
each Γ(k)

ij,r (k ≤ J − 1) into four squares with the same size (i.e., mk = 4). The iteration
terminates when the relative remainder is less than 1.0D−5. The iteration counts are listed
as the following table.

Table 7.1
iteration counts(Tol.=1.0D − 5)

H/h H = 1/4 H = 1/6 H = 1/8
16 (J = 2) 36 38 38
32 (J = 3) 45 47 46

These numerical results indicates that the convergence of the new preconditioner is
stable with the subdomain number n, and depends slightly on the ratio H/h. This is just
predicted by Theorem 4.1.

8 Conclusions

We have developed a substructuring method with inexact subdomain solvers by building
a new multilevel space decomposition of Vh(Ω). The new substructuring method not only
possesses nearly optimal convergence but also has almost optimal computational complexity.
For the new method, traditional nested grids are unnecessary. Our idea can be extended
to some other equations, for example, Maxwell’s equations.
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