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Abstract

Based on the GLL-spectral element discretization of time-dependent Maxwell’s equa-
tions introduced recently, we obtain a Poisson system or a Poisson system with a little
oscillation. We prove that any symplectic partitioned Runge-Kutta method preserves the
Poisson structure and the implied symplectic structure. Numerical examples show the

efficiency of the symplectic spectral-element method.
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1. Introduction

Maxwell’s equations are very important and the fundamental laws governing elec-
tromagnetic fields. With the increasing concern of electromagnetic fields, especially in
time-domain simulations for wide-band applications, more and more research on nu-
merical solutions of time-domain Maxwell’s equations is produced. Recently, Liu et.
al. adopted the spectral element time-domain method based on Gauss-Lobatto-Legendre
(GLL) polynomials for the spatial discretization and Runge-Kutta method for the tempo-

ral discretization to solve Maxwell’s equations. The GLL-spectral element time-domain
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method has high accuracy and geometric flexibility, and due to the orthogonality of the
basis functions, we can obtain a diagonal or block diagonal mass matrix by using of the
GLL quadrature with little cost. Here we utilize the GLL-spectral element time-domain
method to discretize Maxwell’s equations first to obtain a system of ODEs, which is a
Poisson system to be solved by symplectic methods on temporal direction in this paper.
Maxwell’s equations can be written as a infinite dimensional Hamiltonian system. So, its
solution is a Hamiltonian flow in functional space which preserves the symplectic structure
in the time direction. Recently, some scholars propose the symplectic method (see[10-13])
on temporal discretization of time-domain Maxwell’s equations.

Symplectic methods preserve exactly the inherent canonical property of the continuous
Hamiltonian flow. Extensive numerical tests have indicated that the symplectic inte-
grators are superior to the non-symplectic ones, especially for longtime simulations and
conservations of invariants. Obviously, these features of symplectic methods are very im-
portant during the design of numerical methods for time-domain Maxwell’s equations.
For an infinite dimensional Hamiltonian system, the most popular approach to construct
the symplectic methods is dimension reduction, in order to receive a finite dimensional
Hamiltonian system. However, it is difficult to achieve the aim because of the non-
consistency between the numbers of edges and faces obtained via discretizing electric and
magnetic fields respectively. Actually, the obtained ODEs is a general Poisson system or
a Poisson system with an oscillation rather than a Hamiltonian system. Fortunately, it
can be proved that any symplectic partitioned Runge-Kutta (PRK) method preserves the
Poisson structure and the implied symplectic structure of the Poisson system. Finally
we present some numerical examples to test the high efficiency of the symplectic spectral

element method.

2. Maxwell’s Equations and Spatial Discretization

Assuming the medium is isotropic and linear, we can write Maxwell’s equations as

follows: 9B
e— = VxH-1J
ot
SH (1)
o E
T vV xE,

where € and p are the permittivity and permeability of the medium, respectively. The
coefficients € and p are bounded L*>(f2) functions and physically there exist constants

€0, €1, [0, f11 in €2, such that



O<e<e<e <0

0<po<p<p<oo.
For simplicity, let €, u be constant. If there are finite types of medium in €2, the above

Maxwell’s equations can be written as Hamiltonian system

ok 1o pgoly _
ot € € oH (2)
o I B 0E
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where]HI[E,H]:/—E-VXE+—H-V><H——H-JdV.
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In spatial direction, the weak form of (1): find E, H in relevant finite element space
Un, Vi, such that

ﬁ<eE, EY)Y = (VxH-JE)

ot ;
) 3)
SUHH) = —(V < EH)

where (U, W) = /U - WdV.
Q
Let Up=span {®4,---, ®y,}, V= span {¥y,---, ¥y, }, where N,, N}, are the numbers

of unknowns for the electric and magnetic fields, respectively. Then, we can gain that

Ne Ny,
i=1 j=1
Assuming {I'y,- - -, 'y} is a regular subdivision on 2, we will focus our discussion on any

one of the subdivisional elements denoted by 2.

The matrix form of (3) is:

A%D gy —
)

where e(t) = (ex(t), - en.(t),  h(t) = (ha(t), - b, ()"
filt) = (3, @1), - (I, @n.)); Aij = (e, By);
Bij = (u¥;,¥;); K;j =(Vx ¥, ®); G =—(Vx®;,¥,).
If /a . (¥; x ®;)-1dS = 0, 1 is unit outward normal vector of the boundary of €,
k

then G = —KT.
With J =0, (4) yields a Poisson system



=— KTe(t)=— KTV H(e, h)

where H (e, h)

{ = Kh(t)= KV,H(e,h)
1 2 . . . . .
5 e+ h?). If J #0,(5) is a Poisson system with a oscillation.

3. Symplectic Structure of Poisson System

Equations (5) is a particular case of the following equations

d

7 = MYVH@p)

h (6)
o = ~M'VH(gp)

where ¢ € R™>*! p e R™2*1 M € R™>™2 rank(M) = r.

Let m = my + may, (6) can be written as a form of Poisson system

dz

— = B(:)VH(2)

O,y M
—-MT 0,
Now, we analysis the symplectic structure of the semi-discrete equation (5). As we known,

where 2z = (¢7,p?) € R™, B(z) = [ ] , O, denotes m; order zero matrix.

a differential scheme is a normal symplectic scheme or method if the corresponding step-
transition operator is a normal symplectic transformation for Hamiltonian system. Al-
though the definition of symplectic system depends on Hamiltonian system, the system
itself can be used in different equations. No more than the corresponding step-transition
operator is not symplectic transformation for a non-Hamiltonian system. In this section
we prove that the Poisson system (6) embodies symplectic structure implicitly. Whereas
the symplectic method will be chosen to solve (6), and the numerical solutions will pre-
serve its symplectic structure.

For depiction easily, we set

CK CKC

K
CK

M = (7)

where K € R (' ¢ Rm-—n)xr, K € R™7 C e R™*(m2=1) K is a non degenerate
matrix. For M, we assume that the r x r order sub-matrix on the top left corner is a
non degenerate matrix. Or else, it can be adjusted to a non degenerate one by some

techniques.



View qo = q(to), po = p(to) as the initial values of (6), let ¢ = [¢7, éT]T, p= [ﬁT,ﬁT]T

H(qA>ﬁ) = H(qap)> q: = Cq + (50 - CqAO)> ﬁ = éTﬁ + (ﬁo - CAfTZaO)'

Theorem 1. Equations (6) is equal to the following equations

Y

a = KV;H(.p)

Z? —KTVgﬁ(@,ﬁ) (8)
i = Cq+ (G — Cio)

p = CTp+ (po — CTpo)

Proof: According to the first equation of (6)

{

Soq=Cq, q(t) =Cq(t) + (4o — Cdo). Similarly, p = —KT(V;H(q,p) + CTV:H(q,p))-

¢=MV,H(q,p),

we get
= KV,H(q,p)

= CKV,H(q,p)

K5y K.

Let H(q,p) = H(q:P)lg=cqr(G,—cio)» then
{ Vall(4,p) = (VaH(q,p)+CTVH (4Pt G,
forf(q,p) = VpH(qap)|5:cq+(5o_cqo)a
We gain that
{ q = Kva(A>p)
p = —K'VH(G,p)
(6) is equal to
¢ = KV,H(qp)
P —K"V;H(q,p) (9)

Q(t) = Cq(t) + (4o — Cdo)
According to the first and second equation of (9), we respectively have
4= K(V;H(G,p)+ CV;H(G,p)), and

{

Thereby p = CTp,  p(t) = CTp(t) + (B — C"po)-
Let p(t), po, po substitute p, then (9) can be simply written as differential equations

= —KTV;H(q,p)
= —CTKTV;H(4,p)

’@))‘ @)‘

only on ¢(¢) and p(t). Considering the above proof, we know that

{

= K(VH(G,p) + CVH (G, ) ls—cmp o)
= —KTVQH@,p)|g§:C‘Tﬁ+(Il§o—éTﬁo)

e Qe
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From the definition of H, we can obtain H(q,p) = H(4,p)|
VH (4, p) = VaH (4, D) 5 mpy 5y cmpo) o
vﬁH(quﬁ) = (vf’H(ijp) + CvﬁH(ijp)‘f}:éTﬁ+(ﬁ0—C‘Tﬁo)7 50,
¢ = KV;H(G.p)
p = —KT'ViH(G,p).

F=CT it (g~ C o) then

(10)

Sequentially, equations (9) is equal to (8), then (6) is equal to (8). W

Based on the theorem, we know that the Poisson system can be divided into two parts:
one is the Hamiltonian system (10) with symplectic structure dp A K ~1dg, the other is a
simple algebraic system

{q=<ﬁ+@;0@ (1)

p = CTp+ (B — CTho).

Hence symplectic algorithms stand in the breach among various numerical methods for
Maxwell’s equations. Generally, the phase flow of Poisson itself is Poisson mapping,
therefore its structure-preserving algorithms should be Poisson integrator. For a linear
system, i.e., B(z) is a constant matrix, Zhu and Qin [15] have shown that any symplectic
implicit diagonal Runge-Kutta method is a Poisson scheme. Actually in this case, all of
the symplectic Runge-Kutta method are Poisson integrators. Here the Poisson system (6)

is a linear and separable system.

4. Symplectic PRK Methods and Poisson Schemes

In this section, we apply the symplectic PRK method to equation (6) and present some
important conclusions which provide dependence in theory for application of symplectic
algorithms to Maxwell’s equations. The coefficients of s-order PRK methods are given

out as follows

Table 1: Table of Butcher for PRK method

1| ain - Qg 1| Qi -+ Qg
Cs | Qs1 e Ags Es dsl Tt dss
bl bs bl bs

Usually, it is used for the following ordinary differential equations

dg _

flit f(q,p) 12)
D _

o =9g(q,p)



i.e. ¢,p the two sets variable of equations (12) will be expressed by using the R-K methods
of the left and right table in table 1, respectively. The result is

(

Qi = q+h)Y a;f(Q;P)
=0

P = po+h> a;9(Q; P
=0

n o= q@+hY bif(Q;P)
=0

noo= P0+hzl_7j9(Qjan)
( j=0

The symplectic conditions of PRK method [16] are

Il
o

bidij + Bjaji — bZB] (13)
bi

I
S

If (12) is a separable system, the symplectic conditions of PRK method will be only the
first formula of (13).

Next we introduce a definition and some theorems to analyze the numerical solutions of
(6).

Definition 1. The variables ¢ and p in Hamiltonian equations (10) are called the sym-
plectic components of ¢ and p, respectively; the other part variables é and ]3 are called
their non-symplectic components.

Theorem 2. Let u denote the numerical solution of PRK method for (6), then the
symplectic components of u are numerical solutions of PRK method for (10) and the
non-symplectic components of u are numerical solutions of the PRK method for (11).
Proof : The numerical solution of s order PRK method according to table 1 for (6) is

(q0,p0), (q1,p1)," -, (gn, pn). The details of the computation is

( S
j=1
O ST T
=1 Z.:]_’2’...’S'
JS ) 0.1 N ) (14)
n+1 = Qn+thjMVpH( ;L’Pjn) n=0,1,---,N—1.
j=1
Pnt1 = pn—hZBjMTVqH( ;?7pjn)
\ j=1

o K - " pn
Considering M = [ Ok ],forn =0,1,--- ,N—1, from ¢,41 = qn+thjMVpH( TP,

j=1



we get Gni1 — Gn = C(Gny1 — Gn) then

Gni1 = an+1 + (QTL - C(jn)

Furthermore, we recursively have

én:CCjn_‘_(q:O_CqAO)a n:1>2a"'>N'

Fori=1,2,---,s8; n=0,1,--- ,N —1, from

Qi = qn + hzaijMva( ?aPJn)

j=1

we get

Based on (16), we have
Q7 = CQ} + (4o — Cdo).
By using (18) and the definition of H (g, p), we know that H ( A?, P7)

and

KIVGH(@Q) Py = KT (VaH(Q), B+ CTVH(Q), P
o T n n\| .
= M qu( j?Pj)|Q;L:CQ}L+(éo—Céo)’

VRH(QFLPP) = VaH(QF PP gu_ciomsio-caoy

Combining (14), we drive the following schemes

/

Q= Gu+hd ayKV,H(Q}, P
j=1

Pl = p.—hY ayK'VH(Q), PP
j=1

Gns1 = Gu+h> bKV,H(Q}, P
j=1

Pny1 = Pn— hZBjKTvéH( A?’ Py)
j=1

qAn-i-l = C(jn—i-l + (Qn - (jn)

(15)

(16)

(17)

(18)

)|Q:?=CQ}L+(50—C¢?0)’

J ))|éy:cézy+(5o—cao)

(19)



Similarly, according to (19), we drive the following schemes

( S
QF = Guth) a;KVH(Q}, P
j=1
Pl = pu—hY ayK'VH(Q, PP
j=1
Gyt = Gut+hY bKVH(QT PP (20)
j=1
Posi = Po—h Y bKTVH(QY, PP
j=1
Gnr1 = Cns1+ (¢ — Cdo)
| D1 = CTPoga + (Po — C"po)

(23) can be divided into two parts, one is PRK discretization of (10), the other is

ﬁn = CTﬁn + (ﬁO - CTﬁO)
Obviously, (21) is the discretize form of (11). W
.91
0 K . . :
Let L = P , since the accuracy flow of (10) is L—symplectic transform,

we have the following theorem:

Theorem 3. The step-transition operator of symplectic PRK method for (10) is L—symplectic
transform.

Proof: Let 2 = [¢7,pT]T, (10) is equal to

— = L'V:H(2). (22)

H(G,p) = S(K™'4,p) (23)
and
. . 9p(2)1" T
V:H(2) = V:(S0¢)(2) = GE sz(w)\w:qs(s) = D"V, S(w)|w=c:,
that is R A A
{ Vill(@.9) = K TV.S(K74,p) o)
VoH(3,p) = V.S(K™'¢,p)



Then, for w = DZ we have

dw_awdé_ -1 Friay 1T
= 52 = DL7'V:H(5) = DL™' D'V, 5(w),
and
0 I
DL™'D" = ] :
-1, 0
0 I dw 1
For J = [ Lo ] , we get o= J 7 Vu(—9)(w), namely
Z—? = V,S(u,v)
dv
il —V.S(u,v)

By using PRK method satisfied (13) to solve (10), we get

( Qr = n +hiaijf<vﬁﬁ< )
j=1
Pr = p,—h Z ai; K"V H(Q1, PP
j=1
cjn+1 = Cjn_'_hzs:bjkvﬁf:[( A;L7ﬁ)]n)
j=1
ﬁn—l—l = ﬁn_hZB]KTvﬁﬁ( Aglvpjn)
\ J=1

From (24) we know that

VHQr Pr) = KTV,S(K-1Qn, Pr)
VoH(QE, P = V,S(K7'Q7, Pr)

J

So, we get ) )
K7'Qr = K4, +hY  ayV,S(KT'QL. PP

j=1
pr = ﬁn—hidijvuS(K_l A?apjn)

j=1
B = B+ h 30V )

j=1
Priv = Pa—h Y bVLS(KT'QL,PP)

\ j=1

10



Let U", V" replace K~'Q", K~1Q"P" respectively, we have

(

Ur = K7, +h>»_ a;V,S(U V)
j=1

Ve = P —h > aVSUT V]

= (26)

K Gy = Ko +h)_ bV,SUr, V)
j=1

Pns1 = Pn—h Y b VuSUF, V)
\ 7=1

From (29), we know that (K G, Pn) is the numerical solution of the same symplectic PRK
method for (25) with initial value (K 'y, o). Since (25) is normal Hamiltonian system,
the step-transition operator of symplectic PRK method for (25) is symplectic transform,

i.e. the transform (K~'G,,pn) — (K 'Gpi1, Pns1) is normal symplectic transform, then

~ T ~
8(K_1Cjn+17]§n+1) J a(K_lqAn—l—laﬁn—l—l) _ J
(K~ G, Pn) (K1, Pn)

(27)

Moreover

8(K_1Cfn+1>25n+1) — a(f(_l%mﬁnﬂ) la(@wbﬁnﬂ)] 9(Gn, Pn)
8(K_1Cjnvﬁn) a((jn-i-laﬁn-i-l) a(qn’ﬁ") a(K_lquﬁn)

— K_l 0 |:8(qAn—|A—17]?n+1):| IA{ 0 7 (28)
0 I 9(Gn, Pn) 0 I,
Combining (27) and (28), we have
|ia(Cjn+17ﬁn+1>:|TL |:8(qAn+17]§n+1):| _ L
O(Gn, Pn) O(Gn» Dn)

That is the transform: (Gn, pn) — (Gns1, Pnt1) is L—symplectic transform. W

From theorem 2. and theorem 3. we see that when the symplectic PRK method is applied
to Poisson system (6), the corresponding numerical mapping of (10) is an L— symplectic
mapping. In fact, the symplectic scheme is Poisson integrator of the Poisson system (6).
The following theorem proves it.

Theorem 4. The corresponding step-transition is Poisson mapping of symplectic PRK
method for Poisson system (6).

Proof: The only work we need to do is the proof of the transform (qo,po) — (q1,p1) is
Poisson mapping, that is

{MH O M “M]T:[ O M ] 30)

9(qo,po) —MT 0,,0m | LO(q0,p0) —MT 0o

11



9(q1, ) _ 9(q1,q1,G1,Gv)
9(q0,P0)  0(do, dos do» o)

From (20), we can know that ¢;, p; are independent of Gos Dos G1, Do, D1 Go. Therefore,

The Jacobi matrix is

the correlative partial derivatives are all zeroes. Let Gy, p; replace ¢;, p; in (21), then
[ Oq1 Iq i
G op 07“><(m2 —r)
do Po
aq 0q
ch_ i
dqo Ipo
Ip1 Ip1 0 ’
a(j() aﬁo rX(ma—r)

A Op1 op
CT—A ~ Ir Im —-r
L dqo Opo ) : .

|[saer
AgéA

CA, CACT  CAy  CAsC
. —A;TOT Ay ANC |

—CTAST —CTATCT CTAy CTALC

Orx(ml—r)

C( L)

]ml —r O(ml—r)x(mg—r)

INaqr,p1)
8(%7]90)

Orx(ml—r)

O(ma—r)x(ma—r) CT(

thus
Ome M

a(qlapl)
_MT Omxm

8(qO7 p(])

Al AlCT Ag

(31)

where

Ay

Ay =

As

00 por
Ipo

O per
dpo

_ oD pr
Ipo

0P

ra~ 17T
8q1

| 9o |

1T

| 4o |

e

1940 |

_l_

_l_

T
+

For L is non degenerate, from (32) we get [
|:a(quaﬁl):| 0 [A(
a(qAOaﬁO) —KT 0

Outspread the above formula, we have

Put them into (31), we get (30). W

12

a((jl ) ﬁl)
8(@07250)

] [a(ql,zal)

a(@m ﬁO)

8q:1 i
4o

81?1 i
4o

8]?1 i
4o

|
|-

0P

ra~ 17T
aql

| 9P |
1T
| 9Po |
.
| 9po |

Y

Y

8(@071)0)

0 K
KT 0

] |

-1



5. Numerical Results and Conclusions

The symplectic partitioned Runge-Kutta (PRK) method is a Poisson scheme. In this
section, we want to put it into solving equation (5). In (5), we choose the spectral
element space based on Gauss-Lobatto-Legendre polynomials as the finite element space.
First, we introduce the 1-D case: N-th order Legendre polynomial is

1 dV

= 2NN|CZ€+N(§2 - l)Na

Ly(¢)

GLL points {¢;, j=0,1,---, N} are the zero points of (1 — &2)L}y(£).

On reference element [—1, 1], N-th order GLL basic functions are

B | (11— (e
9= NN T IING) =g

=0,1, -, N. (32)

such that ¢; (&) = dji, VY jk=0,--- N.

For polynomial P(x) whose order is not more than 2N — 1, we have

1 N 2
/1 P(€)d¢ = ;wk]?(fk), where the weight is wy = NN T D EnEE:

V(&) € [-1,1], fis a smooth function, its interpolation formula can be written as

0;(6) (&) + O(ALNT).

M-

(6 =
=0

As for 3-D case, on reference element [—1,1] x [=1,1] x [—1,1], we can choose ¥; =
Q. ()Ps(n)Pi(¢), i=0,---,N, where N = (N¢ + 1)(N, +1)(Nc+1), N¢, N,, N¢are
the number of GLL points in &, n, ( directions, respectively.

Make the best use of properties of the basic functions for spectral element and some
techniques [9] , we can arrive at a diagonal mass matrix. Accordingly, we can achieve
high order accuracy in spatial discretization and the cost of computation is not increased.
For simplicity, in this paper, we discuss the problem only for the 1-D case. Take a plane

wave equation for example:

0= _ _ oM
o T Y9
on o .
ot * Oz

where c¢q is the speed of light in vacuum.

Because we use the GLL spectral element to discretize equation in space, it yields a sepa-
rable system. Then in temporal discretization, we can choose 4th-order explicit symplectic
PRK method to deal with the resulting PDE. Its Butcher table is Table 2. We present

several numerical examples to show superiority of the PRK method. Combined with the

13



Table 2: Table of Butcher for 4th-order symplectic PRK method

) 3 0 0 0 0 0O 0 0 O

% 1 oo 42-’72 0 0 o) v 0 0 0
311 42r272 % M erw m J2rV2 0 MFv T w2 00
1 ooy 1 M Y2 m 0
) Mm o m 0

spectral element method, we can gain more accurate numerical solutions but the compu-
tational cost dose not increase. And we compare it with a 4th-order non-symplectic RK
method [9], its non-dissipative property is more and more obvious with the time increas-

ing.

Maximum error of E vs. N with nel = 2

T T T T T T
—<— symplectic
P < non-sym

10°

erre

100 -
107 T

107+

10712

Fig. 1. Errors of Electric Field at 2.125T (prt=1/64)
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errtH

ernE

10

Maximum error of Hvs. N with nel = 2

10°

10 +

10|

T
—— symplecti
- non-sym

Zor

. 2. Errors of Magnetic Field at 2.125T (prt=1/64)

Maximum error of E vs. N with nel = 3

—< symplectic
- non-sym E

6 7 8 9 10

Fig. 3. Errors of Electric Field at 102.125T (prt=1/8)
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Maximum error of H vs. N with nel = 3

10 T T T
—%— symplectic
<~ non-sym 3

errtH

7 8 9 10

Zof

Fig. 4. Errors of Magnetic Field at 102.125T (prt=1/8)

relative energy error vs. N with Nel =2, N = 10

rerr

10 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Fig. 5. Comparison of The Errors of Relative Energy between Symplectic and Non-Symplectic Method
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