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Abstract

Based on the GLL-spectral element discretization of time-dependent Maxwell’s equa-

tions introduced recently, we obtain a Poisson system or a Poisson system with a little

oscillation. We prove that any symplectic partitioned Runge-Kutta method preserves the

Poisson structure and the implied symplectic structure. Numerical examples show the

efficiency of the symplectic spectral-element method.
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1. Introduction

Maxwell’s equations are very important and the fundamental laws governing elec-

tromagnetic fields. With the increasing concern of electromagnetic fields, especially in

time-domain simulations for wide-band applications, more and more research on nu-

merical solutions of time-domain Maxwell’s equations is produced. Recently, Liu et.

al. adopted the spectral element time-domain method based on Gauss-Lobatto-Legendre

(GLL) polynomials for the spatial discretization and Runge-Kutta method for the tempo-

ral discretization to solve Maxwell’s equations. The GLL-spectral element time-domain
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method has high accuracy and geometric flexibility, and due to the orthogonality of the

basis functions, we can obtain a diagonal or block diagonal mass matrix by using of the

GLL quadrature with little cost. Here we utilize the GLL-spectral element time-domain

method to discretize Maxwell’s equations first to obtain a system of ODEs, which is a

Poisson system to be solved by symplectic methods on temporal direction in this paper.

Maxwell’s equations can be written as a infinite dimensional Hamiltonian system. So, its

solution is a Hamiltonian flow in functional space which preserves the symplectic structure

in the time direction. Recently, some scholars propose the symplectic method (see[10-13])

on temporal discretization of time-domain Maxwell’s equations.

Symplectic methods preserve exactly the inherent canonical property of the continuous

Hamiltonian flow. Extensive numerical tests have indicated that the symplectic inte-

grators are superior to the non-symplectic ones, especially for longtime simulations and

conservations of invariants. Obviously, these features of symplectic methods are very im-

portant during the design of numerical methods for time-domain Maxwell’s equations.

For an infinite dimensional Hamiltonian system, the most popular approach to construct

the symplectic methods is dimension reduction, in order to receive a finite dimensional

Hamiltonian system. However, it is difficult to achieve the aim because of the non-

consistency between the numbers of edges and faces obtained via discretizing electric and

magnetic fields respectively. Actually, the obtained ODEs is a general Poisson system or

a Poisson system with an oscillation rather than a Hamiltonian system. Fortunately, it

can be proved that any symplectic partitioned Runge-Kutta (PRK) method preserves the

Poisson structure and the implied symplectic structure of the Poisson system. Finally

we present some numerical examples to test the high efficiency of the symplectic spectral

element method.

2. Maxwell’s Equations and Spatial Discretization

Assuming the medium is isotropic and linear, we can write Maxwell’s equations as

follows:










ǫ
∂E

∂t
= ∇× H − J

µ
∂H

∂t
= −∇×E,

(1)

where ǫ and µ are the permittivity and permeability of the medium, respectively. The

coefficients ǫ and µ are bounded L∞(Ω) functions and physically there exist constants

ǫ0, ǫ1, µ0, µ1 in Ω, such that
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0 < ǫ0 ≤ ǫ ≤ ǫ1 < ∞

0 < µ0 ≤ µ ≤ µ1 < ∞.

For simplicity, let ǫ, µ be constant. If there are finite types of medium in Ω, the above

Maxwell’s equations can be written as Hamiltonian system















∂E

∂t
=

1

ǫ
∇× H −

1

ǫ
J =

δH

δH

∂H

∂t
= −

1

µ
∇×E = −

δH

δE

(2)

where H[E,H] =

∫

Ω

1

2µ
E · ∇ × E +

1

2ǫ
H · ∇ ×H −

1

ǫ
H · JdV.

In spatial direction, the weak form of (1): find E,H in relevant finite element space

Uh, Vh, such that










∂

∂t
〈ǫE,E∗〉 = 〈∇ ×H − J,E∗〉

∂

∂t
〈µH,H∗〉 = −〈∇× E,H∗〉

(3)

where 〈U,W〉 =

∫

Ω

U · WdV.

Let Uh= span {Φ1, · · ·,ΦNe
}, Vh= span {Ψ1, · · ·,ΨNh

}, where Ne, Nh are the numbers

of unknowns for the electric and magnetic fields, respectively. Then, we can gain that

E(X, t) =
Ne
∑

i=1

ei(t)Φi(X), H(X, t) =

Nh
∑

j=1

hj(t)Ψj(X).

Assuming {Γ1, · · ·, Γk} is a regular subdivision on Ω, we will focus our discussion on any

one of the subdivisional elements denoted by Ωk.

The matrix form of (3) is:














A
de(t)

dt
= Kh(t) − f(t)

B
dh(t)

dt
= Ge(t)

(4)

where e(t) = (e1(t), · · ·, eNe
(t))T , h(t) = (h1(t), · · ·, hNh

(t))T ;

fi(t) = (〈J,Φ1〉, · · ·, 〈J,ΦNe
〉); Aij = 〈ǫΦi,Φj〉;

Bij = 〈µΨi,Ψj〉; Kij = 〈∇ × Ψj ,Φi〉; Gij = −〈∇ ×Φj ,Ψi〉.

If

∫

∂Ωk

(Ψi × Φj) · ~ndS = 0, ~n is unit outward normal vector of the boundary of Ωk,

then G = −KT .

With J = 0, (4) yields a Poisson system
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A
de(t)

dt
= Kh(t) = K∇hĤ(e, h)

B
dh(t)

dt
= − KT e(t) = − KT∇eĤ(e, h)

(5)

where Ĥ(e, h) =
1

2
(e2 + h2). If J 6= 0, (5) is a Poisson system with a oscillation.

3. Symplectic Structure of Poisson System

Equations (5) is a particular case of the following equations











dq

dt
= M∇pH(q, p)

dp

dt
= −MT∇qH(q, p)

(6)

where q ∈ R
m1×1, p ∈ R

m2×1, M ∈ R
m1×m2 , rank(M) = r.

Let m = m1 + m2, (6) can be written as a form of Poisson system

dz

dt
= B(z)∇H(z)

where z = (qT , pT ) ∈ R
m, B(z) =

[

0m1
M

−MT 0m2

]

, 0mi
denotes mi order zero matrix.

Now, we analysis the symplectic structure of the semi-discrete equation (5). As we known,

a differential scheme is a normal symplectic scheme or method if the corresponding step-

transition operator is a normal symplectic transformation for Hamiltonian system. Al-

though the definition of symplectic system depends on Hamiltonian system, the system

itself can be used in different equations. No more than the corresponding step-transition

operator is not symplectic transformation for a non-Hamiltonian system. In this section

we prove that the Poisson system (6) embodies symplectic structure implicitly. Whereas

the symplectic method will be chosen to solve (6), and the numerical solutions will pre-

serve its symplectic structure.

For depiction easily, we set

M =

[

K

CK

]

=

[

K̂ K̂Ĉ

CK̂ CK̂Ĉ

]

, (7)

where K ∈ R
r×m2 , C ∈ R

(m1−r)×r, K̂ ∈ R
r×r, Ĉ ∈ R

r×(m2−r). K̂ is a non degenerate

matrix. For M , we assume that the r × r order sub-matrix on the top left corner is a

non degenerate matrix. Or else, it can be adjusted to a non degenerate one by some

techniques.
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View q0 = q(t0), p0 = p(t0) as the initial values of (6), let q = [q̂T , ˆ̂qT ]T , p = [p̂T , ˆ̂pT ]T ,

Ĥ(q̂, p̂) = H(q, p), ˆ̂q = Cq̂ + (ˆ̂q0 − Cq̂0), ˆ̂p = ĈT p̂ + (ˆ̂p0 − ĈT p̂0).

Theorem 1. Equations (6) is equal to the following equations























˙̂q = K̂∇p̂Ĥ(q̂, p̂)

˙̂p = −K̂T∇q̂Ĥ(q̂, p̂)

ˆ̂q = Cq̂ + (ˆ̂q0 − Cq̂0)

ˆ̂p = ĈT p̂ + (ˆ̂p0 − ĈT p̂0)

(8)

Proof: According to the first equation of (6)

q̇ = M∇pH(q, p),

we get
{

˙̂q = K∇pH(q, p)
˙̂
q̂ = CK∇pH(q, p)

So
˙̂
q̂ = C ˙̂q, ˆ̂q(t) = Cq̂(t) + (ˆ̂q0 − Cq̂0). Similarly, ṗ = −KT (∇q̂H(q, p) + CT∇ˆ̂qH(q, p)).

Let H̄(q̂, p) = H(q, p)| ˆ̂q=Cq̂+(ˆ̂q0−Cq̂0)
, then

{

∇q̂H̄(q̂, p) = (∇q̂H(q, p) + CT∇ˆ̂qH(q, p))| ˆ̂q=Cq̂+(ˆ̂q0−Cq̂0)
,

∇pH̄(q, p) = ∇pH(q, p)| ˆ̂q=Cq̂+(ˆ̂q0−Cq̂0)
,

We gain that
{

˙̂q = K∇pH̄(q̂, p)

ṗ = −KT∇q̂H̄(q̂, p)

(6) is equal to














˙̂q = K∇pH̄(q, p)

ṗ = −KT∇q̂H̄(q, p)

ˆ̂q(t) = Cq̂(t) + (ˆ̂q0 − Cq̂0)

(9)

According to the first and second equation of (9), we respectively have

˙̂q = K̂(∇p̂H̄(q̂, p) + Ĉ∇ ˆ̂pH̄(q̂, p)), and

{

˙̂p = −K̂T∇q̂H(q̂, p)
˙̂
p̂ = −ĈT K̂T∇q̂H(q̂, p)

Thereby
˙̂
p̂ = ĈT ˙̂p, ˆ̂p(t) = ĈT p̂(t) + (ˆ̂p0 − ĈT p̂0).

Let p̂(t), ˆ̂p0, p̂0 substitute ˆ̂p, then (9) can be simply written as differential equations

only on q̂(t) and p̂(t). Considering the above proof, we know that
{

˙̂q = K̂(∇p̂H̄(q̂, p) + Ĉ∇ ˆ̂pH̄(q̂, p))| ˆ̂p=ĈT p̂+(ˆ̂p0−ĈT p̂0)

˙̂p = −K̂T∇q̂H̄(q̂, p)| ˆ̂p=ĈT p̂+(ˆ̂p0−ĈT p̂0)
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From the definition of Ĥ , we can obtain Ĥ(q̂, p̂) = H̄(q̂, p)| ˆ̂p=ĈT p̂+(ˆ̂p0−ĈT p̂0)
, then

∇q̂Ĥ(q̂, p̂) = ∇q̂H̄(q̂, p)| ˆ̂p=ĈT p̂+(ˆ̂p0−ĈT p̂0)
,

∇p̂Ĥ(q̂, p̂) = (∇p̂H̄(q̂, p) + Ĉ∇ ˆ̂pH̄(q̂, p)| ˆ̂p=ĈT p̂+(ˆ̂p0−ĈT p̂0)
, so,

{

˙̂q = K̂∇p̂Ĥ(q̂, p̂)

˙̂p = −K̂T∇q̂Ĥ(q̂, p̂).
(10)

Sequentially, equations (9) is equal to (8), then (6) is equal to (8). �

Based on the theorem, we know that the Poisson system can be divided into two parts:

one is the Hamiltonian system (10) with symplectic structure dp̂ ∧̇ K̂−1dq̂, the other is a

simple algebraic system
{

ˆ̂q = Cq̂ + (ˆ̂q0 − Cq̂0)

ˆ̂p = ĈT p̂ + (ˆ̂p0 − ĈT p̂0).
(11)

Hence symplectic algorithms stand in the breach among various numerical methods for

Maxwell’s equations. Generally, the phase flow of Poisson itself is Poisson mapping,

therefore its structure-preserving algorithms should be Poisson integrator. For a linear

system, i.e., B(z) is a constant matrix, Zhu and Qin [15] have shown that any symplectic

implicit diagonal Runge-Kutta method is a Poisson scheme. Actually in this case, all of

the symplectic Runge-Kutta method are Poisson integrators. Here the Poisson system (6)

is a linear and separable system.

4. Symplectic PRK Methods and Poisson Schemes

In this section, we apply the symplectic PRK method to equation (6) and present some

important conclusions which provide dependence in theory for application of symplectic

algorithms to Maxwell’s equations. The coefficients of s-order PRK methods are given

out as follows

Table 1: Table of Butcher for PRK method

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

c̄1 ā11 · · · ā1s

...
...

. . .
...

c̄s ās1 · · · āss

b̄1 · · · b̄s

Usually, it is used for the following ordinary differential equations










dq

dt
= f(q, p)

dp

dt
= g(q, p)

(12)

6



i.e. q, p the two sets variable of equations (12) will be expressed by using the R-K methods

of the left and right table in table 1, respectively. The result is






























































Qi = q0 + h

s
∑

j=0

aijf(Qj , Pj)

Pi = p0 + h

s
∑

j=0

āijg(Qj, Pj)

q1 = q0 + h

s
∑

j=0

bjf(Qj, Pj)

p1 = p0 + h

s
∑

j=0

b̄jg(Qj, Pj)

The symplectic conditions of PRK method [16] are






biāij + b̄jaji − bib̄j = 0

bi = b̄i

(13)

If (12) is a separable system, the symplectic conditions of PRK method will be only the

first formula of (13).

Next we introduce a definition and some theorems to analyze the numerical solutions of

(6).

Definition 1. The variables q̂ and p̂ in Hamiltonian equations (10) are called the sym-

plectic components of q and p, respectively; the other part variables ˆ̂q and ˆ̂p are called

their non-symplectic components.

Theorem 2. Let u denote the numerical solution of PRK method for (6), then the

symplectic components of u are numerical solutions of PRK method for (10) and the

non-symplectic components of u are numerical solutions of the PRK method for (11).

Proof : The numerical solution of s order PRK method according to table 1 for (6) is

(q0, p0), (q1, p1), · · ·, (qN , pN). The details of the computation is






























































Qn
i = qn + h

s
∑

j=1

aijM∇pH(Qn
j , P

n
j )

P n
i = pn − h

s
∑

j=1

āijM
T∇qH(Qn

j , P n
j )

qn+1 = qn + h

s
∑

j=1

bjM∇pH(Qn
j , P n

j )

pn+1 = pn − h

s
∑

j=1

b̄jM
T∇qH(Qn

j , P
n
j )

,
i = 1, 2, · · · , s.

n = 0, 1, · · · , N − 1.
(14)

Considering M =

[

K

CK

]

, for n = 0, 1, · · · , N−1, from qn+1 = qn+h

s
∑

j=1

bjM∇pH(Qn
j , P n

j ),
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we get ˆ̂qn+1 − ˆ̂qn = C(q̂n+1 − q̂n) then

ˆ̂qn+1 = Cq̂n+1 + (ˆ̂qn − Cq̂n) (15)

Furthermore, we recursively have

ˆ̂qn = Cq̂n + (ˆ̂q0 − Cq̂0), n = 1, 2, · · · , N. (16)

For i = 1, 2, · · · , s; n = 0, 1, · · · , N − 1, from

Qn
i = qn + h

s
∑

j=1

aijM∇pH(Qn
j , P n

j )

we get
ˆ̂
Qn

i − ˆ̂qn = C(Q̂n
i − q̂n). (17)

Based on (16), we have
ˆ̂
Qn

i = CQ̂n
i + (ˆ̂q0 − Cq̂0). (18)

By using (18) and the definition of H̄(q̂, p), we know that H̄(Q̂n
j , P n

j ) = H(Qn
j , P n

j )| ˆ̂
Qn

j =CQ̂n
j +(ˆ̂q0−Cq̂0)

,

and

KT∇q̂H̄(Q̂n
j , P n

j ) = KT (∇q̂H(Qn
j , P n

j ) + CT∇ˆ̂qH(Qn
j , P n

j ))| ˆ̂
Qn

j =CQ̂n
j +(ˆ̂q0−Cq̂0)

= MT∇qH(Qn
j , P n

j )| ˆ̂
Qn

j =CQ̂n
j +(ˆ̂q0−Cq̂0)

,

∇pH̄(Q̂n
j , P n

j ) = ∇qH(Qn
j , P n

j )| ˆ̂
Qn

j =CQ̂n
j +(ˆ̂q0−Cq̂0)

.

Combining (14), we drive the following schemes











































































Q̂n
i = q̂n + h

s
∑

j=1

aijK∇pH̄(Q̂n
j , P n

j )

P n
i = pn − h

s
∑

j=1

āijK
T∇q̂H̄(Q̂n

j , P n
j )

q̂n+1 = q̂n + h

s
∑

j=1

bjK∇pH̄(Q̂n
j , P n

j )

pn+1 = pn − h

s
∑

j=1

b̄jK
T∇q̂H̄(Q̂n

j , P n
j )

ˆ̂qn+1 = Cq̂n+1 + (ˆ̂qn − q̂n)

(19)

8



Similarly, according to (19), we drive the following schemes



















































































Q̂n
i = q̂n + h

s
∑

j=1

aijK̂∇p̂Ĥ(Q̂n
j , P̂ n

j )

P̂ n
i = p̂n − h

s
∑

j=1

āijK̂
T∇q̂Ĥ(Q̂n

j , P̂ n
j )

q̂n+1 = q̂n + h

s
∑

j=1

bjK̂∇p̂Ĥ(Q̂n
j , P̂ n

j )

p̂n+1 = p̂n − h

s
∑

j=1

b̄jK̂
T∇q̂Ĥ(Q̂n

j , P̂ n
j )

ˆ̂qn+1 = Cq̂n+1 + (ˆ̂q0 − Cq̂0)

ˆ̂pn+1 = ĈT p̂n+1 + (ˆ̂p0 − ĈT p̂0)

(20)

(23) can be divided into two parts, one is PRK discretization of (10), the other is

{

ˆ̂qn = Cq̂n + (ˆ̂q0 − Cq̂0)

ˆ̂pn = ĈT p̂n + (ˆ̂p0 − ĈT p̂0)
(21)

Obviously, (21) is the discretize form of (11). �

Let L =

[

0 K̂

−K̂T 0

]−1

, since the accuracy flow of (10) is L−symplectic transform,

we have the following theorem:

Theorem 3. The step-transition operator of symplectic PRK method for (10) is L−symplectic

transform.

Proof: Let ẑ = [q̂T , p̂T ]T , (10) is equal to

dẑ

dt
= L−1∇ẑĤ(ẑ). (22)

Let D =

[

K̂−1 0

0 Ir

]

; w = [uT , vT ]T = φ(ẑ) = Cẑ S(w) = Ĥ ◦ φ−1(w) i.e.

Ĥ(ẑ) = S ◦ φ(ẑ), then

Ĥ(q̂, p̂) = S(K̂−1q̂, p̂) (23)

and

∇ẑĤ(ẑ) = ∇ẑ(S ◦ φ)(ẑ) =

[

∂φ(ẑ)

∂ẑ

]T

∇wS(w)|w=φ(ẑ) = DT∇wS(w)|w=Cẑ,

that is
{

∇q̂Ĥ(q̂, p̂) = K̂−T∇uS(K̂−1q̂, p̂)

∇p̂Ĥ(q̂, p̂) = ∇vS(K̂−1q̂, p̂)
(24)
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Then, for w = Dẑ we have

dw

dt
=

∂w

∂ẑ

dẑ

dt
= DL−1∇ẑĤ(ẑ) = DL−1DT∇wS(w),

and

DL−1DT =

[

0 Ir

−Ir 0

]

.

For J =

[

0 Ir

−Ir 0

]

, we get
dw

dt
= J−1∇w(−S)(w), namely











du

dt
= ∇vS(u, v)

dv

dt
= −∇uS(u, v)

(25)

By using PRK method satisfied (13) to solve (10), we get































































Q̂n
i = q̂n + h

s
∑

j=1

aijK̂∇p̂Ĥ(Q̂n
j , P̂ n

j )

P̂ n
i = p̂n − h

s
∑

j=1

āijK̂
T∇q̂Ĥ(Q̂n

j , P̂ n
j )

q̂n+1 = q̂n + h

s
∑

j=1

bjK̂∇p̂Ĥ(Q̂n
j , P̂ n

j )

p̂n+1 = p̂n − h

s
∑

j=1

b̄jK̂
T∇q̂Ĥ(Q̂n

j , P̂ n
j )

From (24) we know that

{

∇q̂Ĥ(Q̂n
j , P̂ n

j ) = K̂−T∇uS(K̂−1Q̂n
j , P̂ n

j )

∇p̂Ĥ(Q̂n
j , P̂ n

j ) = ∇vS(K̂−1Q̂n
j , P̂ n

j )

So, we get






























































K̂−1Q̂n
i = K̂−1q̂n + h

s
∑

j=1

aij∇vS(K̂−1Q̂n
j , P̂ n

j )

P̂ n
i = p̂n − h

s
∑

j=1

āij∇uS(K̂−1Q̂n
j , P̂ n

j )

K̂−1q̂n+1 = K̂−1q̂n + h

s
∑

j=1

bj∇vS(K̂−1Q̂n
j , P̂ n

j )

p̂n+1 = p̂n − h

s
∑

j=1

b̄j∇uS(K̂−1Q̂n
j , P̂ n

j )
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Let Un
i , V n

i replace K̂−1Q̂n
i , K̂−1Q̂n

i P̂ n
i respectively, we have































































Un
i = K̂−1q̂n + h

s
∑

j=1

aij∇vS(Un
j , V n

j )

V n
i = p̂n − h

s
∑

j=1

āij∇uS(Un
j , V n

j )

K̂−1q̂n+1 = K̂−1q̂n + h

s
∑

j=1

bj∇vS(Un
j , V n

j )

p̂n+1 = p̂n − h

s
∑

j=1

b̄j∇uS(Un
j , V n

j )

(26)

From (29), we know that (K̂−1q̂n, p̂n) is the numerical solution of the same symplectic PRK

method for (25) with initial value (K̂−1q̂0, p̂0). Since (25) is normal Hamiltonian system,

the step-transition operator of symplectic PRK method for (25) is symplectic transform,

i.e. the transform (K̂−1q̂n, p̂n) 7→ (K̂−1q̂n+1, p̂n+1) is normal symplectic transform, then

[

∂(K̂−1q̂n+1, p̂n+1)

∂(K̂−1q̂n, p̂n)

]T

J

[

∂(K̂−1q̂n+1, p̂n+1)

∂(K̂−1q̂n, p̂n)

]

= J. (27)

Moreover

∂(K̂−1q̂n+1, p̂n+1)

∂(K̂−1q̂n, p̂n)
=

[

∂(K̂−1q̂n+1, p̂n+1)

∂(q̂n+1, p̂n+1)

]

[

∂(q̂n+1, p̂n+1)

∂(q̂n, p̂n)

]

[

∂(q̂n, p̂n)

∂(K̂−1q̂n, p̂n)

]

=

[

K̂−1 0

0 Ir

]

[

∂(q̂n+1, p̂n+1)

∂(q̂n, p̂n)

]

[

K̂ 0

0 Ir

]

, (28)

Combining (27) and (28), we have

[

∂(q̂n+1, p̂n+1)

∂(q̂n, p̂n)

]T

L

[

∂(q̂n+1, p̂n+1)

∂(q̂n, p̂n)

]

= L. (29)

That is the transform: (q̂n, p̂n) 7→ (q̂n+1, p̂n+1) is L−symplectic transform. �

From theorem 2. and theorem 3. we see that when the symplectic PRK method is applied

to Poisson system (6), the corresponding numerical mapping of (10) is an L− symplectic

mapping. In fact, the symplectic scheme is Poisson integrator of the Poisson system (6).

The following theorem proves it.

Theorem 4. The corresponding step-transition is Poisson mapping of symplectic PRK

method for Poisson system (6).

Proof: The only work we need to do is the proof of the transform (q0, p0) 7→ (q1, p1) is

Poisson mapping, that is

[

∂(q1, p1)

∂(q0, p0)

]

[

0m×m M

−MT 0m×m

]

[

∂(q1, p1)

∂(q0, p0)

]T

=

[

0m×m M

−MT 0m×m

]

. (30)
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The Jacobi matrix is
∂(q1, p1)

∂(q0, p0)
=

∂(q̂1, ˆ̂q1, q̂1, ˆ̂q1)

∂(q̂0, ˆ̂q0, q̂0, ˆ̂q0)
.

From (20), we can know that q̂1, p̂1 are independent of ˆ̂q0, ˆ̂p0, ˆ̂q1, ˆ̂p0, ˆ̂p1, ˆ̂q0. Therefore,

the correlative partial derivatives are all zeroes. Let q̂0, p̂1 replace q̂1, p̂1 in (21), then

∂(q1, p1)

∂(q0, p0)
=

























∂q̂1

∂q̂0
0r×(m1−r)

∂q̂1

∂p̂0
0r×(m2−r)

C(
∂q̂1

∂q̂0
− Ir) Im1−r C

∂q̂1

∂p̂0
0(m1−r)×(m2−r)

∂p̂1

∂q̂0
0r×(m1−r)

∂p̂1

∂p̂0
0r×(m2−r)

ĈT
∂p̂1

∂q̂0
0(m2−r)×(m2−r) ĈT (

∂p̂1

∂p̂0
− Ir) Im2−r

























,

thus
∂(q1, p1)

∂(q0, p0)

[

0m×m M

−MT 0m×m

]

[

∂(q1, p1)

∂(q0, p0)

]T

=













Λ1 Λ1C
T Λ3 Λ3Ĉ

CΛ1 CΛ1C
T CΛ3 CΛ3Ĉ

−Λ3
T −Λ3

T CT Λ2 Λ2Ĉ

−ĈT Λ3
T −ĈT Λ3

T CT ĈT Λ2 ĈT Λ2Ĉ













, (31)

where

Λ1 = −
∂q̂1

∂p̂0
K̂T

[

∂q̂1

∂q̂0

]T

+
∂q̂1

∂q̂0
K̂

[

∂q̂1

∂p̂0

]T

;

Λ2 = −
∂p̂1

∂p̂0

K̂T

[

∂p̂1

∂q̂0

]T

+
∂p̂1

∂q̂0

K̂

[

∂p̂1

∂p̂0

]T

;

Λ3 = −
∂p̂1

∂p̂0
K̂T

[

∂q̂1

∂q̂0

]T

+
∂p̂1

∂q̂0
K̂

[

∂q̂1

∂p̂0

]T

.

For L is non degenerate, from (32) we get

[

∂(q̂1, p̂1)

∂(q̂0, p̂0)

]

L−1

[

∂(q̂1, p̂1)

∂(q̂0, p̂0)

]T

= L−1, i.e.

[

∂(q̂1, p̂1)

∂(q̂0, p̂0)

]

[

0 K̂

−K̂T 0

]

[

∂(q̂1, p̂1)

∂(q̂0, p̂0)

]T

=

[

0 K̂

−K̂T 0

]

.

Outspread the above formula, we have

Λ1 = 0r×r

Λ2 = 0r×r

Λ3 = K̂.

Put them into (31), we get (30). �
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5. Numerical Results and Conclusions

The symplectic partitioned Runge-Kutta (PRK) method is a Poisson scheme. In this

section, we want to put it into solving equation (5). In (5), we choose the spectral

element space based on Gauss-Lobatto-Legendre polynomials as the finite element space.

First, we introduce the 1-D case: N -th order Legendre polynomial is

LN(ξ) =
1

2NN !

dN

dξN
(ξ2 − 1)N ,

GLL points {ξj, j = 0, 1, · · ·, N} are the zero points of (1 − ξ2)L
′

N(ξ).

On reference element [−1, 1], N -th order GLL basic functions are

φj(ξ) = −
1

N(N + 1)LN(ξj)

(1 − ξ2)L′
N(ξ)

ξ − ξj

, j = 0, 1, · · ·, N. (32)

such that φj(ξk) = δjk, ∀ j, k = 0, · · ·, N.

For polynomial P (x) whose order is not more than 2N − 1, we have
∫ 1

−1

P (ξ)dξ =
N

∑

k=0

ωkP (ξk), where the weight is ωk =
2

N(N + 1)[LN (ξk)]2
.

∀f(ξ) ∈ [−1, 1], f is a smooth function, its interpolation formula can be written as

f(ξ) =
N

∑

j=0

φj(ξ)f(ξj) + O(∆ξN+1).

As for 3-D case, on reference element [−1, 1] × [−1, 1] × [−1, 1], we can choose Ψi =

Φr(ξ)Φs(η)Φt(ζ), i = 0, · · ·, N , where N = (Nξ + 1)(Nη + 1)(Nζ + 1), Nξ, Nη, Nζ are

the number of GLL points in ξ, η, ζ directions, respectively.

Make the best use of properties of the basic functions for spectral element and some

techniques [9] , we can arrive at a diagonal mass matrix. Accordingly, we can achieve

high order accuracy in spatial discretization and the cost of computation is not increased.

For simplicity, in this paper, we discuss the problem only for the 1-D case. Take a plane

wave equation for example:










∂ε

∂t
= −c0

∂H

∂x

∂H

∂t
= −c0

∂ε

∂x

(33)

where c0 is the speed of light in vacuum.

Because we use the GLL spectral element to discretize equation in space, it yields a sepa-

rable system. Then in temporal discretization, we can choose 4th-order explicit symplectic

PRK method to deal with the resulting PDE. Its Butcher table is Table 2. We present

several numerical examples to show superiority of the PRK method. Combined with the
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Table 2: Table of Butcher for 4th-order symplectic PRK method

γ1

2
γ1

2
0 0 0

1
2

γ1

2
γ1+γ2

2
0 0

3γ1+2γ2

2
γ1

2
γ1+γ2

2
γ1+γ2

2
0

1 γ1

2
γ1

2
γ1+γ2

2
γ1

2
γ1

2
γ1

2
γ1

2
γ1

2

0 0 0 0 0

γ1 γ1 0 0 0

γ1 + γ2 γ1 γ2 0 0

1 γ1 γ2 γ1 0

γ1 γ2 γ1 0

spectral element method, we can gain more accurate numerical solutions but the compu-

tational cost dose not increase. And we compare it with a 4th-order non-symplectic RK

method [9], its non-dissipative property is more and more obvious with the time increas-

ing.
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Fig. 1. Errors of Electric Field at 2.125T (prt=1/64)
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