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Abstract

Gradient, divergence and Laplace-Beltrami operators over surfaces have played im-
portant roles in many fields related to geometry and analysis, such as differential ge-
ometry, computational geometry and geometry modeling etc. In this paper, several
pairs of new differential operators on 2-manifolds are introduced and some of their
properties are given. We establish several elegant relationships among the proposed
operators and apply them to the deriving of the complete-variation of a general third
order energy of surfaces. A vector-valued Euler-Lagrange equation as well as its weak
form formulation is obtained.
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1 Introduction

Gradient operator, divergence operator and Laplace-Beltrami operator(LBO) over surfaces
play important roles in many fields related to geometry and analysis, such as differential
geometry, Riemannian manifolds, nonlinear analysis, computational geometry and partial
differential equations (PDEs), etc. These differential operators are also widely used in sev-
eral other fields, such as physics, chemistry, biology, mechanism, shape modeling, image
processing and so on. For example, one important problem in these fields is to characterize
and trace the interface motion, such as grain growth and phase transition([16, 17]), melting
and combustion, solidification([9]), biomembrane-vesicle ([18]), surface modeling ([10, 23]),
image restoration and denoising ([19]) any and all. Such an interface motion problem is
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often described by a geometric partial differential equation in terms of various geometric
differential operators mentioned above.

New Differential Operators. During our study of the construction of higher order ge-
ometric partial differential equations, some new differential operators are required to be
introduced to solve more complicated variation problems. These new operators allow us
to formulate the derived geometric partial differential equations in a neat and concise way.
After these operators are introduced, their elementary properties are important for further
research. For example, these differential operators are geometry essential, that is, they do
not depend on the specific parametrization. Green formulae for these operators also exist.
In this paper, all these properties are established.

Energy Functional Minimization. The interface motion problem aforementioned can be
translated into such a problem that is to minimize a kind of given energy on the interface with
prescribed conditions. Usually this minimizing problem is highly nonlinear. One approach
to solve this problem is using the optimization technique. A lot of studies have been carried
out along this line (e.g., [8, 15]). Another approach is the gradient descent technique, that
is, to find a road, which is called flow, to reach the minimized energy. Both of these two
approaches have been extensively employed. It is difficult to say which one is superior to
the other. For optimization technique, it is well-known that to pursue a global optimized
result is not an easy task. For gradient descent technique, the first task is to calculate
the Euler-Lagrange equations by variation calculus, and then often the deduced parabolic
type differential equations must be solved. To obtain analytical solutions to these highly
nonlinear equations is difficult and becoming a daydream although much unfailing endeavor
has been on-going. Therefore, seeking numerical solutions becomes a feasible alternative
with the help of the modern computers and advanced computation methods, such as finite
element method, finite difference method and finite volume method etc. Even though, to
gain a global stationary solution is still challenging.

Higher Order Flows. As is well-known, mean curvature flow ([2, 16]) and surface diffusion
flow ([14]) are the L2 and H−1 gradient descent flows of area functional, respectively. Will-
more flow ([24]) minimizes the squared mean curvature functional. But second-order flows,
such as mean curvature flow and averaged mean curvature flow ([11]), can merely achieve
G0 continuity on the boundary. The fourth-order flows, for instance, the surface diffusion
flow and Willmore flow, can produce G1 continuous surfaces. However, in many application
areas, such as the the design of streamlined surfaces of aircraft, ships and cars ([28]), higher
order continuity is prerequisite. In this paper, we minimize a higher order geometric energy,
that is the general curvature energy functional proposed in [13]

F1(M) =

∫

M
‖∇f(H, K)‖2dA, (1.1)

where f is assumed to be a C4 function depending on two variables and the other nota-
tions are referred to Section 2. A special case of (1.1), the mean-curvature-variation energy
functional

F2(M) =

∫

M
‖∇H‖2dA, (1.2)
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has been studied in [27], where the normal-variation for functional (1.2) is carried out and
corresponding curvature flow is termed as minimal mean-curvature-variation flow. The appli-
cations in surface modeling and designing show that this flow leads to very desirable results.
[13] also takes the normal-variation into account for functional (1.1) and some applications
in surface modeling were carried out. The numerical solutions to these geometric PDEs are
based on a biquadratic fitting approach proposed in [25]. For the convenience of using finite
element method to solve the PDEs, we consider the complete-variation for these functionals
in this paper. Complete-variation has also been used in [26] for a lower order geometric
energy functional.

Main Contributions. The contributions of this paper is summarized as follows. Several
new differential operators are introduced and their elementary properties are given. Some
theoretical results on these operators are developed. Complete-variation for the third order
geometric energy functional (1.1) is considered. A vector-valued Euler-Lagrange equation as
well as its weak form formulation is obtained.

The rest of this paper is organized as follows. In Section 2, some used notations and pre-
liminaries are introduced, including several differential operators and their properties. The
vector-valued Euler-Lagrange equation from complete-variation with respect to functional
(1.1) is derived in Section 3. For the numerical solving of the obtained PDEs by the finite
element method, a weak form formulation for the Euler-Lagrange equation is presented as
well.

2 Notations and Preliminaries

In this section, we introduce some notations and several differential operators defined on
surfaces used throughout this paper. Their elementary properties and Green’s formulae are
also provided.

Let M be a regular parametric surface represented by x(u, v) ∈ R3, (u, v) ∈ Ω ⊂ R2,
whose unit normal vector is n = xu×xv

‖xu×xv‖ , where the subscript of x denotes the partial

derivative and ‖x‖ := 〈x,x〉 1
2 := (xTx)

1
2 is the usual Euclidean norm. To simplify notation

we sometimes write w = (u, v) and u1 = u, u2 = v. Superscript T stands for the transpose
operation. Throughout the paper, we use 〈·, ·〉 to denote Euclidean inner product, [ ] to
denote matrix. All the column vectors are written in bold faced characters. Sometimes
to emphasize matrices, bold faced characters are employed too. We assume at least x ∈
C6(Ω,R3). The coefficients of the first fundamental form I, the second fundamental form II,
and the third fundamental form III are

gαβ = 〈xuα ,xuβ〉, bαβ = 〈n,xuαuβ〉 = −〈nuα ,xuβ〉, lαβ = 〈nuα ,nuβ〉, α, β = 1, 2.

For later use, we introduce gαβδ = 〈xuα ,xuβuδ〉, α, β, δ = 1, 2, and

[ gαβ ] = [ gαβ ]−1, g = det[ gαβ ], b = det[ bαβ ].

To define the mean curvature and Gaussian curvature, let us first introduce the concept of
shape operator or Weingarten map. The shape operator of surface M is a self-adjoint linear
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map on the tangent space TxM := span{xu,xv} defined by

W : TxM→ TxM,

such that

W(xu) = −nu, W(xv) = −nv.

We can represent this linear map by a matrix S = [ bαβ ][ gαβ ]. In particular,

[nu, nv ] = −[xu, xv ]ST (2.1)

is valid. The two eigenvalues k1, k2 of S are principal curvatures of M and their correspond-
ing eigenvectors e1, e2 are principal directions. The average and product of k1 and k2 are
mean curvature and Gaussian curvature, respectively. That is

H =
k1 + k2

2
=

tr(S)

2
, K = k1k2 = det(S).

Let H = Hn be the mean curvature normal and K = Kn be the Gaussian curvature normal.
It follows from (2.1) that [ lαβ ] = [ bαβ ] [ gαβ ] [ bαβ ]. Hence the coefficients of the third

fundamental form could be represented by the coefficients of the first and second fundamental
forms.

2.1 Differential Operators Definitions

In this subsection, some used differential operators defined on surface M will be introduced.

Tangent gradient operator. Let f ∈ C1(M). Then the tangent gradient operator ∇
acting on f is given by (see [5], page 102)

∇f = [xu, xv ] [ gαβ ] (fu, fv)
T ∈ R3. (2.2)

From (2.2), we can derive that

〈∇h,∇f〉 = (hu, hv) [ gαβ ] (fu, fv)
T (2.3)

=
1

g

(
(g22hu − g12hv)fu + (g11hv − g12hu)fv

)
, f, h ∈ C1(M).

Second tangent operator. Let f ∈ C1(M). Then the second tangent operator ♦ acting
on f is given by

♦f = [xu, xv ] [ hαβ ] (fu, fv)
T ∈ R3, (2.4)

where

[ hαβ ] :=
1

g

[
b22 −b12

−b12 b11

]
.
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From (2.2) and (2.4), we can derive that

〈∇h,♦f〉 = (hu, hv) [ hαβ ] (fu, fv)
T (2.5)

=
1

g

(
(b22hu − b12hv)fu + (b11hv − b12hu)fv

)

= 〈♦h,∇f〉, f, h ∈ C1(M).

This operator always involves the second order derivatives of surfaces considered.

Third tangent operator. Let f ∈ C1(M). Then the third tangent operator ® acting on
f is given by

®f = [xu, xv ] [ gαβ ] S (fu, fv)
T ∈ R3,

which can also be written as

®f = −[nu, nv ] [ gαβ ] (fu, fv)
T = −1

g
(g22funu + g11fvnv − g12funv − g12fvnu),

where the first equality is valid owing to (2.1) and the equality

ST [ gαβ ] = [ gαβ ] S.

Analogously, this operator needs the second order derivatives information of surfaces.

Definition 2.1 (Geometry intrinsic) If a quality on surface is determined by the first
fundamental form of the surface, then the quality is called geometry intrinsic.

Definition 2.2 (Geometry essential) If a quality on surface is independent of specific
parametrization of surface, we call this quality geometry essential.

Although the operators introduced above are defined by the local parametrization of
surfaces, they do not depend on the specific choice of parameters. So they are geometry
essential. In more detail, we have the following lemma.

Lemma 2.1 Let x = x(u, v) and x = x(ū, v̄) be two different parametric representations

of surface M. Provided that the determinant of J :=

[
∂u
∂ū

∂v
∂ū

∂u
∂v̄

∂v
∂v̄

]
is positive, then for all

f ∈ C1(M),

∇f = ∇̄f, (2.6)

♦f = ♦̄f, (2.7)

®f = ®̄f, (2.8)

where ∇, ♦, ® and ∇̄, ♦̄, ®̄ are two groups of operators on M under distinct parameters
choices.
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Proof: We only prove equation (2.7). Similar proofs can be performed for (2.6) and (2.8).
Assume that the transform of parameters is

σ : (ū, v̄) ∈ Ω̄ → (u, v) ∈ Ω.

Then the transformation of basis of the tangent space is

[xū, xv̄ ]T = J [xu, xv ]T .

For det(J) > 0, n = n̄ holds. Therefore the transformations between the coefficients of first
and second fundamental forms are

[ ḡαβ ] = J [ gαβ ] JT , [ b̄αβ ] = J [ bαβ ] JT .

Hence

♦̄f = [xū, xv̄ ] [ h̄αβ ] (fū, fv̄)
T

= [xu, xv ] JT J−T [ hαβ ]J−1J (fu, fv)
T = ♦f.

Tangential divergence operator. Let v be a C1 smooth vector field on M. Then the
tangential divergence of v is defined by

div(v) =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ gαβ ] [xu, xv ]Tv

]
.

Noticing that if v is the normal vector field of M, div(v) = 0, therefore, we refer to this
operator as tangential divergence operator(see Remark 2.3).

Laplace-Beltrami operator(LBO). Let f ∈ C2(M). Then ∇f is a smooth vector field
on M. The Laplace-Beltrami ∆ applying to f is defined by

∆f = div(∇f).

From the definitions of ∇ and div, it is easy to derive that

∆f =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ gαβ ] (fu, fv)

T
]

(2.9)

= g∆
u fu + g∆

v fv + g∆
uufuu + g∆

uvfuv + g∆
vvfvv,

=
1

g
(g22f11 + g11f22 − 2g12f12)

= [ gαβ ]:[ fαβ ], (2.10)

where

g4u =−(
g11(g22g122−g12g222)+2g12(g12g212 − g22g112)+g22(g22g111−g12g211)

)
/g2,

g4v =−(
g11(g11g222−g12g122)+2g12(g12g112 − g11g212)+g22(g11g211−g12g111)

)
/g2,

g4uu = g22/g, g4uv = −2g12/g, g4vv = g11/g,

and

fαβ = fuαuβ − (∇f)Txuαuβ , α, β = 1, 2,
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are the second covariant derivatives, and the notation A:B stands for the trace of AT B.
One can easily see that ∆ is a second order differential operator with respect to surfaces
considered and functions domained on surfaces.

Giaquinta-Hildebrandt operator(GHO). Let f ∈ C2(M). Then ♦f is a smooth vector
field on M. The Giaquinta-Hildebrandt operator ¤ applying to f is newly defined by

¤f = div(♦f).

From the definitions of ♦ and div, it is easy to derive that

¤f =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ hαβ ] (fu, fv)

T
]

(2.11)

= g¤
u fu + g¤

v fv + g¤
uufuu + g¤

uvfuv + g¤
vvfvv

=
1

g
(b22f11 + b11f22 − 2b12f12) (2.12)

= [ hαβ ]:[ fαβ ], (2.13)

where

g¤
u =−(

b11(g22g122−g12g222)+2b12(g12g212 − g22g112)+b22(g22g111−g12g211)
)
/g2,

g¤
v =−(

b11(g11g222−g12g122)+2b12(g12g112 − g11g212)+b22(g11g211−g12g111)
)
/g2,

g¤
uu = b22/g, g¤

uv = −2b12/g, g¤
vv = b11/g.

To the best of the authors’ knowledge, differential operator ¤ is introduced by Giaquinta
and Hildebrandt (see [7], p. 84), we therefore call it Giaquinta-Hildebrandt operator (GHO).
Since bij involves the second order derivatives of the surfaces considered, the first equality
of equation (2.11) implies that ¤ involves the third order derivatives at first glance, but the
second equality tells us that it does not depend on the third order derivatives of surfaces.
Therefore this operator is of second order with respect to surfaces and functions domained
on them.

£ operator. Let f ∈ C2(M). Then ®f is a smooth vector field on M. The £ operator
applying to f is defined by

£f = div(®f).

Form the definitions of ® and div, we can derive that

£f =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ gαβ ] S (fu, fv)

T
]

=
[
[ gαβ ] S

]
:[ fαβ ] + 2〈∇f,∇H〉. (2.14)

Obviously, this operator is of second order with respect to f . But it is of third order with
respect to the surface. Since ®f = 2H∇f − ♦f (see Lemma 2.6), we have

£f = 2H∆f −¤f + 2〈∇f,∇H〉.

Then (2.14) is obtained using the relations (2.33), (2.10) and (2.13).
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Remark 2.1 We have presented three pairs of differential operators. That is

1. Pair one (∇, ∆): tangential gradient operator and LB operator.

2. Pair two (♦, ¤): second tangent operator and GH opertor.

3. Pair three (®, £): third tangent operator and £ operator.

The last two pairs of these differential operators are quite new. We have noticed that in [21]
these operators are also introduced to solving variation problems in biomembrane. There
they used symbols ∇, ∇̄, ∇̃ to represent ∇,®, ♦, respectively.

Remark 2.2 Since tangential divergence operator is geometric essential, we can prove that
these three pairs of operators are all geometry essential, as Lemma 2.1 has proved. But only
the first pair of operators ∇ and ∆ is geometry intrinsic. Both the second and the third
pairs of differential operators are not geometry intrinsic.

Remark 2.3 There is another definition of the divergence operator in literatures (e. g.
[1, 9]), that is, Div is defined by

Div(v) = tr[∇v].

Our tangential divergence operator div is not completely identical with Div. Specifically, if
v is a tangential vector field to M, div(v) coincides with Div(v). But if v is not on the
tangential direction, e. g., the normal vector field n, div(n) = 0 but Div(n) = −2H, which
can be found in subsection 2.4.

2.2 Properties of the Proposed Differential Operators

In the following, we will list or prove some basic formulae for these differential operators.

Lemma 2.2 ([3], pp. 139–142) For any functions f, h ∈ C2(M), the following equalities
hold

∇(fh) = h∇f + f∇h,

∆(af + bh) = a∆f + b∆h, (∀ a, b ∈ R),

div(f ∇h) = f∆h + 〈∇f,∇h〉,
∆(fh) = f∆h + 2〈∇f,∇h〉+ h∆f.

For the operator pair (♦, ¤), we similarly have the following newly established

Lemma 2.3 For any functions f, h ∈ C2(M), the following equalities hold

♦(fh) = h♦f + f♦h, (2.15)

¤(af + bh) = a ¤f + b ¤h, (∀ a, b ∈ R) (2.16)

div(f ♦h) = f ¤h + 〈∇f, ♦h〉
= f ¤h + 〈∇h,♦f〉, (2.17)

¤(fh) = f ¤h + 〈∇f, ♦h〉+ 〈♦f,∇h〉+ h¤f

= f ¤h + 2〈∇f, ♦h〉+ h¤f

= f ¤h + 2〈∇h,♦f〉+ h¤f. (2.18)
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Proof: (2.15) and (2.16) are evident by the definitions of ♦ and ¤. Now we prove (2.17) as

div(f ♦h) =
1√
g

[
∂

∂u
,

∂

∂v

][
f

[ b22 −b12

−b12 b11

](hu

hv

)

√
g

]

= f ¤h +
1

g
(fu, fv)

[ b22 −b12

−b12 b11

](hu

hv

)

= f ¤h + 〈∇f, ♦h〉 = f ¤h + 〈∇h,♦f〉.
Taking (2.15) and (2.17) into account, we can prove (2.18) without any difficulty.

For a vector-valued function f = (f1, · · · , fk)
T ∈ C2(M)k, we define

∇f = [∇f1, · · · ,∇fk ] ∈ R3×k,

∆f = (∆f1, · · · , ∆fk)
T ∈ Rk,

♦f = [ ♦f1, · · · , ♦fk ] ∈ R3×k,

¤f = (¤f1, · · · , ¤fk)
T ∈ Rk,

®f = [®f1, · · · ,®fk ] ∈ R3×k,

£f = (£f1, · · · , £fk)
T ∈ Rk.

Hence, it is easy to see that

∇x = [xu, xv ] [ gαβ ] [xu, xv ]T , (2.19)

∇n = −[xu, xv ] [ gαβ ] S [xu, xv ]T , (2.20)

and both ∇x and ∇n are symmetric 3× 3 matrices.
For the compatibility between operators, we prescribe the divergence operator acting on

a matrix-valued function Q = [q1, · · · ,qk ] ∈ C1(M)3×k as

div[Q] = (div(q1), · · · , div(qk))
T ∈ Rk.

Hence

∆f = div[∇f ], (2.21)

¤f = div[ ♦f ], (2.22)

still hold.

Lemma 2.4 For any scalar function f ∈ C2(M) and vector-valued functions f ,h ∈ C2(M)3,
we have

∇(〈f ,h〉) = ∇f h +∇h f , (2.23)

div(∇f h) = 〈∆f ,h〉+∇f :∇h, (2.24)

∆(〈f ,h〉) = 〈f , ∆h〉+ 2∇f :∇h + 〈h, ∆f〉, (2.25)

div[f∇h] = f∆h + [∇h ]T∇f, (2.26)

∇(fh) = f∇h +∇fhT , (2.27)

∆(fh) = ∆fh + 2[∇h ]T∇f + f∆h (2.28)

div[f hT ] = [∇h ]T f + div(f)h. (2.29)
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Proof: Let f = (f1, f2, f3)
T and h = (h1, h2, h3)

T . (2.23) is obvious. For (2.24), we have

div
(
[∇f1,∇f2,∇f3](h1, h2, h3)

T
)

= div(∇f1 h1 +∇f2 h2 +∇f3 h3)

= h1∆f1 + 〈∇f1,∇h1〉+ h2∆f2 + 〈∇f2,∇h2〉+ h3∆f3 + 〈∇f3,∇h3〉
= 〈∆f ,h〉+∇f :∇h.

From (2.23) and (2.24), (2.25) is easily deduced. Let us prove (2.26) as

div[f∇h] = div[ f∇h1, f∇h2, f∇h3 ]

=




div(f∇h1)
div(f∇h2)
div(f∇h3)


 =




f∆h1 + 〈∇h1,∇f〉
f∆h2 + 〈∇h2,∇f〉
f∆h3 + 〈∇h3,∇f〉




= f∆h + [∇h ]T∇f.

For (2.27), we have

∇(fh) = [∇(fh1), ∇(fh2), ∇(fh3) ]

= [∇f h1 +∇h1 f, ∇f h2 +∇h2 f, ∇f h3 +∇h3 f ]

= f∇h +∇f hT .

From (2.26) and (2.27), (2.28) follows. To prove (2.29), we have

div[f hT ] = (div(h1f), div(h2f), div(h3f))
T

= (h1div(f) + 〈∇h1, f〉, h2div(f) + 〈∇h2, f〉, h3div(f) + 〈∇h3, f〉)T

= [∇h ]T f + div(f)h.

Similar to Lemma 2.4, we can verify the following newly established

Lemma 2.5 For any scalar function f ∈ C2(M) and vector-valued functions f ,h ∈ C2(M)3,
we have

♦(〈f ,h〉) = ♦f h + ♦h f ,

div(♦f h) = 〈¤f ,h〉+∇f :♦h (2.30)

= 〈¤f ,h〉+∇h:♦f ,

¤(〈f ,h〉) = 〈f , ¤h〉+ 2∇f :♦h + 〈h, ¤f〉
= 〈f , ¤h〉+ 2∇h:♦f + 〈h, ¤f〉,

div[f♦h] = f ¤h + [ ♦h ]T∇f

= f ¤h + [∇h ]T ♦f,

♦(fh) = f♦h + ♦fhT ,

¤(fh) = ¤f h + 2[ ♦h ]T∇f + f ¤h (2.31)

= ¤f h + 2[∇h ]T ♦f + f ¤h.

Remark 2.4 Because the ranges of the first three tangent operators are in the tangent
space, there should be some relations between them. That means, they may be not in-
dependent to each other. Interestingly enough, there is a nice relationship between them
characterized by the following
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Lemma 2.6 For any function f ∈ C1(M), the following equality

2H∇f −®f − ♦f = 0 (2.32)

is valid, where H is the mean curvature of surface M.

Proof: Proving equality (2.32) is equivalent to proving

2H[ gαβ ]− [ gαβ ]S − [ hαβ ] = 0, (2.33)

which is valid by a straightforward calculation.
From this Lemma, we can see that three pairs of differential operators can be reduced to

two pairs. That is, the third pair differential operators can be represented by the other two
pairs. Thus we did not write out the analogous lemmas for ® and £ as in Lemma 2.3 and
Lemma 2.5. In particular, we own

Lemma 2.7 For surface M, we have

∇n +®x = 0, (2.34)

♦n + K∇x = 0, (2.35)

2H∇x +∇n− ♦x = 0, (2.36)

2H∇n−®n− ♦n = 0. (2.37)

Proof: (2.34) can be proved by the definitions of operators ∇ and ®. We can prove (2.35)
by the definitions of ♦ and ∇ as well as (2.1). (2.36) is the outcome of (2.34) and Lemma
2.6. If we replace f in Lemma 2.6 with n, equality (2.37) is obvious.

Remark 2.5 Equation (2.33) is of fundamental importance because we can draw the well-
known relationship between the first, second and third fundamental forms, that is

III− 2HII + KI = 0. (2.38)

Proof: Multiplying equality (2.33) with matrix [ bαβ ] and [gαβ ] from the left and the right,
respectively, we have

2H[ bαβ ]−K[ gαβ ]− [ bαβ ] [ gαβ ] [ bαβ ] = 0, (2.39)

where the entities of [ bαβ ] [ gαβ ] [ bαβ ] are the coefficients of the third fundamental form.
Multiplying [ du, dv ] from the left and [ du, dv ]T from right sides of (2.39), we obtain the
famous (2.38). From this proof, we can regard equality (2.32) as a dual of relationship (2.38)
in some sense. We believe, this approach of proof is really new.

In what follows, we shall prove several important formulae with the help of these opera-
tors, which will be widely utilized in Section 3.

Theorem 2.1 Let M := {x(u, v) ∈ R3; (u, v) ∈ Ω ⊂ R2} be a regular parametric surface
with normal vector field n, and operators ∆, ¤, div,∇, ♦ defined as above. Then we have

〈∆x,n〉 = 2H, (2.40)

〈¤x,n〉 = 2K, (2.41)

〈∆n,n〉 = −(4H2 − 2K), (2.42)

〈¤n,n〉 = −2HK. (2.43)
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Proof: (2.40) is well-known, but we would like to reprove it quickly with the help of the
operators introduced above.

〈∆x,n〉 (2.24)
= div(∇xn)−∇x:∇n = −tr

[
[xu, xv ] [ gαβ ] [−S ] [xu, xv ]T

]
= tr[ S ] = 2H,

〈¤x,n〉 (2.30)
= −∇x:♦n = tr

[
[ hαβ ]S[ gαβ ]

]
= 2K,

〈∆n,n〉 (2.24)
= −∇n:∇n = −tr[ SS ] = −(k2

1 + k2
2) = −(4H2 − 2K),

〈¤n,n〉 (2.30)
= −∇n:♦n = −Ktr[ S ] = −2HK.

Hence (2.40)–(2.43) are true. Here we point out that (2.42) is the negative of total curvature
([20], p. 1011, [12]) and the deduction can also be found in ([4], p. 216).

From this theorem, we can derive a stronger conclusion.

Theorem 2.2 Given M,n and operators as in Theorem 2.1, we have

∆x = 2H, (2.44)

¤x = 2K, (2.45)

∆n = ¤x− 2∇H − 2H∆x = 2(K− 2HH−∇H), (2.46)

¤n = −∇K −K∆x = −∇K −H¤x = −∇K − 2KH. (2.47)

Proof: To prove (2.44), we need to verify that

〈∆x,xu〉 = 0, (2.48)

〈∆x,xv〉 = 0. (2.49)

Frankly speaking, this result is not trivial at all if we do not know (2.44) as a prerequisite.
From (2.24), we have

div(xu) = div(∇xxu) = 〈∆x,xu〉+∇x:∇xu.

We can calculate that

div(xu) =
1√
g

[
∂

∂u
,

∂

∂v

] [
1√
g

[ g22 −g12

−g12 g11

](g11

g12

)]

=
1√
g

∂(
√

g)

∂u
=

gu

2g
, (2.50)

∇x:∇xu = tr
[
[xu, xv ] [ gαβ ] [xuu, xuv ]T

]

= tr

[
[ gαβ ]

[〈xuu,xu〉 〈xuu,xv〉
〈xuv,xu〉 〈xuv,xv〉

]]

= tr

[
[ gαβ ]

[ Γ1
11g11 + Γ2

11g12 Γ1
11g12 + Γ2

11g22

Γ1
12g11 + Γ2

12g12 Γ1
12g12 + Γ2

12g22

]]

= Γ1
11 + Γ2

12 =
gu

2g
, (2.51)

where

Γγ
αβ =

1

2
gγξ

{∂gαξ

∂uβ
+

∂gβξ

∂uα
− ∂gαβ

∂uξ

}
, (α, β, γ, ξ = 1, 2)
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are Christoffel symbols. Thus (2.48) is proved and similar proof for (2.49) give rise to (2.44)
with the help of (2.40).

Similarly, proving (2.45) is equivalent to proving

〈¤x,xu〉 = 0, (2.52)

〈¤x,xv〉 = 0. (2.53)

Using (2.30), (2.52) is the same as

div(♦xxu) = ∇x:♦xu. (2.54)

We can derive that

div(♦xxu)

= div
(
[xu, xv ] [hαβ ] [xu, xv ]Txu

)

=
1√
g

[
∂

∂u
,

∂

∂v

][
1√
g

[ b22 −b12

−b12 b11

](g11

g12

)]

=
1

g

(
∂

∂u
(g11b22 − g12b12) +

∂

∂v
(g12b11 − g11b12)

)

−1

g
( g11b22 − g12b12, g12b11 − g11b12 )

( 1√
g

∂
√

g

∂u

1√
g

∂
√

g

∂v

)

(a)
=

1

g
(g11ub22 + g11b22u − g12ub12 − g12b12u − g11vb12 − g11b12v + g12b11v + b11g12v)

−1

g
( g11b22 − g12b12, g12b11 − g11b12 )

(Γ1
11 + Γ2

12

Γ2
12 + Γ2

22

)

(b)
=

1

g

(
(g11b22 − g12b12)Γ

1
11 + (g12b22 − g22b12)Γ

2
11

+(g12b11 − g11b12)Γ
1
12 + (g22b11 − g12b12)Γ

2
22

)
,

where (a) is valid because of (2.50) and (2.51). (b) is valid because of the relationship
between Christoffel symbols with the first fundamental form ([5], p. 232)

{
Γ1

11g11 + Γ2
11g12 = 〈xuu,xu〉 = 1

2
g11u,

Γ1
11g12 + Γ2

11g22 = 〈xuu,xv〉 = g12u − 1
2
g11v,{

Γ1
12g11 + Γ2

12g12 = 〈xuv,xu〉 = 1
2
g11v,

Γ1
12g12 + Γ2

12g22 = 〈xuv,xv〉 = 1
2
g22u,{

Γ1
22g11 + Γ2

22g12 = 〈xvv,xu〉 = g12v − 1
2
g22u,

Γ1
22g12 + Γ2

22g22 = 〈xvv,xv〉 = 1
2
g22v,

and Mainardi-Codazzi equations ([5], p. 235)

b11v − b12u = b11Γ
1
12 + b12(Γ

2
12 − Γ1

11)− b22Γ
2
11,

b12v − b22u = b11Γ
1
22 + b12(Γ

2
22 − Γ1

12)− b22Γ
2
12.
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On the other hand

∇x:♦xu = tr
[
[xu, xv ] [ gαβ ] [xu, xv ]T [xu, xv ] [hαβ ] [xuu, xuv ]T

]

= tr

[
[hαβ ]

[ Γ1
11g11 + Γ2

11g12 Γ1
11g12 + Γ2

11g22

Γ1
12g11 + Γ2

12g12 Γ1
12g12 + Γ2

12g22

]]

=
1

g

(
(g11b22 − g12b12)Γ

1
11 + (g12b22 − g22b12)Γ

2
11

+(g12b11 − g11b12)Γ
1
12 + (g22b11 − g12b12)Γ

2
12

)
.

Thus (2.54) holds and similar proof can be carried out for (2.53). Therefore we complete the
proof of (2.45) with the help of (2.41).

To prove (2.46), noticing (2.36), we have that

∇n = ♦x− 2H∇x. (2.55)

Therefore

∆n
(2.21)
= div(∇n) = div(♦x− 2H∇x)

(a)
= ¤x− 2∇H − 2H∆x,

where we have owned the validity of (a) to (2.26), (2.22) and the symmetry (2.19) of ∇x.
Thus the first equality of (2.46) holds and (2.44) and (2.45) guarantee the validity of the
second equality. Similarly, noticing (2.35), we have

♦n = −K∇x.

Therefore

¤n
(2.22)
= div(♦n)

(2.31)
= −∇K −K∆x.

Taking (2.44) and (2.45) into consideration, we can show the last two equalities of (2.47) are
correct. Thus we complete the proof.

Theorem 2.3 For operator £ on parametric surface M, we have

£x = −∆n,

£n = 2∇n∇H + 2H∆n−¤n.

Proof: From (2.34), (2.37), (2.26) and (2.20), we can verify the theorem easily.

Remark 2.6 On the results we obtained in Theorem 2.1–2.3, we would like to point out
that except that equalities (2.40), (2.42) and (2.44) are well-known, the other equalities, to
the best of the authors’ knowledge, are relatively new.
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2.3 Divergence Theorems and Green’s Formulae

In this subsection, Green’s formulae for GHO will be given. First let us introduce two
lemmas.

Lemma 2.8 (Riemannian divergence theorem I) ([3], p. 142) If v is a C1 vector field
on M with compact support, then

∫

M
div(v)dA = 0.

Lemma 2.9 (Riemannian divergence theorem II) ([3], p. 143) Let M be oriented, U
a sub-region of M with smooth boundary ∂U , ν the outward unit vector field along ∂U which
is pointwise orthogonal to ∂U . Then for any C1 vector filed v on M we have

∫

U
div(v)dA =

∫

∂U
〈v, ν〉dσ.

From these two divergence theorems, we can state the following two Green’s formulae.

Theorem 2.4 (Green’s formula I) Let v be a smooth three dimensional vector field on
M and f ∈ C1(M) with compact support, then

∫

M

(〈v,∇f〉+ f div(v)
)
dA = 0. (2.56)

Proof: Taking v as fv, then using Riemannian divergence theorem I, we can prove the
theorem with no difficulty.

Theorem 2.5 (Green’s formula II) Let M be oriented, U a sub-region of M with smooth
boundary ∂U , ν the outward unit vector field along ∂U which is pointwise orthogonal to ∂U .
Then for any C1 vector filed v on M we have

∫

U

(〈v,∇f〉+ f div(v)
)
dA =

∫

∂U
f〈v, ν〉dσ.

Proof: Taking v as fv, then using Riemannian divergence theorem II, we can verify this
theorem.

From these two Green’s formulae, we can state the following Green’s formulae for LB
operator.

Theorem 2.6 (Green’s formula I for LB operator) ([3], p. 142) Let f ∈ C2(M), h ∈
C1(M), with at least one of them compactly supported. Then

∫

M

(
h∆f + 〈∇f,∇h〉)dA = 0.

If both f and h are C2, then
∫

M

(
h ∆f − f ∆h

)
dA = 0. (2.57)
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Theorem 2.7 (Green’s formula II for LB operator) ([3], p. 144) Given M,U and ν
as in the Lemma 2.9, and given f ∈ C2(M), h ∈ C1(M). Then

∫

U

(
h ∆f + 〈∇f,∇h〉)dA =

∫

∂U
h〈ν,∇f〉dσ.

If both f and h are C2, then
∫

U

(
h ∆f − f ∆h

)
dA =

∫

∂U

(
h〈ν,∇f〉 − f〈ν,∇h〉)dσ.

For GH operator, we can prove the following two new conclusions.

Theorem 2.8 (Green’s formula I for GH operator) Let f ∈ C2(M), h ∈ C1(M),
with at least one of them compactly supported. Then

∫

M

(
h¤f + 〈∇f, ♦h〉)dA = 0.

If both f and h are C2, then
∫

M

(
h¤f − f ¤h

)
dA = 0. (2.58)

Proof: Let v = h♦f . Then by Green’s formula I, we can confirm this theorem by noticing
(2.17).

There is a note here, in [22], similar results with (2.58) are obtained.

Theorem 2.9 (Green’s formula II for GH operator) GivenM,U and ν as in the Lemma
2.9, and given f ∈ C2(M), h ∈ C1(M). Then

∫

U

(
h¤f + 〈∇f, ♦h〉)dA =

∫

∂U
h〈ν, ♦f〉dσ.

If both f and h are C2, then
∫

U

(
h¤f − f ¤h

)
dA =

∫

∂U

(
h〈ν, ♦f〉 − f〈ν, ♦h〉)dσ.

Proof: Let v = h♦f . Then by Green’s formula II and (2.17), we obtain the first equality.
And the second equality follows from the first one and Green’s formula II again.

2.4 Eigeninformation

In this subsection, we list some basic eigeninformation for these three first-order differential
operators acting on x and n. Obviously, the 3× 3 matrices obtained are all symmetric.

1. Matrix ∇x is a projection operator onto tangent space to surface M, then we have
(∇x)T = (∇x)2 = ∇x. The three eigenpairs are (1, e1), (1, e2), (0,n), respectively. So
we have tr(∇x) = 2, as we used before.
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2. Matrix∇n has three eigenpairs as (−k1, e1), (−k2, e2), (0,n), respectively. Thus tr(∇n)
= −(k1 + k2) = −2H, the familiar result.

3. Matrix ♦x has three eigenpairs as (k2, e1), (k1, e2), (0,n) by taking (2.36) into consid-
eration. Therefore tr(♦x) = k1 + k2 = 2H.

4. Matrix ♦n has three eigenpairs as (−K, e1), (−K, e2), (0,n), separately, by taking
(2.35) into account. Therefore tr(♦n) = −2K.

5. Matrix ®x has three eigenpairs as (k1, e1), (k2, e2), (0,n) by taking (2.34) into consid-
eration. Therefore tr(®x) = k1 + k2 = 2H.

6. Matrix ®n has three eigenpairs as (−k2
1, e1), (−k2

2, e2), (0,n), separately, by taking
(2.37) into account. Therefore tr(®n) = −(k2

1 + k2
2).

3 Euler-Lagrange Equation Derivation

In this section, we derive the Euler-Lagrange equation for the functional (1.1) from complete-
variation. We summarize the obtained result as the following theorem

Theorem 3.1 Let f ∈ C4(R × R). Then the Euler-Lagrange equation of the geometric
energy functional (1.1) for the complete-variation is

∆(fH∆fn) + 22(fK∆fn)− div[‖∇f‖2∇x]− 2div[fH∆f∇n− 2KfK∆f∇x]

+2div[ R∇f(R∇f)T ] = 0 ∈ R3. (3.1)

Proof: First we can rewrite (1.1) as

F1(M) =

∫∫

Ω

‖∇f(H, K)‖2√gdudv,

Consider a family of variation x(w, ε) of M defined by

x(w, ε) = x(w) + εΦ(w), w ∈ Ω, |ε| ¿ 1,

where Φ ∈ C∞
c (Ω)3.

Suppose M is the extremal of functional (1.1). Then we obtain

0 =
d

dε
F1(M(·, ε))

∣∣
ε=0

=: δF1(M, Φ),

where

δF1(M, Φ) =

∫∫

Ω

(
δ(‖∇f(H, K)‖2) + ‖∇f‖2(δ

√
g)/
√

g
)√

gdudv. (3.2)

Noticing that

xuα = xuα + εΦuα ,

xuαuβ = xuαuβ + εΦuαuβ ,
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then we first obtain

δ(g11) = 2〈Φu,xu〉, (3.3)

δ(g12) = 〈Φu,xv〉+ 〈Φv,xu〉, (3.4)

δ(g22) = 2〈Φv,xv〉, (3.5)

δ(g) = 2g22〈Φu,xu〉+ 2g11〈Φv,xv〉 − 2g12(〈Φu,xv〉+ 〈Φv,xu〉)
= 2g∇x:∇Φ, (3.6)

(δ
√

g)/
√

g = ∇x:∇Φ.

Let us compute the variation of normal vector n as follows. First, δ(n) is a tangent vector
to surface by noticing that

δ(〈n,n〉) = 2〈δ(n),n〉 = 0.

Then from

δ(〈n,xu〉) = 〈δ(n),xu〉+ 〈n, δ(xu)〉 = 0,

δ(〈n,xv〉) = 〈δ(n),xv〉+ 〈n, δ(xv)〉 = 0,

we can draw

δ(n) = −[xu, xv ] [ gαβ ]

(〈n, Φu〉
〈n, Φv〉

)
= −∇Φ n.

Thus

δ(b11) = 〈δ(n),xuu〉+ 〈n, δ(xuu)〉 = −
〈
[xu, xv ] [ gαβ ]

(〈n, Φu〉
〈n, Φv〉

)
,xuu

〉
+ 〈n, Φuu〉

= −(〈n, Φu〉, 〈n, Φv〉) [ gαβ ]

(〈xu,xuu〉
〈xv,xuu〉

)
+ 〈n, Φuu〉

= −(〈n, Φu〉, 〈n, Φv〉) [ gαβ ]

(
Γ1

11g11 + Γ2
11g12

Γ1
11g12 + Γ2

11g22

)
+ 〈n, Φuu〉

= 〈n,−Γ1
11Φu − Γ2

11Φv + Φuu〉 =: 〈n, Φ11〉,
δ(b12) = 〈n, Φ12〉,
δ(b22) = 〈n, Φ22〉,

where Φαβ are the second covariant derivatives. Therefore

δ(H) =
1

2
(b11g22 + b22g11 − 2b12g12)

−δ(g)

g2
+

1

2g

(〈n, Φ11g22 + Φ22g11 − 2Φ12g12〉
+2b11〈xv, Φv〉+ 2b22〈xu, Φu〉 − 2b12(〈xv, Φu〉+ 〈xu, Φv〉)

)

= −2H∇x:∇Φ +
1

2
〈n, ∆Φ〉+∇x:♦Φ

(2.32)
= −∇x:®Φ +

1

2
〈n, ∆Φ〉

= −tr
[
[xu, xv ]ST [ gαβ ] [ Φu, Φv ]T

]
+

1

2
〈n, ∆Φ〉

(2.1)
=

(2.3)
∇n:∇Φ +

1

2
〈n, ∆Φ〉, (3.7)
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and

δ(K) = δ(
1

g
)(b11b22 − b2

12) +
1

g
δ(b11b22 − b2

12)

(3.6)
= −2K∇x:∇Φ +

1

g
〈n, Φ11b22 + Φ22b11 − 2Φ12b12〉

(2.12)
= −2K∇x:∇Φ + 〈n, 2Φ〉. (3.8)

We are now in the position to compute the variation of ‖∇f(H, K)‖2.

δ(‖∇f(H, K)‖2)

= δ(
1

g
)(fu, fv)

[ g22 −g12

−g12 g11

](fu

fv

)
+ 2δ(fu, fv)[ g

αβ ]
(fu

fv

)

+
1

g
(fu, fv)δ

[ g22 −g12

−g12 g11

](fu

fv

)
(3.9)

= −2∇x:∇Φ‖∇f‖2 + 2
( ∂

∂u
(fHδH + fKδK),

∂

∂v
(fHδH + fKδK)

)
[ gαβ ]

(fu

fv

)

+
1

g
(fu, fv)

[ 2〈xv, Φv〉 −〈xv, Φu〉 − 〈xu, Φv〉
−〈xv, Φu〉 − 〈xu, Φv〉 2〈xu, Φu〉

](fu

fv

)
(3.10)

=
2

g
(g22fu − g12fv)

∂

∂u

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉) + fK(−2K∇x:∇Φ + 〈n, 2Φ〉))

+
2

g
(−g12fu + g11fv)

∂

∂v

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉) + fK(−2K∇x:∇Φ + 〈n, 2Φ〉))

+
2

g
(fv, −fu) [xu, xv ]T∇Φ [xu, xv ] (fv, −fu)

T − 2∇x:∇Φ‖∇f‖2. (3.11)

In the derivation from (3.9) to (3.10), equalities (2.3), (3.3)–(3.6) and the commutative
property of δ with ∂

∂u
, ∂

∂v
are used. From (3.10) to (3.11), the equalities (3.7) and (3.8) are

used. One thing that should be emphasized here is that fu = fHHu + fKKu and similar
equation for fv.

Hence, we have

δF1(M, Φ)

=

∫∫

Ω

(
− 2∇x:∇Φ‖∇f‖2 +

2

g
(g22fu − g12fv)

∂

∂u

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉)

+fK(〈n, 2Φ〉 − 2K∇x:∇Φ)
)

+
2

g
(−g12fu + g11fv)

∂

∂v

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉) + fK(−2K∇x:∇Φ + 〈n, 2Φ〉))

+
2

g
(fv, −fu) [xu, xv ]T∇Φ [xu, xv ] (fv, −fu)T +∇x:∇Φ‖∇f‖2

)√
gdudv (3.12)

=

∫∫

Ω

(
− ‖∇f(H, K)‖2∇x:∇Φ− 2∆f

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉)

+fK(−2K∇x:∇Φ + 〈n, 2Φ〉))

+
2

g
∇Φ :

[
[xu, xv ] (fv, −fu)

T (fv, −fu) [xu, xv ]T
])√

gdudv (3.13)
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=

∫∫

Ω

(
− ‖∇f(H, K)‖2∇x:∇Φ− 2∆f

(
fH(∇n:∇Φ +

1

2
〈n, ∆Φ〉)

+fK(−2K∇x:∇Φ + 〈n, 2Φ〉)) + 2∇Φ : [ R∇f(R∇f)T ]
)√

gdudv (3.14)

=

∫∫

Ω

〈
div[‖∇f‖2∇x] + 2div[fH∆f∇n− 2KfK∆f∇x]−∆(fH∆fn)− 22(fK∆fn)

−2div[ R∇f(R∇f)T ], Φ
〉√

gdudv. (3.15)

In the derivation from (3.12) to (3.13), Green’s formula (2.56), (2.9), the compact support
property of Φ and the following well-known equality

tr(AB) = tr(BA), ∀A ∈ Rm×n, ∀B ∈ Rn×m

are used. In deriving (3.14) from (3.13), we have utilized a newly defined rotation matrix R
on tangent plane

R =
1√
g
[−xv, xu ] [xu, xv ]T .

Green’s formula I (2.56), Green’s formulae I for LB operator (2.57) and GH operator (2.58)
are used to derive (3.15) from (3.14) as well as the compact support property of Φ. Since
(3.15) vanishes for any Φ ∈ C∞

c (Ω)3, Euler-Lagrange equation (3.1) for functional (1.1) is
therefore obtained. We thus complete the proof.

Corollary 3.1 Taking scalar product of (3.1) with normal vector n yields
〈
∆(fH∆fn) + 22(fK∆fn)− div[‖∇f‖2∇x]− 2div[fH∆f∇n− 2KfK∆f∇x]

+2div[ R∇f(R∇f)T ],n
〉

= ∆(fH∆f) + 22(fK∆f) + 2(2H2 −K)fH∆f + 4HKfK∆f − 2H‖∇f‖2 + 2〈∇f, ♦f〉
= 0. (3.16)

The corollary coincides with the result obtained in [13]. In deriving the corollary, we have
utilized Lemma 2.4 and

〈div
(
[ R∇f(R∇f)T ]

)
,n〉 (2.29)

= 〈[∇(R∇f) ]T R∇f,n〉+ 〈div(R∇f)R∇f,n〉
(a)
= [∇(R∇f)n ]T R∇f

(2.23)
= −(R∇f)T∇nR∇f

(2.1)
= [ fu, fv ] [ hαβ ] [ fu, fv ]

(2.5)
= 〈∇f, ♦f〉, (3.17)

where (a) is valid because the vector R∇f is in the tangent plane.
In fact, we have a stronger conclusion that is the following theorem.
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Theorem 3.2

∆(fH∆fn) + 22(fK∆fn)− div[‖∇f‖2∇x]− 2div[fH∆f∇n− 2KfK∆f∇x]

+2div[ R∇f(R∇f)T ]

= n
(
∆(fH∆f) + 2¤(fK∆f) + 4KHfK∆f + 4H2fH∆f − 2KfH∆f − 2H‖∇f‖2

+2〈∇f, ♦f〉). (3.18)

Proof: We first have the following equalities.

∆(fH∆fn)
(2.28)
= ∆(fH∆f)n + 2[∇n ]T∇(fH∆f) + (fH∆f)∆n,

¤(fK∆fn)
(2.31)
=

(2.35)
¤(fK∆f)n− 2K∇(fK∆f) + fK∆f¤n

(2.47)
= ¤(fK∆f)n− 2K∇(fK∆f) + fK∆f(−∇K − 2KHn),

div[‖∇f‖2∇x]
(2.26)
= 2‖∇f‖2Hn +∇(‖∇f‖2),

div[fH∆f∇n]
(2.26)
= ∇n∇(fH∆f) + fH∆f∆n,

div[KfK∆f∇x]
(2.26)
= ∇(KfK∆f) + KfK∆f(2Hn),

div[ R∇f(R∇f)T ]
(2.29)
= [∇(R∇f) ]T R∇f + div(R∇f)R∇f

= [∇(R∇f) ]T R∇f,

where the last equality is valid because of div(R∇f) = 0. After substituting these equalities
into the left hand side of (3.18), we obtain

∆(fH∆fn) + 22(fK∆fn)− div[‖∇f‖2∇x]− 2div[fH∆f∇n− 2KfK∆f∇x]

+2div[ R∇f(R∇f)T ]

= ∆(fH∆f)n− (fH∆f)∆n + 2¤(fK∆f)n− 4K∇(fK∆f) + 2fK∆f(−∇K − 2KHn)

−2‖∇f‖2Hn−∇(‖∇f‖2) + 4∇(KfK∆f) + 8KfK∆fHn + 2[∇(R∇f) ]T R∇f

= ∆(fH∆f)n− 2(fH∆f)(Kn− 2H2n−∇H) + 2¤(fK∆f)n + 2fK∆f∇K

−2H‖∇f‖2n−∇(‖∇f‖2) + 4KHfK∆fn + 2[∇(R∇f) ]T R∇f

= n
(
∆(fH∆f) + 2¤(fK∆f) + 4KHfK∆f + 4H2fH∆f − 2KfH∆f − 2H‖∇f‖2

+2〈∇f, ♦f〉) + 2fH∆f∇H + 2fK∆f∇K −∇(‖∇f‖2) + 2[∇(R∇f) ]T R∇f

−2〈∇f, ♦f〉n
= n

(
∆(fH∆f) + 2¤(fK∆f) + 4KHfK∆f + 4H2fH∆f − 2KfH∆f − 2H‖∇f‖2

+2〈∇f, ♦f〉) + 2∆f∇f −∇(‖∇f‖2) + 2[∇(R∇f) ]T R∇f − 2〈∇f, ♦f〉n.

All left is to show that

2∆f∇f −∇(‖∇f‖2) + 2[∇(R∇f) ]T R∇f − 2〈∇f, ♦f〉n = 0. (3.19)

This equality can be verified by the following approach. Let LHS be the left hand side of
(3.19). We only need to prove that

〈LHS,n〉 = 0, (3.20)

〈LHS,xu〉 = 0, (3.21)

〈LHS,xv〉 = 0. (3.22)
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Equality (3.20) is obvious by taking (3.17) into consideration. To confirm equality (3.21) is
by now the unique task we should do, since (3.22) can be confirmed in a similar manner. In
view of the definitions of ∇, ∆ and rotation matrix R, we can prove the second equality by
a straightforward calculation. In more detail,

〈xu, ∆f∇f〉
= fu∆f

=
fu

g
(g22ufu − g12ufv + g22fuu − g12fuv − g12vfu + g11vfv − g12fuv + g11fvv)

−fugu

2g2
(g22fu − g12fv) +

fugv

2g2
(g11fv − g12fu), (3.23)

〈xu,∇(‖∇f‖2)〉
=

(1

g
(g22f

2
u − 2g12fufv + g11f

2
v )

)
u

=
1

g
(g22uf

2
u − 2g12ufufv + g11uf

2
v + 2g22fufuu − 2g12(fvfuu + fufuv) + 2g11fvfuv)

−gu

g2
(g22f

2
u − 2g12fufv + g11f

2
v ), (3.24)

〈
xu, [∇(R∇f)]T R∇f

〉

=
〈
xu,

1√
g

[∇(
1√
g
(fvxu − fuxv)

]T
(fvxu − fuxv)

〉

=
fv√
g

( 1√
g
(fvxu − fuxv)

)
u
− fu√

g

( 1√
g
(fvxu − fuxv)

)
v

=
1

g
(g11fvfuv − g12fvfuu +

g11u

2
f 2

v − g11vfufv − g11fufvv + g12fufuv + (g12v −
1

2
g22u)f

2
u)

− gu

2g2
(g11f

2
v − g12fufv) +

gv

2g2
(g11fufv − g12f

2
u). (3.25)

Substituting (3.23)–(3.25) into (3.21) gives the equality. Therefore we complete the proof of
the theorem.

Remark 3.1 In particular, if we take f(H, K) = H, then from (3.1), the Euler-Lagrange
vector equation for functional (1.2) is

∆(∆Hn)− div[‖∇H‖2∇x]− 2div[∆H∇n] + 2div[ R∇H(R∇H)T ] = 0. (3.26)

Furthermore, if we take scalar product of the (3.26) with normal vector n, (3.16) turns out
to be

∆2H + 2(2H2 −K)∆H − 2H‖∇H‖2 + 2〈∇H, ♦H〉 = 0,

which has a wonderful consistence with the result we obtained in [27].

For the sake of numerical solving of the geometric PDEs using the finite element method,
we propose the following corollary.
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Corollary 3.2 The weak form of (3.1) can be written as
∫

M

(
(4HfH∆f + 4KfK∆f − ‖∇f‖2)∇x∇φ− 2fH∆f∇x♦φ

+∇(fH∆fn)∇φ + 2∇(fK∆fn)♦φ + 2[ R∇f(R∇f)T ]∇φ
)
dA = 0, ∀φ ∈ C∞

c (Ω). (3.27)

Proof: Rewritten (3.14) with the help of (2.36) as
∫∫

Ω

(
− ‖∇f‖2∇x:∇Φ− 2fH∆f [ ♦x− 2H∇x ]:∇Φ− fH∆f〈n, ∆Φ〉

+4KfK∆f∇x:∇Φ− 2fK∆f〈n, ¤Φ〉+ 2
[
R∇f(R∇f)T

]
:∇Φ

)√
gdudv

=

∫∫

Ω

((
4HfH∆f + 4KfK∆f − ‖∇f‖2

)∇x:∇Φ− 2fH∆f♦x:∇Φ

+[∇(fH∆fn) ]:∇Φ + 2[∇(fK∆fn) ]:♦Φ + 2
[
R∇f(R∇f)T

]
:∇Φ

)√
gdudv, (3.28)

where the last equality is valid by virtue of Green’s formula I for LB operator (2.57) and
GH operator (2.58). If we take Φ = (φ, 0, 0)T , (0, φ, 0)T and (0, 0, φ)T , separately, with
φ ∈ C∞

c (Ω), then we can get three equations. After combining them together, we obtain
weak form (3.27).

Remark 3.2 For convenient numerical computation, we give an easily used form as follows,
that is project the last three terms of the left hand side of (3.1) to normal direction, yielding
the flow equation

∂x

∂t
= ∆(fH∆fn) + 22(fK∆fn)− ‖∇f‖2∆x + 2fH∆f(¤x− 2H∆x) + 4KfK∆f∆x

+2〈∇f, ♦f〉n.
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