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Abstract

The numerical integration of many geometric partial differential equations in-
volve discrete approximations of some differential geometric operators. In this
paper, we consider consistent discretized approximations of these operators based
on a quadratic fitting scheme. Asymptotic error analysis on the quadratic fitting
are conducted. The experiments show that the proposed approach is effective.
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1 Introduction

To solve geometric partial differential equations (PDE) using a divided-difference-like
method, discrete approximations of several differential operators (such as surface nor-
mal, mean curvature, Gaussian curvature and Laplace-Beltrami operators) are required
(see [18]). Many discrete schemes have been proposed for these differential operators
from different point of views (see [9], [10], [12], [11], [15] for references). Taubin [13]
discussed the discretization of the Laplacian and related approaches in the context of
generalized frequencies on meshes. Kobbelt [8] considered discrete approximations of
the Laplacian in the construction of fair interpolatory subdivision schemes. Asymptotic
error analysis for some of these schemes have been conducted under various conditions
(see [9], [10], [14], [15]). An elegant asymptotic estimation of Gaussian curvature by the
angular deficit has been given by Borrelli et al [2] under regular assumptions. Except
for the schemes based on the interpolation or fitting, non of these schemes converges
without any restriction on the regularity of the meshes considered. In [15], it has
been claimed that the mean curvature computed from a parametric quadratic fitting
surface converges. However, this fact has never been formally proved. In this paper,
several commonly used differential operators are approximated based on a parametric
quadratic fitting. Hence, the convergence problem of the quadratic fitting does need to
be further addressed.

∗Project support in part by NSFC grant 10371130 and National Key Basic Research Project of
China (2004CB318000).
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Main Contributions. PDEs are often solved using a divided-difference-like method,
where discretizations of several differential geometric operators are required. Previ-
ous work on the discrete approximations of these differential geometric operators are
based on several different theorems from differential geometry. Therefore, they are not
consistent in general, meaning they do not come from a single surface. We give a con-
sistent estimation of a set of differential geometric operators. Furthermore, we present
a convergence analysis of these approximations.

The rest of the paper is organized as follows: Section 2 introduces some basic mat-
terial on differential geometry. Section 3 gives the dicretization scheme for the involved
differential operators. Convergence analysis of these discrete differential operators are
conducted in section 4. Section 5 concludes the paper.

2 Geometric Differential Operators

In this section, we introduce a set of geometric differential operators, including mean
curvature, Gaussian curvature, Laplace-Beltrami operator and Giaquinta-Hildebrandt
operator.
Curvatures. Let M(u, v), (u, v) ∈ B ⊂ IR2 be a regular smooth parametric surface
in IR3. Let gαβ = 〈tα, tβ〉 be the coefficients of the first fundamental form of M with
t1 = ∂M

∂u , t2 = ∂M
∂v , set

g = det(G), G = (gαβ), (gαβ) = (gαβ)−1.

Let

bαβ = 〈N, tαβ〉, b = det(bαβ), (hαβ) = (bαβ)−1,

where t11 = ∂2M
∂u2 , t12 = ∂2M

∂u∂v , t22 = ∂2M
∂v2 and N = g−1/2t1×t2. Then the mean curvature

H and the Gaussian curvature K are

H =
1
2
bαβgαβ , K =

b

g
.

Let p be a surface point. Then the mean curvature normal and Gaussian curvature
can be expressed as (see [17])

H(p) =
Q(g22t11 + g11t22 − 2g12t12)

2g
∈ IR3, (2.1)

K(p) =
tT11Qt22 − tT12Qt12

g
, (2.2)

where Q = I − [t1, t2]G−1[t1, t2]T ∈ IR3×3. The advantage of using the expression (2.1)
for mean curvature normal is that it does not involve the orientation of the surface
normal. Let

H(p) = 〈H(p), n(p)〉 = n(p)TH(p).
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Then H(p) is the mean curvature, which depends on the orientation of the surface
normal n(p).

Tangential gradient operator. Let f be smooth function onM. Then the tangential
gradient operator ∇ acting on f is given by (see [4], page 102)

∇f = [ ru, rv ][ gαβ ][ fu, fv ]T ∈ R3

=
1
g
(g22furu + g11fvrv − g12furv − g12fvru)

= g∇u fu + g∇v fv, (2.3)

where g∇u = 1
g (g22ru − g12rv) and g∇v = 1

g (g11rv − g12ru).

Second tangential gradient operator. Let f be a smooth function on M. Then
we introduce the second tangential gradient operator 3 acting on f , which is defined as

3f = [ ru, rv ][K bαβ ][ fu, fv ]T ∈ R3

=
1
g
(b22furu + b11fvrv − b12furv − b12fvru)

= g3
u fu + g3

v fv, (2.4)

where g¦u = 1
g (b22ru − b12rv) and g¦v = 1

g (b11rv − b12ru).
Divergence operator. Let v be a C1 smooth vector field on M. Then the divergence
of v is defined by

div(v) =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ gαβ ] [ru, rv]Tv

]
.

Note that if v is the normal vector field of M, div(v) = 0.

Laplace-Beltrami operator. Let f ∈ C2(M). Then ∇f is a smooth vector field on
M. The Laplace-Beltrami operator (LBO) ∆ applying to f is defined by (see [5])

∆f = div(∇f).

From the definition of ∇ and div, it is easy to derive that

∆f =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [ gαβ ] [ fu, fv ]T

]

=
1
g
(g22f11 + g11f22 − 2g12f12)

= g∆
u fu + g∆

v fv + g∆
uufuu + g∆

uvfuv + g∆
vvfvv, (2.5)

where

fαβ = fuαuβ − (∇f)T ruαuβ , α, β = 1, 2,

g4u = −[g11(g22g122−g12g222)+2g12(g12g212 − g22g112)+g22(g22g111−g12g211)]/g2,

g4v = −[g11(g11g222−g12g122)+2g12(g12g112 − g11g212)+g22(g11g211−g12g111)]/g2,

g4uu = g22/g, g4uv = −2g12/g, g4vv = g11/g,
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and gαβδ = 〈ruα , ruβuδ〉. It is easy to see that ∆ is a second-order differential operator.

Giaquinta-Hildebrandt Operator. Let f be a smooth function on M. Then the
Giaquinta-Hildebrandt operator (GHO) acting on f is given by

2f = div(3f).

From the definition of 3 and div, it is easy to derive that (see [6], page 84)

2f =
1√
g

[
∂

∂u
,

∂

∂v

] [√
g [Kbαβ ] [ fu, fv ]T

]
(2.6)

=
1
g
(b22f11 + b11f22 − 2b12f12)

= g2
u fu + g2

v fv + g2
uufuu + g2

uvfuv + g2
vvfvv, (2.7)

where

g2
u = −[b11(g22g122−g12g222)+2b12(g12g212 − g22g112)+b22(g22g111−g12g211)]/g2,

g2
v = −[b11(g11g222−g12g122)+2b12(g12g112 − g11g212)+b22(g11g211−g12g111)]/g2,

g2
uu = b22/g, g2

uv = −2b12/g, g2
vv = b11/g.

Differential operator 2 is introduced by Giaquinta and Hildebrandt (see [6], pages
82–85), we therefore call it as Giaquinta-Hildebrandt operator. Since bij involves the
second order derivatives of the surface considered, equation (2.6) implies that 2f is
a third order differential operator at first glance. However, (2.7) shows that it is a
second order differential operator, since the terms involving the third order derivatives
are canceled fortunately. Similar to the relation ∆r = 2Hn, we have 2r = 2Kn (see
[19]).

3 Discretizations of Geometric Differential Operators

Discrete Surface. Let T be a triangulation of surface M . Let {pi}N
i=1 be the vertex

set of M . For vertex pi with valence n, denote by N(i) = {i1, i2, · · · , in} the set of
the vertex indices of one-ring neighbors of pi. We assume in the following that these
i1, · · · , in are arranged such that the triangles [pipikpik−1

] and [pipikpik+1
] are in M ,

and pik−1
, pik+1

opposite to the edge [pipik ]. For j = ik ∈ N(i), we use j+ and j− to
denote ik+1 and ik−1, respectively, for simplifying the notation. Furthermore, we use
the following convention throughout the paper: in+1 = i1, i0 = in.

To solve the geometric PDEs using a divided-difference-like method, discrete ap-
proximations of the mean curvature, Gaussian curvature and Laplace-Beltrami opera-
tor and Giaquinta-Hildebrandt operator are required. In order to use the semi-implicit
scheme, the approximations of the above mentioned differential operators require to
have the following form

H(pi)(or K(pi)) =
∑

j

wijpj , ∆f(pi)(or 2f(pi)) =
∑

j

ωijf(pj), (3.1)
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where wij , ωij ∈ IR. There are several discretization schemes of Laplace-Beltrami
operator and Gaussian curvature (see [15, 16] for a review). However, the discretizations
of Gaussian curvature are not in the required form and may not consistent in the
following sense.

Definition 3.1 A set of approximations of differential geometric operators is said con-
sistent if there exists a C2 smooth surface S, such that the approximate operators co-
incide with the exact counterparts of S.

Here we use a biquadratic fitting of the surface data and function data to calculate the
approximate differential operators. The algorithm we adopted is from [15]. Let pi be a
vertex of T with valence n, pj be its neighbor vertices for j ∈ N(i).

Algorithm 3.1. Quadratic Fit

1. Compute angles αk = cos−1[(pik − pi, pik+1
− pi)/(‖pik − pi‖‖pik+1

− pi‖)], and
then compute the angles βk = 2παk/

∑n
j=1 αj for k = 1, · · · , n. Set q0 = (0, 0),

θ1 = 0 and qk = ‖pik − pi‖(cosθk, sinθk), θk = β1 + · · ·+ βk−1, for k = 1, · · · , n.

2. Take the basis functions {Bl(ξ1, ξ2)}5
l=0 = {1, ξ1, ξ2,

1
2ξ2

1 , ξ1ξ2,
1
2ξ2

2}, and determine
the coefficient cl ∈ IR3 of

∑5
l=0 clBl so that

5∑

l=0

clBl(qk) = pik , k = 0, · · · , n

in the least square sense (assume i0 = i). This system is solved by solving the
normal equation. Let A = (Bl(qk))

n,5
k=0,l=0 ∈ IR(n+1)×6, and let

C = (AT A)−1AT ∈ IR6×(n+1), (3.2)

then [c0, · · · , c5] = [pi0 , · · · , pin ]CT .

Remark. The construction algorithm above may fail if the coefficient matrix of the
normal equation is singular or nearly singular. In this case, we look for a least square
solution with minimal normal. Let AT Ax = b be the linear system in the matrix
form. We find a least square solution x such that ‖x‖2 = min. That is, we replace
(AT A)−1 in (3.2) with (AT A)+, the Moore-Penrose inverse. It is well known that
(AT A)+ could be computed by the SVD decomposition of AT A (see [7], Chapter 5).
Let V = diag[σ1, · · · , σ6], where σ1 ≥ · · · ≥ σ6 ≥ 0 are the singular value of AT A. If
the computed singular value σi < 10−8, we regard this singular value as zero (we use
double precision arithmetic operations). In the practice, ‖pik − pi‖ may be very small
and the result in singular values are also small. Then the treatment of the singular
values mentioned above may be misleading. To overcome this difficulty, the matrix A
is normalized by multiplying a diagonal matrix D = diag[1, h−1, h−1, h−2, h−2, h−2] on
the left, where h = maxk ‖pik − pi‖.
Partial derivatives. Let [d0, · · · , d5]T = C[f(ri0), · · · , f(rin)]T . Then we compute
partial derivatives up to the second order. Denote the second, third, fourth, fifth and

5



sixth rows of C as C1, C2, C11, C12 and C22, respectively, then we can see that

ruα = [ri0 , · · · , rin ]CT
α , α = 1, 2,

∂f
∂uα = [f(ri0), · · · , f(rin)]CT

α , α = 1, 2,
ruαuβ = [ri0 , · · · , rin ]CT

αβ , 1 ≤ α ≤ β ≤ 2,
∂2f

∂uα∂uβ = [f(ri0), · · · , f(rin)]CT
αβ , 1 ≤ α ≤ β ≤ 2.

(3.3)

Tangential gradient operator. Substituting (3.3) into (2.3), we get an approxima-
tion of tangential gradient operator as follows:

∇f(ri) ≈
∑

j∈N1(i)

w∇ijf(rj), w∇i,ij = g∇u c
(j)
1 + g∇v c

(j)
2 ∈ R3.

Here c
(j)
α are the j-th component of Cα and c

(j)
αβ are the j-th component of Cαβ by

analogy in the sequel.

Second tangent operator. Substituting (3.3) into (2.4), we get an approximation of
second tangent operator as follows:

3f(ri) ≈
∑

j∈N1(i)

w3
ijf(rj), w3

i,ij = g¦uc
(j)
1 + g¦vc

(j)
2 ∈ R3.

Laplace-Beltrami operator. Substituting (3.3) into (2.5), we get an approximation
of LBO as follows:

∆f(ri) ≈
∑

j∈N1(i)

w4ij f(rj),

where w4i,ij = g4u c
(j)
1 + g4v c

(j)
2 + g4uuc

(j)
11 + g4uvc

(j)
12 + g4vvc

(j)
22 .

Giaquinta-Hildebrandt operator. Substituting (3.3) into (2.7), we get an approxi-
mation of 2 as follows:

2f(ri) ≈
∑

j∈N0(i)

w2
ijf(rj), (3.4)

where w2
i,ij

= g2
u c

(j)
1 + g2

v c
(j)
2 + g2

uuc
(j)
11 + g2

uvc
(j)
12 + g2

vvc
(j)
22 .

Mean curvature normal and mean curvature. Using the relation ∆r = 2H, we
have

H(ri) ≈ 1
2

∑

j∈N1(i)

w4ij rj , H(ri) ≈ 1
2

∑

j∈N1(i)

w4ij n(ri)T rj ,

where n(ri) is the surface normal at ri, which is computed as (ru × rv)/‖ru × rv‖ with
a proper orientation.
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Gaussian curvature normal and Gaussian curvature. Using the relation 2r =
2Kn, we have

K(ri)n(ri) ≈ 1
2

∑

j∈N1(i)

w2
ijrj , K(ri) ≈ 1

2

∑

j∈N1(i)

w2
ijn(ri)T rj .

Remark. Now we explain why we derive the used differential operators based on
the parametric fitting. The first reason is that this fitting scheme yields a convergent
approximation as the mesh size (the maximal edge length) h → 0 (see next section).
The second reason is that the computation of these operators is consistent, meaning
they are computed from the same surface. The third reason is that the fitting scheme
yields the required form expressions:

∑
w4ij pj and

∑
w2

ijpj , which are ready for use in
the semi-implicit discretization of the geometric PDEs, while the widely used discrete
scheme based on Gauss-Bonnet theorem for Gaussian curvature (see [1]) is not the form
of (3.1). The last reason is that all the differential operators considered in this paper
involve the first and second order derivatives of the surface or functions on the surface.
Hence, quadratic function is enough to provide these partial derivative data.

4 Convergence of Discrete Differential Operators

It is well known that (see [3]) the errors of the coefficients cij of the Lagrange inter-
polation polynomial of degree n versus the Taylor expansion of a function around the
origin are bounded by |cij − fij(0)/i!j!| ≤ Chn+1−(i+j), where C is a constant and h is
the maximal distance of the interpolation nodes to the origin. For approximation (the
least square fitting), a similar result holds (see [3]). However, these results do not imply
explicitly the convergence for our quadratic fitting algorithm because of the following
two reasons. First, our fitting surface is in the parametric form. Second, the nodes of
the fitting are determined in a way that is different from the functional case (see Step 1
of Algorithm 3.1). In [15], it has been claimed that the mean curvature computed from
the quadratic fitting converges. However, this fact has never been formally proved.
Hence, the convergence property of the quadratic fitting does need to be analyzed.

Definition 4.1 Let N := {qi = (xi, yi)T ∈ IR2}n
i=0, n ≥ 5. If the matrix

A(N) :=




1 x0 y0 x2
0/2 x0y0 y2

0/2
1 x1 y1 x2

1/2 x1y1 y2
1/2

· · · · · · · · · · · · · · · · · ·
1 xn yn x2

n/2 xnyn y2
n/2




is full rank in row, then we say the node set N is well-posed for the problem of the
quadratic fitting: Determining a bivariate polynomial G(x, y) =

∑
i+j≤2 aijx

iyj/i!j!
such that

G(qi) = f(qi), i = 0, 1, · · · , n (4.1)

in the least square sense, where f is a given function.
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If the node set N is well-posed, then the quadratic fitting problem has unique
solution. In the following, we assume that q0, q1, · · · , qn are mutual distinct and further
assume that q0 = (0, 0)T for simplicity.

Lemma 4.1 Let N = {qi}n
i=0 be a well-posed node set for the quadratic fitting problem.

Then the node set N (h) := hN := {hqi}n
i=0 is also well-posed for any h > 0. More

general, let L ∈ IR2×2 be a nonsingular matrix. Then the node set N (L) := {Lqi}n
i=0 is

well-posed.

Proof. Since h > 0 and

A(N (h)) = A(N)Λ, Λ = diag[1, h, h, h2, h2, h2], (4.2)

the first conclusion of the Lemma follows. To prove the second conclusion. Let L =
(aij)2i,j=1. Then under the transform L,

A(N (L)) = A(N)diag



1, L,




a2
11 a11a21 a2

21

2a11a12 a11a22 + a12a21 2a21a22

a2
12 a12a22 a2

22






 .

It is not difficult to calculate that the determinant of the last 3× 3 block matrix above
is (a11a22 − a12a21)3 6= 0, since det(L) = a11a22 − a12a21 6= 0. Hence the lemma is
proved.

Lemma 4.2 Suppose f is a sufficiently smooth bivariate function in the neighbor-
hood of the origin. Let N = {qi}n

i=0 be a well-posed node set, and G(h)(x, y) =∑
i+j≤2 a

(h)
ij xiyj/i!j! the quadratic fitting function of f on the node set N (h) = hN ,

h > 0. Then
∣∣∣a(h)

ij − fij(q0)
∣∣∣ ≤ cij‖[A(N)T A(N)]−1A(N)‖h3−i−j , (4.3)

where cij are constants depending on f , but independent of N (h).

Proof. Let

X = [a(h)
00 , a

(h)
10 , a

(h)
01 , a

(h)
20 , a

(h)
11 , a

(h)
02 ]T , F = [f(q0), f(hq1), · · · , f(hqn)]T .

Then from the fitting problem (4.1), we have

A(N (h))T A(N (h))X = A(N (h))T F,

and, by (4.2),

A(N)T A(N)ΛX = A(N)T F. (4.4)

Since

f(hqi) = f(q0) + hqT
i ∇f(q0) +

1
2
h2qT

i ∇2f(q0)qi + O(h3),
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we have

F = A(N)ΛF0 + O(h3),

where F0 = [f(q0), f10(q0), f01(q0), f20(q0), f11(q0), f02(q0)]T . Substituting this into
(4.4), we have

A(N)T A(N)ΛX = A(N)T A(N)ΛF0 + A(N)T O(h3),

and

X = F0 + Λ−1[A(N)T A(N)]−1A(N)T O(h3).

Then (4.3) follows.

Corollary 4.1 Suppose f is a sufficiently smooth bivariate function in the neighbor-
hood of the origin. Let N = {qi}n

i=0 be a well-posed node set. Let G(h) be the quadratic
fitting function of f on the node set N (h). Then we have

‖n(G(h))− n(f)‖ ≤ C0h
2, |ki(G(h))− ki(f)| ≤ Cih, i = 1, 2,

where n(f) and ki(f) denote the normal and the principal curvatures of f at q0, respec-
tively.

Remark 8.1. The corollary says that the normal n(G(h)) has quadratic convergence
rate, curvatures have linear convergence rate. These results mach Meek and Walton’s
results (see [10], Lemma 4.1).

Lemma 4.3 Let N = {qi}n
i=0 be a well-posed node set. Then for any B > ‖[A(N)T A(N)]−1

A(N)‖, there exists an ε > 0, such that
(i). q0 /∈ Di, Di ∩Dj = ∅, i 6= j, i, j ≥ 1, where Di = {q ∈ IR2 : ‖q − qi‖ < ε}.
(ii). For any node set R := {ri ∈ Di}n

i=0, we have ‖[A(R)T A(R)]−1A(R)‖ < B.
(iii). For this ε, let D

(h)
i = {q ∈ IR2 : ‖q − hqi‖ < εh} (h > 0). Then the

quadratic fitting problem on the node set R(h) := {ri ∈ D
(h)
i }n

i=0 has unique solution
G(h)(x, y) =

∑
i+j≤2 a

(h)
ij xiyj/i!j! and

∣∣∣a(h)
ij − fij(q0)

∣∣∣ ≤ cijBh3−i−j , i + j ≤ 2 (4.5)

where cij are constants depending on f , but independent of R(h).

Proof. Since N is a well-posed node set. qi are distinct. It is obvious that there
exists an ε1 > 0 such that (i) holds. Notice that the elements of the matrix A(R)
are continuous function of r0, · · · , rn. Hence the inverse of A(R)T A(R) exists in the
neighborhood of q0, · · · , qn. Then there exists an ε ≤ ε1 such that (ii) holds.

Similar to the proof of Lemma 4.2, (4.5) can be derived.
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Lemma 4.4 Suppose f(x, y) is smooth function such that f(q0) = 0, ∇f(q0) = 0. Let
q ∈ IR2 be a point in the neighborhood of the origin. Then

√
‖q − q0‖2 + f(q)2 − ‖q − q0‖ ≤ C‖q − q0‖3.

Proof. Since

f(q) = f(q0) + (q − q0)T∇f(q0) + O(‖q − q0‖2) = O(‖q − q0‖2),

we have
√
‖q − q0‖2 + f(q)2 =

√
‖q − q0‖2 + O(‖q − q0‖4) = ‖q − q0‖+ O(‖q − q0‖3).

Lemma 4.5 Let f(x, y) be a smooth function around q0 ∈ IR2. Let Tf (q0) be the
tangent plane of f at q0. Let q be a neighbor point of q0 and x′, x′′ the intersection
point of the line ([qT , 0]T , [qT , f(q)]T ) with Tf (q0) and the project point of [qT , f(q)]T

onto the tangent plane Tf (q0), respectively. Then there exists a constant C such that

‖x′ − x′′‖ ≤ C‖q − q0‖2.

Proof. Since

Tf (q0) = {x ∈ IR3 : ([qT
0 , f(q0)]− xT )[(∇f(q0)T ,−1]T = 0}.

or z = −qT
0 ∇f(q0) + f(q0) + (x, y)∇f(q0). The z-value of the intersection is

z(q) = −qT
0 ∇f(q0) + f(q0) + qT∇f(q0) = f(q0) + (q − q0)T∇f(q0)

Hence x′ = [qT , z(q)]T = [qT , f(q0) + (q − q0)T∇f(q0)]T . Since the line passing
[qT , f(q)]T and perpendicular to Tf (q0) is

x = [qT , f(q)]T + tn(f), n(f) = [∇f(q0)T ,−1]T .

Substituting x into the equation of Tf (q0), we obtain

t =
(q0 − q)T∇f(q0) + f(q)− f(q0)

‖∇f(q0)‖2 + 1
= O(‖q − q0‖2),

x′′ = [qT , f(q)]T +
(q0 − q)T∇f(q0) + f(q)− f(q0)

‖∇f(q0)‖2 + 1
[∇f(q0)T ,−1]T .

Therefore,

‖x′ − x′′‖ = |f(q)− f(q0)− (q − q0)T∇f(q0) + O(‖q − q0‖2)| = O(‖q − q0‖2).

Lemma 4.6 Let f(x, y) be a smooth function such that f(q0) = 0, ∇f(q0) = 0. Let
q1, q2 ∈ IR2 be two points in the neighborhood of the origin. Let

θ = cos−1 〈q1, q2〉
‖q1‖‖q2‖ , θ

(h)
f = cos−1 〈p1, p2〉

‖p1‖‖p2‖ ,

where pi = [hqT
i , f(hqi)]T , i = 1, 2. Then

|θ(h)
f − θ| ≤ Ch2.
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Proof. Since

f(hqi) = f(q0) + hqT
i ∇f(q0) +

1
2
h2qT

i ∇2f(q0)qi + O(h3)

=
1
2
h2qT

i ∇2f(q0)qi + O(h3),

‖pi‖ = ‖qi‖h + O(h3), 〈p1, p2〉 = 〈q1, q2〉h2 + O(h4),

we have

θ
(h)
f = cos−1 〈p1, p2〉

‖p1‖‖p2‖ = cos−1 〈q1, q2〉+ O(h2)
‖q1‖‖q2‖+ O(h2)

= cos−1 〈q1, q2〉
‖q1‖‖q2‖ + O(h2)

= θ + O(h2).

Theorem 4.1 Let f be a smooth function around the origin, and let N = {qi}n
i=0

be a well-posed node set. Let G(h) be the quadratic fitting function generated by the
Algorithm 3.1 for the sampling data [hqT

i , f(hqi)]T ∈ IR3 of the function f . Then (4.5)
holds.

Proof. Let Tf (q0) be the tangent plane of surface f at q0, and let x′i be the intersection
point of the line ([qT

i , 0]T , [qT
i , f(qi)]T ) with Tf (q0). Let N ′ = {x′i}n

i=0. Then N ′ can
be regarded as the result of a linear transform of N , and therefore is well-posed, from
Lemma 4.1 .

Let x′′i be the project point of the point [qT
i , f(qi)]T on the tangent plane Tf (q0).

Then by Lemma 4.5, we have

‖x′′i (h) − x′i
(h)‖ ≤ Ch2.

Let x′′′i
(h) be the nodes determined by Algorithm 3.1 and denote

x′′i
(h) = r′′i

(h)(cos θ′′i
(h)

, sin θ′′i
(h))T , x′′′i

(h) = r′′′i
(h)(cos θ′′′i

(h)
, sin θ′′′i

(h))T .

Then by Lemma 4.4 and Lemma 4.6, we know that

|r′′i (h) − r′′′i
(h)| < Ch3, |θ′′i (h) − θ′′′i

(h)| < Ch2.

Therefore,

‖x′′′i (h) − x′′i
(h)‖ ≤ Ch2,

and

‖x′′′i (h) − x′i
(h)‖ ≤ Ch2.

Hence, when h is small enough, x′′′i
(h) ∈ D

(h)
i . Then by Lemma 4.3, (4.5) holds.
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5 Conclusions
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