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Abstract

The aim of the electron microscopy image classification is to categorize the projec-

tion images into different classes according to their similarities. Distinguishing images

usually requires that these images are aligned first. However, alignment of images is

a difficult task for a highly noisy data set. In this paper, we propose a translation

and rotation invariant based on the Fourier transform for avoiding alignment. A novel

classification method is therefore established. To accelerate the classification speed,

secondary-classes are introduced in the classification process. The test results also

show that our method is very efficient and effective. Classification results using our

invariant are also compared with the results using other existing invariants, showing

that our invariant leads to much better results.

Key Words: Classification; Fourier transform; Translation and rotation invariant;

Secondary-class.

1 Introduction

Single-particle reconstruction (SPR) is a powerful method in three dimensional electron

microscopy [2], which demands that all of the projection images are from the nearly identi-

cal macromolecular “particles”. The aim of the SPR is to find three dimensional structures
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of a macromolecule given its two-dimensional noisy projection images at unknown random

directions [15].

One of the main problems in electron microscopy is that the object is damaged by the

exposure. To avoid the damage, low electron dose is used, and therefore the projection

images exhibit very low signal to noise ratios (SNR, below 1/3) and very poor contrast [16].

A way to solve this problem is to put many identical objects onto the stage, which results

in many projection images of the same object at unknown orientations [10]. In order to

reduce the effect of the high noise and poor contrast, a large number of projection images

(from 104 to 106) are collected and analyzed, which means that the computation load

is heavy even for a modern multi-processor computer cluster [17]. Therefore, a primary

step of the single-particle analysis is the classification of the measured images according

to their similarities. Images in the same class are then averaged to reduce the noise level

[3, 7].

Previous Work

Classification is a procedure that categorizes images into different classes according

to their similarities [9]. Existing classification methods are divided into supervised clas-

sification and unsupervised classification [2]. Supervised classification is to categorize the

images according to the similarity with templates or references, for example, projection

matching. Unsupervised classification is to classify the images according to their intrinsic

differences. According to the comparison among 2-D projection images, these projection

images are classified into different classes. Distinguishing among different image classes

requires that the images in these classes are aligned first. As a result, the computational

load is heavy because any two projection images need to be aligned before their corre-

lations are computed. Alignment is a difficult task since it is hardly possible to align a

highly noisy data set without any deviation [13].

Van Heel et al. [8] propose a multireference alignment method in which the alignment

and classification steps are iteratively alternated until convergence. Assuming that a set

of class representatives have been selected, the similarities between the aligned images and

the representatives are measured. The image is assigned to the class with the maximum

similarity. Eventually, the representative of the class is recomputed as the average of the

images assigned to the class. This process is repeated till some convergent criterion is

met. A possible shortcoming of this classification method is that it depends on the initial

selection of the class representatives and it possibly traps in a local minimum. To solve

these problems, a multireference alignment algorithm based on a maximum likelihood

(ML2D) was devised in [8]. However, ML2D [14] method suffers from the attraction

problem [16], a phenomena that a class-average with less noise than others attracts more
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experimental images even if they belong to other classes.

Colars et al. [16] propose a novel method of clustering 2D (CL2D) images that is able

to address small differences between classes. With this method, all the projection images

can be split into specified number classes and at the same time the misclassification error

is minimized. The key ideas of the CL2D method are as follows: Firstly, the correlation is

replaced by the correntropy, a more effective metric. Secondly, the images are assigned to

the class by considering the images are more suitable for the class representative than the

other experimental images. This comparison avoids comparing an experimental image to

the class averages at the different noise levels.

Our classification method is basing on a translation and rotation invariant. We there-

fore review here a few existing translation and rotation invariants, which have been used

in electron microscopy [13, 12]. The detail descriptions of these invariants are presented

in the appendix of this paper. Van Heel et al. introduce in [12] a double auto-correlation

function (briefed as DACF) to classify the projection images. At first, the auto-correlation

functions (ACF) of the projection images are calculated and converted to the cylindrical

coordinates. Then the second ACFs in the angular direction of the ACFs in cylindrical

coordinates are computed, resulting in the DACFs. The authors in [12] point out that

DACFs is overweight the already strong frequency because of the squaring of the Fourier

components in calculating the ACF. This disadvantage can be eliminated by using self-

correlation function (SCF) instead of auto-correlation function. In the literatures [1, 4],

the authors present a complete rotation invariant (an invariant without losing phase infor-

mation), named as AFMT. AFMT is defined using the analytical Fourier-Mellin transform

and angular corrections for the centralized images.

Our Contributions

In this paper we propose an classification method based on the application of a trans-

lation and rotation invariant of two-dimensional images to avoid performing image align-

ment. The main ideas of our classification method are as follows: (a) We propose a

translation and rotation invariant based on the combing use of the Fourier transform. (b)

We classify the projection images with an adaptive threshold ε, such that our class-sizes

(diameter) in space are as close to uniform as possible, avoiding the attraction problem

even at low SNR. (c) We introduce a secondary-class along with each class, which greatly

accelerates the process of class adjusting. (d) We propose a proper way to cut off the high

frequency in the Fourier space making our method anti-noise and robust.

The organization of this paper is as follows. In Section 2, we give the related math-

ematical background of our method. In Section 3, we introduce the used notations and

definitions, followed with the classification method of the projection images, together with
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(a) (b) (c) (d) (e) (f)

Fig 1: Figure (a) an image of a square. Figure (b) a translated image of (a). Figure (c) a translated

and rotated version of (a). Figures (d), (e) and (f) show the Fourier spectra of (a), (b) and (c),

respectively.

the implementation details. Experimental results for two simulated data sets are given in

Section 4. We conclude the paper with a summary in Section 5. The detail descriptions

of several other translation and rotation invariants are presented in Appendix A.

2 Preliminary Mathematical Material

In this section, we introduce the used preliminary mathematical material, including the

continuous translation and rotation invariant, the truncated translation and rotation in-

variant, the spectrum power at the low frequency and the analytical Fourier-Mellin trans-

form.

Continuous Translation and Rotation Fourier Invariant. Our classification method

relies on the translation and rotation property of the Fourier transform [11]. Let f1 be an

image and f2 the translated image of f1 with translation (x0, y0), i.e.,

f2(x, y) = f1(x− x0, y − y0). (1)

Then it is well known that the corresponding Fourier transforms F1 and F2 have the

following relationship

F2(ξ, η) = e−i2π(ξx0+ηy0)F1(ξ, η), (2)

where i is the imaginary unit. Hence, the Fourier spectra of f1 and f2 are the same. Fig 1

shows the translation property of the Fourier transform (in order to observe the similarities

and differences of the Fourier spectra, the Fourier spectra in all the figures, except for Fig

2, are normalized into the range [0, 2550] and then mod 255. In Fig 2, Fourier spectrum

is normalized into the range [0, 255]).

When an image is rotated, the image of the Fourier spectrum is also rotated with the

same angle. If f2(x, y) is a translated and rotated function of f1(x, y) with a translation
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(x0, y0) and a rotation angle θ0, then we have

f2(x, y) = f1(x cos θ0 + y sin θ0 − x0,−x sin θ0 + y cos θ0 − y0).

Fig 1 shows the Fourier rotation property. According to the Fourier translation and

rotation property, the Fourier transforms of f1 and f2 are related by

F2(ξ, η) = e−i2π(ξx0+ηy0)F1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0). (3)

Let M1 and M2 be the magnitude functions of F1 and F2. Then from equation (3), we

have

M2(ξ, η) = M1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0).

It is easy to see that the magnitude functions of both the spectra are the same, but one is a

rotated version of the other. Rotational movement without translation can be represented

as a translational displacement in polar coordinates. i.e., in the polar representation

M2(ρ cos θ, ρ sin θ) = M1(ρ cos(θ − θ0), ρ sin(θ − θ0)).

It is denoted as

M̃2(ρ, θ) = M̃1(ρ, θ − θ0). (4)

Following equation (1) and (2), the modules of the corresponding Fourier transforms of

M̃1 and M̃2 are the same. Therefore, the module is a translation and rotation invariant.

Replacing the polar coordinate by the log-polar coordinate, we obtain a similar translation

and rotation invariant.

The Spectrum Power at the Low Frequency. We present a method to determine the

cut-off frequency by computing the circles that enclose specified amounts of total image

power PT (see [6]). The total image power for an N ×N image I(u, v) is defined as

PT =

N−1∑

u=0

N−1∑

v=0

P (u, v),

where P (u, v) = [real(I(u, v))]2 + [imag(I(u, v))]2 is the spectrum power of the image

I(u, v).

Fig 2 shows a projection image with size 143 × 143 and the Fourier spectrum of the

image. The Fourier transform has been centralized and a circle of radius r with the origin

at the center of the frequency domain encloses α percent of the power, where

α =
∑

u2+v2≤r2

P (u, v)/PT .
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(a) (b) (c)

Fig 2: (a) is a projection image of size 143× 143 pixels and (b) is its Fourier spectrum. The su-

perimposed circles of radii r = 5, 10, 15, 20, 25, 30 and 36 enclose 91.07%, 94.97%, 97.42%, 98.46%,

99.07%, 99.43% and 99.68% of the image power, respectively. (c) shows the percentage of the

image power enclosed by the circle of radii r.

In (b) of Fig 2, we take the radii of r = 5, 10, 15, 20, 25, 30 and 36 pixels, respectively. Each

of the circles encloses α percent of the image power with α = 91.07%, 94.97%, 97.42%,

98.46%, 99.07%, 99.43% and 99.68%, respectively. Therefore, if the frequency components

are normalized into [−π, π], we take the cut-off frequency as −π/2 and π/2 and more than

99.6% of the total power is enclosed. From this point of view, the cut-off frequency can

be required to belong to [−π/2, π/2].

If the continuous Fourier transform is replaced by the discrete Fourier transform, equa-

tion (4) is still true at the frequencies in [−π/2, π/2] and enough information is kept at

these frequencies. Hence, the spectrum from double FFT is also a translation and rotation

invariant in the range [−π/2, π/2].

The Analytical Fourier-Mellin Transform. Let f(t, θ) be the Fourier spectrum in the

polar coordinate (t, θ) of image I. Then the analytical Fourier-Mellin transform (AFMT)

of f is defined as

F (ω, ν) =

∫ R

0

∫ 2π

0
f(t, θ)tσ−iωe−iθνdθ

dt

t
,

where σ is a fixed and positive real number. In our algorithm, we weight the Fourier

spectrum in polar (or log-polar) coordinate with rσ. This means that the analytical

Fourier-Mellin transform is used. Following the suggestion of Goh [5], σ is set to 0.5.

3 Classification Algorithms

In this section, we first introduce some notations and definitions, then we present the

classification algorithm outlines and the implementation details.
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3.1 Notations and Definitions

Fourier Transform Based Translation and Rotation Invariant. Firstly, the Fourier

spectra of the given images are computed. Then, the conversion from Cartesian into the

polar (or log-polar) coordinate is performed and then these spectra in the polar (or log-

polar) coordinate are weighted. Finally, the Fourier spectra of these weighted spectra

in the polar (or log-polar) coordinate are computed and the latter spectra are weighted

again. The final results are called the Fourier transform based translation and rotation

invariants (briefed as FTTR-invariants). Throughout this paper, we denote by Ii the i-th

projection image and Ĩi the FTTR-invariant of Ii.

Similarity Metric of Two Images. Let Ii and Ij be any two N×N matrices represent-

ing the experimental images. Let Ĩi and Ĩj of size P ×P (P ≤ N) be the FTTR-invariants

of Ii and Ij, respectively. We denote by d(Ii, Ij) the similarity metric (distance) of two

images Ii and Ij , defined as

d(Ii, Ij) := d(Ĩi, Ĩj) = ‖Ĩi − Ĩj‖F ,

where ‖ · ‖F stands for the Frobenius norm of a matrix.

Classes. For a given ε, the class Ci and its representative Ri are defined as follows: Ci is

a collection of images and Ri is a member of Ci, such that

d(Ik, Ri) < ε, ∀Ik ∈ Ci.

Let C̃i be a set of the invariants of all the projection images in Ci, named as invariant-

class. We use |C̃i| to denote the cardinality of the invariant-class C̃i. The invariant-class

center Ci is defined as

Ci =
1

|C̃i|

∑

Ĩj∈C̃i

Ĩj. (5)

Secondary-Class. Suppose a set of 2D images {Ii}
n
i=1 of size N ×N has been assigned

into M classes. Let

γ = max
i=1,··· ,M

max
Ik∈Ci

d(Ĩk, Ci), (6)

where C1, C2, · · · , CM are the invariant-class centers defined by (5). Then d(Ĩk, Ci) ≤ γ

for Ik ∈ Ci, i = 1, · · · ,M . The secondary-class Si associated with the class Ci consists of

all the invariant-class centers Cj , such that d(Cj , Ci) ≤ 2γ. Note that each Ci may belong

to several secondary-classes.
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3.2 Algorithms Outlines

Suppose we are asked to classify {Ii}
n
i=1 into M classes. In the following, we present

algorithm outlines for achieving this goal. The detail descriptions are given in the next

subsection.

Algorithm 3.2.1. Compute the FTTR-invariants

For i = 1, 2, · · · , n, do the following:

1. Apply discrete Fourier transform to all the projection images Ii, obtaining Fi. Fi is

computed using FFT. Sometimes we need to expand the sizes of all the projection

images by adding zeros before performing the FFT to raise the classification accuracy.

2. Compute the module Mi of Fi, and then find the valid area of Mi (see Section 3.3).

Assume the size of the valid area is N1 ×N1.

3. Convert Mi from Cartesian to the polar (or log-polar) coordinate form in the valid

area. The polar (or log-polar) value is weighted by rσ1 (σ1 > 0). Then compute the

discrete Fourier transform by FFT of the weighted polar form, obtaining an image

Wi.

4. Set the valid area of Wi as [−N1/2, N1/2] × [−N1/2, N1/2]. Compute the module

of Wi in their valid area. The modules are weighted by (
√
2N1

2 − r)σ2 (σ2 > 0). The

output of this step is our FTTR-invariant Ĩi.

The first weight rσ1 in step 3 plays a key role to the success of the classification

algorithm. Following the suggestion of Goh [5], σ1 is set to 0.5 in our implementation.

The second weight (
√
2N1

2 − r)σ2 is less important to the success of the classification and

it makes the classification result a little better. We require 0 < σ2 ≤ 2. Fig 3 shows

our invariants of the projection images only with translation and rotation difference and

Fig 4 shows the invariants of the different projection images. Since a valid area for the

invariants in the Fourier space is used in our algorithm, the invariants are antinoise.

Algorithm 3.2.2. Classification with the FTTR-invariants.

1. Compute an initial value of ε. Set the iteration number s = 0.

2. Classify the projection images controlling with the ε. Suppose we get ν classes

C1,C2, · · · ,Cν . Compute δ by

δ = max
i=1,··· ,ν

max
Ik∈Ci

d(Ik, Ri). (7)
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Fig 3: (a) is a projection image. (e) is the rotated version of (a). (b) and (f) are Fourier spectra

of (a) and (e), respectively. (c) and (g) are Fourier spectra of (b) and (f) in polar coordinate,

respectively. (c) and (g) are weighted and become (d) and (h). (d) and (h) are the FTTR-

invariants for classification.

Fig 4: (a) and (b) are different projection images. (c) and (d) are respectively the invariants of

(a) and (b).

3. If ν < aM (0 < a < 1) or ν > bM (b > 1), and s ≤ S (we take S as 10), compute a

new ε using the computed ν and δ. Set s as s+ 1. Then go back to step 2.

4. If aM ≤ ν < M , split the large classes until ν = M . If M < ν ≤ bM , merge the two

classes with the smallest distance until ν = M .

5. Adjust the classification using the minimum distance between the projection images

and the invariant-class center in the secondary-classes of its assigned class.

6. Find class representative or class average (optional).

In the third step, a (a < 1) and b (b > 1) are real numbers close to 1. The closer a

and b are to 1, the more uniform the classification result is. However, it causes the more
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computation load for computing a new ε. In our experiments, we choose a = 0.95, b = 1.05.

In the sixth step, the representative of a class is the projection image such that its

FTTR-invariant is nearest to the invariant-class center in equation (5). The class average

can be computed using the public software xmipp average by aligning the images in the

same class in the real space. Fig 9, Fig 14 and Fig 17 show several class averages of our

classification results.

3.3 Implementation Details

In this subsection, we provide the implementation details of our algorithms presented in

the previous subsection.

Compute an initial ε. Randomly choose p projection images and compute their distance

between each other. The average of these distances is taken as the initial value of ε. We

wish to have an initial value of ε that can better represent the general distance between

the projection images. It is not necessary to choose a large p. However, if p is too small,

the initial value of ε is not representative. In our experiments, we choose p = M .

Compute the valid area. The valid area in frequency domain in Algorithm 3.2.1 is

computed as follows.

1. Compute the average of {Mi}
n
i=1 in step 2 of Algorithm 3.2.1. M̄ = 1

n

n∑
i=1

Mi.

2. From R = 1 to R = N/2, compute the average of M̄ out of the circle of radius R

and denote the average as µR, where N ×N is the size of M̄ .

3. From r = 1 to r = R, compare the magnitude of µR and the module on the circle

of radius r till some module less than µR appears. Denote this r as DR. Let

D0 = 2
N

N/2∑
R=1

DR. If the frequency components are normalized into [−π, π], our cut-

off frequency is taken as −D and D, where D = min{2πD0

N , π2 }. The reason that

the cut-off frequency belong to [−π/2, π/2] has been explained in Section 2. Let

D0 =
DN
2π . Then [−D0,D0]× [−D0,D0] is taken as the first valid area in the second

step of Algorithm 3.2.1.

Classification. Controlling with an ε, we classify the projection images progressively.

At beigining, I1 is put into the first class. Suppose we have classified I1, I2, · · · , Ik−1 into

classes C1,C2, · · · ,Cm. Suppose Ri is the representative of Ci, i = 1, 2, · · · ,m. Next

we determine which class Ik belongs to. Compute the distance between Ĩk and R̃i, for

i = 1, 2, · · · ,m.
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1. If min
i=1,··· ,m

d(Ĩk, R̃i) < ε, then Ik is assigned into Cβ with β = arg min
i=1,··· ,m

d(Ĩk, R̃i).

2. If min
i=1,··· ,m

d(Ĩk, R̃i) ≥ ε, then Ik is defined as the representative of the (m+ 1)-th

class, a newly created class.

Repeating the procedure above for k = 2, . . . , n, we obtain a classification {Cj}
ν
j=1 of all

the images and a δ computed by equation (7).

Compute a new ε. According to the classification described above, given an ε, we get

ν classes. Obviously, the bigger ε leads to smaller ν. If ε is too large or too small, ν

is far away from the desired class-number M . Therefore, a new ε needs to be computed

according to the previously computed ν and δ. We compute the new ε by the bisection

method from previous δ and ν.

Split classes. If aM < ν < M , the largest classes are split. Let |Ci| be the cardinality

of class Ci. Sorting |C1|, |C2|, · · · , |Cν | from big to small, we get

|Cs1 | ≥ |Cs2 | ≥, · · · ,≥ |Csν |.

Then we split Csi , i = 1, 2, · · · ,M − ν as follows:

1. Find a projection Ii ∈ Csi such that its FTTR-invariant Ĩi is farthest away from Csi

and then find Iν+i ∈ Csi that is farthest away from Ii in Csi .

2. Taking Ii and Iν+i as the representatives of two newly created classes, all the projec-

tion images in Csi are reassigned into the new classes Csi and Cν+i with the minimal

distance.

By this splitting process, we split Csi , i = 1, 2, · · · ,M − ν, and we obtain classes

Ci, i = 1, 2, · · · ,M . After the initial classification, the class-size (diameter) is within ε.

Hence, we use the number of the class elements instead of the class-size as a split condition.

Merge classes. If M < ν < bM , the closest classes are merged. This is done as follows.

1. Compute

d(Ci, Cl), i = 1, 2, · · · , ν − 1; l = i+ 1, i + 2, · · · , ν.

2. Sorting {d(Ci, Cl)} in the increasing order, we get

d(Ci1 , Cl1) ≤ d(Ci2 , Cl2) ≤, · · · ,≤ d(CiL , ClL), L = ν(ν − 1)/2.
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3. For k = 2, · · · , L, delete the elements of {d(Cik , Clk)}
L
k=2 repeatedly as follows: If

d(Cik , Clk) ∈ {d(Cik , Clk)}
L
k=1 is an element undeleted, then we delete all the element

d(Cij , Clj ) if

j > k and {ik, lk} ∩ {ij , lj} 6= ∅.

After the deleting, we obtain a new increasing sequence {d(Cpk , Cqk)}
L1

k=1 such that

{pi, qi} ∩ {pj , qj} = ∅ (i 6= j).

4. Reassign all the projection images in the class Cqk into the class Cpk , for k =

1, 2, · · · , ν −M . Then delete the class Cqk , k = 1, 2, · · · , ν −M . Finally, we obtain

Ci, i = 1, 2, · · · ,M .

Adjust classes. If ν = M , we begin to adjust the classification with the help of the

secondary-class defined in Section 3.1. Since our secondary-class Si records the invariant-

class centers near the i-th class Ci, adjusting the classification is performed in Si. This is

done as follows:

1. Compute the secondary-class Si for i = 1, · · · ,M .

2. For each Ij ∈ Ci, do the following:

(a) Compute q such that Cq = arg min
Ck∈Si

(d(Ĩj , Ck)).

(b) If d(Ĩj , Cq) < d(Ĩj , Ci), reassign Ij to the class Cq.

3. If one of the following two terminating conditions is satisfied, stop the iteration.

Otherwise, go back to step 1.

(a) the iteration-number reaches a threshold (we take it as 20).

(b) the ratio of the number of the adjusted images to the total number of all

projection images is lower than a fixed percentage (we take it as 1%).

Compute the secondary-classes. The secondary-classes are computed as follows.

1. Compute the invariant-class centers C1, C2, · · · , CM by (5).

2. Compute γ by equation (6).

3. Compute the distances d(Ci, Cj), i = 1, 2, · · · ,M − 1; j = i + 1, i + 2, · · · ,M .

If d(Ci, Cj) ≤ 2γ, Cj is put into Si and Ci is put into Sj . We then obtain the

secondary-classes S1,S2, · · · ,SM .
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Remark 3.1. After the class adjustment, there may appear empty classes. Hence it is

possible that the final number of classes may be less than the specified number M . However,

since the initial classification is almost uniform in class-size, the adjustment is performed

locally. Therefore, the final class number is close to the required number.

Remark 3.2. The reason why we choose 2γ as the radius of the secondary-class is that

if d(Ci, Cj) > 2γ and Iα ∈ Ci, then it is impossible that Iα is reassigned into Cj in the

classification-adjusting. This fact is proved as follows. Using the triangle inequality, we

have

d(Ci, Cj) ≤ d(Ci, Ĩα) + d(Ĩα, Cj).

Since Iα ∈ Ci and Ĩα are the FTTR-invariants of Iα, we have d(Ci, Ĩα) ≤ γ. Therefore,

d(Ĩα, Cj) ≥ d(Ci, Cj)− d(Ĩα, Ci) > γ ≥ d(Ĩα, Ci).

Thus, it is impossible that Iα can be reassigned into Cj in the classification-adjusting.

4 Experimental Results

To validate our algorithm, we use the same simulated datasets as Colars et.al [16]. One

is the bacteriorhodopsin monomer. The other is the Escherichid coli ribosome. In our

experiments, we compare our results to those of CL2D [16]. We obtain similar or better

angular results with much less computational time. In CL2D classification, we use the

correntropy and the robust classification criterion. In all the experiments, the classification

is adjusted with a maximum iteration count of 20 or with adjusted image-number less than

1% of the total number of the projection images. All the experiments are conducted on a

computer cluster in our institute with a specified number of nodes. There are 8 cores per

node (Intel(R) Xeon(R), 2.40GHz).

CL2D has been shown to be an efficient method. It yields better experiment results

than the other well known methods, such as ML2D, PCA/K-means and PCA/Hierarchical,

especially for the data set with low SNR. Therefore, we compare in this paper the perfor-

mance of our method with that of CL2D.

4.1 Simulated Data: Bacteriorhodopsin with SNR=0.83

To illustrate our algorithm is antinoise, we add white Gaussian noise to the projection

images of Bacteriorhodopsin of size 143× 143 with SNR=0.83 (see Fig 5). Since the SNR

is not very low, we do not need any filter and apply our algorithm directly to classify 5000
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projection images into 256 classes. We obtain a similar result to the classification of the

images without noise. Fig 6 shows the images of one class from our classification result.

Fig 7 shows all the images in Fig 6, but without adding noise. We can see that similar

projection images are indeed put into one class.

Fig 5: Images of Bacteriorhodopsin with white Gaussian noise at SNR=0.83.

Fig 6: Images in one class from our classification result. We classify bacteriorhodopsin with white

Gaussian noise at SNR=0.83.

To compare the results of CL2D and ours, we evaluate each class by computing the

angles between the projection directions of any image assigned to that class and the

representative of the class. Fig 8 shows the classification quality curves for classifying the

projection images into 256 classes by CL2D without applying any filter and our method.

The method yielding a narrower and higher probability density curve is better. To raise

the classification accuracy, we expand the sizes of all projection images to 16 times of

the original by adding zeros. Hence, the sizes of the projection images are increased to

(4∗143)×(4∗143). The figure shows that, for this example, we obtain better classification

result than CL2D. Fig 9 shows five class averages from our 256 classes. The execution

time of CL2D running in parallel with 8 cores is about 273718 seconds. Our method using

8 cores takes about 486 seconds. Our method takes about 2580s using a single core. All

the execution times presented in this section are wall time in second.
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Fig 7: The projection images in the class shown in Fig 6 before adding the noise.

Fig 8: Clustering quality: probability density function estimation of the angular distance between

each projection assigned to a class and its representative for CL2D and our method (SNR=0.83).

Ideally, these functions should be concentrated at small angular distances, which means that the

projection images assigned to a class have similar projection directions. The maximum angular

distance is 90◦ because it is worst that two orthogonal views are assigned to the same class.

Fig 9: The class averages of five classes selected from 256 classes of bacteriorhodopsin classification

(SNR=0.83).

4.2 Simulated Data: Bacteriorhodopsin with SNR=0.3

We add white Gaussian noise to the projection images of Bacteriorhodopsin with SNR=0.3

(see Fig 10). We classify the projection images into 256 classes and get the similar result

to the classification of the images without adding noise. Fig 11 shows the images in one
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class from our classification result. Fig 12 shows all the images in Fig 11, but without

adding noise. We can see that similar projection images are put into one class. Here the

sizes of the projection images are increased to (4 ∗ 143)× (4 ∗ 143) in the same way as the

experiment above. Fig 13 shows classification quality curves of CL2D and our method. In

this classification we use Gauss low-pass filter for both CL2D and our algorithm. We can

see that we get the similar classification result to CL2D. Fig 14 shows five class averages

taken from our 256 classes. The execution time of CL2D running in parallel with 8 cores

is about 306466s. Our method using 8 cores takes about 459s. Using a single core, our

method takes about 2886s.

Fig 10: Bacteriorhodopsin projection images with SNR=0.3.

Fig 11: Images of one class from our classification result for bacteriorhodopsin projection images

with SNR=0.3.

4.3 Simulated Data: E. coli Ribosome with SNR=0.03

We use a public data set of a simulated ribosome which is available at the Electron Mi-

croscopy Data Bank (http://www.ebi.ac.uk/pdbe/emdb/singleParticledir/SPIDER FRANK data

(Baxter et al., 2009)). This data set contains 5000 projection images from random direc-

tions of a ribosome bound with three tRNAs at A, P and E sites. Fig 15 shows a few

of the sample images from this data set with SNR=0.03. In this experiment, the same



ICM-RR 12-01 Fast Classification Method 17

Fig 12: The projection images in Fig 11 before adding the noise.

Fig 13: Clustering quality: probability density function estimation of the angular distance between

each projection assigned to a class and its representative for CL2D and our method (SNR=0.3).

low-pass cut-off frequency components are used by CL2D, our direct classification and our

classification after expanding the sizes of the projection images to (4 ∗ 130) × (4 ∗ 130).

Fig 16 shows the classification quality curves for classifying the projection data into 256

classes by the three methods. It is easy to see that the direct application of our method

yields a little better classification result than CL2D. When the image sizes of the projec-

tion images are increased, we get an even better result. Fig 17 shows five class averages

from our 256 classes by the direct classification (without expanding). The execution time

of CL2D running in parallel with 8 cores is about 264487s. Our direct method in 8 cores

takes only about 48s. The classification after expanding the sizes takes 290s in 8 cores.

Using a single core, our direct method takes 240s, and our method after expanding the

sizes takes 1850s.
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Fig 14: The class averages of five classes among 256 classes of bacteriorhodopsin classification

(SNR=0.3).

Fig 15: Images of E. coli ribosome, SNR=0.03.

Fig 16: Clustering quality: probability density function estimation of the angular distance between

each projection assigned to a class and its representative for CL2D and our method (SNR=0.03).
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Fig 17: The class average of five classes among 256 classes of E. coli ribosom classification

(SNR=0.03).

Fig 18: Probability density curves for classification using different weights for our method. Top

left: Using data Bacteriorhodopsin without noise. Top right: Using data Bacteriorhodopsin with

white Gaussian noise at SNR=0.83. All methods classify the images directly without filters. Bot-

tom left: Using the data Bacteriorhodopsin with white Gaussian noise at SNR=0.3. Bottom right:

Using the data E. coli ribosome, SNR=0.03, and expanding the sizes.

4.4 Comparative Results Using Different Weights in Our Method

In section 4.2, we have claimed that the weights in defining our invariant play an important

role. In this subsection, we verify this by a few numerical examples. We test three data

sets with adding difference levels of noises, to show how the noise affects the classification

results. Fig 18 show the probability density curves for the classification for different noise

level and different data sets. From these figures, we can draw the following conclusions:
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1. The first weight is more important than the second one.

2. Without using the weights, the classification results are unacceptable for data sets

with high noise.

3. If the data set is clean, all the results are acceptable, but the results with the weights

are still better.

4.5 Comparative Results Using Different Invariants

We have mentioned that several invariants of translation and rotation have been proposed

in the past decades. Each of them can be used to compute the similarities of different

images to be classified. In this subsection, we present a few comparative results for us-

ing different invariants in our classification method. The first comparison is using the

same data set with the same noise and using different invariants. Figure 19 shows the

classification quality curves for classifying 5000 projection images into 256 classes. The

probability density curves show that if the data set is clean (no noise), the invariant DSCF

yields the best results, then our method follows. AFMT is the worst and DACF is the

second worst one. If the data set has noise, our method yields the best results and all

the other invariants give unacceptable results. This further illustrates that our method is

much more robust.

Fig 19: Probability density curves for classifying 5000 projection images using different invariants.

Left: Using data Bacteriorhodopsin . Middle: Using data Bacteriorhodopsin with white Gaussian

noise at SNR=0.3. Right: Using data E. coli ribosome with SNR=0.03.

In the second comparison, we compare the behaviors of each invariant with respect to

the noises. The probability density curves in each figure of Fig 20 are for the same data

set and same invariant but different noise levels. Again, the 5000 projection images of the

data Bacteriorhodopsin are classified into 256 classes. The figures clearly show that our

method is not sensitive to the noise and therefore it is robust. DSCF yields the second
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best results. The other two invariants do not lead to ideal results, especially for the highly

noisy data.

Fig 20: Probability density curves for classifying the projection images of Bacteriorhodopsin with

different level of noises and using different invariants. Top left: Using DACF. Top right: Using

DSCF. Bottom left: Using AFMT. Bottom right: Using our invariant.

Remark 4.1. In defining our FTTR-invariant, we take module twice. This means that

the phase information is lost. It is natural to think that using the complete invariant

AFMT (no information loss) may be a more desirable choice. However, for solving the

classification problem under the noisy circumstances, our invariant performs much better

than the complete invariant. Hence, a problem that need to be further investigated is that

why the complete invariant does not work well.

Remark 4.2. To fairly evaluate the classification methods, we use simulated data sets.

Since the projection directions are known for the simulated data sets, we can compute

exactly the quality curves for measuring the angle deviations. However, for the real data,

since the projection directions are unknown, any evaluating criterion for the correctness

of the classification is subjective. We therefore do not use real data sets.
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5 Conclusions

We have presented a fast and effective classification method for classifying electron mi-

croscopy images. Firstly, a weighted translation and rotation invariant based on the

Fourier transform is introduced. Using this invariant, we avoid image alignment. A proper

weight is selected bringing the success of our classification. Secondly, a proper cut-off fre-

quency is chosen in the Fourier space, making our method antinoise and fast. Thirdly, a

secondary-class associated with each of the classes is introduced, which speeds up greatly

the classification-adjusting. Finally, the projection images are classified with an adaptive ε

so that the distribution of every class in the space is as close to uniform as possible. From

our experiment results, we can see that the projection number in every class is nearly in

the same order of magnitude. Furthermore, our classification method does not suffer from

the attraction problem even for the data set with low SNR. The experimental results also

show that our method yields equally good (sometimes better) results as C.O.S. Sorzano

et al’s with several hundred times faster.

We have also compared the performance of our invariant with other three existing

invariants (DACF, DSCF and AFMT). Using our invariant yields much better classification

results, especially for the noise data sets. Our implementation C program is freely available

from http://lsec.cc.ac.cn/∼xuguo/misce.htm.
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A Other Invariants of Translation and Rotation

In this appendix, we review a few existing translation and rotation invariants. All these

invariants have been tested in our code.

Auto-correlation function. Auto-correlation functions (ACF) are well known and

widely used in signal processing. Let f be an integrable function in the L2 sense. Then

the one-dimensional ACF is defined as follows (see [12]):

ACF (r) =

∫ ∞

−∞
f(x)f(x− r)dx.
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It is easy to see that ACF is a translation invariant. Two-dimensional ACF is defined

in the same way. To define a translation and rotation invariant for a two-dimensional

image, the two-dimensional ACF is firstly computed and then the ACF is transformed

into the polar coordinates. Finally, a one-dimensional ACF operation is applied to the

angular coordinate, resulting a rotational invariant. Since auto-correlation functions are

computed twice, the final result is called in [12] double auto-correlation function (DACF),

which is a translation and rotational invariant.

Self-correlation function. Let M be the module of the Fourier transform F of the

function f . The inverse Fourier transform of the module M is named as self-correlation

function (SCF) of f . Obviously, SCF is a translation invariant. To define a translation and

rotation invariant for two-dimensional images, the two-dimensional SCF is firstly computed

and then the SCF is transformed into the polar coordinates. Finally, a one-dimensional

SCF operation is applied to the angular coordinate, resulting a rotational invariant. The

final result is called double self-correlation function (DSCF), which is another translation

and rotational invariant.

Complete rotation invariant. In the literatures [1, 4], the authors introduce a complete

rotation invariant. By completeness, we mean that there is no information loss in the

process of transformation. Therefore, the transformation is invertible. As a first step, the

mass centers of the given images are set (by translation) to the origin of the coordinate

system. Assume the centralized image, which is a translation invariant, is converted into

the polar coordinate f(r, θ). Then compute the analytical Fourier-Mellin transform of

f(r, θ) as follows.

∀(k, v) ∈ Z×R, Mfσ(k, v) =
1

2π

∫ ∞

0

∫ 2π

0
f(r, θ)rσ−ive−ikθdθ

dr

r
.

From Mfσ(k, v), a complete rotation invariant is defined as.

∀(k, v) ∈ Z×R, Ifσ(k, v) = Mfσ(0, 0)
−σ+iv

σ eik arg(Mfσ (1,0))Mfσ(k, v)).

Since f(r, θ) is a complete translation invariant, Ifσ(k, v) is a complete translation and

rotational invariant.
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