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Some Results on the Laplacian Spectral Radii
of Tricyclic Graphs*
CHEN Yan' YUAN Xiying'! HAN Miaomiao®

Abstract A tricyclic graph is a connected graph in which the number of edges equals the num-
ber of vertices plus two. Let A(G) and u(G) denote the maximum degree and the Laplacian spectral
radius of a graph G, respectively. Let 7 (n) be the set of tricyclic graphs on n vertices. In this pa-

per, it is proved that, for two graphs Hy and Hz in 7 (n), if A(H1) > A(Hz2) and A(Hy) > 247, then

w(H1) > p(H2). As an application of this result, we determine the seventh to the nineteenth largest
values of the Laplacian spectral radii among all the graphs in 7 (n)(n > 9) together with the
corresponding graphs.
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0 Introduction

In this paper, all the graphs are simple graphs. Let G be a graph with vertex set V(G) =
{v1,v2,- - ,vn}. Denote by Ng(v)(or simply N(v)) the set of all neighbors of a vertex v of
G, and by dg(v)(or simply d(v)) the degree of v. Let D(G) = diag(d(vy),d(va), -+ ,d(vyn))
be the diagonal matrix of vertex degrees. The Laplacian matrix L(G) of G is defined by
L(G) = D(G) — A(G), where A(G) is the (0,1)-adjacency matrix of G. The characteristic
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polynomial det(z1 — L(G)) is denoted by ®(G; x). It is well known that L(G) is positive semi-
definite, symmetric and singular. We denote the ith eigenvalue of L(G) by u;(L(G))) (or
simply 1;(G)) and order them in non-increasing order, i.e., u1(G) = p2(G) = -+ = un(G),
and p1(@G) is called the Lapalcian spectral radius of G, denoted by u(G) in this paper.

A tricyclic graph is a connected graph in which the number of edges equals the number
of vertices plus two. Let 7 (n) be the set of tricyclic graphs on n vertices. From [1] [1] we
know that for any graph G € 7(n), G can be obtained from some 7; shown in Fig.1 by
attaching trees (maybe empty) to some vertices. Let A(G) denote the maximum degree of
a graph G. Denote by T (n,A) the graphs whose maximum degree is A in 7 (n).
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1 A relation between u(G) and A(G) of a graph G in
7(n)

Ren in [2] determined the first six largest Laplacian spectral radii among all the graphs
in 7(n)(n > 9) together with the corresponding graphs(see Lemma 1).

Lemma 1 @ Let G1,Go,--- ,G11(n = 9) be the graphs in 7(n) as shown in Fig-
ure.2, and G be any graph in 7 (n)\{G1,G2,- -+ ,G11}. Then we have u(G1) = u(Ga) =
w(Gs) = u(Ga) = W(Gs) > pu(Ge) > p(Gr) > pu(Gs) = w(Gg) > u(Go) > u(G11) > p(G).

Lemma 2 ¥ If G has at least one edge, then 1(G) > A(G)+1. For G being a connected
graph on n > 1 vertices, equality is attained if and only if A(G) =n — 1.

By Lemma 2 and the fact that 7 (n,n — 1) = {G1, G2, G3, G4, G5}, we may obtain the
following result.

Corollary 1 If G is a graph in 7 (n)\{G1, G2, Gs, G4, G5}, then u(G) > A(G) + 1.

In the following we will give a relation between p(G) and A(G) of a graph G in 7 (n)(see
Theorem 1).

Lemma 3 [¢ Let G be a simple graph, then
w(G) < max{d(v) + m(v)jv € V(G)},
> d(w)

_ ueN@
where m(v) = =
Theorem 1 Let Hy, H; be graphs in 7 (n). If A(Hy) > A(Hs) and A(Hy) > 5L, then

p(Hy) > p(Hz).

Proof In order to prove Theorem 1, we first give two claims in the following.
Claim 1. Let G be graphs in 7 (n). If A(G) > 22, then u(G) < A(G) + 2.
Proof of Claim 1. Let v be a vertex of G and write d(v) = t. Set

N(U) = {1}1,1)2, T avt}a A(vl) = N(UZ)\{U},Z =12t
Since G is a graph in 7 (n), we have
| A(vr) [+ [ A(v2) [ +---+ [ A(ve) [S n =t + 5.

Hence
t

S d(w) =D (| A(wi) [ +1) < n+5.

v; EN (v) i=1

and
n+5

t

d(v) + m(v) <t+
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Let g(t) =t + 25, then g(t) is convex when ¢t > 0. Hence when 2 < t < A(G), we have
d(v) +m(v) < g(t) < max{g(2), g(A(G))}. (1)
Let v be any vertex of G. If d(v) = 1, then

d(v) + m(v) <1+ A(G) < AG) +2. (2)
If 2 < d(v) < A(G) and A(G) > “£2, then from Ineq.(1) we have
am+nmggnmq2+ﬁ§3¢uay+%%%}gA«n+2. (3)

Hence u(G) < A(G) +2 follows from Inegs.(2) and (3) and Lemma 3.

Claim 2. Let G be graphs in 7 (n). If A(G) < 2£2, then p(G) < 2.

Proof of Claim 2. Similarly to the proof of Claim 1, let v be any vertex of G. If
d(v) =1, and A(G) < 2£2, then

ﬂm+wmo<1+A@n<”;9. (4)

If 2 < d(v) < A(G) < %2, and noting that g(2) = g(22) = 22, then from Ineq.(1) we
have 9
am+m@<”;. (5)
Hence 1(G) < 22 follows from Inegs.(4) and (5) and Lemma 3.
If Hy € {G1,G2,G3,Gy4, G5}, then the hypothesis that A(Hy) > A(Hz) insures that
Hy ¢ {G1,G2,G5,G4,G5}. Then p(Hy) > p(Hz) follows from Lemma 1. Now we suppose
that Hy ¢ {G1, G2, G3,G4, G5}, then p(Hy) > A(Hp) + 1 holds from Corollary 1.

If A(Hy) > 2£5, by Claim 1 and Corollary 1 we have

w(Hz) < A(Hz) +2 < A(Hr) + 1 < p(Hy).
If A(Hz) < 2£5, by Claim 2 and Corollary 1 we have

n+9
2

p(Hs2) < SA(Hy) + 1 < p(Hy).

The proof is completed.

2 Ordering the graphs in 7 (n) by their Laplacian spec-
tral radii

In this section we first cite a formula for the characteristic polynomial of the matrix
L(H) when H is a coalescence of some two graphs. Suppose we have two graphs H; and
Hy with v; € V(H;) and vy € V(Hs); the coalescence of Hy; and Hs with respect to
v1 and vy is formed by identifying v; and ve and is denoted by H; - Hy. In other words,
V(Hy-Hg) = V(Hy)UV (H2)U{v*} —{v1, v2}, with two vertices in H; - Hy adjacent if they are
adjacent in Hy or Ha, or if one is v* and the other is adjacent to vy or va(see [3]). Let L, (H)
be the principal sub-matrix of L(H) obtained by deleting the row and column corresponding
to the vertex v of H. Write det(xI — L(H)) = ®(H;x), and det(z]— L,(H)) = ®(L,(H); z).
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Lemma 4 [T Let H; - Hs be the coalescence of H; and Hs with respect to v1; and vs, we

have
O(Hy - Hy;x) =P (Hy; 2)®(Lo, (H2); 7) + ®(Hz; 2) (Lo, (H1); 2)
— 2@ (Lo, (H1); 2)® (Lo, (Hz); 7).
Let g1(z) =25 — (n + 10)z* + (11n + 29)23 — (40n + 16)2? + (54n — 19)z — 21n;
g2(x) = 2* — (n+ 723 + (8n + 5)z? — (13n — T)x + 5n;
g3(x) = 2* — (n +6)z3 + (Tn + 6)z? — (13n — 5)x + 6n;
ga(x) = 2% — (n+11)25 + (12n+41)z* — (53n+55) 2> + (1061 +4)2? — (94n — 26)z +29n;
g5(x) = 2° — (n + 8)z* + (9n + 18)2® — (27n + 6)z? + (31n — 10)z — 11n;
gs(z) = 2% — (n + 3)2? + (4n — 2)x — 2n;
g7(x) = 2% — (n+11)2° + (12n+39)z* — (51n+45)x3 + (95n — 9)z? — (77n — 31)z + 21n;
gs(z) = 2 — (n+6)2% + (Tn + 4)2% — (11n — 6)x + 4n;
go(x) = 2° — (n+ 9)z* + (10n + 21)23 — (31n + 3)2% + (33n — 16)z — 10n;
gro(z) = 2% — (n+11)2° + (12n+40)2* — (52n+48) 2 + (99n — 10)2? — (80n — 34)x +21n;
g11(x) = 2% — (n+ 8)a* + (In + 17)x3 — (26n + 2)2% + (27n — 13)z — 8n;
gi2(x) = 2t — (n + 5)a® + (6n + 3)2? — (In — 5)x + 3n;
gi13(x) =23 — (n+2)2® + (3n — 2)x — n.

In the following, we will give the characteristic polynomial of the graphs in Fig.2 by
using Lemma 4 and determine the seventh to the nineteenth largest values of the Laplacian
spectral radii among all the graphs in 7 (n).

It is not difficult to see that any graph in 7 (n,n — 2) is obtained from some graph in
T.(i = 1,8,9,12,13,15) by attaching some trees at some vertices. Furthermore, we may
check that T(n,n —2) = {G¢,Gr, -+ ,Gs2}, and G;(i = 6,7,--- ,32) are shown in Fig.2.

Theorem 2 Let G;(i = 12,13, ---,32) be graphs as shown in Fig.2. When n > 9, we
have

(1) @(Gras2) = 2(z — 1)" g1 (2);

(2) @(Gi3;2) = x(z — )" "(z — 2)2g2(z);

(3) ®(Gra;2) = x(x — 1) "(22 — bz + 5)g3(7);
(4) ®(Gis;7) = a(x —1)" 7 ga(2);

(5) ®(Gig; ) = x(x — 1)" " (x — 3)gs(2);

(6) ®(Gir;w) = a(x — 1) (2 — 3)*(2 — 2)ge(2);
(7) ®(Gis; ) = x(x — )" "(z - 2)*(z — 4)g6(2);
(8) ®(Grg; ) = x(x — 1)" %z — 3)(z — 4)g6(2);
(9) ®(Goo; ) = x(z — 1) "gs(a);

(10) ®(Gor;2) = 2(z — 1)" (2 — 2)(z — 3)gs();
(11) ©(Gaas2) = 2(z — 1)"%(x — 4)gs(2);

(12) ®(Gog; ) = x(x — 1)" 7 (z — 2)go(z);

(13) ®(Gag;2) = x(x — 1)" "g10(2);

(14) O(Gas32) = (z — 1) "(x — 3)g11(2);

(15) ®(Gap;2) = x(x — 1)""7(x — 3)%g12(2);

(16) @(Gar; ) = x(x — 1) "(x = 2)(x — 3)gr2(x);
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(17) ®(Gag;2) = x(x — 1)~ "(x — 3)3g13(2);

(18) ®(Gag;2) = x(x — 1) "(x — 2)(x — 3)(z — 4)g13(2);

(19) ®(G30;2) = z(z — 1)" (2 — 3)(2% — 62 + 7)g13(2);

(20) ®(Gz1;2) = z(z — )" "(z — 2)*(x — 5)g13(2);

(21) ®(G32;2) = x(x — 1)"%(x — 4)%g13(2);

(22) p(Gr2) > p(Grs) > p(Gra) > p(Gis) > p(Gis) > p(Grr) = p(Gis) = p(Go) >
w(G20) > (Ga1) = p(Gaz) > pu(Gaz) > p(Gaa) > u(Gas) > u(Gas) = u(Gar) > pu(Gas) =
M(G29) = u(Gso) = u(Gs1) = p(Gsz).

Gl G2

G7 Gg GQ GlO Gll G12

g

%&%%%ﬁﬁ
G e VR

G31 G32

Fig. 2

The graphs G1,Ga2, - - -

7G’gz in T(n)

Gio
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Proof (1) We first use Lemma 4 to determine the characteristic polynomial ®(G1s; ).
Let v be the vertex of G2 with degree n — 2, and G’ be the graph obtained from Gis
by deleting all the pendant vertices in Ng,,(v). Then Gy is the coalescence of G and
the star K1 ,_5(i.e., G2 = G - K1 ,-5) with respect to v and u, where u is the center of
Ky n—5. It is easy to obtain that

(G ;2) = x(x — 3)(z — 5)(2® — 6z +7), (6)
O(L,(G):x) = a* — 112% + 402> — 5z + 21, (7)
O(K1,-5;7) = zr — (n —4))(x = 1)"°, (8)
O(Lu(Kin—s);2) = (z —1)"7°. (9)

By using Lemma 4 and Eqs.(6)-(9) we have

’

(Giras ) =B(G 2)B(Lu(Kys5); 2) + DK 5 0)@(Ly (G )5 2)
— 2®(Lo(G); 2)®(Ly (K1 ns); )
=x(z — 1)" Og; ().

We may obtain ®(G;;z) for i = 13,14, - - ,32 by the similar argument of above.
(2) Now we’ll prove u(Gi2) > 1(G13).By using Corollary 1, we have

ILL(G12) > A(Glz) +1=n—-1>0.

By ®(G12; ) = x(x—1)""5g1(x), we get u(G12) is the largest root of the equation g; () = 0.
Because
(G ) = (e —1)"T(z — 2)*(z - 3) fu(x),

where fy = 2% — (n +4)22 + (5n — 2)z — 3n. It is easy to check that

(x = 3)g2(7) — g1(z) = =3fa(x) + q1(z),

where ¢1(z) = —42? + (5n — 8)z — 3n.

Let \* = u(Giz), then A* > n —1, and ¢1(A\*) = 0. Since fu(3) < 0, fa(4) >
0, fa(n—1) <0,s0 4 < u2(G4) < n—1. Furthermore we have pz(Gs) <n—1< A* < p(Gy)
(by Lemma 1 we know pu(Gy) > pu(Gi2) = A*). So we have fi(A*) < 0.

If n > 11, then

qi(n) = —4n® 4+ (5n — 8)n —3n =n? — 11n > 0,

SO
(A" =3)g2(A") = =3/as(A") + @1 (A7) + 2 (A") > 0,
then M(Glg) > /L(Glg).
If n= 10,,LL(G13) = 902059, ILL(G12) = 904272, then M(Glg) > ;L(Glg).
If n= 9,M(G13) = 8.02991, /J,(Glg) = 8.05908, then M(Glg) > /J,(G13).
Hence the largest root of the equation g1 () = 0 is larger than u(Gi3),i.e., u(Gr2) >

u(G13).
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w(G1s), 1(Gie) > pu(Gir), (Gis) > w(Gie), 1(Gir) > 1(Gao), u(Gas)
(Gas), 1(Gaa) > p(Gas), u(Gaa) > p(Gas) )

By the similar proof of u(Gia) > w(Giz), we can get u(Giz) > u(Gia), u(Gia)
1(Gag), 1(Gae)
1(G24), 1(Gao)

vV VvV V

>
; 1(Gaz) > u(Gaa), u(Gar) >

wW(Ga1), p(Ga1) > p(Gas).

By ®(Gy;z)(i = 17,18,19), we know that u(Gi7) = u(Gis) (Gho) i.e. the largest

=p
root of the equation g¢(z) = 0. Similarly, we can get p(Gag) = u(Gar), w(Gas) = u(Gag) =
1(Gs0) = i(Ga1) = p(Gs2), (Gar) = p(Gaz)-
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