On the Spectral Radii of m－Starlike Tree＊

WU Tingzeng ${ }^{1 \dagger}$ HU Shengbiao ${ }^{1}$

Abstract

A tree is said to be starlike if exactly one of its vertices has degree larger than 2．A m－starlike tree is obtained by appending a starlike tree to every one terminus of a starlike tree $S_{0}=S\left(m_{01}, m_{02}, \ldots, m_{0 \Delta_{0}}\right)$ ．Gutman and L．Shi give a bound of the spectral radii of starlike tree．In this paper，we give an another short proof and further discussions about this result．Sometime，we give a new upper bound of the spectral radii of m－starlike tree．

Keywords m－Starlike tree，Spectra of graphs，Spectral radius
Chinese Library Classification O157．5
2010 Mathematics Subject Classification 05C50

m 重似星树的谱半径

$$
\text { 吴廷增 }{ }^{1 \dagger} \text { 扈生彪 }{ }^{1}
$$

摘要 仅有一个顶点的度大于 2 的树称为似星树。在一棵似星树的每个一度点粘接一棵似星树构成的图称为 m 重似星树。Gutman 和 L．Shi 给出了似星树谱半径的一个界。在本文中我们给出了另外一个更简洁的证明方法并做了深入的讨论，同时给出了 m 重似星树谱半径的一个最好界。

关键词 m 重似星树，图的谱，谱半径
中图分类号 O157．5
数学分类号 05 C 50

0 Introduction

Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E ．All graphs considered here are simple and undirected．For $v \in V(G)$ ，we use $N(v)$ to denote the neighbors of v ．Let $d\left(v_{i}\right)$ denote the vertex degree of v_{i} and let Δ denote the maximum vertex degree of G ．Let $A(G)$ be the adjacency matrix of G ．Since $A(G)$ is a real symmetric matrix，its eigenvalues must be real，and may be ordered as $\lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \ldots \geqslant \lambda_{n}(G)$ ． The sequence of n eigenvalues is called the spectrum of G ，the largest eigenvalue $\lambda_{1}(G)$ is often called the spectral radius of G ．The characteristic polynomial of $A(G)$ is called the characteristic polynomial of the graph G and is denoted by $\phi(G, \lambda)$ ．

[^0]A tree is said to be starlike if exactly one of its vertices has degree larger than two. Let P_{n} denote the path on n vertices. By $S=S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)$ we denote the starlike tree which has a vertex v of degree $\Delta \geqslant 3$ and which has the property

$$
S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)-v=P_{n_{1}} \cup P_{n_{2}} \cup \ldots \cup P_{n_{\Delta}}
$$

where $n_{1}+n_{2}+\ldots+n_{\Delta}+1=n$. The starlike tree with maximal degree $\Delta=3$ is called T-shape.

A m-starlike tree is obtained by appending a starlike tree to every terminus of a starlike tree $S_{0}=S\left(m_{01}, m_{02}, \ldots, m_{0 \Delta_{0}}\right)$ (see Fig.1). We will denoted by $G\left(S_{0}, S_{1}, S_{2}, \ldots, S_{\Delta_{0}}\right)$, a m -starlike tree such that

$$
G\left(S_{0}, S_{1}, \ldots, m_{0 \Delta_{0}}\right)-u-\sum_{i=1}^{\Delta_{0}} v_{i}=P_{m_{01}} \cup \ldots \cup P_{m_{\Delta_{0} \Delta_{\Delta_{0}-1}}}
$$

where

$$
u+\sum_{i=1}^{\Delta_{0}} v_{i}+m_{01}+m_{02}+\ldots+m_{\Delta_{1}-1}+m_{11}+\ldots+m_{1 \Delta_{1}}+\ldots+m_{\Delta_{0} \Delta_{\Delta_{0}-1}}=n
$$

and

$$
S_{i}-v_{i}=\sum_{j=1}^{\Delta_{i}} m_{i j}
$$

If $\Delta_{0}=\Delta_{1}=\Delta_{2}=\ldots=\Delta_{\Delta_{0}}=\Delta \geqslant 3, m_{0 i}\left(i=1,2, \ldots, \Delta_{0}\right)$ and $m_{i j}=m(i=$ $\left.1,2, \ldots, \Delta_{0}, j=1,2, \ldots, \Delta_{\Delta_{0}}\right)$, then we will denoted by $G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m)$ the m -starlike tree.

Fig. 1 m-starlike tree

In this paper, we give a new upper bound of the spectral radius of m-starlike tree.

1 Some lemmas

In the section, we will present some lemmas which are required in the proof of the main results.

Lemma 1.1 ${ }^{[1]}$ Let G be a connected graph, and let H be a proper subgraph G. Then

$$
\lambda_{1}(H)<\lambda_{1}(G)
$$

Lemma 1.2 ${ }^{[1]}$ Let u be a vertex of G, and let $C(u)$ be the set of all cycles containing u. Then

$$
\phi(G, \lambda)=\lambda \phi(G-u, \lambda)-\sum_{v \in N(u)} \phi(G-u-v, \lambda)-2 \sum_{Z \in C(u)} \phi(G-V(Z), \lambda)
$$

In particular, if G is a tree, then

$$
\phi(G, \lambda)=\lambda \phi(G-u, \lambda)-\sum_{v \in N(u)} \phi(G-u-v, \lambda)
$$

Lemma 1.3 ${ }^{[1]}$ The characteristic polynomial of a graph satisfies the following identities:
(a) $\phi(G \cup H, \lambda)=\phi(G, \lambda) \phi(H, \lambda)$,
(b) $\phi(G, \lambda)=\phi(G-e, \lambda)-\phi\left(G-v_{1}-v_{2}, \lambda\right)$ if $e=v_{1} v_{2}$ is a cut-edge of G,
where $G-e$ denotes the graph obtained from G by deleting the edge e and $G-v_{1} v_{2}$ denotes the graph obtained from G by deleting the vertices v_{1}, v_{2} and the edges incident to it.

Lemma 1.4 ${ }^{[1]}$ Let C_{n}, P_{n} denote the cycle and the path on n vertices respectively. Then

$$
\begin{aligned}
& \phi\left(C_{n}, \lambda\right)=\prod_{j=1}^{n}\left(\lambda-2 \cos \frac{2 \pi j}{n}\right)=2 \cos (n \arccos \lambda / 2)-2 \\
& \phi\left(P_{n}, \lambda\right)=\prod_{j=1}^{n}\left(\lambda-2 \cos \frac{\pi j}{n+1}\right)=\frac{\sin ((n+1) \arccos \lambda / 2)}{\sin (\arccos \lambda / 2)}
\end{aligned}
$$

Let $\lambda=2 \cos \theta$, set $t^{1 / 2}=e^{i \theta}$, it is useful to write the characteristic polynomial of C_{n}, P_{n} in the following form:

$$
\begin{align*}
\phi\left(C_{n}, t^{1 / 2}+t^{-1 / 2}\right) & =t^{n / 2}+t^{-n / 2}-2 \tag{1}\\
\phi\left(P_{n}, t^{1 / 2}+t^{-1 / 2}\right) & =t^{-n / 2}\left(t^{n+1}-1\right) /(t-1) \tag{2}
\end{align*}
$$

Hoffman and Smith ${ }^{[3]}$ define an internal path of a graph G as a walk $v_{0}, v_{1}, \ldots, v_{k}(k \geqslant 1)$ such that the vertices $v_{1}, v_{2}, \ldots, v_{k}$ are distinct (v_{0}, v_{k} need not be distinct), $d\left(v_{0}\right)>2, d\left(v_{k}\right)>$ 2 and $d\left(v_{i}\right)=2$ for $0<i<k$.

Lemma $1.5{ }^{[3]}$ Let G be a connected graph that is not isomorphic to W_{n}, where W_{n} is a graph obtained from the path P_{n-2} (indexed in natural order $1,2, \ldots, n-2$) by adding two pendant edges at vertices 2 and $n-3$. Let $G_{u v}$ be the graph obtained from G by subdividing the edge uv of G. If uv lies on internal path of G, then $\lambda_{1}\left(G_{u v}\right)<\lambda_{1}(G)$.

We now give some known bounds for the spectral radius $\lambda_{1}(G)$ in terms of the largest vertex degree Δ.

It is well-known that
Lemma 1.6 ${ }^{[1]}$ For a connected graph G

$$
\begin{equation*}
\sqrt{\Delta} \leqslant \lambda_{1}(G) \leqslant \Delta \tag{3}
\end{equation*}
$$

The lower bound in (3) follows from the fact that the star $K_{1, \Delta}$ is a subgraph (not necessarily induced) of any graph G with $d_{1}=\Delta$ and therefore $\lambda_{1}(G) \geqslant \lambda_{1}\left(K_{1, \Delta}\right)=\sqrt{\Delta}$.

The upper bound in [3] is also well-known (see [1]).
Lemma $\mathbf{1 . 7}^{[2,5]}$ Let T be a tree. Then

$$
\begin{equation*}
\lambda_{1}(T)<2 \sqrt{\Delta-1} \tag{4}
\end{equation*}
$$

2 Main results

The following well-known result was proposed by Gutman[4] and L. Shi[7]. We will give a short proof and further discussions.

Theorem 2.1 Let $S=S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)$ be a starlike tree with maximum vertex degree Δ. Then

$$
\begin{equation*}
\lambda_{1}(S)<\frac{\Delta}{\Delta-1} \sqrt{\Delta-1} \tag{5}
\end{equation*}
$$

Proof Let m be a positive integer. Denote $S(\Delta m)=S(\overbrace{m, m, \ldots, m}^{\Delta})$. Using Lemma 1.3 (b), we have

$$
\phi(S(\Delta m), \lambda)=\phi\left(P_{m}, \lambda\right)^{\Delta-1}\left(\lambda \phi\left(P_{m}, \lambda\right)-\Delta \phi\left(P_{m-1}, \lambda\right)\right)
$$

By (2) we have

$$
\frac{\phi\left(S(\Delta m), t^{1 / 2}+t^{-1 / 2}\right)}{\phi\left(P_{m}, \lambda\right)^{\Delta-1}}=\frac{t^{-(m+1) / 2}}{t-1}\left(t^{m+2}-(\Delta-1) t^{m+1}+(\Delta-1) t-1\right)=: \psi(t)
$$

Let t_{1} be the largest root of $\psi(t)$, then $t_{1}<\Delta-1$ since $\psi(t)>0$ for $t \geqslant \Delta-1$. Let $f(t)=t^{1 / 2}+t^{-1 / 2}$, then $f^{\prime}(t)=t^{-3 / 2}(t-1) / 2 \geqslant 0$ for $t \geqslant 1$, so $f(t)$ strictly increases in $[1, \infty)$. Thus

$$
\lambda_{1}(S(\Delta m))=t_{1}^{1 / 2}+t_{1}^{-1 / 2}<(\Delta-1)^{\frac{1}{2}}+(\Delta-1)^{-\frac{1}{2}}=\frac{\Delta}{\Delta-1} \sqrt{\Delta-1}
$$

Since m is an any positive integer, hence $S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)$ can be embedded in $S(\overbrace{m, m, \ldots, m}^{\Delta})$ as a proper subgraph, by Lemma 1.1 we have

$$
\lambda_{1}\left(S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)\right)<\lambda_{1}(S(\overbrace{m, m, \ldots, m}^{\Delta}))<\frac{\Delta}{\Delta-1} \sqrt{\Delta-1} .
$$

This proof is complete.
Corollary $2.1^{[6]}$ Let λ_{1} be the spectral radius of T-shape trees, then $\lambda_{1}<\frac{3}{\sqrt{2}}$.
Specially, if we think the path is also a starlike tree with $\Delta=2$, then the proof of theorem is also right. So we have

Corollary $2.2 \lambda_{1}\left(P_{n}\right)<2$.
By (3) we have

Corollary 2.3

$$
\begin{equation*}
\sqrt{\Delta} \leqslant \lambda_{1}\left(S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)\right)<\frac{\Delta}{\Delta-1} \sqrt{\Delta-1} \tag{6}
\end{equation*}
$$

The equality holds if and only if $n_{1}=n_{2}=\ldots=n_{\Delta}=1$.

Corollary 2.4

$$
\lambda_{1}\left(S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)\right) \sim(\sqrt{\Delta}), \Delta \rightarrow \infty
$$

Proof Since $\lim _{\Delta \rightarrow \infty} \frac{\sqrt{\Delta}}{\sqrt{\Delta}}=1$ and $\lim _{\Delta \rightarrow \infty} \frac{\Delta}{\Delta-1} \frac{\sqrt{\Delta-1}}{\sqrt{\Delta}}=1$, hence by (6) we have

$$
\lim _{\Delta \rightarrow \infty} \frac{\lambda_{1}\left(S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)\right)}{\sqrt{\Delta}}=1
$$

So

$$
\lambda_{1}\left(S\left(n_{1}, n_{2}, \ldots, n_{\Delta}\right)\right) \sim(\sqrt{\Delta}), \Delta \rightarrow \infty
$$

Since $\frac{\Delta}{\Delta-1} \sqrt{\Delta-1}<2 \sqrt{\Delta-1}<\Delta$ for $\Delta \geqslant 3$. Clearly, the upper bound (5) is better than the upper bound (4) and the upper bound (3).

Theorem 2.2 Let $G\left(S_{0}, S_{1}, S_{2}, \ldots, S_{\Delta_{0}}\right)$ be a m-starlike tree with maximum vertex degree $\Delta(\Delta \geqslant 3)$. Then

$$
\begin{equation*}
\lambda_{1}\left(G\left(S_{0}, S_{1}, S_{2}, \ldots, S_{\Delta_{0}}\right)\right)<\frac{(2 \Delta-1) \sqrt{2 \Delta-2}}{2 \Delta-2} \tag{7}
\end{equation*}
$$

Proof Let S_{0} is a star, that is, $m_{01}, m_{02}, \ldots, m_{0 \Delta_{0}}=1$. Let m be a positive integer such that $m_{i j}<m\left(i=1,2, \ldots, \Delta_{0}, j=1,2, \ldots, \Delta_{\Delta_{0}}\right)$. Now we calculate the characteristic polynomial of $G\left(S_{0},(\Delta-1) m, \ldots,(\Delta-1) m\right)$, where $\Delta=\max \left\{\Delta_{0}, \Delta_{1}, \ldots, \Delta_{\Delta_{0}}\right\}$. By Lemma 1.2 we know,

$$
\phi(S(\overbrace{m, m, \ldots, m}^{\Delta-1}), \lambda)=\phi^{\Delta-2}\left(P_{m}, \lambda\right)\left(\lambda \phi\left(P_{m}, \lambda\right)-(\Delta-1) \phi\left(P_{m-1}, \lambda\right)\right) .
$$

By Lemma 1.2, we have

$$
\begin{aligned}
& \phi(G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m), \lambda) \\
= & \phi^{\Delta-1}(S)\left[\lambda \phi(S)-\Delta \phi^{\Delta-1}\left(P_{m}\right)\right] \\
= & \phi^{\Delta-1}(S) \phi^{\Delta-2}\left(P_{m}\right)\left[\phi\left(P_{m}\right)\left(\lambda^{2}-\Delta\right)-\lambda(\Delta-1) \phi\left(P_{m-1}\right)\right] .
\end{aligned}
$$

By (2) we have

$$
\begin{aligned}
& \phi\left(G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m), t^{1 / 2}+t^{-1 / 2}\right) / \phi^{\Delta-1}(S) \phi^{\Delta-2}\left(P_{m}\right) \\
= & \phi\left(P_{m}\right)\left(\lambda^{2}-\Delta\right)-\lambda(\Delta-1) \phi\left(P_{m-1}\right) \\
= & \frac{t^{-\frac{m}{2}}}{(t-1)}\left(\left(t^{m+1}-1\right)\left(t+t^{-1}+2-\Delta\right)-(t \Delta-t+\Delta-1)\left(t^{m}-1\right)\right) \\
= & \frac{t^{-\frac{m}{2}}}{(t-1)}\left(t^{m+2}+(3-2 \Delta) t^{m+1}+(2-\Delta) t^{m}+(\Delta-2) t+2 \Delta-3-t^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi\left(G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m), t^{1 / 2}+t^{-1 / 2}\right) t^{\frac{m}{2}}(t-1) / \phi^{\Delta-1}(S) \phi^{\Delta-2}\left(P_{m}\right) \\
= & t^{m+2}+(3-2 \Delta) t^{m+1}+(2-\Delta) t^{m}+(\Delta-2) t+2 \Delta-3-t^{-1}=: \psi(t) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\psi(2 \Delta-2) & =(2 \Delta-2)^{m+2}+(3-2 \Delta)(2 \Delta-2)^{m+1}+(2-\Delta)(2 \Delta-2)^{m}+(\Delta-2)(2 \Delta-2) \\
& =2 \Delta-3-(2 \Delta-2)^{-1} \geqslant 0
\end{aligned}
$$

Because $\Delta \geqslant 3$, let t_{1} be the largest root of $\psi(t)$, then $t_{1}<2 \Delta-2$ since $\psi(t)>0$ for $t \geqslant 2 \Delta-2$. Let $f(t)=t^{1 / 2}+t^{-1 / 2}$, since $f^{\prime}(t)=t^{-3 / 2}(t-1) / 2 \geqslant 0$ for $t \geqslant 1$, hence $f(t)$ strictly increases in $[1, \infty)$. Thus
$\lambda_{1}(G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m))=t_{1}^{1 / 2}+t_{1}^{-1 / 2}<(2 \Delta-2)^{\frac{1}{2}}+(2 \Delta-2)^{-\frac{1}{2}}=\frac{2 \Delta-1}{2 \Delta-2} \sqrt{2 \Delta-2}$.
Since m is an any positive integer, hence $G\left(S_{0}, S_{1}, S_{2}, \ldots, S_{\Delta_{0}}\right)$ can be embedded in $G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m)$ as a proper subgraph. Let u and $v_{i}(i=1,2, \ldots, \Delta)$ be the maximum degree vertices of $G\left(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m\right.$, we subdivide the edge $u v_{i}$ of $G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m)$ for many times, to obtain the graph $G\left(\left(S_{0},(\Delta-1) m, \ldots,(\Delta-\right.\right.$ 1) m). By Lemma 1.1 and Lemma .5, we have

$$
\begin{aligned}
\lambda_{1}\left(G\left(S_{0}, S_{1}, S_{2}, \ldots, S_{\Delta_{0}}\right)\right) & <\lambda_{1}\left(G\left(S_{0},(\Delta-1) m, \ldots,(\Delta-1) m\right)\right) \\
& <\lambda_{1}(G(\Delta m,(\Delta-1) m, \ldots,(\Delta-1) m)) \\
& <\frac{(2 \Delta-1) \sqrt{2 \Delta-2}}{2 \Delta-2}
\end{aligned}
$$

This proof is complete.
Since

$$
\frac{(2 \Delta-1) \sqrt{2 \Delta-2}}{2 \Delta-2}<2 \sqrt{\Delta-1}<\Delta
$$

for $\Delta \geqslant 3$. Clearly, the upper bound (7) is better than the upper bounds (4) and (3).

References

[1] Cvetković D M, Doob M, Sachs H. Spectra of graphs [M]. New York, 1980.
[2] Godsil C D. Spectra of trees [J]. Annals of Discrete Mathematics, 1984, 20: 151-159.
[3] Hoffman A J, Smith J H. On the spectral radii of topologival equivalent graphs [M]. in: M. Fielder(Ed.), Recent Advances in Graph Theory, Academia Praha, Prague, 1975, 273-281.
[4] Lepovć M, Gutman I. Some spectral properties of starlike trees [C]. Bulletin T.CXXII de l'Académie Serbe des Sciences et des Arts - 2001 Classe des Sciences mathématiques et naturelles Sciences mathématiques, No 26.
[5] Stevanović D. Bounding the largest eigenvalue of tree in terms of the largest vertex degree [J]. Linear Algebra Appl, 2003, 360: 35-42.
[6] Wang W, Xu C. On the spectral characterization of T-shape trees [J]. Linear Algebra Appl, 2006, 414: 492-501.
[7] Shi L. The spectral radii of a graph and its line graph [J]. Linear Algebra Appl, 2007, 422: 58-66.

[^0]: 收稿日期：2011年8月13日．
 ＊Supported by National Natural Science Foundation of China（10861009）and National commission of ethnic affairs research projects（10QH01）．

 1．School of Mathematics and Statistics，Qinghai Nationalities University，Xining 810007，China；青海民族大学数学与统计学院，青海 西宁 810007
 \dagger 通讯作者 Corresponding author

