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On the Linear Arboricity of 1-Planar Graphs*
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Abstract It is proved that the linear arboricity of every 1-planar graph with maxi-
mum degree A > 33 is [A/2].
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0 Introduction

All graphs considered here are finite, simple and undirected. Most of the notions are
standard and we refer the readers to [1]. A linear forest is a forest in which every connected
component is a path. The linear arboricity la(G) of a graph G is the minimum number of
linear forests in G, whose union is the set of all edges of G. Akiyama, Exoo and Harary!?!
conjectured that la(G) = [(A(G) + 1)/2] for any regular graph G. It is obviously that
la(G) = [A(G)/2] for every graph G and la(G) > [(A(G) + 1)/2] for every regular graph
G. So this conjecture is equivalent to the following conjecture.

Conjecture 1 For any graph G,

[M

‘ ] <la(G) < {W}

2

Now this conjecture was only proved for several special classes of graphs such as planar
graphs(—4 and is still widely open. Note that if this conjecture is true and G is a graph
with even (resp. odd) maximum degree, then the linear arboricity of G is either [A(G)/2]
or [(A(G) +1)/2] (resp. exactly [A(G)/2]). So the determination of la(G) for a graph G
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seems interesting, although Péroche showed that this is an NP-hard problem!®). In fact, the
linear arboricity has been determined for many classes of graphs (see the introduction of [6]
for detail) such as series-parallel graphs!”.

In this paper, we focus on 1-planar graphs. Given a surface S we call a graph G 1-
embedded on S if G can be drawn on S so that each edge is crossed by at most one other
edge. In particular, if S is a plane, then such a graph G is called 1-planar graph. The notion
of 1-planar graphs was introduced by Ringel®, who proved that the chromatic number of
each 1-planar graph is at most 7; this bound was latter improved to 6 (being sharp) by
Borodin®~1, In [11], Albertson and Mohar considered the list vertex coloring of graphs
l-embedded on a given surface. Wang and Lih proved that each 1-planar graph is list 7-
colorable!™?!. Tt is also known that each 1-planar graph G is acyclically 20-colorable(!3] and
is edge A(G)-colorable if A(G) > 101" or A(G) > 7 and ¢(G) > 4. Recently, Zhang et
al. investigated the (p, 1)-total labelling of 1-planar graphs!'6l.

In this paper we aim to investigate the linear arboricity of 1-planar graphs. One of the
main results is the following Theorem 2, which implies that the linear arboricity of every
1-planar graph with maximum degree A > 33 is exactly [A/2]. The other result, which
dedicates to the linear arboricity of graphs 1-embedded on a given surface, will be shown at
the end of the paper.

Theorem 2 For every 1-planar graph G with maximum degree A < M and M > 34,
we have

la(G@) < [%—‘
2

From now on, for any 1-planar graph G, we always assume that G has been embedded
on a plane such that every edge is crossed by at most one other edge and the number of
crossings is as small as possible. We call such an embedding 1-plane graph. The associated
plane graph G* of a 1-plane graph G is the plane graph that is obtained from G by turning
all crossings of G into new 4-vertices. A vertex in G* is called false if it is not a vertex of
G and true otherwise. Note that no two false vertices are adjacent in G*. By false face, we
mean a face f in G* that is incident with at least one false vertex; otherwise we say that
f is true. For a true vertex v in G*, we use a(v) and 7(v) to denote the number of false
3-faces and 3-faces incident with v in G*, respectively. Throughout this paper, a k-, k-
and k~-vertex (resp. face) is a vertex (resp. face) of degree k, at least k and at most k.

1 Main results and their proofs

First of all, we prove Theorem 2. Let G be a minimum counterexample to Theorem 2.
It is easy to see that G is 2-connected and §(G) > 2. Moreover, G also has the following
properties.

Claim 1['7) For every edge uv of G,

de(u) + dg(v) > 2 {gw +2.

Let G2 be the subgraph of G induced by the edges incident with 2-vertices. It is
proved in [6] that Go is a forest. So it is easy to find a matching M in G saturating all
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2-vertices. If uv € M and dg(u) = 2, then we call v the 2-master of u. For 3 <t < [£],
let Xy C{v]2<dg(v) <t} Ys = N(X;) and B; be the induced bipartite subgraph of G
with partite sets X; and Y;. It follows from Claim 1 that X; is an independent set of G. If
X # 0 and there exists a bipartite subgraph M; of B; such that dyy, (z) = 1 for each z € X;
and dpy, (y) < 2t — 1 for each y € V;, then we call y the t-master of z in G for xy € M; and
x € X;. The following claim is due to [6].

Claim 29 Each i-vertex in G (if exits) has one j-master, where 2 < ¢ < j < 7, and
each M-vertex (if exits) in G can be 2-master of at most one vertex and each (M —i)-vertex
(if exits) can be j-masters of at most 2j — 1 vertices, where 2 < max{i+ 2,3} < j < 7.

We call a vertex in G small if it is of degree no more than seven and big otherwise. A
false 3-face in G* is called unbalanced or balanced according to whether or not it is incident
with a small vertex. For a true vertex v in G*, let a,(v) be the number of unbalanced false
3-faces that are incident with v in G*.

Claim 31" Let v be a vertex in G. If dg(v) = 2, then a(v) = 0; if dg(v) = 3 and
a(v) > 2, then v is incident with a 5T-face in G*; if dg(v) = 4, then a(v) < 3; and if
dg(v) = 5, then a(v) < 2LdGT(U)J.

Claim 4 Let v be a big vertex in G. If 7(v) = dg(v), then

and if 7(v) = dg(v) — i > 2dg(v), then

aa(v) < [@W i1,

Proof If any of the two facts does not hold, then there must be three consecutive
unbalanced false 3-faces that are incident with v in G*, which implies that two small vertices
are adjacent in GG, a contradiction to Claim 1

Now we continue the proof of Theorem 2 by the discharging method. Define an initial
charge ¢ on V(G) U F(G*) by letting c¢(v) = dg(v) — 4 for every v € V(G) and ¢(f) =
dax (f) — 4 for every f € F(G*). By Euler’s formula,

Z c(x) = —8.

z€V(G)UF(GX)

Now we redistribute the charges by the following rules.

R1. If f is a true or balanced false 3-face in G*, then f receives % from each of its
incident big vertices.

R2. If f is an unbalanced false 3-face in G*, then f receives i from its incident small
vertex and % from its incident big vertex.

R3. If fis a 5T face in G*, then f sends % to each of its incident 3-vertices.

R4. If v is 2-vertex in G, then v receives 2, 1

% 5 and % from each of its 2-masters,

3-masters and 4-masters, respectively.
R5. If v is 3-vertex in G, then v receives % and % from each of its 3-masters and
4-masters, respectively.
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R6. If v is 4-vertex in G, then v receives % from each of its 4-masters.

We consider the final charge ¢’ of the vertices in G and faces in G*. Note that if f is
a true or balanced false 3-face in G*, then f is incident with at least two big vertices by
Claim 1, and if f is an unbalanced false 3-face in G*, then f is incident with exactly one
small vertex and one big vertex. So ¢/(f) = 0 for every 3-face in G* by R1 and R2. Since
4-faces are involved in none of the rules, their final charges remain zero. For a 5T-face f in

G*, f can be incident with at most LdGXT(f)J 3-vertices by Claim 1. So by R3,

(N3 don () - 1- 3| 25| 0

for dgx (f) = 5.
Let v be a 2-vertex. Then by Claim 3, v is incident with no false 3-faces and by Claim
2, v has a 2-master, a 3-master and a 4-master. So by R4,

3 1 3
') ==24-+-4-=0.
c'(v) + 1 + 7 + 1
Let v be a 3-vertex. Then v has a 3-master and a 4-master. If a(v) < 1, then
1 1 3
"Wy >-1—-=-+=-4+-=0
c(v) 1 + 5 + 1

by R2 and R5, and if a(v) > 2, then by Claim 3, v is also incident with a 5% -face, which

implies that
C’(v)>—1—2x1+1+§+1>0
4 2 4 2
by R2, R3 and R5. Let v be a 3-vertex. Then v has a 4-master by Claim 2 and a(v) < 3 by
Claim 3. This implies that L3
/

C(U)}O—3XZ+Z—O

by R2 and R6. Let v be a vertex of degree between 5 and 7. Then v only sends at most %

to each of its incident false 3-faces by R1 and R2. So

1 1|d
C(0) > do(v) — 4 — 2a@) > de(v) —a— 1|20 | 5
4 21 2
for dg(v) = 5 by Claim 3. Let v be a vertex of degree between 8 and M — 6. Then by Claim
1, v is adjacent to no small vertices and thus v sends out no charges by R2 and R4-R6. This
implies that

d(v) = dg(v) —4— %dg(v) >0

by R1 for dg(v) = 8. Let v be a vertex of degree between M — 5 and M — 3. Then by Claim
1, v is adjacent to no 4~ -vertices and thus v sends out no charges by R4-R6. This implies
that

d(v) = dg(v) —4— %dg(v) >0

by R2 for dg(v) > M — 5 > 16. Finally, let v be a vertex of degree between M — 2 and M.
If dg(v) = M, then by Claim 2, v sends at most

3 1 3 17
2 X —+4T7x2=—
TR Rl R
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to its neighbors by R4-R6. If 7(v) < M — 6, then by R1 and R2,

17

c/(v)>M_4_7_%(M—6): (2M — 64) > 0

| =

for M >34. f M — 5 < 7(v) < M — 1, then by R1, R2 and Claim 4,

, 17 3 1
¢z M 4= 30, 0) - Lrw) - auw)
25 1 1
=M — 5 Zaa(v) — 57’(1})
> é(3M—96)>0

¢0) 2 M -4 5~ Jauo) - 3((0) - au(v))
—v -2 e - 1w
> M= 2 - 1) - 57(0)

for M > 34. By similar arguments, one can also check that the final charges of the (M — 2)-
vertices and (M — 1)-vertices are nonnegative. Hence, the proof of Theorem 2 completes,

-8 = Z c(z) = Z d(x) >0,

TEV(G)UF(GX) TEV(G)UF(GX)

since

a contradiction.

In the following, we focus on graphs 1-embedded on surfaces and prove the following
theorem.

Theorem 3 Let G be graph 1-embedded on a surface with Euler characteristic e. If

A(G) > 25 4 /841 — 72,

i) [29)]

then

Proof The proof of Theorem 2 implies that the linear arboricity of every graph 1-
embedded on a surface with nonnegative Euler characteristic is f%} if A(G) = 33. So we
assume £ < 0 below. Similarly, choose a minimum counterexample G to the theorem and
then G is 2-connected with §(G) > 2. Moreover, Claims 1 and 2 in Section 1 are also valid
for this proof. But we need one additional claim here.

Claim 5% There are at least L%J + 2 vertices of degree greater than L%J in G.
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Now we assign an initial charge c(v) = dg(v) — 8 to every vertex v € V(G). Since
|E(G)| < 4(]V(G)| —€) (see Lemma 2.2 of [18]),

Z c(v) =2|E(G)| — 8|V(G)| < —8e.
veV(G)

In the following, we will redistribute the charges by the following discharging rules.

R1. Each i-vertex receives 1 from its jJ-master, where 2 <i < 7and i< j < 7.

Let ¢/ (v) denote the final charge of a vertex v € V(G). By Claims 1, 2 and R1, ¢/(v) = 0
for each 7~ -vertices and ¢’ (v) = ¢(v) = dg(v) — 8 > 0 for each vertex of degree between 8
and A — 6. Let v be a A-vertex. By Claim 2, v may be 7-masters, 6-masters, 5-masters,
4-masters, 3-masters and 2-master of at most thirteen, eleven, nine, seven, five and one
vertices, respectively. This implies that

(W) >A-8-13-11-9-7—-5-1=A—54

by R1. Similarly, we can prove that ¢/(v) > A — 54 for every vertex of degree between A —5
and A — 1. Therefore, ¢/(v) > 0 for every vertex v in G and ¢/ (v) > % — 18 for every vertex
of degree greater than |£ ], since

A(G) = 25 + /841 — 72 > 55.

o= (1))

So by Claim 5,

veV(G)
. A+4\ /A —54
3 3
1
> = (\/841 79 + 29) <\/841 79 — 29)
= —&¢
= Z c(v),
veV(G)
a contradiction.
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