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A Class of LBFGS-Type Algorithms for
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Abstract In this paper, value information of objective function is exploited in limited

memory BFGS-type algorithms. We first construct a new quadratic function satisfying

some interpolation conditions to approximate the objective function, and get a new weak

secant equation. Combining the new weak secant equation with that obtained by Yuan[1],

a class of limited memory BFGS-type algorithms including the classic LBFGS algorithm

based on a new weak secant equation is proposed. The convergence of this class limited

memory BFGS-type algorithms is proved. Numerical results for standard test problems

from CUTE are reported, which indicate that all the algorithms in the proposed class

perform quite well.
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0 Introduction

We consider the following nonlinear unconstrained optimization

min
x∈Rn

f(x), (1)

where the objective function f(x) is assumed to be twice continuously differentiable in Rn

and n is sufficient large.

For nonlinear unconstrained optimization problems Quasi-Newton iterative algorithms

are widely used. On the kth iteration, an approximation point xk and a n×n matrix Bk are

available and a search direction dk = −B−1
k ∇f(xk) is calculated. The next iterative point

xk+1 is set to be xk + αkdk, where the step-length αk is calculated to satisfy certain line

search conditions. One of the important features of the algorithms is the choice of matrices

Bk. Quasi-Newton algorithms require Bk symmetric positive definite and satisfying the

quasi-Newton equation

Bk+1sk = yk, (2)

where sk = xk+1 − xk = αkdk, yk = ∇f(xk+1) −∇f(xk).

Quasi-Newton iterative algorithms have some good properties, such as quadratic ter-

mination, fast local convergence rate and less computational efforts than Newton method,

especially the numerical performance of the famous BFGS method in Broyden class is little

affected by inexact line searches. In the past decades, BFGS quasi-Newton algorithm is

widely applied for nonlinear minimization, and its local and global convergence is proved.

It is also well known that the quasi-Newton equation can be derived from the following

quadratic function

mk+1(x) = f(xk+1) + ∇f(xk+1)
T(x − xk+1) +

1

2
(x − xk+1)

TBk+1(x − xk+1) (3)

to approximate the objective function at xk+1, which satisfies the following three interpola-

tion conditions

mk+1(xk+1) = f(xk+1), (4)

∇mk+1(xk+1) = ∇f(xk+1), (5)

∇mk+1(xk) = ∇f(xk). (6)

However, there is no function value information in the quasi-Newton equation (2). Re-

cently there are some papers try to include function value information in Quasi-Newton

equation. In 1991, Yuan[1] proposed a modified BFGS quasi-Newton algorithm, which

requires the approximation quadratic function (3) satisfying the interpolation conditions

(4)-(5)and

mk+1(xk) = f(xk) (7)

instead of (6). It is easy to find from Yuan’s approximate quadratic function that the weak

secant equation

sT
k Bk+1sk = 2[f(xk) − f(xk+1) + sT

k ∇f(xk+1)] (8)
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is satisfied. Considering the Hermite interpolation model satisfying the conditions(4)-(7),

one can get a new weak equation

sT
k Bk+1sk = 4sT

k ∇f(xk+1) + 2sT
k ∇f(xk) − 6(f(xk+1) − f(xk)). (9)

Yuan and Byrd[2] used this equation to derive some non-quasi-Newton updates. Zhang

and Xu[3] derived a similar form of this equation in a different way and a new modified

quasi-Newton equation

Bk+1sk = yk +
θk

sT
k u

u with sT
k u 6= 0 (10)

where θk = 6(f(xk) − f(xk+1)) + 3(gk + gk+1)
Tsk, is given. Davidon[4] introduced ‘conic

models’ where a non-quadratic approximate function is constructed satisfying interpolation

conditions (4)-(7). we refer [5] for recent development of conic model methods. Wang and

Ni[6] introduced a new moving asymptotes model for nonlinear unconstrained optimization,

where a nonquadratic approximate function is constructed satisfying interpolation conditions

(4)-(6). Wei, Li and Qi[7] presented some other modified quasi-Newton algorithms which

preserve the local and global convergence properties.

When n is sufficient large, it is impossible for us to store and update an n order square

matrix. Hence, conjugate gradient algorithms or limited memory BFGS [8−10] algorithms

are perfered for large-scale unconstrained optimization. Generally speaking, conjugate gra-

dient algorithms only use several vectors with linear convergence rate. For more details

about conjugate gradient algorithms please see [11] and reference therein. Limited memory

algorithms need not store an n order square matrix, only compute square matrices multiply

vectors with R-linear convergence rate. Although there are a lot of modified quasi-Newton

equations incorporating function value information, only a few papers discuss limited mem-

ory BFGS-type algorithms[12−13] with function value information. Hence, it may be inter-

esting to discuss on limited memory BFGS-type algorithms with objective function value

information.

In this paper, we propose a class of limited memory BFGS-type algorithms for large-

scale unconstrained optimization, which has one parameter γ ranging from zero to one and

includes the standard LBFGS. If the parameter γ equals to 1
2 , the proposed algorithm turns

out to be the standard LBFGS of [8].

1 Algorithms

In this section, we derive a new weak secant equation by quadratic interpolation and

propose a new class of limited memory BFGS-type algorithms for large-scale unconstrained

optimization.

Assume the following quadratic function

mk+1(x) = f̂k+1 + ĝT
k+1(x − xk+1) +

1

2
(x − xk+1)

TBk+1(x − xk+1) (11)
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satisfying the interpolation conditions (4), (6) and (7), one can see that

f̂k+1 = f(xk+1),

ĝk+1 − Bk+1sk = ∇f(xk),

f̂k+1 − ĝT
k+1sk +

1

2
sT

k Bk+1sk = f(xk).

Combining the above three equations, we obtain a new weak secant equation

sT
k Bk+1sk = 2[f(xk+1) − f(xk) −∇f(xk)Tsk]. (12)

Note that the new weak secant equation is always satisfied when the objective function f(x)

is quadratic, and when the objective function f(x) is strictly convex, 2[f(xk+1) − f(xk) −

gT
k sk] > 0 is always true. Since the weak secant equation (8) and the scalar 2[f(xk) −

f(xk+1) + gT
k+1sk] have the same above properties, we propose a new class of modified

BFGS updates as Yuan[1] in the following

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+ tk
ykyT

k

sT
k yk

, (13)

where

tk = γµk + (1 − γ)νk, 0 6 γ 6 1,

µk =
2

sT
k yk

[f(xk) − f(xk+1) + ∇f(xk+1)
Tsk],

νk =
2

sT
k yk

[f(xk+1) − f(xk) −∇f(xk)Tsk].

From the update formula (13), one can easily see the following weak secant equation

sT
k Bk+1sk = γ[f(xk)−f(xk+1)+∇f(xk+1)

Tsk]+(1−γ)[f(xk+1)−f(xk)−∇f(xk)Tsk] (14)

is satisfied. It is easy to see that tk > 0, if f(x) is convex. Furthermore, tk ≡ 1, if

f(x) is quadratic on the line segment between xk and xk+1. Moreover, when γ = 1/2,

tk = 1
2µk + 1

2νk ≡ 1, i.e. the update (13) turns out to be the standard BFGS update ignoring

whether the objective function is quadratic or not, while for other cases the function value

information is exploited.

Denote ŷk = tkyk, Hk = B−1
k , we rewrite (13) in BFGS-like form

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ŷkŷT

k

sT
k ŷk

.

Apply Sherman-Morrision formula two times or the duality between DFP and BFGS up-

dates, we obtain

Hk+1 = Hk +
(sk − Hkŷk)sT

k + sk(sk − Hkŷk)T

sT
k ŷk

−
(sk − Hkŷk)Tŷk

(sT
k ŷk)2

sksT
k

=

(

I −
skŷT

k

sT
k ŷk

)

Hk

(

I −
ŷksT

k

sT
k ŷk

)

+
sksT

k

sT
k ŷk

=

(

I −
skyT

k

sT
k yk

)

Hk

(

I −
yksT

k

sT
k yk

)

+ t−1
k

sksT
k

sT
k yk

.
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Compared with the inverse form BFGS update, one can find the only difference is that

t−1
k ≡ 1 in BFGS update formula. Since the inverse updating formula has the same form of

inverse BFGS update, we can describe the proposed algorithms in the following.

Algorithm 1.1 (A class of LBFGS-type algorithms for large-scale unconstrained opti-

mization)

Step1 Given small constant ǫ1 > 0, ǫ2 > 0 and 0 < c1 < 1
2 , c1 < c2 < 1, choose initial point

x0, integer m and initial symmetric positive matrix H0, set k := 0.

Step2 Compute ∇f(x), if ‖∇f(xk)‖ < ǫ1 max{1, ‖xk‖}, where here, and for the rest of

the paper, ‖ · ‖ denotes Euclidean vector or matrix norm , or f(xk) − f(xk+1) <

(1 + |f(xk)|)ǫ2, stop; else go to Step 3.

Step3 Compute dk = −Hk∇f(xk), and set xk+1 = xk+αkdk, where αk satisfies Wolfe-Powell

inexact line search conditions:

f(xk + αkdk) 6 f(xk) + c1αk∇f(xk)Tdk, (15)

∇f(xk + αkdk) > c2∇f(xk)Tdk. (16)

Step4 Let m̂ = min{k, m − 1}. Update H0 m̂ + 1 times using the triplets {sj , yj, tj}
k
j=k−m̂,

i.e. let

Hk+1 = (V T
k · · ·V T

k−m̂)H0(Vk−m̂ · · ·Vk)

+ρk−m̂(V T
k · · ·V T

k−m̂+1)sk−m̂sT
k−m̂(Vk−m̂+1 · · ·Vk)

+ρk−m̂+1(V
T
k · · ·V T

k−m̂+2)sk−m̂+1s
T
k−m̂+1(Vk−m̂+2 · · ·Vk)

...

+ρksksT
k . (17)

where Vk = I −
yksT

k

sT
k yk

, ρk = (tksT
k yk)−1. Increase k by one, go to Step 2.

Remarks (1) The matrices Hk are not formed explicitly, but the m̂ + 1 previous

triplets of (sj , yj, tj) are stored separately. (2) In order to ensure the search directions

dk, k = 1, 2, · · · , are descent defections, the matrices Hk should be positive definite. If the

objective function is strong uniformly convex, tk are bounded and tk > 0 are always true.

However, when the objective is not uniformly convex, tk may be unbounded or tk > 0 may

not be maintained. Hence, tk must be truncated in an interval [a, b], where b > a > 0. (3)

As for the initial symmetric positive matrix H0, we generally choose H0 to be an identity

matrix or a scaled diagonal positive matrix γ0I, where γ0 = sT
0 y0/t0‖y0‖

2 providing t0 > 0.

In the next section, we will prove all the algorithms in the proposed class are globally

convergent on uniformly convex problems and that their rates of convergence are all R-linear.

2 Convergence analysis

In order to prove the global convergence of the proposed class algorithms, we give an

equivalent form of Algorithm 1.1 where Bk = H−1
k .

Algorithm 2.1 (General form limited memory BFGS-type algorithms)
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Step1 Given small constant ǫ1 > 0, ǫ2 > 0 and 0 < c1 < 1

2 , c1 < c2 < 1, choose initial point

x0, integer m and initial symmetric positive matrix B0, set k := 0.

Step2 Compute ∇f(x), if ‖∇f(xk)‖ < ǫ1 max{1, ‖xk‖}, or f(xk)−f(xk+1) < (1+ |f(xk)|)ǫ2,

stop; else go to Step 3.

Step3 Compute dk = −B−1
k ∇f(xk), and set xk+1 = xk + αkdk, where αk satisfies Wolfe-

Powell inexact line search conditions:

f(xk + αkdk) 6 f(xk) + c1αk∇f(xk)Tdk,

∇f(xk + αkdk) > c2∇f(xk)Tdk.

Step4 Let m̂ = min{k, m − 1}, and define a symmetric and positive definite matrix B
(0)
k .

Update B
(0)
k m̂ + 1 times using the triplets {sj, yj , tj}

k
j=k−m̂, i.e. for j = k − m̂, · · · , k

compute

B
(j)
k = B

(j)
k −

B
(j)
k sjs

T
j B

(j)
k

sT
j B

(j)
k sj

+ t
(j)
k

yjy
T
j

sT
j yj

,

set Bk+1 = B
(k)
k , increase k by one, go to Step 2.

Before proven the global convergence of Algorithm 2.1, we give the following assumption.

Assumption 2.2

(1)The objective function f(x)is twice continuously differentiable in Rn.

(2)The level set Dk = {x ∈ Rn : f(x) 6 f(x0)} is convex.

(3) There exist positive constants M1 and M2 such that

M1‖z‖
2

6 zTG(x)z 6 M2‖z‖
2, (18)

where G(x) denotes the second derivatives of the objective function f(x), for all z ∈ Rn and

x ∈ D. Note that this implies that f(x) has a unique minimizer x∗ in D.

Now under Assumption 2.2, we state a lemma to estimate the bounds of tk.

Lemma 2.3 If Assumption 2.2 is satisfied. Then

M1

M2
6 tk 6

M2

M1
.

Proof Since Assumption 2.2 is satisfied, we derive that

2[f(xk) − f(xk+1) + ∇f(xk+1)
Tsk] = 2

[

− sT
k

∫ 1

0

∇f(xk+1 + τ(xk − xk+1))dτ

+∇f(xk+1)
Tsk

]

= 2sT
k

[
∫ 1

0

[∇f(xk+1) −∇f(xk+1 − τsk)]dτ

]

= 2sT
k

∫ 1

0

∫ τ

0

τG(xk+1 − (1 − β)τsk)dβdτsk

= sT
k G(x̂)sk
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holds. Therefore, we obtain

M1‖sk‖
2

6 2[f(xk) − f(xk+1) + ∇f(xk+1)
Tsk] 6 M2‖sk‖

2.

Similarly we can prove that

M1‖sk‖
2

6 2[f(xk+1) − f(xk) −∇f(xk)Tsk] 6 M2‖sk‖
2.

Define Ḡk =
∫ 1

0
G(xk + τsk)dτ, then

sT
k yk = sT

k Ḡksk.

Hence, it is easy to see that

M1‖sk‖
2

6 sT
k yk 6 M2‖sk‖

2. (19)

From the definition of tk, we obtain

M1

M2
6 tk 6

M2

M1
.

This completes the proof of the lemma.

Denote cos θk =
sT

k Bksk

‖sk‖‖Bksk‖
, we cite Lemma 2.1 of [14] in the following for use.

Lemma 2.4 If the step length αk satisfies the Wolfe-Powell inexact line search condi-

tions (15)-(16) and Assumption 2.2 holds, then there exists a positive constant c > 0 such

that

f(xk+1) − f(x∗) 6 (1 − c cos2 θk)(f(xk) − f(x∗)).

For the sake of simplicity, we assume Algorithm 2.1 always generates infinitive itera-

tive points. Now we are ready to present the main convergence theorem of LBFGS-type

algorithms as follows.

Theorem 2.5 Let x0 be a starting point for which f(x) satisfies Assumption 2.2, and

assume that the matrices chosen such that {‖B
(0)
k ‖} and the norms of their inverse matrices

are bounded. Then for any positive definite B0, Algorithm 2.1 generates a sequence {xk}

which converges to the unique minimizer x∗. Moreover there is a constant 0 6 r < 1 such

that

f(xk) − f(x∗) 6 rk[f(x0) − f(x∗)], (20)

which implies that {xk} converges R−linearly.

Proof From Assumption 2.2 we have

‖yk‖
2

sT
k yk

=
sT

k Ḡ2
ksk

sT
k Ḡksk

6 M2. (21)

We proceed by analyzing the trace and determinant of Bk+1. From Lemma 2.3, (21) and

the bound of {‖B
(0)
k ‖}, we have

tr(Bk+1) 6 tr(B
(0)
k ) +

k
∑

j=k−m̂

t
(j)
k

‖yj‖
2

sT
j yj

6 tr(B
(0)
k ) + m̂

M2
2

M1

6 M3, (22)
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for some positive constant M3. It is easy to find that

det(Bk+1) = det(B
(0)
k )

k
∏

j=k−m̂

t
(j)
k

sT
j yj

sT
j B

(j)
k sj

= det(B
(0)
k )

k
∏

j=k−m̂

t
(j)
k

sT
j yj

sT
j sj

sT
j sj

sT
j B

(j)
k sj

.

Since by (22) the largest eigenvalue of B
(l)
k is also less than M3. From (19), Lemma 2.3 and

the bound of {‖B
(0)
k ‖}, we have

det(Bk+1) > det(B
(0)
k )

k
∏

j=k−m̂

M2
1

M2M3
= det(B

(0)
k )

(

M2
1

M2M3

)m̂

> M4, (23)

for some positive constant M4. Therefore from (22) and (23) we conclude that there is a

constant δ > 0 such that cos θk > δ. From Lemma 2.4 we obtain (20). Since the objective

function is uniformly convex, we have

1

2
M1‖xk − x∗‖2

6 f(xk) − f(x∗),

which together with (20) implies

‖xk − x∗‖ 6 rk/2[2(f(x0) − f(x∗))/M1]
1/2,

where r = 1 − cδ2. Hence the sequence {xk} is R− linearly convergent. The proof of this

theorem is complete.

In the above, we have proved the convergence of the proposed algorithms. The classic

LBFGS algorithm can be viewed as a special case in our class. In the next section, we will

pay attention to the numerical performance of the proposed algorithms (Algorithm 1.1).

3 Numerical experiments

In this section, we examine the numerical performance of Algorithm 1.1 by choosing dif-

ferent γ in (17). We choose some standard test problems from CUTE[16] and code Algorithm

1.1 by slightly modifying Nocedal’s LBFGS subroutine with double precision.

By setting γ = 0, 1/2, 1 in (17) respectively, we obtain the LBFGS-type algorithm

derived by our approximate function(see the first part of Section 1), the classic LBFGS

algorithm and the LBFGS-type algorithm which limited memorizes corresponding modified

BFGS algorithm of Yuan[1]. If γ = 1/4, 3/4, one can give other LBFGS -type algorithms

with function value information in the proposed class. Note when γ = 2, Algorithm 1.1

turns out to be that of [13]. Although it is not included in our proposed class, one can find

that its convergence properties are still preserved (see [13]).

Since we can not ensure that tk is positive and bounded for general nonlinear functions,

it is necessary to truncate tk ∈ [a, b]. Here we try the same strategy of Yuan[1], i.e. if

tk < 0.01, set tk = 0.01; if tk > 100, then tk = 100.
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Table 3.1 The numerical results of Algorithm 1.1 with m = 3

Name Dim γ = 0 γ = 1/4 γ = 1/2 γ = 3/4 γ = 1 γ = 2

arwhead 1000 11/22/13 11/22/14 11/22/13 11/21/13 10/21/12 12/26/14

beale 1000 13/20/16 13/20/16 14/21/16 11/18/13 11/18/14 9/17/11

brownbs 1000 14/43/19 13/42/18 12/37/17 14/43/19 14/45/19 12/38/18

cragglvy 1000 29/140/103 20/26/22 33/39/36 18/24/20 15/22/18 39/48/41

dixmaana 1000 15/20/17 13/17/15 15/19/17 14/18/16 13/18/16 14/19/16

dixmaanb 1000 28/59/32 27/53/32 18/19/23 26/45/33 17/24/20 15/23/18

dixmaanc 1000 31/63/39 28/55/35 25/44/29 19/29/22 17/29/21 11/22/14

dixmaane 1000 256/261/258 192/197/194 244/249/246 199/203/201 240/243/242 244/248/246

dqdrtic 2000 13/37/15 13/37/15 13/37/15 13/37/15 13/37/15 13/37/15

eg2 2000 12/74/20 7/48/34 10/64/23 11/58/21 5/45/27 9/57/27

freuroth 2000 8/16/11 10/17/12 9/18/11 10/20/12 10/18/12 9/17/11

himmelblau 2000 6/18/10 5/15/10 9/19/13 10/21/14 9/19/13 11/22/15

nondia 2000 52/132/68 57/137/67 63/161/85 61/153/77 58/127/69 42/90/49

nondquar 2000 239/360/251 291/407/300 214/306/221 270/378/280 289/432/295 203/296/211

penalty1 2000 108/223/115 136/333/148 46/81/54 139/419/151 71/170/78 147/446/160

powellsg 2000 47/100/51 48/103/52 49/104/53 35/74/38 36/74/39 41/84/44

quartc 3000 15/18/17 15/18/17 14/17/16 14/17/16 13/16/15 9/12/11

rosen 3000 34/62/38 34/66/39 34/64/39 31/56/33 33/62/40 26/52/28

tridia 1000 342/1372/344 342/1372/344 342/1372/344 342/1372/344 342/1372/344 342/1372/344

whiteholst 4000 26/54/30 24/51/28 22/43/24 13/27/18 24/45/27 28/52/32

woods 10000 117/360/123 109/359/128 92/291/107 152/481/174 164/518/186 82/264/96

As for the termination and line search parameters, we set ǫ1 = 1.0D−5, ǫ2 = 1.0D−16,

while c1 = 1.0D − 4, c2 = 0.9D0. The initial positive symmetric matrix is H0 = I. All

calculations are carried out on a portable computer(AMD,1.61GHZ, 480M memory). The

numerical results of m = 3 are listed in Table 3.1 with iteration times/ function value

calculation times/ gradient calculation times in order.

Since the proposed m of the standard LBFGS is 3−7(see Nocedal’s LBFGS subroutine),

here we only give numerical results of m = 3 without scaling techniques. From Table 3.1 we

can see that there is little difference between the numerical results as γ changes from zero

to one, hence we do not give CPU time. In fact, the difference between the CPU time is so

little that we nearly can not find it for nearly all the problems(except dixmaane, nondquar

and woods).

4 Conclusion

In this paper, we first construct a quadratic function by interpolation to approximate

the objective function at xk+1, get a new weak secant equation and then combining the

secant equation gotten by Yuan[1] present a class of limited memory BFGS-type algorithms

including the standard LBFGS. All the algorithms in the proposed class have global R−linear

convergent rate for uniformly convex functions. We also note that just recently Li, Qi and

Roshchina[17] propose a new class of quasi-Newton updates, which do not satisfy some in-

terpolation conditions. Hence, it is possible to limited memorize quasi-Newton type updates

which do not satisfy interpolation conditions. Cheng and Li[18] propose a spectral scaling

BFGS algorithm which has the the following update formula

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+ γk
ykyT

k

yT
k sk

, (24)

where γk =
yT

k sk

‖yk‖2 , and report that the spectral scaling BFGS algorithm performs better

than the standard BFGS algorithm. Note that the formula (24) has the same form as (13),
we think limited memory spectral scaling BFGS algorithm may perform better than the
standard limited memory BFGS algorithm.
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