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Optimization Methods for a Class of Integer

Polynomial Programming Problems∗

TIAN Jing1 WU Zhiyou1,2† UGON Julien1

Abstract In this paper, a class of integer polynomial programming problems is
considered. This class of integer polynomial programming problems has a wide range
of practical applications and is NP hard. For these problems, necessary global optima-
lity conditions and sufficient global optimality conditions have been presented recently.
We will design some optimization methods to this class of integer polynomial program-
ming problems by using these global optimality conditions. Firstly, a local optimization
method is designed according to the necessary global optimality conditions for these in-
teger polynomial programming problems. Moreover, a new global optimization method
for this class of integer polynomial programming problems is presented by combining the
sufficient global optimality conditions, the local optimization method and an auxiliary
function. Some numerical examples are presented to illustrate the efficiency and reliabil-
ity of these optimization methods.
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0 Introduction

Polynomial programming problems (PP) have a wide range of applications, such as in

engineering design, network distribution and location-allocation context[1−3]. In (PP) for-

mulations, variables are usually assumed to take real continuous values. However, variables

that can take only integer values occur naturally and frequently in engineering design mod-

els. Examples are the number of teeth in a gear, the number of bars in a truss, and the

size of components available only in standard sizes[4]. Finding the global optimal solution

and how to characterize it for polynomial programming problems are very difficult tasks

except for some special cases. Recently, [5] presented optimal conditions for quadratic in-

teger problem with general box integer constraints and [6] discussed some global optimality

conditions for a special kind of cubic polynomial optimization problems where the cubic

objective function contains no cross terms. Furthermore, [7] considered the following class

of polynomial integer programming problems:

(POP )I min f(x) =

n
∑

i=1

m
∑

k=3

b
(k)
i xk

i +
1

2
xTAx + aTx

s.t. x ∈ UI = {(x1, . . . , xn)T | xi ∈ {0, 1, . . . , J}, i = 1, 2, · · · , n},

where a ∈ Rn, A ∈ Sn and Sn is the set of all symmetric n× n matrices, k > 3 is a positive

integer, J is a positive integer.

Many combinatorial optimization problems can be modeled as this class of polynomial

scalar objective functions as above, such as in cubic polynomial approximation optimization[8],

engineering design and presence of noise[9]. Particularly, some famous test functions belong

to this class of polynomial scalar objective functions, such as Six-hump camelback function,

Modified fourth De Jong function and Aluffi-Pentini’s function. More examples can be found

in [10]. As quadratic integer problem with general box integer constraints is NP hard[5],

(POP )I is also an NP hard problem. The necessary global optimality condition and suffi-

cient global optimality condition for this polynomial integer programming problem (POP )I

have been presented in [7], which can be used to check a given point is or is not a global

minimizer. The conditions given in [7] extends the results given by references [5-6], [11-12],

where the necessary global optimality conditions and sufficient global optimality conditions

are presented for integer quadratic or cubic programming problems.

We know that it is more important to design the methods for finding the global min-

imizer by using the obtained necessary global optimality conditions and sufficient global

optimality conditions. Recently, [13] has given some local and global optimization methods

according to the necessary global optimality conditions and sufficient global optimality con-

ditions for mixed integer quadratic programming problems. In this paper, we will design a

local optimization method according to the necessary global optimality condition given in

[7] for the integer polynomial programming problem (POP )I and then we will propose an

auxiliary function to improve the obtained local minimizer and finally design a global opti-

mization method for (POP )I by combining the sufficient global optimality condition given

in [7], the local optimization methods and the auxiliary function proposed in this paper.
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The layout of the paper is as follows. In section 1, sufficient global optimality condition

and the necessary global optimality condition given in [7] are reviewed. In section 2, two

local optimization methods are provided. In section 3, a global optimization methods by

combining the sufficient global optimality condition and the local optimization method and

the auxiliary function is proposed. In section 4, several examples are given. We conclude

this paper in section 5.

1 Global optimality conditions for problem (POP )I

In this section, we will review the sufficient global optimality condition and the necessary

global optimality condition for problem (POP )I given in [7].

For x̄ ∈ UI , let

αx̄i
: = min

{ (a + Ax̄)i +
m
∑

k=3

b
(k)
i (xk−1

i + xk−2
i x̄i + . . . + xix̄

k−2
i + x̄k−1

i )

(xi − x̄i)
,

xi ∈ {0, 1, . . . , J}, xi 6= x̄i

}

,

αx̄ : = (αx̄1
. . . . , αx̄n

)T,

diag(αx̄) : = diag(αx̄1
. . . . , αx̄n

),

where diag(α1, . . . , αn) denotes a diagonal matrix with diagonal elements α1, . . . , αn.

Theorem 1.1 (Sufficient Global Optimality Condition for (POP )I)
[7] Let x̄ ∈ UI , J >

1. If

[SC1] − diag(αx̄) �
1

2
A,

then x̄ is a global minimizer of problem (POP )I .

Theorem 1.2 (Necessary Global Optimality Condition for (POP )I)
[7] Let x̄ ∈ UI ,

e := (1, . . . , 1)T and let diag (A) = diag (a11, . . . , ann), where a11, . . . , ann are the diagonal

elements of matrix A. If x̄ is a global minimizer of (POP )I , then the following condition

holds:

[NC1] −diag(αx̄) �
1

2
diag (A).

2 Local optimization methods

In this section, we will introduce two local optimization methods. One is designed for

general integer problem (IP) which will be used for looking for the local minimizer of the

auxiliary function problem (AFP) proposed in Section 3; another one is designed according

to the necessary global optimality condition [NC1] for searching the local minimizer of the

problem (POP )I . Consider the following general integer problem (IP ):

(IP ) min f(x)

s.t. x ∈ UI ,
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where f : Rn → R is a general continuous function on UI . Firstly, we will give some

definitions, such as neighborhood of a given point, local minimizer (maximizer) and strict

local minimizer (maximizer) of problem (IP ).

Let ei be the ith unit vector (the n dimensional vector with the ith component equals

to one and the other components equal to zero). For any x̄ = (x̄1, · · · , x̄n)T ∈ UI , let

Ni(x̄) := {x̄ + (wi − x̄i)ei|wi = 0, 1, · · · , J}.

Definition 2.1 Let x̄ ∈ UI ,
n
⋃

i=1

Ni(x̄) is said to be a neighborhood of x̄ with respect to

UI .

Definition 2.2 Let x̄ ∈ UI . If f(x) > f(x̄) (f(x) 6 f(x̄)), ∀x ∈
n
⋃

i=1

Ni(x̄), then

x̄ is said to be a local minimizer (maximizer) of problem (IP ). Furthermore, if f(x) >

f(x̄) (f(x) < f(x̄)), ∀x ∈
n
⋃

i=1

Ni(x̄) \ {x̄}, then x̄ is said to be a strict local minimizer

(maximizer) of problem (IP ).

In the following, we will propose a local optimization method for the problem (IP ).

Algorithm 2.1 (Local Optimization Method for Problem (IP ))

Step 1 Take an initial point x0 ∈ UI . Let x̄ := x0, k := 1.

Step 2 Check whether the following condition holds:

f(x̄) 6 min{f(x)|x ∈

n
⋃

i=1

Ni(x̄)}.

If this condition does not hold, go to Step 3; otherwise go to Step 4.

Step 3 Let x∗ = (x∗
1, · · · , x∗

n)T := argmin{f(x)|x ∈
n
⋃

i=1

Ni(x̄)}. Let k:=k+1 and x̄ := x∗, go

to Step 2.

Step 4 Stop. x̄ is a local minimizer.

Theorem 2.1 Let x̄ ∈ UI . Then x̄ is a local minimizer of problem (POP )I ⇔ [NC1]

holds.

Proof If x̄ is a local minimizer of problem (POP )I , then

f(x̄) 6 min

{

f(x)|x ∈

n
⋃

i=1

Ni(x̄)

}

.
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We can easily verify that

f(x̄) 6 min{f(x)|x ∈

n
⋃

i=1

Ni(x̄)}

⇔ f(x) − f(x̄) > 0 ∀x ∈ Ni(x̄), i = 1, . . . , n

⇔

n
∑

i=1

m
∑

k=3

b
(k)
i (xk

i − x̄k
i ) +

1

2
xTAx + aTx −

1

2
x̄TAx̄ + aTx̄ > 0, ∀x ∈ Ni(x̄), i = 1, . . . , n

⇔

n
∑

i=1

m
∑

k=3

b
(k)
i (xk

i − x̄k
i ) +

1

2
(x − x̄)TA(x − x̄) + (x − x̄)T(a + Ax̄) > 0, ∀x ∈ Ni(x̄),

i = 1, . . . , n

⇔

m
∑

k=3

b
(k)
i (xk

i − x̄k
i ) +

1

2
(xi − x̄i)

2aii + (xi − x̄i)(a + Ax̄)i > 0, ∀xi ∈ {0, 1, . . . , J},

i = 1, . . . , n

⇔ −
1

xi − x̄i

(
m

∑

k=3

b
(k)
i (xk−1

i + xk−2
i x̄i + . . . + xix̄

k−2
i + x̄k−1

i ) + (a + Ax̄)i) 6
aii

2
,

∀xi ∈ {0, 1, . . . , J}, xi 6= x̄i, i = 1, . . . , n

⇔ −αx̄i
6

aii

2
, i = 1, . . . , n.

Theorem 2.1 states that the necessary global optimality condition [NC1] is a sufficient

and necessary condition for a local minimizer of problem (POP )I . In the following, we will

give a local optimization method for problem (POP )I by using the condition [NC1].

Algorithm 2.2 (Local Optimization Method for Problem (POP )I)

Step 1 Take an initial point x0 ∈ UI . Let x̄ := x0, k := 1.

Step 2 Check whether the following condition holds:

[NC1] −diag(αx̄) � 1
2diag (A), i.e.,

1

2
aii + αx̄i

> 0, ∀i = 1, · · · , n.

If [NC1] does not hold, let Ix̄ := {i | 1
2aii + αx̄i

< 0, i = 1, . . . , n}, go to Step 3;

otherwise go to Step 4.

Step 3 Let x∗ = (x∗
1, · · · , x∗

n)T := argmin{f(x)|x ∈
⋃

i∈Ix̄
Ni(x̄)}. Let k:=k+1 and let

x̄ := x∗, go to Step 2.

Step 4 Stop. x̄ is a local minimizer.

Remark 2.1 From the proof of Theorem 2.1, we know that for any i = 1, . . . , n,
1
2aii + αx̄i

> 0 if and only if x̄ = argmin{f(x)|x ∈ Ni(x̄)}. Hence x∗ = (x∗
1, · · · , x∗

n)T :=

argmin{f(x)|x ∈
⋃

i∈Ix̄
Ni(x̄)} means x∗ = argmin{f(x)|x ∈

⋃n

i=1 Ni(x̄)} since for any

x ∈
⋃

i∈{1,...,n}\Ix̄
Ni(x̄), f(x) > f(x̄) and for any x ∈

⋃

i∈Ix̄
Ni(x̄), we have that f(x∗) 6

f(x) which implies that f(x∗) 6 f(x̄). Therefore, for any x ∈
⋃n

i=1 Ni(x̄), we have that

f(x∗) 6 f(x), i.e., x∗ = argmin{f(x)|x ∈
⋃n

i=1 Ni(x̄)}.
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3 Global optimization method for problem (POP )I

To introduce the global optimization method, firstly we need to introduce the following

auxiliary function. The auxiliary function will be used to escape the current local minimizer

and find a better solution of problem (POP )I .

3.1 An auxiliary function for problem (POP )I and its properties

For any r > 0, set

gr(t) =















0, if t 6 −r
1

r
t + 1, if − r < t 6 0

1, if t > 0

fr(t) =















t + r, if t 6 −r
1

r
t + 1 if − r < t 6 0

1, if t > 0

and set

Fr,x̄(x) =
1

1 + ‖x − x̄‖
gr(f(x) − f(x̄)) + fr(f(x) − f(x̄)),

where r > 0 is a parameter, x̄ is the current local minimizer of problem (POP )I and

‖x‖ =
n
∑

i=1

|xi|.

Consider the following problem:

(AFP ) min Fr,x̄(x)

s.t. x ∈ UI .

In the following, we will discuss some important properties of the auxiliary function.

Theorem 3.1 Let x̄ is a local minimizer of problem (POP )I , then for any r > 0, x̄ is

a strict local maximizer of problem (AFP).

Proof Since x̄ is a local minimizer of problem (POP )I , f(x) > f(x̄) ∀x ∈
n
⋃

i=1

Ni(x̄).

t = f(x) − f(x̄) > 0, hence

Fr,x̄(x) =
1

1 + ‖x − x̄‖
+ 1 < 1 + 1 = Fr,x̄(x̄), ∀x ∈

n
⋃

i=1

Ni(x̄) \ {x̄}.

Therefore, x̄ is a strict local maximizer of problem (AFP).

Let x∗ be the global minimizer of problem (POP )I and let β = f(x̄) − f(x∗).

Theorem 3.2 If x̄ is not a global minimizer of problem (POP )I , then x∗ is a local

minimizer of problem (AFP) when r 6 β and satisfies Fr,x̄(x∗) < Fr,x̄(x̄).

Proof When r 6 β, we have that f(x∗) − f(x̄) 6 −r, hence,
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Fr,x̄(x∗) = f(x∗) − f(x̄) + r 6 0.

Then, we can prove Fr,x̄(x) > Fr,x̄(x∗), ∀x ∈
n
⋃

i=1

Ni(x
∗) by considering the following two

cases:

1. If f(x) − f(x̄) > −r, then

Fr,x̄(x) > 0 > Fr,x̄(x∗).

2. If f(x) − f(x̄) < −r, then

Fr,x̄(x) = f(x) − f(x̄) + r > f(x∗) − f(x̄) + r = Fr,x̄(x∗).

Thus x∗ is a local minimizer of problem (AFP) and satisfies

Fr,x̄(x∗) 6 0 < Fr,x̄(x̄) = 2.

Theorem 3.3 For any x1, x2 ∈
n
⋃

i=1

Ni(x̄) satisfying f(x1) > f(x̄), f(x2) > f(x̄), ‖x2−

x̄‖ > (>)‖x1 − x̄‖ if and only if Fr,x̄(x2) < (6)Fr,x̄(x1) for any r > 0.

Proof For any x1, x2 ∈
n
⋃

i=1

Ni(x̄) satisfying f(x1) > f(x̄), f(x2) > f(x̄), we have that

Fr,x̄(x2) =
1

1 + ‖x2 − x̄‖
+ 1,

Fr,x̄(x1) =
1

1 + ‖x1 − x̄‖
+ 1.

Thus for any r > 0, ‖x2 − x̄‖ > (>)‖x1 − x̄‖if and only if Fr,x̄(x2) < (6)Fr,x̄(x1).

Theorem 3.4 If x̂ is a local minimizer of problem (AFP), then x̂ satisfies one of the

following conditions:

1. f(x̂) < f(x̄);

2. x̂ := (x̂1, · · · , x̂n)T, where x̂i ∈ {0, J} \ {x̄i}.

Proof We can prove that if f(x̂) > f(x̄), then x̂i ∈ {0, J} \ {x̄i}. In fact if there exists

i0 ∈ {1, · · · , n} such that x̂i0 /∈ {0, J} \ {x̄i0}.

Let

ki0 :=



















1, if x̄i0 = 0

−1 if x̄i0 = J

1, if x̄i0 ∈ (0, J) and x̂i0 − x̄i0 > 0

−1, if x̄i0 ∈ (0, J) and x̂i0 − x̄i0 < 0

Let x̃ := x̂ + ki0ei0 , then x̃ ∈
n
⋃

i=1

Ni(x̂).
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Since x̂ is a local minimizer of problem (AFP), then we should have Fr,x̄(x̃) > Fr,x̄(x̂),

which contradicts

Fr,x̄(x̃) 6
1

1 + ‖x̃ − x̄‖
+ 1

=
1

1 +
n
∑

i=1

|x̃i − x̄i|
+ 1

=
1

1 +
∑

i6=i0

|x̃i − x̄i| + |x̃i0 − x̄i0 |
+ 1

=
1

1 +
∑

i6=i0

|x̃i − x̄i| + |x̂i0 − x̄i0 + ki0 |
+ 1

=
1

1 +
n
∑

i=1

|x̂i − x̄i| + |ki0 |

+ 1

<
1

1 +
n
∑

i=1

|x̂i − x̄i|
+ 1

= Fr,x̄(x̂).

3.2 Global optimization method for problem (POP )I

In this subsection, we will introduce a global optimization method to find a global

minimizer of the problem (POP )I . This method combines the sufficient global optimality

condition [SC1], the local optimization methods (Algorithm 2.1, Algorithm 2.2) and the

auxiliary function Fr,x̄(x).

Algorithm 3.1 (Global Optimization Method for Problem (POP )I)

Step 0 Take an initial point x1 ∈ UI , a sufficiently small positive number µ, and an initial

r1 > 0. Set r = r1 and k := 1.

Step 1 Use the local minimization method: Algorithm 2.2 to solve problem (POP )I starting

from xk. Let x∗
k be the obtained local minimizer.

Step 2 Verify whether x∗
k satisfies the following global optimality sufficient condition:

[SC1] −diag(αx̄) � 1
2A.

If [SC1] holds, then go to step 6; otherwise, let r := r1, go to step 3.

Step 3 Construct the following auxiliary function:

Fr,x∗

k
(x) =

1

1 + ‖x − x∗
k‖

gr(f(x) − f(x∗
k)) + fr(f(x) − f(x∗

k)).
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Consider the following problem:

(AFP ) min Fr,x∗

k
(x)

s.t. x ∈ U1.

Let x̄k := x∗
k, go to Step 4.

Step 4 Use the local minimization method: Algorithm 2.1 to solve problem (AFP ) starting

from x̄k. Let x̄∗
k be the local minimizer of problem (AFP ). If f(x̄∗

k) < f(x∗
k), let

xk+1 = x̄∗
k, k := k + 1, go to Step1; otherwise go to Step 5.

Step 5 If r > µ, decrease r, such as, let r := r/10, go to Step 3; otherwise, go to Step 6.

Step 6 Stop and x∗
k is the obtained global minimizer or an approximate global minimizer.

Remark 3.1 If the sufficient global optimality condition [SC1] holds, then x̄ is a global

minimizer of problem (POP )I . If the sufficient global optimality condition [SC1] does not

hold, then we use the auxiliary problem (AFP ) to improve the current local minimizer x̄ to

obtain a better local minimizer if x̄ is not the global minimizer and finally we can obtain

an approximate global minimizer (which is the best solution that we can obtain by this

algorithm ) for problem (POP )I .

4 Numerical examples

In this section, we apply Algorithm 3.1 to the following test examples. In all the

instances, we set µ = 10−16 and r1 = 10−2.

Notation:

xk: the k − th initial point

x∗
k: the k − th local minimizer of problem (POP )I starting from xk

f(xk): the function value of f(x) at the k − th initial point

f(x∗
k): the function value of f(x) at the k − th local minimizer of problem (POP )I

x̄∗
k: the k − th local minimizer of problem (AFP) starting from x∗

k

f(x̄∗
k): the function value of f(x) at the k − th local minimizer of problem (POP )I

r: the changed value of r1 after solving the problem of (AFP)

Example 4.1 Consider the problem

(EP1) min f(x) := 3x3
1 − 5x3

2 + 2x3
3 − x4

1 + 4x4
2 − 5x4

3 − 2x5
1 + 3x5

2 + x5
3 +

1

2
xTAx + aTx

s.t. x ∈ {0, 1, 2, 3, 4, 5, 6}3

Here A =







2 4 3

−2 −4 8

3 −1 −5






, a = (2,−1, 3)T and J = 6.
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Table 4.1 records the numerical results of solving Example [EP1] by Algorithm 3.1. From

Table 4.1, we see that (6, 0, 4)T is the obtained global minimizer starting from the different

initial points: (1, 2, 3)T, (0, 5, 6)T, (5, 1, 0)T and (2, 1, 1)T. And the local minimizer for prob-

lem (EP1) starting from (1, 2, 3)T, (0, 5, 6)T is already the global minimizer, but the local

minimizers for problem (EP1) starting from (5, 1, 0)T and (2, 1, 1)T are not the global mini-

mizer. Here we have to use the auxiliary function (AFP ) to improve them and find another

starting points and the second local minimizer is the global minimizer. The sufficient global

optimality condition [SC1] holds at this global minimizer (6, 0, 4)T.

Example 4.2 Consider the problem

(EP2) min f(x) := 6x3
1 − x4

1 + x4
2 − x5

2 + 3x3
3 − x4

3 − 4x3
4 + x5

4 +
1

2
xTAx + aTx

s.t. x ∈ {0, 1, 2, 3, 4, 5, 6}4

Here A =











1 −2 3 −4

−2 5 −6 7

3 −6 8 −1

−4 7 −1 9











, a = (2,−1, 3,−4)T and J = 6.

Table 4.2 records the numerical results of solving Example [EP2] by Algorithm 3.1. From

Table 4.2, we see that (0, 6, 6, 0)T is the obtained global minimizer starting from the

different initial points: (3, 0, 5, 4)T, (4, 6, 1, 2)T, (6, 1, 0, 5)T and (6, 2, 2, 3)T. And the

local minimizer for problem (EP2) starting from (3, 0, 5, 4)T and (4, 6, 1, 2)T is already

the global minimizer, but the local minimizers for problem (EP2) starting from (6, 1, 0, 5)T

and (6, 2, 2, 3)T are not the global minimizer. Here we have to use the auxiliary function

(AFP ) to improve them and find another starting points and the second local minimizer is

the global minimizer. The sufficient global optimality condition [SC1] holds at this global

minimizer (0, 6, 6, 0)T.

Example 4.3 Consider the problem

(EP3) min f(x) := −3x3
1 + 2x3

2 − 6x3
3 + 4x4

1 − 4x4
2 + x4

3 + 2x4
4

+2x5
1 + 5x5

2 + 3x5
3 − x5

4 +
1

2
xTAx + aTx

s.t. x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}4

Here A =











−4 2 −3 1

2 3 7 5

−3 7 −5 6

1 −3 4 −8











, a = (1,−2, 3,−1)T and J = 8.

Table 4.3 records the numerical results of solving Example [EP3] by Algorithm 3.1. From

Table 4.3, we see that (0, 0, 0, 8)T is the obtained global minimizer starting from the dif-

ferent initial points: (5, 7, 2, 4)T, (2, 3, 5, 6)T, (0, 0, 1, 2)T, (8, 5, 6, 0)T, (1, 1, 8, 0)T and

(8, 2, 6, 8)T. And the local minimizer for problem (EP3) starting from (5, 7, 2, 4)T,(2, 3, 5,
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6)T and (0, 0, 1, 2)T is already the global minimizer, but the local minimizers for problem

(EP3) starting from (8, 5, 6, 0)T, (1, 1, 8, 0)T and (8, 2, 6, 8)T are not the global mini-

mizer. Here we have to use the auxiliary function (AFP ) to improve them and find another

starting points and the second local minimizer is the global minimizer. The sufficient global

optimality condition [SC1] holds at this global minimizer (0, 0, 0, 8)T.

Example 4.4 Consider the problem

(EP4) min f(x) := 2x3
1 − 3x3

2 + x3
3 + x4

1 + 2x4
2 − 3x4

3 +
1

2
xTAx + aTx

s.t. x ∈ {0, 1, 2}3

Here A =







3 2 −1

2 2 2

−1 2 −1






, a = (1,−4, 1)T and J = 2.

Table 4.4 records the numerical results of solving Example [EP4] by Algorithm 3.1. From

Table 4.4, we see that [EP4] has two global minima (0, 1, 2)T which is obtained from the

following initial points (1 1 2)T, (2 2 1)T and (2 1 0)T and (0 0 2)T which is obtained from

the following initial points (1 0 2)T, (2 0 0)T and (0 0 0)T. Both of the global minima

(0, 1, 2)T and (0, 0, 2)T are the first local minima from different initial points. However

the sufficient global optimality condition [SC1] does not hold at these two global minimal

points.

Table 4.1 Numerical results for Example (EP)

k xk f(xk)
k − th local min-

imizer x∗

k of f(x)
f(x∗

k) r
k− th local mini-

mizer x̄∗

k of Fr,x∗

k

f(x̄∗

k)

1 (1 2 3)T 23.5 (6 0 4)T −16236

1 (0 5 6)T 12956 (6 0 4)T −16236

1 (5 1 0)T −6461 (6 1 4)T −16217 10−2 (6 0 4)T −16236

2 (6 0 4)T −16236 (6 0 4)T −16236

1 (2 1 1)T −39 (6 1 4)T −16217 10−2 (6 0 4)T −16236

2 (6 0 4)T −16236 (6 0 4)T −16236

Table 4.2 Numerical results for Example (EP)

k xk f(xk)
k − th local min-

imizer x∗

k of f(x)
f(x∗

k) r
k− th local mini-

mizer x̄∗

k of Fr,x∗

k

f(x̄∗

k)

1 (3 0 5 4)T 757.5 (0 6 6 0)T −7098

1 (4 6 1 2)T −6255 (0 6 6 0)T −7098

1 (6 1 0 5)T 2652 (6 6 6 0)T −7032 10−2 (0 6 6 0)T −7098

2 (0 6 6 0)T −7098 (0 6 6 0)T −7098

1 (6 2 2 3)T 167.5 (6 6 6 0)T −7032 10−2 (0 6 6 0)T −7098

2 (0 6 6 0)T −7098 (0 6 6 0)T −7098
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Table 4.3 Numerical results for Example (EP)

k xk f(xk)
k − th local min-

imizer x∗

k of f(x)
f(x∗

k) r
k− th local mini-

mizer x̄∗

k of Fr,x∗

k

f(x̄∗

k)

1 (5 7 2 4)T 83213 (0 0 0 8)T −24840

1 (2 3 5 6)T 5186 (0 0 0 8)T −24840

1 (0 0 1 2)T −9.5 (0 0 0 8)T −24840

1 (8 5 6 0)T 117070 (1 0 0 8)T −24830 10−2 (0 0 0 8)T −24840

2 (0 0 0 8)T −24840 (0 0 0 8)T −24840

1 (1 1 8 0)T 99231 (1 0 0 8)T −24830 10−2 (0 0 0 8)T −24840

2 (0 0 0 8)T −24840 (0 0 0 8)T −24840

1 (8 2 6 8)T 79086 (1 0 0 8)T −24830 10−2 (0 0 0 8)T −24840

2 (0 0 0 8)T −24840 (0 0 0 8)T −24840

Table 4.4 Numerical results for Example (EP)

k xk f(xk)
k − th local min-

imizer x∗

k
of f(x)

f(x∗

k
) r

k − th local mini-

mizer x̄∗

k
of Fr,x∗

k

f(x̄∗

k
)

global

minimizer

x∗

k
of f(x)

1 (1 0 2)T −36.5 (0 0 2)T −40 10−16 (2 2 0)T 52 (0 0 2)T

1 (1 1 2)T −34.5 (0 1 2)T −40 10−16 (2 2 0)T 52 (0 1 2)T

1 (2 0 0)T 40 (0 0 2)T −40 10−16 (2 2 0)T 52 (0 0 2)T

1 (2 2 1)T 52.5 (0 1 2)T −40 10−16 (2 2 0)T 52 (0 1 2)T

1 (2 1 0)T 40 (0 1 2)T −40 10−16 (2 2 0)T 52 (0 1 2)T

1 (0 0 0)T 0 (0 0 2)T −40 10−16 (2 2 0)T 52 (0 0 2)T

5 Conclusions

In this paper, we have designed a local optimization method according to the necessary

global optimality condition given in reference [7] for integer polynomial programming prob-

lem (POP )I . And then we introduce an auxiliary function for this problem and design a

global optimization method by combining the sufficient global optimality condition given in

[7] for problem (POP )I , the local optimization methods and the auxiliary function given in

this paper. From the numerical results, we can see that the proposed methods are efficient

and reliable. The further work will focus on the mixed polynomial integer programming

problems, which will extend the field of application.
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