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A Newton Method for a Nonsmooth Nonlinear

Complementarity Problem*

GAO Yan!

Abstract This paper is devoted to a nonlinear complementarity problem with
nonsmooth data. The nonlinear complementarity problem is reformulated as a system
of nonsmooth equations. Then, a Newton method for solving the nonsmooth equations
is proposed. In each iteration of the Newton method, an element of the B-differential of
related functions, not nonlinear complementarity function, is required. The superlinear
convergence is shown.
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0 Introduction

The nonlinear complementarity problem
F(x) >0,z > 0,27 F(z) =0, (0.1)

where F' : R — " and x € R” is to find a solution x € R”, which satisfies (0.1).
The complementarity problem plays an important role in economics equilibrium, system

engineering, optimization and others. It has been studied extensively when F' is smooth, see
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for instance [3-4, 6] and references therein. Based on nolinear complementarity function, a
nonlinear complementarity problem is equivalently transformed into a system of nonsmooth
equations. A generalized Newton method is used to solve the system of nonsmooth equations.

For the case where F' is nonsmooth function, to our knowledge, only [1-2, 5] dealt
with the problem (0.1). They transform (0.1) into a unconstrained optimization, then solve
it by nonsmooth optimization method. In the present paper, we try to study nonlinear
complementarity with nonsmooth data. We first reformulate the nonlinear complementarity
problem as a system of nonsmooth equation, then propose a Newton to solve the nonsmooth
equations.

Let us consider the following nonlinear complementarity problem
F(z)>0,Z(z) >0,Z(x)"F(z) =0, (0.2)

where F' : " — R" is locally Lipschitzian, Z : " — " is continuously differentiable.
When Z(x) = z, the problem (1.2) happens to be the problem (0.1). Throughtout of the
paper, we denote F(x) = (f1(2),..., fa(x)Y, Z(x) = (21(2),...,2.(2)), B(z,d) the open

ball with x and § as its center and radium, respectively.

1 Preliminaries

We start with a brief review of nonsmooth analysis and Newton method for solving
nonsmooth equations.

Let both X and Y be subsets of finite dimensional spaces. As in [3], the set-valued
mapping r — S(x) from X to 2Y is said to be upper-semicontinuous at xy € X if for any

€ > 0, there exists ¢ > 0 such that ||z — z¢|| < 0 implies that
S(x) C S(xo) +eB(0,1).

We say the set-valued mapping @ — S(x) to be upper-semicontinuous on X if it is upper-
semicontinuous at all x € X.
Let H : R™ — R™ be locally Lipschitzian. By the definition in [3-4],

OpH (@) = {lim JH(y) |y € D},

where Dy is the set of differentiable points of H, is called the B-differential of H at ;
dcrH (x) = coOp H () is called the Clarke generalized Jacobian of H at z; when H is from
R™ to R, Oc;H () is said to be the Clarke generalized gradient at z.

Both set-valued mappings © — d¢iH (z) and = — dp H (x) are upper-semicontinuous,
see [3].
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As in [3-4], the locally Lipschitzian function H : " — R™ is said to be semismooth at
x if
lim Vh
Vedo H(z+th!)
h!—h, t—0t
exists for any h € R™.
Lemma 1.1(see [3-4]). Suppose that H : " — R™ is locally Lipschitzian on R™ and

semismooth at . Then, one has that
Eh — H'(x;h) = o(||h]]), &€ € OciH (x + h), (1.1)

H(z +h) — H(x) — H' (x;h) = o(||h]]). (1.2)

Let us consider the nonsmooth equations:

where H : R" — R™ is locally Lipschitzian. Newton method for solving the nonsmooth

equations is given by

Trr1 = o — & L H (), (1.3)
where &, is an element of dgH (xy), dciH (k) or Ophi(x) X -+ X Ophn(xy), and H(z) =
(h1(x), ..., hn(z))T. The locally superlinear convergence of Newton methods are shown

when F' is semismooth and all elements of corresponding subdifferentials, mentioned above,
of H at the solution are nonsingular. The Newton of (1.3) can be performed if an element

of related subdifferential can be computed.

2 A Newton and its convergence analysis
Evidently, the nonlinear complentarity problem (0.2) can be reformulated as the following
min{z;(z), fi(z)} =0,i=1,...,n. (2.1)
Denote G(z) = (g1(7) ... gn(z))T, where
gi(x) = min{z;(x), fi(x)},i=1,...,n (2.2)

Of course, as mentioned in [1], the Newton method (1.3) can be used to solve the
equations (2.2) directly. As is known, that method need to compute an element of some
kind subdifferential of G at each iteration.

Define the set-valued mapping z — V(z) from R™ to subsets of R"*" as the following

V(z) =Vi(z) x -+ x Vo (),
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where

{Vzi(z)}, ifzi(2) < fi2),
Vi(z) = (2.3)

Opfi(x), ifzi(z) > fi(z).
We give a Newton method for solving the nonlinear complentarity problem (0.2), equivalently

solving the equations G(x) = 0 as the following:
Tyl = T — flzlG(CL'k), &L € V(CL‘;C) (2.4)

It should be mentioned that V(z) is not a subdifferential of G(z) and is even not
upper-semicontinuous as a set-valued mapping. We next define another set-valued mapping

x — V(z) from R" to subsets of R"*" as follows

where
{Vzi(2)}, if 2;(2) < fi(w),
Vi(x) = {Vz(a)}Uosfi(z), ifzi(z)= fi(z), (2.5)
O fi(x), if z;(z) > fi(x).

It is easy to see that V(x) C V(z) for any 2 € R". Next two lemmas characterize the

upper-semicontinuity of the set-valued mapping z — V().

Lemma 2.1 The set-valued mapping z — V() is upper-semicontinuous.

Proof It is enough to prove that each x — V;(x) is upper-semicontinuous. Given a
fixed point 2o € R" and a fixed index 7, in what follows, we prove that x — V;(z) is upper-
semicontiuous at xg. If z;(x0) < fi(xo), then there is a neighbourhood B(zg,d) of xy such
that z;(z) < fi(x), Yz € B(xo,9). Hence, Vi(z) = {Vz(z)}, Yo € B(xo,d). By the continu-
ity of the function Vz;(z), the set-valued mapping V;(z) is upper-semicontinuously at xq. If
zi(zo) > fi(xo), then there is a neighbourhood B(zg, d1) of zo such that z;(z) > fi(z),Vx €
B(z0,61). Therefore, Vi(x) = 0 fi(z), Vo € B(zo,d1). By the upper-semicontinuity of the
set-valued mapping x — 9 f;(z), the set-valued mapping z — V;(z) is upper-semicontinuous
at xo. Now we consider the case where z;(zo) = fi(xo). Suppose that z; — x¢ and & — &
with & € Vi(z). Then, & € {Vzi(2x)} UOsfi(zr). Evidently, the set-valued mapping
x — {Vz;i(x)} U OB fi(z) is upper-semicontinuous. Therefore, £ € {Vz(x0)} B fi(zo)} =

Vi(xg), i.e. V(z) is upper-semicontinuous at xo. This completes the proof of the lemma.

Lemma 2.2 Let 79 € R". If all £ € V(xg) are nonsingular, then there exists 3 > 0
such that

1€M< B, V€€ V(xo) (2.6)
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Proof Since the set-valued mapping  — V(z) is upper-semicontinuous, the set V(1)
is compact and all £ € V(=) are nonsingular, there exists 3 > 0 such that ||| < 3,V¢ €
V(z0). Noticing V(zo) C Vo(x), (2.6) holds. This completes the proof of the lemma.

The next theorem is on the convergence analysis for the Newton method (2.4).

Theorem 2.1 Suppose that z* is a solution of the complementarity problem (0.3), F' is
semismooth at 2* and all £ € V(x*) are nonsingular. Then, the iteration (2.4) is well-defined
and generates the sequence {z}} converging to z* superlinearly in a neighborhood of x*.

Proof We first prove
V(z) C dcig1(x) x -+ Ocign(z). (2.7)

It is enough to prove that V;(x) C dc1g:(x),i = 1,...,n. Let g € N™ and ¢ be fixed point
and index, respectively. If z;(zo) < fi(zo), then there is a neighbourhood B(x¢,d) of zg
such that z;(z) < fi(x), Vo € B(xg,0). Hence, g;(x) = z;(z) and g;(x) is continuously
differentiable with Vg;(x) = Vz;(x) for all x € B(xq,d). Therefore,

Vi(zo) = {Vzi(x0)} = {Vgi(z0)} = Ipgi(w0),

that is Vi(zo) C dc1gi(x0)-
If z;(x0) > fi(zo), then there is a neighbourhood of B(xg,d1) of x¢ such that z;(x) >
fi(x), Yo € B(xg,d1). Therefore,

gi(z) = fi(z) and Opgi(r) = Ipfi(z)
for all x € B(xzo, d1). This leads to
Vi(zo) = 0 fi(xo) = OBgi(wo) C dcigi(wo),

that is Vi(zo) C dc1gi(xo)-

Now we suppose that z;(xg) = fi(zo). There are two cases.

Case one: there is a sequence {zy} with z; — o such that z;(z) < fi(zk);

Case two: there exists a neighbourhood B(zg,d") of zg such that z;(z) > fi(z) for all
x € B(x0,0").

In the case one, there exists an neighbourhood B(xzg,dx) of zx such that z(x) <
filz),z € B(zy,dr). Thus, g;(x) = z(z) and g;(z) is continuously differentiabl with
Vgi(xr) = Vzi(xy) for all x € B(z, dx). Then,

Vi(zk) = {Vzi(zk)} = {Vgi(zr)} = Opgi(zr).
According to the continuity of Vz and the upper-semicontinuity of dpg;(x), we have

Vi(zo) = {Vzi(w0)} C 9Bgi(x0) C Oc1gi(wo)-
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This leads to Vi(z¢) C dcigi(xo)-
For the case two, since f;(z) — z;(z) < 0 for all z € B(xzg,d") and f;(x¢) — zi(z0) = 0,
xo is a maximizer of the function f;(x) — z;(z). According to the optimality condition of

locally Lipschitizian function, one has that

0 € Oci(fi(x) — 2i(x)) |o=a20= Octfi(x0) — Vzi(x0).

Thus, Vz;(z0) C dcifi(xo). On the other hand, the fact that z;(x) > fi(x),Vx € B(z,d’)
means g;(z) = fi(z) and dcig:(x) = Oci fi(x) for all x € B(xg,d’). Then, we have

Vi(xo) = {Vzi(zo)} C dcigi(wo),

i. e., Vi(zo) C dcigi(xo).

By virtue of Lemma 2.2, (2.4) is well-defined in a neighbourhood of z* for the first step.
Let & = ($1k,---,&nk). Since g;,i = 1,...,n are semismooth at a* and &; € Vi(xg) C
dcigi(xr), it follows from (1.1) that

Siw(zp — %) — gi(a*; 2 — %) = o ||, — 2*]),i = 1,...,n. (2.8)
Hence, one has that
Ee(z —27) = G'(@" 2 — 27) = of||z), — 27|)). (2.9)
Introducing x = z*,h = x;, — 2* and H = G to (1.2), we have
G(ax) — G(z") = G'(a" 2 — 27) = o[z, — 27|)). (2.10)
From Lemma 1.1, the formula (2.9) and the formula (2.10), it follows that

[2p1 = a¥|| = llox — 2* = & G ()|
<16 G ar) — Ga*) = G (2% — 27|
FllEe ek (e — ) = G (%5 2y, — )]
= o([|zx — z™]).

This shows the superlinear convergence of {x;} to z* in a neighborhood of z*. We thus

have completed the proof of the theorem.

3 Conclusions

In this paper, a nonsmooth Newton method for a nonlinear complementarity problem

with nonsmooth data is developed. In each iteration of this Newton method, an element
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of B-differential of nonsmooth function f; is needed, but an element of a subdifferential of
G or max{z(x), fi(x)} not needed. The present method can be performed easily for some

practice.
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