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A Newton Method for a Nonsmooth Nonlinear

Complementarity Problem∗

GAO Yan1

Abstract This paper is devoted to a nonlinear complementarity problem with

nonsmooth data. The nonlinear complementarity problem is reformulated as a system

of nonsmooth equations. Then, a Newton method for solving the nonsmooth equations

is proposed. In each iteration of the Newton method, an element of the B-differential of

related functions, not nonlinear complementarity function, is required. The superlinear

convergence is shown.
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0 Introduction

The nonlinear complementarity problem

F (x) > 0, x > 0, xTF (x) = 0, (0.1)

where F : ℜn → ℜn and x ∈ ℜn is to find a solution x ∈ ℜn, which satisfies (0.1).

The complementarity problem plays an important role in economics equilibrium, system

engineering, optimization and others. It has been studied extensively when F is smooth, see�	��� 2009 Æ 1 � 6 ��
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for instance [3-4, 6] and references therein. Based on nolinear complementarity function, a

nonlinear complementarity problem is equivalently transformed into a system of nonsmooth

equations. A generalized Newton method is used to solve the system of nonsmooth equations.

For the case where F is nonsmooth function, to our knowledge, only [1-2, 5] dealt

with the problem (0.1). They transform (0.1) into a unconstrained optimization, then solve

it by nonsmooth optimization method. In the present paper, we try to study nonlinear

complementarity with nonsmooth data. We first reformulate the nonlinear complementarity

problem as a system of nonsmooth equation, then propose a Newton to solve the nonsmooth

equations.

Let us consider the following nonlinear complementarity problem

F (x) > 0, Z(x) > 0, Z(x)TF (x) = 0, (0.2)

where F : ℜn → ℜn is locally Lipschitzian, Z : ℜn → ℜn is continuously differentiable.

When Z(x) = x, the problem (1.2) happens to be the problem (0.1). Throughtout of the

paper, we denote F (x) = (f1(x), . . . , fn(x))T, Z(x) = (z1(x), . . . , zn(x)), B(x, δ) the open

ball with x and δ as its center and radium, respectively.

1 Preliminaries

We start with a brief review of nonsmooth analysis and Newton method for solving

nonsmooth equations.

Let both X and Y be subsets of finite dimensional spaces. As in [3], the set-valued

mapping x → S(x) from X to 2Y is said to be upper-semicontinuous at x0 ∈ X if for any

ǫ > 0, there exists δ > 0 such that ‖x − x0‖ 6 δ implies that

S(x) ⊂ S(x0) + εB(0, 1).

We say the set-valued mapping x → S(x) to be upper-semicontinuous on X if it is upper-

semicontinuous at all x ∈ X .

Let H : ℜn → ℜm be locally Lipschitzian. By the definition in [3-4],

∂BH(x) = { lim
y→x

JH(y) | y ∈ DH},

where DH is the set of differentiable points of H , is called the B-differential of H at x;

∂ClH(x) = co∂BH(x) is called the Clarke generalized Jacobian of H at x; when H is from

ℜn to ℜ, ∂ClH(x) is said to be the Clarke generalized gradient at x.

Both set-valued mappings x → ∂ClH(x) and x → ∂BH(x) are upper-semicontinuous,

see [3].
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As in [3-4], the locally Lipschitzian function H : ℜn → ℜm is said to be semismooth at

x if

lim
V ∈∂ClH(x+th′)

h′→h, t→0+

V h′

exists for any h ∈ ℜn.

Lemma 1.1(see [3-4]). Suppose that H : ℜn → ℜm is locally Lipschitzian on ℜn and

semismooth at x. Then, one has that

ξh − H ′(x; h) = o(‖h‖), ξ ∈ ∂ClH(x + h), (1.1)

H(x + h) − H(x) − H ′(x; h) = o(‖h‖). (1.2)

Let us consider the nonsmooth equations:

H(z) = 0,

where H : ℜn → ℜn is locally Lipschitzian. Newton method for solving the nonsmooth

equations is given by

xk+1 = xk − ξ−1

k H(xk), (1.3)

where ξk is an element of ∂BH(xk), ∂ClH(xk) or ∂Bh1(xk) × · · · × ∂Bhn(xk), and H(x) =

(h1(x), . . . , hn(x))T. The locally superlinear convergence of Newton methods are shown

when F is semismooth and all elements of corresponding subdifferentials, mentioned above,

of H at the solution are nonsingular. The Newton of (1.3) can be performed if an element

of related subdifferential can be computed.

2 A Newton and its convergence analysis

Evidently, the nonlinear complentarity problem (0.2) can be reformulated as the following

min{zi(x), fi(x)} = 0, i = 1, . . . , n. (2.1)

Denote G(x) = (g1(x) . . . gn(x))T, where

gi(x) = min{zi(x), fi(x)}, i = 1, . . . , n (2.2)

Of course, as mentioned in [1], the Newton method (1.3) can be used to solve the

equations (2.2) directly. As is known, that method need to compute an element of some

kind subdifferential of G at each iteration.

Define the set-valued mapping x → V (x) from ℜn to subsets of ℜn×n as the following

V (x) = V1(x) × · · · × Vn(x),



4 GAO Yan 15 �
where

Vi(x) =







{∇zi(x)}, if zi(x) 6 fi(x),

∂Bfi(x), if zi(x) > fi(x).

(2.3)

We give a Newton method for solving the nonlinear complentarity problem (0.2), equivalently

solving the equations G(x) = 0 as the following:

xk+1 = xk − ξ−1

k G(xk), ξk ∈ V (xk). (2.4)

It should be mentioned that V (x) is not a subdifferential of G(x) and is even not

upper-semicontinuous as a set-valued mapping. We next define another set-valued mapping

x → V̄ (x) from ℜn to subsets of ℜn×n as follows

V̄ (x) = V̄1(x) × · · · × V̄n(x),

where

V̄i(x) =























{∇zi(x)}, if zi(x) < fi(x),

{∇zi(x)}
⋃

∂Bfi(x), if zi(x) = fi(x),

∂Bfi(x), if zi(x) > fi(x).

(2.5)

It is easy to see that V̄ (x) ⊂ V̄ (x) for any x ∈ ℜn. Next two lemmas characterize the

upper-semicontinuity of the set-valued mapping x → V̄ (x).

Lemma 2.1 The set-valued mapping x → V̄ (x) is upper-semicontinuous.

Proof It is enough to prove that each x → V̄i(x) is upper-semicontinuous. Given a

fixed point x0 ∈ ℜn and a fixed index i, in what follows, we prove that x → V̄i(x) is upper-

semicontiuous at x0. If zi(x0) < fi(x0), then there is a neighbourhood B(x0, δ) of x0 such

that zi(x) < fi(x), ∀x ∈ B(x0, δ). Hence, V̄i(x) = {∇zi(x)}, ∀x ∈ B(x0, δ). By the continu-

ity of the function ∇zi(x), the set-valued mapping V̄i(x) is upper-semicontinuously at x0. If

zi(x0) > fi(x0), then there is a neighbourhood B(x0, δ1) of x0 such that zi(x) > fi(x), ∀x ∈

B(x0, δ1). Therefore, V̄i(x) = ∂Bfi(x), ∀x ∈ B(x0, δ1). By the upper-semicontinuity of the

set-valued mapping x → ∂Bfi(x), the set-valued mapping x → V̄i(x) is upper-semicontinuous

at x0. Now we consider the case where zi(x0) = fi(x0). Suppose that xk → x0 and ξk → ξ

with ξk ∈ V̄i(xk). Then, ξk ∈ {∇zi(xk)}
⋃

∂Bfi(xk). Evidently, the set-valued mapping

x → {∇zi(x)}
⋃

∂Bfi(x) is upper-semicontinuous. Therefore, ξ ∈ {∇z(x0)}
⋃

∂Bfi(x0)} =

V̄i(x0), i.e. V̄ (x) is upper-semicontinuous at x0. This completes the proof of the lemma.

Lemma 2.2 Let x0 ∈ ℜn. If all ξ ∈ V̄ (x0) are nonsingular, then there exists β > 0

such that

‖ξ−1‖ 6 β, ∀ξ ∈ V (x0). (2.6)
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Proof Since the set-valued mapping x → V̄ (x) is upper-semicontinuous, the set V̄ (x0)

is compact and all ξ ∈ V̄ (x0) are nonsingular, there exists β > 0 such that ‖ξ−1‖ 6 β, ∀ξ ∈

V̄ (x0). Noticing V (x0) ⊂ V̄0(x), (2.6) holds. This completes the proof of the lemma.

The next theorem is on the convergence analysis for the Newton method (2.4).

Theorem 2.1 Suppose that x∗ is a solution of the complementarity problem (0.3), F is

semismooth at x∗ and all ξ ∈ V̄ (x∗) are nonsingular. Then, the iteration (2.4) is well-defined

and generates the sequence {xk} converging to x∗ superlinearly in a neighborhood of x∗.

Proof We first prove

V (x) ⊂ ∂Clg1(x) × · · · ∂Clgn(x). (2.7)

It is enough to prove that Vi(x) ⊂ ∂Clgi(x), i = 1, . . . , n. Let x0 ∈ ℜn and i be fixed point

and index, respectively. If zi(x0) < fi(x0), then there is a neighbourhood B(x0, δ) of x0

such that zi(x) < fi(x), ∀x ∈ B(x0, δ). Hence, gi(x) = zi(x) and gi(x) is continuously

differentiable with ∇gi(x) = ∇zi(x) for all x ∈ B(x0, δ). Therefore,

Vi(x0) = {∇zi(x0)} = {∇gi(x0)} = ∂Bgi(x0),

that is Vi(x0) ⊂ ∂Clgi(x0).

If zi(x0) > fi(x0), then there is a neighbourhood of B(x0, δ1) of x0 such that zi(x) >

fi(x), ∀x ∈ B(x0, δ1). Therefore,

gi(x) = fi(x) and ∂Bgi(x) = ∂Bfi(x)

for all x ∈ B(x0, δ1). This leads to

Vi(x0) = ∂Bfi(x0) = ∂Bgi(x0) ⊂ ∂Clgi(x0),

that is Vi(x0) ⊂ ∂Clgi(x0).

Now we suppose that zi(x0) = fi(x0). There are two cases.

Case one: there is a sequence {xk} with xk → x0 such that zi(xk) < fi(xk);

Case two: there exists a neighbourhood B(x0, δ
′) of x0 such that zi(x) > fi(x) for all

x ∈ B(x0, δ
′).

In the case one, there exists an neighbourhood B(xk, δk) of xk such that zi(x) <

fi(x), x ∈ B(xk, δk). Thus, gi(x) = zi(x) and gi(x) is continuously differentiabl with

∇gi(xk) = ∇zi(xk) for all x ∈ B(xk, δk). Then,

Vi(xk) = {∇zi(xk)} = {∇gi(xk)} = ∂Bgi(xk).

According to the continuity of ∇z and the upper-semicontinuity of ∂Bgi(x), we have

Vi(x0) = {∇zi(x0)} ⊂ ∂Bgi(x0) ⊂ ∂Clgi(x0).
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This leads to Vi(x0) ⊂ ∂Clgi(x0).

For the case two, since fi(x) − zi(x) 6 0 for all x ∈ B(x0, δ
′) and fi(x0) − zi(x0) = 0,

x0 is a maximizer of the function fi(x) − zi(x). According to the optimality condition of

locally Lipschitizian function, one has that

0 ∈ ∂Cl(fi(x) − zi(x)) |x=x0= ∂Clfi(x0) −∇zi(x0).

Thus, ∇zi(x0) ⊂ ∂Clfi(x0). On the other hand, the fact that zi(x) > fi(x), ∀x ∈ B(x0, δ
′)

means gi(x) = fi(x) and ∂Clgi(x) = ∂Clfi(x) for all x ∈ B(x0, δ
′). Then, we have

Vi(x0) = {∇zi(x0)} ⊂ ∂Clgi(x0),

i. e., Vi(x0) ⊂ ∂Clgi(x0).

By virtue of Lemma 2.2, (2.4) is well-defined in a neighbourhood of x∗ for the first step.

Let ξk = (ξ1k, . . . , ξnk). Since gi, i = 1, . . . , n are semismooth at x∗ and ξik ∈ Vi(xk) ⊂

∂Clgi(xk), it follows from (1.1) that

ξik(xk − x∗) − g′i(x
∗; xk − x∗) = o(‖xk − x∗‖), i = 1, . . . , n. (2.8)

Hence, one has that

ξk(xk − x∗) − G′(x∗; xk − x∗) = o(‖xk − x∗‖). (2.9)

Introducing x = x∗, h = xk − x∗ and H = G to (1.2), we have

G(xk) − G(x∗) − G′(x∗; xk − x∗) = o(‖xk − x∗‖). (2.10)

From Lemma 1.1, the formula (2.9) and the formula (2.10), it follows that

‖xk+1 − x∗‖ = ‖xk − x∗ − ξ−1

k G(xk)‖

6 ‖ξ−1

k [G(xk) − G(x∗) − G′(x∗; xk − x∗)]‖

+‖ξ−1

k [ξk(xk − x∗) − G′(x∗; xk − x∗)]‖

= o(‖xk − x∗‖).

This shows the superlinear convergence of {xk} to x∗ in a neighborhood of x∗. We thus

have completed the proof of the theorem.

3 Conclusions

In this paper, a nonsmooth Newton method for a nonlinear complementarity problem

with nonsmooth data is developed. In each iteration of this Newton method, an element
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of B-differential of nonsmooth function fi is needed, but an element of a subdifferential of

G or max{zi(x), fi(x)} not needed. The present method can be performed easily for some

practice.
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