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A Norm-Relaxed Algorithm with Identification

Function for General Constrained Optimization∗

JIAN Jinbao1† WEI Xiaopeng1 ZENG Hanjun1 PAN Huaqin1

Abstract Based on a semi-penalty function and an identification function used to
yield a “working set”, as well as the norm-relaxed SQP idea, a new algorithm for solving
a kind of optimization problems with nonlinear equality and inequality constraints is
proposed. At each iteration, to yield the search directions the algorithm solves only one
reduced quadratic program (QP) subproblem and a reduced system of linear equations.
The proposed algorithm possesses global convergence and superlinear convergence under
some mild assumptions without the strictly complementarity. Finally, some elementary
numerical experiments are reported.
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0 Introduction

In this paper, we consider the general constrained optimization problems as follows

(P)

min f(x)

s.t. gj(x) 6 0, j ∈ I1 = {1, . . . , m′},

gj(x) = 0, j ∈ I2 = {m′ + 1, . . . , m},

(0.1)O"IF� 2009 C 1 u 6 I�
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where x ∈ Rn, f and gj (j = 1, . . . , m) : Rn → R are smooth functions. Denote the feasible

set of the problem (0.1) as

X = {x ∈ Rn : gj(x) 6 0, j ∈ I1; gj(x) = 0, j ∈ I2}.

It is well known that the method of feasible directions (MFD) is one of the important meth-

ods to deal with the optimization problems with inequality constraints. The MFD possesses

several good properties such as the feasibility of the iterative points and the approximate

optimal solutions as well as computational efficiency and so on, see Refs. [1-4]. To use the

idea of the MFD to study the general constrained optimization problem (0.1), In [5], Mayne

and Polak converted the problem (P) to the following semi-penalty optimization problem

with only inequality constraints

(Pc)
min Fc(x)

Def
= f(x) − c

∑
j∈I2

gj(x)

s.t. gj(x) 6 0, j ∈ I
Def
= I1 ∪ I2.

(0.2)

where the penalty parameter c > 0, which is updated by a suitable rule. Then, based on

the auxiliary problem (Pc), Mayne and Polak presented a MFD associated to (Pc) for the

original problem (P). Further research based on this idea can be seen in Refs. [6]-[13].

In 1994, Cawood and Kostreva[3] generalized the idea of Pironneau-Polak’s MFD[14] and

proposed a norm-relaxed MFD algorithm for the problem (P) with I2 = ∅, i.e., with only

inequality constraints. At each iteration, the feasible direction of descent in [3] is generated

by solving a direction finding subproblem (DFS) as follows

min z +
r

2
dTBkd

s.t. ∇f(xk)
T
d 6 z,

gj(x
k) + ∇gj(x

k)
T
d 6 z, j ∈ I.

where Bk is a positive definite matrix, r is a constant and xk is a current feasible iteration

point.

Then in 1999, by introducing some parameters, Chen and Kostreva[4] proposed a so-

called generalized norm-relaxed MFD, which can improve the numerical effect. With positive

constants γ0, γj (j ∈ I), they considered the following DFS

min z +
1

2
dTBkd

s.t. ∇f(xk)
T
d 6 γ0z,

gj(x
k) + ∇gj(x

k)
T
d 6 γjz, j ∈ I.

The normal-relaxed method is further improved and extended by Jian et al in [12, 15].

To obtain superlinear convergence, Kostreva and Chen[16], Lawrence and Tits[17], Zhu and
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Zhang[18] further studied the norm-relaxed MFD. However, to obtain superlinear conver-

gence, these methods depend on the strict complementarity assumption, additionally, these

algorithms can’t solve directly the optimization problem (P) with I2 6= ∅.

Recently, with the help of the idea of the strongly sub-feasible direction and some suit-

able technique yielding a high-order correction direction used to avoid the Maratos effect[19],

the norm-relaxed method is further researched by Jian et al, in [20-21], all of them deal with

the optimization problem (P) with only inequality constraints. By using an ε-active con-

straint set technique, Ref. [21] constructs the following DFS to generate a master search

direction:

min
(z,d)∈Rn+1

γ0z +
1

2
dTBkd

DFS s.t. ∇f(xk)
T
d 6 γ0z + γϕ(xk)σ,

gj(x
k) + ∇gj(x

k)
T
d 6 γjηkz, j ∈ I−k

Def
= I−(xk, ε),

gj(x
k) + ∇gj(x

k)
T
d 6 γjηkz + ϕ(xk), j ∈ I+

k

Def
= I+(xk, ε),

where ηk is a positive parameter associated with xk, γ, σ, γj are all positive constant

parameters, and ε-active constraint sets are defined by

I−k = {j ∈ I1 : −ε 6 gj(x
k) 6 0}

I+
k = {j ∈ I1 : 0 < gj(x

k), 0 6 gj(x
k) − max

i∈I1
{0, gi(x

k)}}.

Then a system of linear equations (SLE) as

Vk

(
d

h

)
=

(
Bk Nk

NT
k −Gk

)(
d

h

)
=

(
0

−max{‖dk‖τ , | ην
kzk | ‖dk‖}eIk

− g̃k

)

is solved to yield a high-order updated direction where Nk = (∇gj(x
k), j ∈ I−k ∪ I+

k ), Gk is

a suitable diagonal matrix and g̃k is a suitable vector. The high-order correction technique

here is much different from the ones used in Refs. [16-18,21], and the numerical effect is

further improved.

In this paper, based on the auxiliary problem (Pc), we further extend and improve

the norm-relaxed algorithm in [21] such that it can not only deal with general constrained

optimization problems, but also improve some characters of the algorithm in [21], as a result,

we propose a new norm-relaxed algorithm for general constrained optimization problem

(P). To reduce the cost of computation, we use the technique of identification function and

working set to construct the DFS and the high-order correction direction. The working set

technique can be seen in [22-24], which has been proved to be effectively. Similar to the

rules in [23], in this paper, combining with the information used in updating the penalty

parameter c, we derive a simple form of working set, and we will show it is equivalent to the

active set of (P).
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The main features of the algorithm can be summarized as follows:

• the penalty parameter c is adjusted automatically only finite number of times;

• the cost of computation is reduced by using the technique of working set;

• an improved direction for the problem (0.2) is obtained by solving only one norm-

relaxed QP subproblem, and a high-order correction direction avoiding the Maratos effect

is obtained by solving one SLE;

• possesses global and superlinear convergence under some suitable assumptions without

the strictly complementarity.

1 Description of algorithm

For the sake of simplicity, we denote and use the following notations

X+ = {x ∈ Rn : gi(x) 6 0, i ∈ I},

I1(x) = {j ∈ I1 : gj(x) = 0}, I(x) = I1(x) ∪ I2, I0(x) = {j ∈ I : gj(x) = 0}.
(1.1)

First, assume that the following basic assumptions hold in the paper:

Assumption A1 The functions f and gj (j ∈ I) are all continuously differentiable

in X+

Assumption A2 The gradient vectors {∇gj(x), j ∈ I(x)} are linearly independent

for any x ∈ X+.

Lemma 1.1 Suppose that Assumptions A1 and A2 hold. Then for any xk ∈ X+, the

matrix (ÑT
k Ñk + D(xk)) is nonsingular and positive definite, where

Ñk = (∇gj(x
k), j ∈ I), D(xk) = diag(Dk

j , j ∈ I), Dk
j =

{
|gj(x

k)|, if j ∈ I1;

0, if j ∈ I2.
(1.2)

Using Assumption A2, the proof is elementary and is omitted here.

According to the lemma above, for a current iteration point xk ∈ X+, we use multiplier

vector

π(xk) = (πj(x
k), j ∈ I) = −(ÑT

k Ñk + D(xk))−1ÑT
k ∇f(xk) (1.3)

to update the penalty parameter c in (0.2) (the detail can be seen in Step 2 of the algorithm

below). Obviously, (1.3) is equivalent to the following SLE in variable d:

(ÑT
k Ñk + D(xk))d = −ÑT

k ∇f(xk). (1.4)

From Lemma 2.2 in [12], we have the following conclusion.

Lemma 1.2 (i) Let xk ∈ Rn. If parameter c >| πj(x
k) |, ∀j ∈ I2, then (xk, λk) is a

KKT pair of the original problem (0.1) if and only if (xk, µ̄k) is a KKT pair of the problem
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(0.2), where λk and µ̄k satisfy

λk
j = µ̄k

j , j ∈ I1; λk
j = µ̄k

j − c, j ∈ I2. (1.5)

(ii) If xk is a KKT point of (0.1), then π(xk) is the unique corresponding KKT multi-

plier.

Now, define function Φ : Rn+m → Rn+m:

Φ(x, λ) =




∇xL(x, λ)

min{−gI1(x), λI1}

gI2(x)




with Lagrange function L(x, λ) = f(x)+
∑
i∈I

λigi(x), then from Theorem 4.3 of [23], we know

function ρ : Rm+n → R:

ρ(x, λ) = ‖Φ(x, λ)‖
1
2 (1.6)

is an optimal identification function of (P), i.e., (x, λ) is a KKT pair of (P) if and only if

ρ(x, λ) = 0. So for the current iteration point xk, if one denotes

I(x, λ) = {i ∈ I1 : gi(x) + ρ(x, λ) > 0},

then I(x, λ) ≡ I1(x
∗) when (x, λ) is sufficiently close to a KKT pair (x∗, λ∗) of (P) if the

second-order sufficient conditions and the Mangasarian-Fromovitz constraint qualification

(MFCQ) hold at (x∗, λ∗) (see [22]). Based on Lemma 1.2 and the construction of π(x),

which is an estimate of the KKT multiplier vector λ, we introduce and use the following

working set

I1k = {i ∈ I1 : gj(x
k) + ρ(xk, π(xk)) > 0}, Ik = I1k ∪ I2. (1.7)

We can also prove that Ik ≡ I(x∗) when xk is sufficiently close to a KKT point x∗ (see

Lemma 3.1).

From Lemma 1.2 above, we can see that solving the original problem (0.1) can be

transformed to solve a sequence optimization (0.2) of problems with inequality constraints.

Motivated by this and the important property of working set, we introduce an effective fea-

sible direction method for the problems (0.2), then for the original problem (0.1) indirectly.

For a given ck and iteration point xk ∈ X+ as well as a symmetric positive definite

matrix Bk, we use the following DFS to yield our master search direction dk

min
(z,d)∈Rn+1

γ0z +
1

2
dTBkd

DFSck
s.t. ∇Fck

(xk)
T
d 6 γ0z,

gj(x
k) + ∇gj(x

k)
T
d 6 γjηkz, j ∈ Ik,

(1.8)
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where ηk is a positive parameter associated with xk, and γj (j ∈ {0} ∪ Ik) are all positive

constant parameters. The parameter ηk accelerates the convergence rate and attaches much

importance in the proof of global and superlinear convergence of our algorithm.

Obviously, DFSck is equivalent to the following unconstrained strictly convex program

min
d∈Rn

{
1

2
dTBkd + max

j∈Ik

{ 1

γ0
∇Fck

(xk)Td;
1

γjηk

(gj(x
k) + ∇gj(x

k)Td)
}}

.

Therefore, it has an unique optimal solution dk. Moreover, since (1.8) is a convex program

with linear constraints, (zk, dk) is an optimal solution of (1.8) if and only if it is a KKT

point of (1.8) (the detail can be seen in Lemma 2.1 of [20]).

Suppose that (zk, dk, µk
0 , µk

Ik
) is a KKT pair of DFSck. Then the corresponding KKT

conditions of (1.8) can be expressed as

γ0µ
k
0 + ηk

∑

j∈Ik

γjµ
k
j = γ0, (1.9)

Bkdk + µk
0∇Fck

(xk) +
∑

j∈Ik

µk
j∇gj(x

k) = 0, (1.10)

0 6 µk
0⊥
(
−∇Fck

(xk)Tdk + γ0zk

)
> 0, (1.11)

0 6 µk
j⊥
(
−gj(x

k) −∇gj(x
k)Tdk + γjηkzk

)
> 0, j ∈ Ik, (1.12)

where the symbol x ⊥ y means xT y = 0. In the case of µk
0 6= 0, we define multiplier

µ̄k
Ik

= (µ̄k
j = µk

j /µk
0 , j ∈ Ik), µ̄k = (µ̄k

Ik
, 0I\Ik

). (1.13)

Lemma 1.3 Let (zk, dk) be an optimal solution to the DFS (1.8) and suppose that

Assumptions A1-A2 hold as well as Bk is a symmetric positive definite matrix. Then

(i) γ0zk + 1
2 (dk)TBkdk 6 0, zk 6 0;

(ii) zk = 0 ⇐⇒ dk = 0 ⇐⇒ xk is a KKT point for (0.2), and µ̄k defined by (1.13) is the

associated KKT multiplier;

(iii) if dk 6= 0, then ∇gj(x
k)Tdk 6 γjηkzk < 0, ∀j ∈ I0(x

k), and ∇Fck
(xk)Tdk 6 γ0zk <

0. So dk is a feasible direction of decent of (Pck
) at xk.

The proof of the results above is similar to the one of Lemma 2.3 in [12] associated with

the case of xk ∈ X+, i.e., ϕ(xk)
Def
= max

j∈I
{0, gj(x

k)} = 0.

Remark 1 If parameter ck > |πj(x
k)|, j ∈ I2, then from Lemma 1.2 and Lemma 1.3

(ii), we know that dk = 0 if and only if (xk, λk) is a KKT pair of the original problem (0.1),

where λk satisfies (1.5) and µ̄k is defined by (1.13).

It is well known that to overcome the Maratos effect, a suitable high-order updated

direction of dk must be adopted. In this paper, based on the technique of working set Ik,
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similar to [21], we introduce the following SLE

Vk

(
d

h

)
=

(
0

−max{‖dk‖τ , | ην
kzk | ‖dk‖}̟Ik

− g̃k

)
(1.14)

to yield a high-order updated direction, where ̟Ik
= (1, . . . , 1)T ∈ R|Ik|, τ ∈ (2, 3), ν ∈

(0, 1) and

Vk =

(
Bk Nk

NT
k −Gk

)
, Nk = (∇gj(x

k), j ∈ Ik), Gk = diag(Gk
j , j ∈ Ik), g̃k = (g̃k

j , j ∈ Ik),

(1.15)

Gk
j =| gj(x

k) | (| gj(x
k) + ∇gj(x

k)Tdk − γjηkzk | + | ηkzk | +‖dk‖), (1.16)

g̃k
j = gj(x

k + dk) − gj(x
k) −∇gj(x

k)Tdk + γjηkzk. (1.17)

Lemma 1.4 Suppose that Assumptions A1–A2 hold and matrix Bk is positive definite.

Then the matrix Vk defined by (1.15) is nonsingular.

Proof Obviously, from the definition of Gk, we know that Gk
j > 0, ∀j ∈ Ik, and

column vectors

{∇gj(x
k)| j : Gk

j = 0} = {∇gj(x
k)| j ∈ I0(x

k) ⊆ I(xk)}

are linearly independent, So, by Corollary 1.1.9(3) in [25], one knows the conclusion follows.

Based on the master direction dk and the high-order correction d̃k yielded by (1.14),

we state our algorithm as follows.

Algorithm

Step 0. (Initialization) Let parameters a0 > 0, α ∈ (0, 0.5), β, ν ∈ (0, 1), τ ∈

(2, 3), ξ, ζ, η0, c−1, ι, r, γ, γj > 0, j = 0, 1, . . . , m, δ1, δ2 > 0, δ1 + δ2 > 0, and choose a

starting point x0 ∈ X+ and an initial symmetric positive definite matrix B0, set η0 = a0

and k := 0.

Step 1. (Generating the working set) Compute ρ(xk, π(xk)) by (1.3) and (1.6) and the

working set Ik by (1.7).

Step 2. (Adjusting parameter ck) If I2 = ∅, go to Step 3; otherwise, compute ck by

ck =

{
max{sk, ck−1 + r}, if sk > ck−1;

ck−1, if sk 6 ck−1,
sk = max{|πj(x

k)|, j ∈ I2} + ι. (1.18)

Step 3. (Generating master search direction) Solve the DFS (1.8) to obtain an optimal

solution (zk, dk) with multiplier (µk
0 , µk

Ik
). If dk = 0, then stop.

Step 4. (Generating correction direction) Compute the updated direction d̃k by solving

the linear system (1.14) with a solution (d̃k, hk). If ‖d̃k‖ > ‖dk‖, then reset d̃k = 0.
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Step 5. (Doing arc search) Compute the step size tk, which is the first value of t in

the sequence {1, β, β2, β3, . . .} that satisfies the inequalities:

Fck
(xk + tdk + t2d̃k) 6 Fck

(xk) + αt∇Fck
(xk)Tdk, (1.19)

gj(x
k + tdk + t2d̃k) 6 0, j ∈ I. (1.20)

Step 6. (Updating) Compute a new symmetric positive definite matrix Bk+1 by a

suitable technique and ηk+1 by ηk+1 = min{a0, δ1‖dk‖ξ + δ2 | zk |ζ}. Set xk+1 = xk + tkdk +

t2kd̃k, k := k + 1, and go back to Step 1.

To show that the proposed algorithm is well defined, we give the following lemma, and

taking into account Lemma 1.3 (iii), its proof is similar to the one of Lemma 2.4 in [20]

associated with the case of xk ∈ X+, i.e., ϕ(xk) = 0.

Lemma 1.5 The inequalities (1.19)–(1.20) hold for t > 0 small enough, so the line

search in Step 5 is well defined.

Remark 2 The cost of computation in Step 3 and Step 4 is reduced by adopting the

technique of working set.

Remark 3 By the construction of ck, after finite iterations, there exists a constant

c such that ck ≡ c (see Lemma 2.1 below).

2 Global convergence

If the proposed algorithm stops at xk, then from Step 3 and the definition of ck in Step

2, we know dk = 0 and ck > |πj(x
k|, ∀j ∈ I2. According to Lemma 1.2 and Lemma

1.3 (ii), one knows that xk is a KKT point for (1.1). In this section, we assume that the

proposed algorithm yields an infinite iteration sequence {xk}, and will show that it is globally

convergent, namely, every accumulation x∗ of {xk} is a KKT point of (0.1). For this goal,

the following basic assumption is necessary.

Assumption A3 The sequence {xk} yielded by the proposed algorithm is bounded

and the sequence {Bk} of matrices is uniformly positive definite, i.e., there exist two positive

constants a and b such that

a‖d‖2
6 dTBkd 6 b‖d‖2, ∀d ∈ Rn, ∀k.

Define the active constrain set of (1.8) by

Lk = {j ∈ Ik : gj(x
k) + ∇gj(x

k)Tdk = γjηkzk}. (2.1)

Lemma 2.1 Suppose that Assumptions A1–A2 hold, and the sequence {xk} is

bounded. Then there exists a positive integer k0, such that ck = ck0
, ∀ k > k0.
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The proof is similar to the fashion of Lemma 2.1 in [12].

According to the lemma above, in the remainder of this paper, we always assume that

ck ≡ c for all k for k large enough .

Lemma 2.2 Suppose that Assumptions A1–A3 hold. Then

(i) the sequences {zk}, {dk} and {d̃k} are all bounded;

(ii) the KKT multiplier sequences {µk
0} and {µk

Ik
} are all bounded; and

(iii) there exists a constant c̄ such that ‖ V −1
k ‖6 c̄ holds for k large enough.

Proof The proof of conclusions (i) and (ii) are similar to the ones of Lemma 3.2(i) and

Lemma 3.3 in [12] associated with the case of xk ∈ X+, i.e., ϕ(xk) = 0, respectively. Now

we give the proof of conclusion (iii). By contradiction, suppose that there exists an infinite

index set K such that ‖ V −1
k ‖

K
→ ∞. Then, taking into account Assumption A3 and the

boundedness of {(zk, dk, ηk)}, we can assume without loss of generality, choosing an infinite

subset of K if necessary, that

Bk → B∗, dk → d∗, zk → z∗, ηk → η∗ Ik ≡ Ĩ , Vk → V∗ =

(
B∗ N∗

NT
∗ −G∗

)
, k ∈ K,

where N∗ and G∗ is the limits of {Nk}K and {Gk}K , respectively, namely,

N∗ = (∇gj(x
∗), j ∈ Ĩ), G∗ = diag(G∗

j , j ∈ Ĩ)

with

G∗
j =| gj(x

∗) | (| gj(x
∗) + ∇gj(x

∗)T d∗ − γjη∗z∗ | + | η∗z∗ | +‖d∗‖).

Obviously, G∗
j > 0, ∀j ∈ Ĩ and G∗

j > 0 for all j ∈ Ĩ\I0(x
∗). So, H := B∗, A := N∗ and

D := G∗ satisfy the requests in Corollary 1.1.9 in [25], therefore, by this corollary, we know

V∗ is nonsingular. Thus, ‖ V −1
k ‖

K
→‖ V −1

∗ ‖< ∞, which contradicts the assumption.

Lemma 2.3 Suppose that Assumptions A1–A3 hold. If an infinite index set K satisfies

lim
k∈K

xk = x∗ and lim
k∈K

dk = 0, then x∗ is a KKT point both for the smei-penalty problem

(0.2) and the original problem (0.1).

Proof By Lemma 2.2, without loss of generality, we can assume, choosing an infinite

subset of K if necessary, that

xk → x∗, Bk → B∗, ηk → η∗, Ik ≡ Ĩ , Lk ≡ L, µk
0 → µ∗

0, µk
Ik

→ µ∗
Ĩ
, k ∈ K. (2.2)

In view of ∇Fc(x
k)T dk 6 γ0zk 6 0 and lim

k∈K
dk = 0 as well as lim

k∈K
xk = x∗, it follows

that lim
k∈K

zk = 0. This together with the definition of Lk in (2.1) shows that L ⊆ I0(x
∗).

Therefore, passing to the limit k ∈ K and k → ∞ in formulas (1.9)–(1.12), one gets

γ0µ
∗
0+η∗

∑

j∈L

γjµ
∗
j = γ0, µ∗

0∇Fc(x
∗)+

∑

j∈L

µ∗
j∇gj(x

∗) = 0, µ∗
0 > 0, µ∗

j > 0, gj(x
∗) = 0, j ∈ L.

(2.3)



10 JIAN Jinbao, WEI Xiaopeng, ZENG Hanjun, PAN Huaqin 15 :
Furthermore, from the relations above and A2, it is easy to see that µ∗

0 6= 0, so µ∗
0 > 0.

Therefore, we can conclude that x∗ is a KKT point of (0.2) with the corresponding multiplier

µ̄∗ Def
= (µ̄∗

L = µ∗
L/µ∗

0, 0I\L).

Finally, taking into account the construction of ck in Step 2 and Lemma 3.1, we obtain

c > lim
k∈K

πj(x
k) + ι = πj(x

∗) + ι > πj(x
∗), ∀j ∈ I2.

Hence, one can conclude that x∗ is a KKT point of (1.1) from Lemma 1.2.

Theorem 2.1 Let x∗ be an accumulation point of the sequence {xk} yielded by the

proposed algorithm. And suppose that Assumptions A1–A3 are satisfied. Then x∗ is a KKT

point both of the original problem (0.1) and the auxiliary problem (0.2) with c. Therefore,

the proposed algorithm is globally convergent.

Proof In view of Lemma 2.2, we can assume that there exists an infinite index set K

such that (2.2) holds and dk → d∗, zk → z∗, k ∈ K. By contradiction, we assume that x∗ is

not a KKT point of (0.1), so ρ(x∗, π(x∗)) > 0. Furthermore, by Lemma 2.3, one knows that

there exists an infinite subset K
′

⊆ K and a constant δ > 0 such that ‖dk‖ > δ, k ∈ K
′

.

Thus, one has the following relations from Lemma 1.3 (i) and Assumption A3,

γ0zk 6 −
1

2
(dk)T Bkdk

6 −
1

2
a‖dk‖2

6 −
1

2
aδ2, i.e., zk 6 −

1

2γ0
aδ2, k ∈ K

′

. (2.4)

Two cases of η∗ = 0 and η∗ > 0 are considered in the remainder discussion.

Case I Suppose that η∗ = 0. Then by the construction of ηk in Step 6, one has

ηk = δ1‖d
k−1‖ξ + δ2|zk−1|

ζ → 0, k ∈ K
′

.

Therefore, δ1‖d
k−1‖ξ → 0 and δ2|zk−1|

ζ → 0. In view of δ2zk−1 6 −
aδ2

2γ0
‖dk−1‖2, thus

δ2d
k−1 → 0. So we have (δ1 + δ2)d

k−1 → 0, this together with δ1 + δ2 > 0 shows that

lim
k∈K

′

‖dk−1‖ = 0. Therefore, according to Steps 4-6, one has

lim
k∈K

′

‖xk − xk−1‖ 6 lim
k∈K

′

(tk−1‖d
k−1‖ + t2k−1‖d̃

k−1‖) 6 lim
k∈K

′

(2‖dk−1‖) = 0.

So lim
k∈K

′

xk−1 = x∗ follows from lim
k∈K

′

xk = x∗. Let K = {k−1, k ∈ K
′

}. Then the discussion

above implies that lim
k∈K̄

xk = x∗ and lim
k∈K̄

dk = 0. Therefore, x∗ is a KKT point for (1.1) by

Lemma 2.3, which is a contradiction.

Case II Assume that η∗ > 0. Then for k large enough, one has

ηk >
η∗
2

, for k ∈ K
′

large enough. (2.5)

First, we will show that t
Def
= inf{tk, k ∈ K

′

} > 0, i.e., the relations (1.19) and (1.20)

hold for t > 0 small enough and k ∈ K
′

large enough.
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Analyze the inequality (1.19): using Taylor expansion, Lemma 2.2(i) and (1.8) as well

as (2.4), one has

Fc(x
k + tdk + t2d̃k) − F (xk)−αt∇Fc(x

k)Tdk = (1 − α)t∇Fc(x
k)Tdk + o(t)

6 (1 − α)tγ0zk + o(t)

6 −
(1 − α)tδ2

2
+ o(t).

Therefore, the inequality (1.19) holds for k ∈ K
′

large enough and t > 0 sufficiently small.

Analyze the inequalities (1.20): For j /∈ I0(x
∗), i.e., gj(x

∗) < 0, since gj is continuous

and {(dk, d̃k)} is bounded, we have gj(x
k + tdk + t2d̃k) 6 0 for k ∈ K

′

large enough and

t > 0 small enough.

For j ∈ I0(x
∗), i.e., gj(x

∗) = 0. we have j ∈ Ik since gj(x
k) + ρ(xk, π(xk)) → gj(x

∗) +

ρ(x∗, π(x∗)) > 0. Therefore, in view of (1.8), (2.4) and (2.5) as well as gj(x
k) 6 0, one gets

gj(x
k + tdk + t2d̃k) = gj(x

k) + t∇gj(x
k)Tdk + o(t)

6 gj(x
k) + tγjηkzk − tgj(x

k) + o(t)

= (1 − t)gj(x
k) + tγjηkzk + o(t)

6 tγjηkzk + o(t)

6 −
γjη∗aδ2

4γ0
t + o(t)

6 0.

So, (1.20) holds for k ∈ K
′

large enough and t > 0 small enough.

Second, use tk > t > 0 (k ∈ K
′

) to bring a contradiction. From (1.19) and (2.4), it

follows that




Fc(x
k+1) − Fc(x

k) 6 αtk∇Fc(x
k)Tdk 6 αγ0zktk < 0, ∀k;

Fc(x
k+1) − Fc(x

k) 6 αtk∇Fc(x
k)Tdk 6 αγ0zktk 6 −

1

2
αaδ2t, ∀k ∈ K

′

.
(2.6)

Therefore, {Fc(x
k)} is monotone decreasing, together with lim

k∈K
′

Fc(x
k) = Fc(x

∗), one has

lim
k→∞

Fc(x
k) = Fc(x

∗). On the other hand, passing to the limit k ∈ K
′

and k → ∞ in the

second inequality of (2.6), we bring a contradiction. Hence, x∗ is a KKT point of (0.1).

Lastly, in view of Lemma 1.2 and c > |πj(x
∗)|, ∀j ∈ I2, it further follows that x∗ is a

KKT point of (0.2).

3 Strong and superlinear convergence

In this section, we first prove the strong convergence of the proposed algorithm. Then

under some mild assumptions without the strict complementarity, we discuss the super-
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linear convergence. In the remainder analysis, the two following additional second-order

assumptions are necessary.

Assumption A4 (i) The functions f(x) and gj(x) (j ∈ I) are all twice continuously

differentiable in X+; and

(ii) the sequence {xk} generated by the proposed algorithm possesses an accumulation

point x∗ along with the KKT multiplier λ∗ for (P), such that the strongly second-order

sufficient condition (SOSC) is satisfied, i.e.,

dT∇2
xxL(x∗, λ∗)d > 0, ∀d ∈ Ω

Def
= {d ∈ Rn : d 6= 0, ∇gj(x

∗)T d = 0, j ∈ I+
∗ ∪ I2},

where I+
∗ = {j ∈ I1 : λ∗

j > 0}.

Remark 4 From Lemma 1.2, we know that the KKT multiplier λ∗ = π∗ Def
== π(x∗),

further, (x∗, µ̄∗) with

µ̄∗ = λ∗
j , j ∈ I1; µ̄∗

j = λ∗
j + c, j ∈ I2 (3.1)

is a KKT pair of (0.2). On the other hand, the Lagrange function associated with (Pc) is

given by

Lc(x, µ̄∗) = Fc(x) +
∑

j∈I

µ̄∗
jgj(x) = L(x, λ∗), ∇2

xxLc(x
∗, µ̄∗) = ∇2

xxL(x∗, λ∗).

So, in view of µ̄∗
j > 0, ∀j ∈ I2, the SOSC is satisfied for the inequality constrained opti-

mization (Pc) at the KKT pair (x∗, µ̄∗).

Assumption A5 Suppose that

‖(∇2
xxL(x∗, λ∗) − Bk)dk‖ = ‖(∇2

xxLc(x
∗, µ̄∗) − Bk)dk‖ = o(‖dk‖).

Remark 5 By Lemma 3.1 below, one can see that, Assumption A5 holds if and only

if

‖(∇2
xxLc(x

k, µk/µk
0) − Bk)dk‖ = o(‖dk‖).

Theorem 3.1 Suppose that Assumptions A2–A4 are all satisfied and x∗ is the limit

point stated in A4. Then

(i) for each index set K such that xk K
→ x∗, it follows that (zk, dk)

K
→ (0, 0); and

(ii) lim
k→∞

xk = x∗, lim
k→∞

zk = 0 and lim
k→∞

dk = lim
k→∞

d̃k = 0, so the proposed algorithm is

strongly convergent.

Proof (i) Since the whole sequence {(zk, dk)} is bounded, it is sufficient to show that

each limit point (z∗, d
∗) of {(zk, dk)}K must equal (0, 0). For the given limit point (z∗, d

∗), in

view of the boundedness of {ηk}, there exists a subset K ′ ⊆ K such that (zk, dk)
K′

→ (z∗, d
∗)

and ηk
K′

→ η∗.
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Taking into account (xk, π(xk))
K
→ (x∗, λ∗ = π(x∗)), under A2 and A4, from Ref. [22],

one has I1k ≡ I1(x
∗) and Ik = I1k ∪ I2 = I1(x

∗) ∪ I2 = I(x∗) for k ∈ K large enough.

Therefore, by passing the limit in the constraints of (1.8) for k ∈ K ′, we have

∇Fc(x
∗)Td∗ 6 γ0z∗, ∇gj(x

∗)Td∗ 6 γjη∗z∗ 6 0, j ∈ Ik = I(x∗). (3.2)

On the other hand, in view of (x∗, µ̄∗) is a KKT pair of (0.2), one has

∇Fc(x
∗) +

∑

j∈I(x∗)

µ̄∗
j∇gj(x

∗) = 0, µ̄∗
j > 0, j ∈ I(x∗). (3.3)

Hence, it is easy to get z∗ = 0 from (3.2) and (3.3). Furthermore, d∗ = 0 follows form

Lemma 1.3(i), A3 and z∗ = 0.

(ii) First, Assumptions A2 and A4 ensure that x∗ is an isolated KKT point of (P) (see,

Corollary 1.4.3 in [25]), which together with Theorem 2.1 shows that x∗ is an isolated limit

point of {xk}. Second, for each index set K such that xk K
→ x∗, from part (i) and Step 4,

one has

lim
k∈K

‖xk+1 − xk‖ 6 lim
k∈K

(tk‖d
k‖ + t2k‖d̃

k‖) 6 2 lim
k∈K

‖dk‖ = 0.

Therefore, by Proposition 7 in [26] or Theorem 1.1.7 in [25], we can conclude lim
k→∞

xk = x∗.

Finally, the rest conclusions in part (ii) follow immediately from lim
k→∞

xk = x∗ and part

(i) as well as ‖d̃k‖ 6 ‖dk‖.

Lemma 3.1 Suppose that Assumptions A2–A4 hold. Then

I2 ∪ I+
∗ ⊆ Lk ⊆ I0(x

∗) = I(x∗) ≡ Ik (k large enough),

lim
k→∞

(ηk, µk
0 , µk

Ik
) = (0, 1, µ̄∗

I(x∗)).

Proof Obviously, I0(x
∗) = I(x∗) follows from x∗ ∈ X . We first show I(x∗) ≡ Ik for k

large enough. By Theorem 2.1, Lemma 1.2(ii) and Theorem 3.1, we know that (x∗, π(x∗)) is

a KKT pair of (0.1) and
(
xk, π(xk)

)
→ (x∗, π(x∗)). So using Assumptions A2 and A4, from

[22] one has I1(x
∗) ≡ I1k for k large enough. Therefore, Ik = I1k ∪ I2 ≡ I1(x

∗)∪ I2 = I(x∗).

By the definition of ηk at Step 6, in view of lim
k→∞

dk = 0 and lim
k→∞

zk = 0, we have

lim
k→∞

ηk = 0. So, taking into account the boundedness of {µk
Ik
}, lim

k→∞
µk

0 = 1 follows from

(1.9). To prove lim
k→∞

µk
Ik

= µ̄∗
I(x∗), it is sufficient to show that each limit point µ̄I(x∗)

of {µk
Ik
} equals to µ̄∗

I(x∗), and this can be obtained from the proof of Lemma 2.3 since

(xk, dk) → (x∗, 0).

Lastly, Lk ⊆ I0(x
∗) follows from (dk, zk) → (0, 0) and (2.1). For j ∈ I+

∗ , µk
j → µ∗

j =

λ∗
j > 0; for j ∈ I2, µk

j → µ∗
j = λ∗

j + c = πj(x
∗) + c > 0, so µk

j > 0 and j ∈ Lk if j ∈ I+
∗ ∪ I2

and k is large enough.

Based on Lemma 3.1, corresponding to the special case of xk ∈ X+, i.e., ϕ(xk) = 0 of

Ref. [21], in a similar fashion to Lemma 4.2 and Theorem 4.2 as well as Theorem 4.3 in Ref.

[21], we can prove the following result.
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Lemma 3.2 (i) Suppose that Assumptions A2–A4 hold. Then

| zk | = O(‖dk‖),

‖d̃k‖ = O(‖dk‖2) + O(| ηkzk |) = o(‖dk‖),

‖hk‖ = O(‖dk‖2) + O(| ηkzk |) = o(‖dk‖),

‖d̃k‖2 = O(‖dk‖4) + o(| ηkzk | ‖dk‖),

‖dk‖ ‖d̃k‖ = O(‖dk‖3) + O(| ηkzk | ‖dk‖),

where d̃k is the solution of (1.14). So the correction direction d̃k in the algorithm is always

yielded by the solution of (1.14) if k is large enough.

(ii) Suppose that Assumptions A2–A5 hold. Then the step size tk = 1 is always accepted

by the arc search (1.19)–(1.20) for k large enough.

At the end of this section, based on Lemma 3.1 and xk+1 = xk + dk + d̃k as well as

‖d̃k‖ = o(‖dk‖), similar to the analysis of Theorem 4.3 in [20], we can present the following

superlinear convergence of the algorithm.

Theorem 3.2 Suppose that Assumptions A2–A5 hold. Then the proposed algorithm

is superlinearly convergent, i.e., ‖xk+1 − x∗‖ = o(‖xk − x∗‖).

4 Numerical experiments

In this section, we test some practical problems given in [27, 28]. All numerical tests are

implemented on MATLAB 7.1. At each iteration, we use the BFGS formula from Powell

[29] to update Bk, and let B0 be the identity matrix, and use the optimization toolbox to

solve the DFS (1.8). The BFGS formula is as follows:

Bk+1 = Bk −
Bksk(sk)TBk

(sk)TBksk
+

yk(yk)T

(sk)Tyk
, (k > 0), (4.1)

where
sk = xk+1 − xk, yk = θŷk + (1 − θ)Bksk,

ŷk = ∇Fck
(xk+1) −∇Fck

(xk) +
m∑

j=1

µ̄k
j (∇gj(x

k+1) −∇gj(x
k)),

θ =





1, if (yk)Tsk > 0.2(sk)TBksk;

0.8(sk)TBksk

(sk)TBksk − (yk)Tsk
, otherwise,

and µ̄k
j is computed by (1.13). During the numerical experiments, we consider the case that

γ0 = 2.0, γj = 0.5γ0, j = 1, 2, . . . , m. And the other parameters are selected as follows:

β = 0.58, α = 0.25, η0 = 0.2, a0 = 0.2, ν = 0.55, τ = 2.25;

δ1 = 0, δ2 = 1, ξ = ζ = 0.6. c−1 = 1.0, ι = r = 0.01.
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The operational process is terminated if one of the two following conditions is satisfied:

(i) ‖Φ(xk, π(xk))‖ 6 10−5;

(ii) ‖dk‖ 6 10−5 or ‖zk‖ 6 10−5.

The numerical reports are shown in Table 1 below, some numerical results are compared

to the ones in [21].

Table 1. Numerical reports

Prob. (n, mi, me) Method Ni Nf Ng Ik c ffinal

012 (2,1,0) SNQP1 7 4 7 1 0 -2.999 998 9E+01

SNQP2 7 7 27 -3.000 000 0E+01

029 (3, 1, 0) SNQP1 10 6 13 1 0 -2.262 741 4E+01

SNQP2 11 15 42 -2.262 741 7E+01

031 (3,7,0) SNQP1 14 14 19 1 0 6.000 000 00E+00

SNQP2 15 21 39 6.000 000 0E+00

035 (3,4,0) SNQP1 5 0 5 1 0 0.111 169 4E+00

SNQP2 6 6 0 1.111 111 1E-01

043 (4,3, 0) SNQP1 31 61 31 2 0 -4.253 242 5E+01

SNQP2 12 12 77 -4.399 999 9E+01

093 (6, 2, 0) SNQP1 31 62 120 2 0 1.357 737 36E+02

SNQP2 16 16 743 1.350 759 4E+02

07 (2,0,1) SNQP1 59 117 117 1 1 1.778 683 1E+00

032 (3,4,1) SNQP1 20 410 82 5 2.1052 1.000 000 2E+00

037 (3,8, 0) SNQP1 31 0 53 1 0 -3.455 876 7E+03

063 (3, 3, 2) SNQP1 94 1 040 208 4 1.061 9.359 985 9E+02

065 (3,7, 0) SNQP1 27 129 241 1 0 9.535 295 2E-01

100 (7, 4, 0) SNQP1 31 58 33 2 0 6.831 124 3E+02

107 (9, 8, 6) SNQP1 101 7 882 563 14 7.546 679 9E+04 5.709 558 1E+03

252 (3,1, 1) SNQP1 101 416 208 2 5.806 140 1E+03 1.023 407 5E+04

The columns of Table 1 mean that: Prob: the problem number given in [27, 28];

n, mi, me: the number of variables and inequality constraints as well as equality constraints

of the test problems; SNQP1: our algorithm; SNQP2: the algorithm in [21]; Ni, Nf, Ng:

the number of iterations and objective function evaluations as well as constraint functions

evaluations, respectively; Ik: the number of indices in the final working set; c: the number

of final value of ck; ffinal: the objective function value at the final.
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