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A New Penalty Function Based on

Non-coercive Penalty Functions∗
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Abstract For the differentiable nonlinear programming problem, this paper pro-
poses a new penalty function form of the approached exact penalty function, presents
with the gradual approximation algorithm and evolutionary algorithm, and proves that
if the sequences of the approximation algorithm exist accumulation point, it certainly
is the optimal solution of original problem. In the weak assumptions, we prove that
the minimum sequences from the algorithm is bounded, and its accumulation points are
the optimal solution of the original problem and get that in the Mangasarian-Fromovitz
qualification condition, through limited iterations the minimum point is the feasible point.
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0 Introduction

Consider the nonlinear programming problem (P):
{

min f0(x)

s.t. fi(x) 6 0, i = 1, · · · , m, x ∈ Rn,
(1)

where fi(x) : Rn → R for i = 1, · · · , m are continuously differentiable functions.

We can assume there is lower bound for f0(x), or it can be replaced by ef0(x). The l1

exact penalty function of problem (P) is:

fβ(x) = f0(x) + β

m
∑

i=1

(fi(x))+, (2)

where β > 0 acts as the penalty parameter, (fi(x))+ = max{0, fi(x)}, i = 1, · · · , m.

For the convex problem, Zangwill[1] found: for the l1 exact penalty function, if the

minimum point existed for a certain β0 > 0, then for any β > β0, minimum point exist for l1

exact penalty function. Moreover, under the weak assumption, whenβ is sufficiently large,

then the minimum point for fβ(·) is possible and also can be considered as the optimal.

The most obvious defect of l1 exact penalty function lies in its in differentiability, which

has affect its application in effect minimization algorithm. Therefore, the differentiable

approximation study for exact penalty function has aroused the scholars’ interest[2−7]. In

paper [2], Auslender has studied the differentiable approximation under convex and non-

convex condition respectively, which has been extended to weaker assumption condition in

[3-4], in addition, he has worked out the corresponding conclusion for positive semi-definite

programming.

In paper [10], Gonzaga and Castilo has provided an algorithm including parameters γ

and β, and minimizes at each iteration a penalized function with the shape

fβ,γ(x) = f0(x) + βγ

m
∑

i=1

θ

(

fi(x)

γ

)

, (3)

where θ(·) is smooth approximation of the exact penalty, they proved that fβ,γ(x) is a smooth

approximation for l1 exact penalty function, and the two parameters play the different roles:

the decreasing of γ can increase accuracy of the same rate, the increased β is the power of the

penalty, and β > 1, The main conclusion is: under the Mangasarian-Fromovitz constraint

qualification, all the iteration are feasible for the β sufficiently large and γ sufficiently small,

namely the minimum point obtained from the iteration is feasible, which will extend the

feasibility of l1 exact penalty function obtained by Zangwill[1] to the condition of uncertain

penalty function.

This paper provides a new form of penalty function approached l1 exact penalty func-

tion, and obtains the conclusion of the paper [10] under weaker assumption condition which

has also been extended.

Different from the paper [10], for the penalty function form of the new approximate

l1 exact penalty function, this paper provides a new approximate progressive algorithm.
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It is also proved in this paper that if there is accumulation point existed in the sequence

obtained by approximate algorithm, it shall be the optimum solution, and if the sequence

is boundless, then a sufficient condition shall be provided for the optimum value when the

sequence converged. In addition, it is also proved that all the iteration are feasible for

the β sufficiently large and γ sufficiently small satisfying Mangasarian-Fromovitz constrain

qualification, meanwhile, the feasibility of l1 exact penalty function is also extended to the

inexact penalty function. An example is also provided at last.

1 Problem and penalty approach

Consider the differentiable nonlinear programming problem (P). For ε > 0 define the

relaxed feasible set

Ωε = {x ∈ Rn|fi(x) 6 ε, i = 1, · · · , m}.

Then Ω0 is the feasible set for (P). We shall use the following hypotheses:

(H1) For some ε > 0, Ωε is bounded.

(H2) All optimal solutions of problem (P) satisfy the Mangasarian-Fromovitz qualifi-

cation condition, namely, for any optimal solution x∗,there exist h ∈ Rn and ρ > 0 such

that

∇fi(x
∗)Th < −ρ

for all i ∈ I(x∗) ≡ {i = 1, 2, · · · , m|fi(x
∗) = 0}.

A point x ∈ Rn will be called interior if fi(x) for i = 1, 2, · · · , m. Note that the

Mangasarian-Fromovitz qualification condition implies that points exist.

A form of differentiable penalty function approached l1 exact penalty function is pro-

vided as follow:

θ(t) =







et

e
, t 6 1,

t, t > 1.
(4)

Thus the first-order derivative �
θ
′

(t) =







et

e
, t 6 1,

t, t > 1.
(5)

The function θ(t) satisfies the following properties �
Property 1 θ(t) is convex, differentiable and has θ

′

(0) > 0.

Property 2 lim
t→−∞

θ(t) = 0.

Property 3 (Recession function) θ
′

∞(1) := lim
t→+∞

θ(t)

t
= 1;

Notice that property 2 implies �
θ
′

∞(−1) := lim
t→+∞

θ(−t)

t
= 0. (6)
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lim
t→−∞

θ
′

(t) = lim
t→−∞

et

e
= 0. (7)

Consider a function θ(t) defined as above, and a parameter γ ∈ (0, 1], we consider the

function �
θγ(t) = γθ(

t

γ
) =







γe
t
γ

e
, t 6 1,

t, t > 1.

(8)

For any γ ∈ (0, 1], θγ(t) satisfies the properties 1-3. Besides this, we have �
Property 4 For t > 0, γ ∈ (0, 1], θ

′

γ(t) = θ
′

( t
γ
) > θ

′

(t),

Proof If 0 < t 6 1,

θ
′

γ = θ
′

(
t

γ
) =

e
t
γ

e
>

et

e
= θ

′

(t),

If t > 1, θ
′

γ = θ
′

(t) = 1.

This completes the proof.

Property 5 For any t 6 0 or t > 1, θγ(t) converges pointwise to t+ when γ → 0+. If

0 < t 6 1, θγ(t) = +∞.

Proof For t fixed,

lim
γ→0+

θγ(t) = lim
γ→0+

γθ(
t

γ
).

If t < 0, then clearly

lim
γ→0+

θγ(t) = lim
γ→0+

γθ(
t

γ
) = lim

γ→0+
γ

e
t
γ

e
= 0 = t+.

If 0 < t 6 1,

lim
γ→0+

θγ(t) = lim
γ→0+

γθ(
t

γ
) = lim

γ→0+
γ

e
t
γ

e
= lim

γ→0+

e
t
γ

e
γ

= +∞.

If t > 1,

lim
γ→0+

θγ(t) = lim
γ→0+

γθ(
t

γ
) = t = t+.

If t = 0, then

lim
γ→0+

γθ(
t

γ
) = 0 = t+.

This completes the proof.

Property 6 For γ ∈ (0, 1], θγ(t) > θ(t) − θ(0) when t > 0.

Proof By the property 4, we have θ
′

γ(t) > θ
′

(t), both sides take the integral, then:

∫ t

0

θ
′

γ(x)dx >

∫ t

0

θ
′

(x)dx,

thus,

θγ(t) − θγ(0) > θ(t) − θ(0),

for θγ(0) = γθ(0) =
γ

e
> 0. So

θγ(t) > θ(t) − θ(0).
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2 Smoothed penalty functions

The penalized function is now constructed using θγ(t) :

fβ,γ(x) = f0(x) + β

m
∑

i=1

θγ(fi(x)). (9)

We have two parameters, γ and β. The weight β changes the inclination of the penalty

βθγ(·). The parameter γ controls the precision of the smoothing.

The algorithm will play with γ and β as follows: γ decreases at all iterations (by say,

γ := γ
2 ). At infeasible points β increases (by say, β := 2β); at feasible points β is not

changed. The product βγ never increase, which allows us to use the following property:

Property 7 If βγ is bounded, then for any interior point x,

lim
γ→0+

β

m
∑

i=1

θγ(fi(x)) = 0.

Proof

lim
γ→0+

β

m
∑

i=1

θγ(fi(x)) = lim
γ→0+

βγ

m
∑

i=1

θ

(

fi(x)

γ

)

.

For an interior point x, fi(x) < 0 for i ∈ {1, 2, · · · , m}. Hence

lim
γ→0+

θ

(

fi(x)

γ

)

= 0,

by property 2. The result follows from the boundedness of βγ.

3 The algorithm

At this point we assume that for any β > 1, γ ∈ (0, 1], fβ,γ(·) has minimizers.

The algorithm is given as follows:

step1: Let β0 = 1, γ0 = 1, k := 0.

step2: For k = 0, 1, · · · , minimization:

xk ∈ arg min
x∈Rn

{

f0(x) + βk

m
∑

i=1

θγk
(fi(x))

}

. (10)

step3: γk+1 := γk

2 , if xk is a feasible point, then βk+1 := βk; else βk+1 := 2βk.

step4: k := k + 1, turn to step2.

The following facts are trivially true for sequences generated by this algorithm:

For any t 6 0 or t > 1, γk → 0 and hence by property 5, θγk
→ t+ pointwise. βkγk 6 1 and

by property 7,

βkγk

m
∑

i=1

θ

(

fi(x̃)

γk

)

→ 0

for any interior point x̃.
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If {x̃} has an infeasible infinite subsequence then βk → ∞.

For the above algorithm, we have the following assumption:

H3 For some β > 1, γ ∈ (0, 1], arg min
x∈Rn

(x) 6= ∅.

We also assume that the minimization algorithm can decide that a problem has no

minimizer. Note that if the penalized problem has no minimizer, then there are points

arbitrarily far from the feasible set where fβ,γ(·) is smaller than at any given feasible point.

For the minimization will be well for β sufficiently large and γ sufficiently small under this

assumption (H3), we shall change the minimization step in the algorithm to replace the

step2.

4 Minimization

Either compute xk ∈ arg min
x∈Rn

{

f0(x) + βk

m
∑

i=1

θγk
(fi(x))

}

, or decide that there exists

xk∈̄Ωε such that fβk,γk
(xk) 6 fβk,γk

(x̃), where x̃ is a feasible point.

The minimization step that we given above is for a feasible point x̃, generalizing the

step which be given in the paper [10].

Thus we can proof that the sequence from the algorithm converges to the optimal

solution of the problem (P), without need of Mangasarian-Fromovitz constraint qualification.

However the paper [10] gets this conclusion must be satisfying the Mangasarian-Fromovitz

constraint qualification.

From now on, assume that{xk}, {γk}, {βk} are sequences generated by the algorithm,

keeping in mind that by hypothesis the first iteration is successful.

Lemma 1 Assuming that the hypothesis H1 and H3 establishment, then the sequence

{xk} is bounded, and all its accumulation points are feasible solutions.

Proof In the first iteration, β0 = γ0 = 1, for k ∈ N = {1, 2, · · · },

f0(x
k) +

m
∑

i=1

θ(fi(x
k)) > f0(x

0) +

m
∑

i=1

θ(fi(x
0)). (11)

By the property 6, θ(t) 6 θγk
(t) + θ(0), hence for k ∈ N , i = 1, 2, · · · , m,

θγk
(fi(x

k)) > θ(fi(x
k)) − θ(0),

and it follows that

βk

m
∑

i=1

θγk
(fi(x

k)) > βk

m
∑

i=1

θ(fi(x
k)) − mθ(0). (12)

Adding (11) and (12), so

f0(x
k)+βk

m
∑

i=1

θγk
(fi(x

k)) > βk

m
∑

i=1

θ(fi(x
k))−

m
∑

i=1

θ(fi(x
k))+f0(x

0)+

m
∑

i=1

θ(fi(x
0))−mθ(0).

(13)
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Now consider the interior point x̃. By definition of xk for k ∈ K,

f0(x
k) + βk

m
∑

i=1

θγk
(fi(x

k)) 6 f0(x̃) + βk

m
∑

i=1

θγk
(fi(x̃)). (14)

Subtracting (13) from (14) and collecting the constant terms,

f0(x
k) + βk

m
∑

i=1

θγk
(fi(x̃)) > βk

m
∑

i=1

θ(fi(x
k)) −

m
∑

i=1

θ(fi(x
k)) + α,

where α = f0(x
0) +

m
∑

i=1

θ(fi(x
0)) − mθ(0).

Now, we proof: ∀ε > 0, there exists a kε, when k > kε, we have

xk ∈ Ωε. (15)

Assume by contradiction that there exists ε0 > 0, i0 = {1, 2, · · · , m} and an infinite

subsequence K ⊆ N , such that:

fi0(x
k) > ε0, ∀ k ∈ K, (16)

hence, for ever k, {1 6 i 6 m|fi0(x
k) > ε0} 6= ∅.

By (14) and (15), property 1 and the properties of convex function, for k ∈ K,

f0(x̃) + βk

m
∑

i=1

θγk
(fi(x̃))

> βk

∑

fi(xk)>ε0

θ(fi(x
k)) −

∑

fi(xk)>ε0

θ(fi(x
k)) + βk

∑

fi(xk)6ε0

θ(fi(x
k))

−
∑

fi(xk)6ε0

θ(fi(x
k)) + α

> (βk − 1)
∑

fi(xk)>ε0

θ
′

(fi(x
k))fi(x

k) + βk

∑

fi(xk)6ε0

θ(fi(x
k)) − mθ(ε0) + α

> (βk − 1)
∑

fi(xk)>ε0

θ
′

(ε0)ε0 − mθ(ε0) + α

> (βk − 1)θ
′

(ε0)ε0 − mθ(ε0) + α.

The first inequality above is got by (14), the second inequality is by the properties of

convex function, the third inequality is by βkθ(fi(x
k)) > 0 and the increasing of θ

′

(·), by

the property 1 we can get θ
′

(ε0) > 0, so the fourth inequality is got by (16). Taking limits

for the both side of the formula above, using the property 7, right-hand side tend to finite

value f0(x̃), but by βk → +∞, we know that the right-hand side tend to infinity, this is a

contradiction. So we get(15).
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Using the hypothesis H1, we obtain the{xk} is bounded.

By (15), ∀ε > 0, for large value of k,

fi(xk) 6 ε.

Assuming x̄ is any accumulation point of {xk}, taking limits for k of the formula above,

thus

fi(x̄) 6 ε,

fi(x̄) 6 0,

when ε → 0. So we proof that any accumulation point of {xk} is a feasible solution of (P).

Theorem 1 Assuming that the hypothesis H1 and H3 establishment, then any accu-

mulation point of {xk} is an optimal solution of (P).

Proof Let x̄ be an accumulation point of {xk}, and let k ∈ K be such that xk → x̄.

By lemma 1, x̄ is feasible, for large value of k, then

xk ∈ Ωε. (17)

Let x̃ be a feasible point, by the definition of xk and (17), for large value of k ∈ K,

f0(x
k) 6 f0(x̃) + βk

m
∑

i=1

θγk
(fi(x̃)) − βk

m
∑

i=1

θγk
(fi(x

k)). (18)

With the definition, we can get θγk
(fi(x

k)) > 0, by (18), we have

f0(x
k) 6 f0(x̃) + βk

m
∑

i=1

θγk
(fi(x̃)). (19)

Taking limits for k → +∞, ∀k ∈ K, using the property 7, we have βkθγk
(fi(x̃)) → 0.

Taking limits for the both side of the (19) formula, for any feasible pointx̃,

f(x̄) 6 f(x̃),

hence, any accumulation point of {xk} is an optimal solution of (P).

Given a point x ∈ Rn, define the sets

I(x) = {i = 1, 2, · · · , m|fi(x) = 0}, I+(x) = {i = 1, 2, · · · , m|fi(x) > 0}.

Lemma 2 Assuming that the hypothesis H1 and H3 establishment, if xk → x∗, then

for sufficiently large k, I+(xk) ⊂ I(x∗).

Proof Assume that xk → x∗, and for any i ∈ {1, 2, · · · , m}. We must prove that if

i∈̄I(x∗), then for large k, i∈̄I+(x∗). If i∈̄I(x∗), then fi(x
∗) < 0, due to the continuity of

fi(·), for large k, fi(x
k) < 0, or equivalently, i∈̄I+(x∗), completing the proof.

Theorem 2 Assuming that the hypothesis H1 and H3 establishment, let {xk} be a

sequence generated by the algorithm. Then there exists k̄ ∈ N , such that for k > k̄, xk is a

feasible point.
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Proof Assume by contradiction that there exists an infinite set K1 such that for k ∈ K1,

xk is an infeasible point. Then by construction, βk → +∞, by lemma 1, {xk} is bounded,

and hence {xk}k∈K1
has an accumulation point, which is optimal by theorem 1.

Let K2 ⊂ K1, be such that k ∈ K2, xk → x∗.

Associating with each k ∈ N , the set I+(xk) defined above, the following three facts

are true for large k ∈ K2:

(a) I+(xk) ⊂ I(x∗), by lemma 2. If I(x∗) = ∅, then xk is feasible, contradicting our

assumption. Assume then that I(x∗) 6= ∅.

(b) For i ∈ I(x∗),

f
′

i (x
k, h) = ∇fi(x

k)Th 6 −
ρ

2
,

where h ∈ Rn, ρ > 0 are given by the qualification condition (H2). This follows from the

continuity of the gradients and the fact that xk → x∗, k ∈ K2.

(c) For i∈̄I(x∗), fi(x
k) 6 −µ < 0, where µ > 0 such that

−µ > max{fi(x
∗)|i∈̄I(x∗)}.

Define the set K3 ⊂ K2 as the set of iteration indices where these three facts are true.

Consider the directional derivatives along h, by the definition of xk, f
′

βk,γk
(xk, h) = 0.

And hence, using the fact that θ
′

γ(t) = θ
′

γ( t
γ
),

f
′

0(x
k, h) + βk

m
∑

i=1

θ
′

(

fi(x
k)

γk

)

f
′

i (x
k, h) = 0. (20)

Dividing by βk and spitting the indices in the summation,

f
′

0(x
k, h)

βk

+
∑

i∈I(x∗)

θ
′

(

fi(x
k)

γk

)

f
′

i (x
k, h) = −

∑

i∈I(x∗)

θ
′

(

fi(x
k)

γk

)

f
′

i (x
k, h). (21)

Taking limits for k → +∞(k ∈ K), we have:

Left-hand side of (21):

f
′

0(x
k, h)

βk

→ 0,

because βk → +∞.

By (13),
βkfi(x

k)

γk

6
−µβk

γk

,

for i∈̄I(x∗), hence,
βkfi(x

k)

γk

→ −∞.

And

θ
′

(
fi(x

k)

γk

) → 0,

due to (7).
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We conclude that the left-hand side converges to 0 in K3.

Consider the right-hand side of (21): For i ∈ I(x∗),

f
′

i (x
k, h) = ∇fi(x

k)T h 6 −
ρ

2
,

by (b). Hence,

−
∑

i∈I(x∗)

θ
′

(

fi(x
k)

γk

)

f
′

i (x
k, h) >

ρ

2

∑

i∈I(x∗)

θ
′

(

fi(x
k)

γk

)

>
ρ

2

∑

i∈I+(x∗)

θ
′

(

fi(x
k)

γk

)

>
ρ

2
θ
′

(0)|I+(x∗)|.

Because I+(x∗) ⊂ I(x∗) by (a), and for i ∈ I+(x∗), fi(x
∗) > 0 and θ

′

(·) is increasing.

Since xk is an infeasible point for k ∈ K3, I+(x∗) > 1, and hence the right-hand side of

(21) has a positive lower bound, contradicting (21) and completing the proof.

The above mentioned Theorem 2 indicates that limited iteration is not feasible under

the Mangasarian-Fromovitz constraint qualification.

Therefore, we try our best to demonstrate that all iteration are feasible for β sufficiently

large and γ sufficiently small under the Mangasarian-Fromovitz constraint qualification.

Thus, the feasibility of l1 exact penalty function obtained by Zangwill[1] is extended to the

situation of inexact penalty function. To ensure the establishment of theorem, it is required

that the minimal point obtained in each iteration shall be entire minimal point which is

feasible for convex problem but difficult for non-convex problem, therefore, we are thinking

about if the point obtained by iteration is local minimal point, the similar conclusion can

be achieved or not, this issue needs further study.

Example Now we show a simple one-dimensional example:














min −2x,

s.t. (x + 0.25)2 −
1

8
6 0,

x 6 0.

(22)

That can be transformed into the questions follow:














min e−2x,

s.t. (x + 0.25)2 −
1

8
6 0,

x 6 0.

(23)

We use the penalty function given by θ(t), and obtain the results of the problem (23),

the optimal solution is 0, and the optimal value is 1, obviously, the optimal solution of

the problem (23) is same to the problem (22). Then we obtain the optimal solution of the

problem (22) is 0.
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