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An LVI-based Numerical Algorithm for Solving

Quadratic Programming Problems∗

ZHANG Yunong1,2† LI Xuezhong3 ZHANG Zhijun1 LI Jun1

Abstract This paper presents and investigates a numerical algorithm (termed as
94LVI algorithm) for solving quadratic programming (QP) problems with linear equality
and bound constraints. To do this, the constrained QP problems are firstly converted into
linear variational inequalities (LVI), which are then converted into equivalent piecewise-
linear projection equations (PLPE). After that, the resultant PLPE is solved by the
presented 94LVI algorithm. The optimal numerical solutions to the QP problems are
thus obtained. Furthermore, the theoretical proof of the global convergence of the 94LVI
algorithm is presented. The numerical comparison results between the 94LVI algorithm
and the active set algorithm are provided as well, which further demonstrates the efficacy
and superiority of the presented algorithm for solving such QP problems.
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0 Introduction

The online solution of quadratic programming (QP) problems are widely encountered

in various areas, e.g., optimal controller design[1], power-scheduling[2], robot-arm motion

planning[3], and digital signal processing[4]. Motivated by engineering applications of QP in

robotics[5−8], the following problem formulation is considered:

minimize xTWx/2 + qTx,

subject to

{

Jx = b,

x−
6 x 6 x+,

(1)

where x ∈ Rn is the decision vector to be obtained, superscript T denotes the transpose of a

vector/matrix, and W ∈ Rn×n is a positive-definite symmetric matrix. The other coefficient

matrices and vectors are defined respectively as q ∈ Rn, J ∈ Rm×n and b ∈ Rm. The

n-dimensional vectors x− and x+ denote respectively the lower and upper bounds of x.

In the past decades, large numbers of numerical algorithms have been proposed and

developed for solving constrained optimization problems in the form of QP (1), such as La-

grange multiplier method[9−10], active set method[11], weighted-path-following interior-point

algorithm[12], and projection and contraction algorithm[13]. Note that most of the numerical

algorithms are based on the active set strategy, and MATLAB function “quadprog” inte-

grates such an active set method. In this paper, such QP problems are firstly converted

to linear variational inequalities (LVI), which are equivalent to piecewise-linear projection

equations (PLPE). Secondly, a numerical algorithm (termed, 94LVI algorithm) is employed

for solving the resultant PLPE, and the optimal numerical solutions to the QP problems

subject to linear equality and bound constraints are thus obtained. Note that this work

extends from the paper [14] which was published in 1994 to solve the LVI problems, and,

for simplicity, the presented numerical algorithm is named the 94LVI algorithm. Numerical-

experiment results substantiate the efficacy and accuracy of the 94LVI algorithm. Compared

with the active set method, the 94LVI algorithm shortens the running time of the algorithm

program for solving QP problems observably.

The remainder of this paper is organized into the following sections. The 94LVI algo-

rithm for solving QP problems subject to linear equality and bound constraints is presented

and discussed in Section 1. The global convergence of the 94LVI algorithm is proved in

Section 2. The efficacy and accuracy of the 94LVI algorithm are further investigated via nu-

merical experiments in Section 3. Finally, Section 4 concludes this paper with final remarks.

1 The 94LVI algorithm for QP solving

In the section, following the authors’ previous design methods[15−16], an LVI-based

numerical algorithm for solving QP (1) is developed.

Firstly, we can convert QP (1) into the linear variational inequality (LVI) problem �
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to find a vector y∗ ∈ Ω := {y|y− 6 y 6 y+} ⊂ Rn+m such that

(y − y∗)T(Hy∗ + p) > 0, ∀y ∈ Ω, (2)

where the primal-dual decision vector y and its upper and lower bounds y± are defined

respectively as

y =

[

x

u

]

, y+ =

[

x+

+̟1u

]

, y− =

[

x−

−̟1u

]

, (3)

with 1u := [1, . . . , 1]T denoting a vector composed of ones, of which the dimension is the

same as that of vector u, and ̟ ≫ 0 being a sufficiently large constant to replace +∞

for numerical and implementation purposes. In addition, vector x is the primal/original

decision vector of QP (1), and vector u is the dual decision vector defined corresponding to

the equality constraint in QP (1). The coefficients in LVI (2) are defined as

H =

[

W −JT

J 0

]

, p =

[

q

−b

]

.

According to [14-15], LVI (2) is equivalent to the following piecewise-linear projection equa-

tion (PLPE):

PΩ(y − (Hy + p)) − y = 0, (4)

where PΩ(·) : Rn+m → Ω is a piecewise-linear projection operator with the ith projection

element of PΩ(z) defined as











y−
i , if zi < y−

i ,

zi, if y−
i 6 zi 6 y+

i , ∀i ∈ {1, 2, · · · , n + m}.

y+
i , if zi > y+

i ,

Secondly, we can define a set Ω∗ to denote the solution set of LVI (2) and PLPE (4).

To solve the problem, we can define the following vector-valued error function:

e(y) = y − PΩ(y − (Hy + p)), (5)

so that solving PLPE (4) is equivalent to finding a zero point of (5). As proposed in [14],

let us define the state-vector in the kth iteration as yk = [(xk)T, (uk)T]T. Given initial state

y0 ∈ Rn+m, for iteration index k = 0, 1, 2, · · · , if yk /∈ Ω∗, then we can employ the following

94LVI iteration formula for solving (4):

yk+1 = yk − ρ(yk)d(yk), (6)

where d(yk) = (HT + I)e(yk) and ρ(yk) = ‖e(yk)‖2
2/‖d(yk)‖2

2 with ‖ · ‖2 denoting the

two-norm of a vector.

Thirdly, for algorithm implementation purposes, we have the two-norm based scalar-

valued function

‖e(yk)‖2 = ‖yk − PΩ(yk − (Hyk + p))‖2; (7)
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and, the control condition of the 94LVI algorithm implementation, which decides the ac-

curacy of the solution, can be described as: “in every iteration-step of 94LVI algorithm, if

the value of ‖e(yk)‖2 is less than the preset accuracy value (PAV), the iteration will stop.

The value of yk that satisfies the PAV in the (current) kth iteration-step is regarded as a

solution y∗ of PLPE (4)”. Note that the first n elements of y∗ constitute the solution x∗

to the original QP (1). It is worth mentioning that we also record the running time of the

program and solution-errors in the program of the 94LVI algorithm, which are favorable for

further demonstrating the efficacy and accuracy of the 94LVI algorithm.

2 Global convergence

By following [14][17][18], the important lemmas about the convergence of the 94LVI

algorithm are cited and presented below (with themes similar to those in [14] but with proof

details given according to the authors’ engineering-type understanding, in addition to the

consideration on results completeness and readers’ convenience).

Lemma 1 ∀y∗ ∈ Ω∗, the sequence {yk} (with iteration index k = 0, 1, 2, · · · ) generated

by the 94LVI algorithm satisfies ‖yk+1 − y∗‖2
2 6 ‖yk − y∗‖2

2 − ρ(yk)‖e(yk)‖2
2.

Proof Referring to [14], using (6), we can obtain

‖yk+1 − y∗‖2
2 = ‖yk − y∗ − ρ(yk)d(yk)‖2

2

= [(yk − y∗) − ρ(yk)d(yk)]T[(yk − y∗) − ρ(yk)d(yk)]

= ||yk − y∗||22 − (yk − y∗)Tρ(yk)d(yk) − dT(yk)ρ(yk)(yk − y∗)

+ dT(yk)ρ(yk)ρ(yk)d(yk)

= ‖yk − y∗‖2
2 − 2ρ(yk)(yk − y∗)Td(yk) + ρ2(yk)‖d(yk)‖2

2

= ‖yk − y∗‖2
2 − 2ρ(yk)(yk − y∗)T(HT + I)e(yk) + ρ(yk)‖e(yk)‖2

2.

Following Theorem 1 of [14], (yk − y∗)T(HT + I)e(yk) > ‖e(yk)‖2 > 0, then we obtain

‖yk+1 − y∗‖2
2 6 ‖yk − y∗‖2

2 − 2ρ(yk)‖e(yk)‖2
2 + ρ(yk)‖e(yk)‖2

2

= ‖yk − y∗‖2
2 − ρ(yk)‖e(yk)‖2

2.
(8)

The proof is thus completed.

Lemma 2 The sequence {yk} (with iteration index k = 0, 1, 2, · · · ) generated by the

94LVI algorithm converges to a solution y∗. In addition, the first n elements of y∗ constitute

the optimal solution x∗ to QP (1).

Proof From (6), we can get

ρ(yk) = ‖e(yk)‖2
2/‖d(yk)‖2

2

= ‖e(yk)‖2
2/‖(H

T + I)e(yk)‖2
2

> ‖e(yk)‖2
2/(‖HT + I‖2

2‖e(y
k)‖2

2)

= 1/‖HT + I‖2
2

> 0.

(9)
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Combining inequalities (8) and (9), we can obtain

‖yk+1 − y∗‖2
2 6 ‖yk − y∗‖2

2 − ‖e(yk)‖2
2/‖H

T + I‖2
2 6 ‖yk − y∗‖2

2, (10)

from which, we can get the following inequality:

‖e(yk)‖2
2/‖H

T + I‖2
2 6 ‖yk − y∗‖2

2 − ‖yk+1 − y∗‖2
2.

By defining 1/‖HT + I‖2
2 as ξ, for iteration index k = 0, 1, 2, · · · , we further obtain

ξ
+∞
∑

k=0

‖e(yk)‖2
2 6 ‖y0 − y∗‖2

2 − lim
k→+∞

‖yk+1 − y∗‖2
2 6 ‖y0 − y∗‖2

2, (11)

and, according to mathematical knowledge, there must exist a positive number h satisfying

0 6 h 6 ‖y0 − y∗‖2
2 and

lim
j→∞

ξ

j
∑

k=0

‖e(yk)‖2
2 = h.

Then, according the necessary condition of series convergence (i.e., a corollary from Cauchy

criterion of series convergence), from (11) we can obtain

lim
k→∞

‖e(yk)‖2
2 = 0.

By defining e(yk) := [e1(y
k), e2(y

k), · · · , em+n(yk)]T, then

lim
k→∞

‖e(yk)‖2
2 = lim

k→∞
[(e1(y

k))2 + (e2(y
k))2 + · · · + (em+n(yk))2] = 0,

and it follows that

lim
k→∞

e1(y
k) = 0, lim

k→∞
e2(y

k) = 0, · · · , lim
k→∞

em+n(yk) = 0. (12)

From (12), we further obtain

lim
k→∞

e(yk) = 0.

Let y∗ be a solution of PLPE (4), then the sequence {yk} has exactly a cluster point and

lim
k→∞

yk = y∗ with e(y∗) = 0.

In addition, the first n elements of y∗ (i.e., y∗
1 , y∗

2 , · · · , y∗
n) constitute the optimal solution

x∗ to the QP (1) in view of the conversion and equivalence of QP to the LVI and PLPE.

The proof is thus completed.

3 Numerical-experiment results

To demonstrate the efficacy of the 94LVI algorithm, we implement this algorithm via

both MATLAB and C programming languages to solve general QP problems. The numerical

experiments are carried out in the MATLAB R2008a environment performed on a personal

digital computer, which is equipped with a Pentium(R) Dual-Core E5700 3.00GHz CPU,

2GB DDR3 memory, and a Windows 7 Ultimate operating system. The output errors and

the computing time of related algorithms are shown in this section.
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Figure 1: Solution trajectories of QP (13) starting from initial state y0 = [0, 0, 0, 0]T

3.1 Efficacy verification

In this subsection, a numerical example is presented to demonstrate the effectiveness

of the 94LVI algorithm for solving QP (1) subject to linear equality and bound constraints.

That is, the following QP problem is considered:

minimize 10x2
1 + x2

2 + x2
3 − 2x1x2 − 6x1x3 − 4x1,

subject to

{

x1 + x2 − 2x3 = 0,

−3 6 x1, x2, x3 6 3.

(13)

QP (13) can be rewritten in the compact matrix-vector form as (1), and thus we have the

coefficient matrices/vectors as follows:

W =





20 −2 −6

−2 2 0

−6 0 2



 , q =





−4

0

0



 , J =





1

1

−2





T

, b = 0, x+ =





3

3

3



 , and x− =





−3

−3

−3



 .

By employing the 94LVI algorithm program with preset accuracy value being 10−6 to solve

this QP problem, numerical-experiment results can be summarized below.

• Figure 1 shows the solution trajectories of the 94LVI algorithm for solving QP (13) with

initial state y0 = [(x0)T, (u0)T]T being [0, 0, 0, 0]T. As seen from Figure 1, through
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Figure 2: Solution-error trajectory of QP (13) starting with initial state y0 = [0, 0, 0, 0]T

277 iterations, state vector y = [xT, uT]T can converge to the optimal solution y∗ =

[5/8, 9/8, 7/8, 1]T, of which the the first n elements of y∗ constitute the QP’s optimal

solution x∗ = [5/8, 9/8, 7/8]T. Figure 2 shows the trajectory of solution-error ‖xk −

x∗‖2 (k = 0, 1, 2, · · · ), which converges to zero within 277 iterations. Note that, the

solution-error at the final iteration [when employing the 94LVI algorithm to solve QP

(13)] is about 6.694457× 10−7 [i.e., less than PAV 10−6], which validates the accuracy

of the presented 94LVI algorithm for solving the QP problem.

• For comparison and illustration, the numerical-experiment results with a different

initial state y0 = [2, 1/2,−2, 1]T is presented in Figures 3 and 4. From Figure 3,

we can see that, through 266 iterations, state vector y = [xT, uT]T converges to the

optimal solution y∗ = [5/8, 9/8, 7/8, 1]T, and thus x∗ = [5/8, 9/8, 7/8]T is the optimal

solution of QP (13). Figure 4 shows the trajectory of corresponding solution-error

‖xk−x∗‖2, which converges to zero within 266 iterations. Note that the solution-error

at the final iteration is about 6.665722×10−7. The above numerical-experiment results

further demonstrate the efficacy and accuracy of the 94LVI algorithm for solving the

QP problem.

In summary, the above illustrative example substantiates well the efficacy and accuracy

of the 94LVI algorithm for solving such a QP problem.

3.2 Comparative experiments

In this subsection, with coefficients randomly generated, a series of QP problems in the

form of QP (1) are solved via the active set algorithm and the 94LVI algorithm. Moreover,

both MATLAB and C version programs of the 94LVI algorithm are developed and employed

to solve such QPs. The computational time τA of the active set algorithm, as well as

the computational time τ94LVIM, τ94LVIC and output errors ǫ94LVIM, ǫ94LVIC of the 94LVI

algorithm per problem, are recorded. Here, ǫ is defined as ‖e(yk)‖2 [i.e. (7)] of the final
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Figure 3: Solution trajectories of QP (13) starting from initial state y0 = [2, 1/2,−2, 1]T

iteration, while subscripts A, 94LVIM and 94LVIC denote the active set algorithm, the 94LVI

algorithm implemented in MATLAB and C, respectively. In addition, the average time and

errors of the experiments are recorded for further comparison.

Firstly, we show 10 comparison results synthesized by the active set algorithm and the

MATLAB version 94LVI algorithm in Table 1. The values of the coefficient matrices/vectors

W , q, J , b, x−, x+ of the 10 QP-problems are all randomly generated through MATLAB

function “rand( )”. In this case, we set n = 3 and m = 1, with the preset accuracy value

being 10−3. As seen from Table 1, for such 10 randomly-generated QP problems, compared

with the traditional active set algorithm, by adopting the MATLAB version 94LVI algorithm,

the running time is shortened by about 20 times. In addition, all errors of final solutions

are less than the preset accuracy value.

Secondly, we also show 10 numerical-experiment results using C program in Table 1.

The coefficient matrices/vectors of these 10 QP-problems are set the same as above. As

seen from Table 1, the runtime of the C version 94LVI algorithm is about 8 times in average

shorter than the MATLAB version one. In addition, all the errors of the solutions synthesized

by the C version 94LVI are less than the PAV (i.e. 10−3) again.

In summary, the above numerical-experiment results sufficiently substantiate the effi-

cacy and accuracy of the 94LVI algorithm for solving such QP problems. Compared to the

active set algorithm, the 94LVI algorithm can obtain better performance.
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Figure 4: Solution-error trajectory of QP (13) with initial state y0 = [2, 1/2,−2, 1]T

Table 1 The running time of the active set algorithm and 94LVI algorithm and the

solution-errors of 94LVI programs (i.e., 94LVIM and 94LVIC programs)

τA (s) τ94LVIM (s) ǫ94LVIM τ94LVIC (s) ǫ94LVIC

1 0.715455 0.028507 9.599926 × 10−4 0.003365 9.513458 × 10−4

2 0.614927 0.030423 9.606960 × 10−4 0.003456 9.917611 × 10−4

3 0.616497 0.023424 9.463763 × 10−4 0.003546 9.068035 × 10−4

4 0.356106 0.016992 9.869118 × 10−4 0.002908 9.869118 × 10−4

5 0.600025 0.019868 8.605755 × 10−4 0.003250 9.904625 × 10−4

6 0.607770 0.023295 7.155840 × 10−4 0.003017 4.518490 × 10−4

7 0.616976 0.029874 9.936125 × 10−4 0.003408 9.936125 × 10−4

8 0.604829 0.029088 9.850526 × 10−4 0.004373 9.656885 × 10−4

9 0.614515 0.019124 6.942093 × 10−4 0.003064 9.810901 × 10−4

10 0.600338 0.026207 9.925356 × 10−4 0.003029 9.962816 × 10−4

average 0.594744 0.024680 9.095546 × 10−4 0.003342 9.215806 × 10−4

4 Conclusions

In this paper, a numerical quadratic-programming algorithm (i.e., the 94LVI algorithm)

has been presented and investigated to solve quadratic programming problems subject to

linear equality and bound constraints. The global convergence of the 94LVI algorithm has

been proved. Moreover, the numerical-experiment results have demonstrated the efficacy,

accuracy and superiority of the presented 94LVI algorithm for QP solving. To further

demonstrate the advantages, 10 more comparison results between the active set algorithm

and the 94LVI algorithm have been provided, illustrating the high accuracy and faster

convergence of the 94LVI algorithm.
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