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An Approximation Algorithm for the Stochastic

Fault-Tolerant Facility Placement Problem∗

SHAO Jiating1 XU Dachuan1†

Abstract In the deterministic fault-tolerant facility placement problem (FTFP), we
are given a set of locations and a set of clients. We can open any number of different
facilities with the same opening cost at each location. Each client j has an integer re-
quirement rj . Connecting client j to different facilities at the same location is permitted.
The objective is to open some facilities and connect each client j to rj different facilities
such that the total cost is minimized. In this paper, we consider the two-stage stochas-

tic fault-tolerant facility placement problem (SFTFP) with recourse in which the set of
clients are unknown in advance. But there are finite scenarios materialized by a proba-
bility distribution. Each scenario specifies a subset of clients to be assigned. Moreover,
each facility has two kinds of opening cost. In the first stage, we open a subset of facilities
according to the stochastic information of the clients. In the second stage, we can open
additional number of facilities when the actual information of the clients is revealed. We
give a linear integral program and an LP-rounding based 5-approximation algorithm for
the SFTFP.
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0 Introduction

In the classical facility location problem (FLP), we are given a set of locations F and a

set of clients D. We need to open some facilities at some locations and connect each client

to an open facility. We can only open one facility at each location i ∈ F with an opening

cost fi. Connecting client j to facility i (or location i) incurs a connection cost cij . All the

connection costs constitute a metric. The objective is to minimize the total cost including

the opening cost and connection cost. Since the problem is NP-hard, many researchers are

interested in designing approximation algorithms[1−3]. The currently best approximation

ratio is achieved by the 1.488-approximation algorithm of Li[4]. Guha and Khuller[5] prove

that the approximation lower bound is 1.463. The LP-rounding technique is one of the main

techniques for designing the approximation algorithms[6−8]. For other variants of the FLP,

we refer to [9-14] and the references therein.

One of the variants of the FLP is the fault-tolerant facility location problem (FTFL),

which is introduced by Jain and Vazirani[15]. In the FTFL, each client j has an integer

requirement rj . The objective is to open some facilities and connect each client j to rj

different open facilities so that the total opening cost and connection cost is minimized. The

FTFL is reduced to the FLP if rj = 1 for all j. There are some approximation algorithms

for the FTFL[16−18]. The currently best ratio for the FTFL is 1.7245[16].

Another variant of the FLP is the fault-tolerant facility placement problem (FTFP)

which is different from the FTFL in that we can open any number of different facilities with

the same opening cost at each location ([19]). Similarly to the FTFL, each client j has an

integer requirement rj . But connecting client j to different facilities at the same location is

permitted. The objective is to open some facilities and connect each client j to rj different

facilities such that the total cost is minimized.

Apart from the deterministic FLP, there are many works in the stochastic version.

Among the most popular models in stochastic facility location problem is the two-stage

stochastic facility location problem (SFLP) with recourse in which the set of clients are

unknown in advance ([20]). But there are finite scenarios materialized by a probability

distribution. Each scenario specifies a subset of clients to be assigned. Moreover, each

facility has two kinds of opening cost. One arises in Stage I and the other is scenario-

dependent arising in Stage II called recourse cost. Typically, the recourse cost varies under

different scenarios and is greater than that in Stage I. The objective is to open some facilities

in Stage I and II and assign each client in each scenario to an open facility in Stage I or

the corresponding scenario in Stage II so as to minimize the total expected cost over both

stages. Ravi and Sinha[20] give an LP-rounding 8-approximation algorithm for the SFLP.

In this paper, we study the stochastic fault-tolerant facility placement problem (SFTFP).
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Following the approaches of [20 − 21], we give an LP-rounding 5-approximation algorithm

for the SFTFP.

The organization of this paper is as follows. In Section 2, we give some definitions and

a formulation for the SFTFP. In Section 3, we introduce an LP-rounding based algorithm

for the SFTFP. In Section 4, we analyze the algorithm and prove our main result. Some

discussions are given in the last section.

1 Formulation

In the SFTFP, we denote F a set of given locations, D a set of potential clients. We also

give a set of scenarios S each of which specifies a subset of clients Ds ⊆ D and materializes

with probability ps where s ∈ S. We use f0
i and fs

i to denote the cost of opening one

facility at location i in Stage I and scenario s of Stage II, respectively. As usual, cij is the

connection cost between location i and client j, which is nonnegative, symmetry and satisfies

the so-called triangle inequality. For simplification, we redefine the set of locations to be

F = {(i, t) : i ∈ F, t ∈ {0}∪S}, and the set of clients to be D = {(j, s) : s ∈ S, j ∈ Ds} (each

of which has an integer requirement rs
j ). We use cts

ij to denote the connection cost between

location (i, t) and client (j, s). Define cts
ij = cij if t = 0 or s for any (i, t) ∈ F , (j, s) ∈ D and

+∞ otherwise. Let p0 = 1. We give the linear integer program for the SFTFP as follows:

min
∑

(i,t)∈F

ptf
t
i y

t
i +

∑

(i,t)∈F ,(j,s)∈D

psc
ts
ijx

ts
ij

s.t.
∑

(i,t)∈F

xts
ij > rs

j , ∀(j, s) ∈ D,

xts
ij 6 yt

i , ∀(i, t) ∈ F , (j, s) ∈ D,

xts
ij , y

t
i nonnegative integer, ∀(i, t) ∈ F , (j, s) ∈ D,

where yt
i is the number of facilities opened at location (i, t), xts

ij is the number of connections

between location (i, t) and client (j, s). The first constrain means that the total number of

connections from client (j, s) to all locations cannot be smaller than its requirement. The

second constrain means that the number of connections from client (j, s) to location (i, t)

cannot exceed the number of facilities opened at this location. By relaxing the integrality

constraints, we give the linear programming relaxation for the SFTFP as follows:

min
∑

(i,t)∈F

ptf
t
i y

t
i +

∑

(i,t)∈F ,(j,s)∈D

psc
ts
ijx

ts
ij

s.t.
∑

(i,t)∈F

xts
ij > rs

j , ∀(j, s) ∈ D, (1.1)

xts
ij 6 yt

i , ∀(i, t) ∈ F , (j, s) ∈ D,

xts
ij , y

t
i > 0, ∀(i, t) ∈ F , (j, s) ∈ D.
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Let us denote (x, y) the optimal solution of (1.1). It is easy to prove that

∑

(i,t)∈F

xts
ij = rs

j , ∀(j, s) ∈ D. (1.2)

The dual program of (1.1) is

max
∑

(j,s)∈D

rs
jα

s
j

s.t.
∑

(j,s)∈D

βts
ij 6 ptf

t
i , ∀(i, t) ∈ F , (1.3)

αs
j − βts

ij 6 psc
ts
ij , ∀(i, t) ∈ F , (j, s) ∈ D,

αs
j , β

ts
ij > 0, ∀(i, t) ∈ F , (j, s) ∈ D.

2 Algorithm

In this section, we give our LP-rounding algorithm for the SFTFP. First, we solve

(1.1) and (1.3) to obtain the optimal solution (x, y) and (α, β). Second, we choose the client

(j, s) with minimum αs
j/ps as center among all not-fully-connected clients and open facilities

and create new connections iteratively. Here a not-fully-connected client is a client whose

requirement is not all satisfied. Finally, all requirements of clients in D are satisfied and an

integral feasible solution of (1.1) is obtained.

Algorithm 2.1

Step 0. Set Fo := ∅, Da := D, (x̄, ȳ) := (0, 0), ds
j := rs

j , ∀(j, s) ∈ D.

Step 1. Solve (1.1) and (1.3) to obtain the optimal solution (x, y) and (α, β), respectively.

For each (j, s) ∈ Da, denote

N0(j, s) =
{

(i, 0) ∈ F : x0s
ij > 0

}

, Ns(j, s) =
{

(i, s) ∈ F : xss
ij > 0

}

.

Set

Nalg(j, s) =















N0(j, s), if
∑

(i,0)∈N0(j,s)

x0s
ij >

1

2
rs
j ;

Ns(j, s), if
∑

(i,s)∈Ns(j,s)

xss
ij >

1

2
rs
j .

Step 2. Choose (j̄, s̄) := arg min{αs
j/ps : (j, s) ∈ Da}. Choose the location

(̄i, t̄) := arg min{ptf
t
i : (i, t) ∈ Nalg(j̄, s̄)}.

Open ds̄
j̄

facilities at location (̄i, t̄) and connect ds̄
j̄

requirement of (j̄, s̄) to different

facilities at this location directly. Set

x̄t̄s̄
īj̄ := x̄t̄s̄

īj̄ + ds̄
j̄ , ȳ

t̄
ī := ȳt̄

ī + ds̄
j̄ ,Fo := Fo ∪ {(̄i, t̄)}, ds̄

j̄ := 0,Da := Da \ {(j̄, s̄)}.
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If there exists (j, s) ∈ Da such that Nalg(j, s)∩Nalg(j̄, s̄) 6= ∅, we connect min{ds̄
j̄
, ds

j}

requirement of (j, s) to different facilities at (̄i, t̄) indirectly. Set

x̄t̄s
īj := x̄t̄s

īj + min{ds̄
j̄ , d

s
j}

and

ds
j := max{ds

j − ds̄
j̄ , 0}.

If ds
j = 0, then Da := Da \ {(j, s)}.

Step 3. If Da = ∅, then stop and output (x̄, ȳ) and Fo; otherwise, go to Step 2.

In Algorithm 2.1, Da is the set of clients which are not fully connected. Fo is the set of

locations at which some facilities are opened.

3 Analysis

In this section, we prove our main result that Algorithm 2.1 is a 5-approximation

algorithm. We will estimate the connection cost and opening cost respectively.

Lemma 3.1 For any (j, s) ∈ D, αs
j > psc

ts
ij for all (i, t) ∈ Nalg(j, s).

Proof Recall that (x, y) and (α, β) are the optimal solutions of (1.1) and (1.3), re-

spectively. From complementary slackness conditions, we have αs
j > psc

ts
ij for all (i, t) ∈ F ,

(j, s) ∈ D such that xts
ij > 0. Combining the definition of Nalg(j, s), we conclude the lemma.

Let Calg be the connection cost of the solution output by Algorithm 2.1. We bound

Calg as follows.

Lemma 3.2

Calg 6 3
∑

(j,s)∈D

rs
jα

s
j .

Proof Note that at Step 2 of Algorithm 2.1, all clients’ requirements are satisfied

directly or indirectly. Now we consider the following two possibilities.

Case 1. Client (j, s)’s requirement is satisfied directly. Suppose that (j, s) is connected

to a facility at a location (i, t) ∈ Nalg(j, s). In this case the connection cost of such a

requirement is cts
ij . From Lemma 3.1, we have

psc
ts
ij 6 αs

j .

Case 2. Client (j, s)’s requirement is satisfied indirectly. Suppose that (j, s) is indirectly

connected to a facility at location (̄i, t̄) ∈ Nalg(j̄, s̄) for some center (j̄, s̄). By the choice of

centers, we have

αs̄
j̄/ps̄ 6 αs

j/ps and Nalg(j̄, s̄) ∩ Nalg(j, s) 6= ∅.

Let (i, t) ∈ Nalg(j̄, s̄) ∩ Nalg(j, s). Using the triangle inequality, we get

ct̄s
īj 6 ct̄s̄

īj̄ + cts̄
ij̄ + cts

ij .
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From Lemma 3.1, we have

ct̄s̄
īj̄ 6 αs̄

j̄/ps̄, cts̄
ij̄ 6 αs̄

j̄/ps̄, cts
ij 6 αs

j/ps.

In this case, the connection cost ct̄s
īj

of such a requirement satisfies

ct̄s
īj 6 2αs̄

j̄/ps̄ + αs
j/ps 6 3αs

j/ps.

Thus the total connection cost for client (j, s) is no more than 3rs
jα

s
j . Adding up all

the connections costs of clients in D, we conclude the lemma.

In order to proceed our analysis, we need the following lemma.

Lemma 3.3 ([21]) Given two numbers yi > 0, fi > 0 for each i = 1, 2, · · · , n, given

a non-empty set Nt ⊆ {1, 2, · · · , n} and a number qt > 0 for each t = 1, 2, · · · , T , suppose

that
t

∑

h=1

Λhtqh 6
∑

i∈Nt

yi, ∀t = 1, 2, · · · , T,

where Λht = 1 if Nh ∩ Nt 6= ∅ and 0 otherwise. Denote f̄t = min{fi : i ∈ Nt} for

t = 1, 2, · · · , T . Then we have
T

∑

t=1

f̄tqt 6

n
∑

i=1

fiyi.

Let Falg and F ∗ be the opening cost of the solution output by Algorithm 2.1 and the

optimal (fractional) opening cost of (1.1), respectively. We bound the facility cost as follows.

Lemma 3.4

Falg 6 2F ∗.

Proof Denote by {(j1, s1), (j2, s2), · · · , (jK , sK)} the set of all centers in the chosen

order of Algorithm 2.1. Let F̄ =
K
⋃

k=1

Nalg(jk, sk). For each (i, t) ∈ F̄ , we define ỹt
i =

2yt
i > 0. For each k ∈ {1, 2, · · · , K}, we have a non-empty set Nalg(jk, sk) ⊆ F̄ and a

number qk := dsk

jk
which is the number of new facilities opened when center client (jk, sk)

is considered. Denote Λhk = 1 if Nalg(jh, sh) ∩ Nalg(jk, sk) 6= ∅ and 0 otherwise. It follows

from Algorithm 2.1, (1.1) and (1.2) that

k
∑

h=1

Λhkqh = rsk

jk
6

∑

(i,t)∈F

xtsk

ijk
6

∑

(i,t)∈Nalg(jk,sk)

2xtsk

ijk
6

∑

(i,t)∈Nalg(jk,sk)

ỹt
i ,

∀k = 1, 2, · · · , K.

Let ptk
f tk

ik
= min{ptf

t
i : (i, t) ∈ Nalg(jk, sk)} for k ∈ {1, 2, · · · , K}. Applying Lemma 3.3 we

obtain that

Falg =

K
∑

k=1

ptk
f tk

ik
qk 6

∑

(i,t)∈F̄

ptf
t
i ỹ

t
i 6 2

∑

(i,t)∈F

ptf
t
i y

t
i = 2F ∗.

Now we are ready to state our main result.
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Theorem 3.1 Algorithm 2 is a 5-approximation algorithm for the SFTFP.

Proof From Lemmas 3.2 and 3.4, we have

Calg + Falg 6 3
∑

(j,s)∈D

rs
jα

s
j + 2F ∗

6 3
∑

(j,s)∈D

rs
jα

s
j + 2

∑

(j,s)∈D

rs
jα

s
j

= 5
∑

(j,s)∈D

rs
jα

s
j .

Recall that
∑

(j,s)∈D

rs
jα

s
j is the cost of the optimal solution of (1.1), we complete the proof.

4 Discussions

In this paper, we present an LP-rounding 5-approximation algorithm for the SFTFP. It

is interesting to further improve the approximation ratio for the SFTFP. Since the k-level

FLP is an important variant of the FLP, it is also worth to study the k-level version for the

FTFP.
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[7] Shmoys D B, Tardos É, Aardal K I. Approximation algorithms for facility location problems

(extended abstract) [C]//F. Tom Leighton, Peter Shor, Proceedings of STOC, Texas: ACM

New York, 1997, 265-274.

[8] Sviridenko M. An improved approximation algorithm for the metric uncapacitated facility

location problem [C]//William J, Proceedings of IPCO, Cambridge: Springer, 2002, 240-257.

[9] Ageev A, Ye Y Y, Zhang J W. Improved combinatorial apporximation algorithms for the

k-level facility location problem [J]. SIAM Journal on Discrete Mathematics, 2004, 18(1):

207-217.



20 SHAO Jiating, XU Dachuan 16 8
[10] Chen X J, Chen B. Approximation algorithms for soft-capacitated facility location in capac-

itated network design [J]. Algorithmica, 2007, 53(3): 263-297.

[11] Du D D, Lu R X, Xu D C. A primal-dual approximation algorithm for the facility location

problem with submodular penalties [J]. Algorithmica, 2012, 63(1-2): 191-200.

[12] Shu J. An efficient greedy heuristic for warehouse-retailer network design optimization [J].

Transportation Science, 2010, 44(2): 183-192.

[13] Shu J, Teo C P, Max Shen Z J. Stochastic transportation-inventory network design problem

[J]. Operations Research, 2005, 53(1): 48-60.

[14] Zhang P. A new approximation algorithm for the k-facility location problem [J]. Theoretical

Computer Science, 2007, 384(1): 126-135.

[15] Jain K, Vazirani V V. An approximation algorithms for the fault tolerant metric facility

location problem [J]. Algorithmica, 2003, 38(3): 433-439.

[16] Byrka J, Srinivasan A, Swamy C. Fault-tolerant facility location: a randomized dependent LP-

rounding algorithm [C] //Friedrich Eisenbrand and F. Bruce, Proceedings of IPCO, Switzer-

land: Springer, 2010, 244-257.

[17] Guha S, Meyerson A, Munagala K. A constant factor approximation algorithms for the fault

tolerant facility location problem [J]. Journal of Algorithms, 2003, 48(2): 449-420.

[18] Swamy C, Shmoys D B. Fault-tolerant facility location [J]. ACM Transactions on Algorithms,

2008, 4(4), Article 51.

[19] Xu S H, Shen H. The fault-tolerant facility allocation problem [C]//Yingfei Dong, Ding-Zhu

Du and Oscar Ibarra, Proceedings of ISAAC, Hawaii: Springer, 2009, 689-698.

[20] Ravi R, Sinha A. Hedging uncertainty: approximation algorithms for stochastic optimization

problems [J]. Mathmatical Programming, 2006, 108(1): 97-114.

[21] Yan L, Chrobak M. Approximation algorithms for the fault tolerant facility placement problem

[J]. Information Processing Letters, 2011, 111(11): 545-549.


