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On the smoothing of the lower order exact penalty

function for inequality constrained optimization∗

LIAN Shujun1

Abstract In this paper, we propose a method to smooth the general lower order
exact penalty function for inequality constrained optimization. Error estimations are
obtained among the optimal objective function values of the smoothed penalty problem,
of the nonsmooth penalty problem and of the original optimization problem. It is shown
that under mild assumption, an approximate global solution of the original problem can
be obtained by searching a global solution of the smoothed penalty problem. We develop
an algorithm for solving the original optimization problem based on the smoothed penalty
function and prove the convergence of the algorithm. Some numerical examples are given
to illustrate the applicability of the present smoothing method.
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0 Introduction

Consider the constrained optimization problem

[P ]

min f(x),

s.t. gi(x) 6 0, i = 1, 2, · · · , m,

x ∈ Rn,
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where f : Rn → R and gi(x) : Rn → R, i ∈ I = {1, 2, · · · , m} are twice continuously

differentiable functions. Let

G0 = {x ∈ Rn| gi(x) 6 0, i = 1, 2, · · · , m}.

In Zangwill[1], the l1 exact penalty function for problem [P] is proposed as follows

fβ(x) = f(x) + β
m

∑

i=1

g+
i (x), (0.2)

where β > 0 is a penalty parameter and

g+
i (x) = max{0, gi(x)}, i ∈ I.

Obviously, it is a nondifferentiable function. Nondifferentiable penalty functions have

been the first ones for which some exactness properties have been established by [1]. The

obvious difficulty with the exact penalty function is that it is non-differentiable, which

prevents the use of efficient minimization algorithms, see, e.g., [2-5]. From an algorithmic

viewpoint, this nondifferentiabliliy can induce the so-called Maratos effect which prevents

rapid local convergence. In order to avoid the drawback related to the nondifferentiability,

the smoothing of the l1 exact penalty function attracts much attention, see, e.g., [6-12].

Recent research on lower-order penalty functions shows that lower-order (order lower

than 1) penalty functions require weaker conditions to guarantee exactness than the l1
penalty function(see, e.g., [13-19]. In [15], Luo gave a global exact penalty result for a lower

order penalty function of the form

f(x) + αr(x)1/γ ,

where α > 0, γ > 1 are the penalty parameters, r(x) =
m
∑

i=1

g+
i (x).

Nonlinear penalty function of the following form has been investigated (see, e.g. [14,16-

17])

Lk(x, d) =

[

f(x)k +

m
∑

i=1

di(g
+
i (x))k

]1/k

,

where f(x) is assumed to be positive, k > 0 is a given number, and d = (d1, d2, · · · , dm) ∈ Rm
+

is the penalty parameter. Obviously, Lk(x, d) is the l1 penalty function when k = 1. In

[16], Rubinov gave a sufficient and necessary condition for Lk(x, d) to be an exact penalty

function by using a generalized calmness when m = 1 and k ∈ (0, 1]. Then it was shown

in [16], that the least exact penalty parameter corresponding to k ∈ (0, 1] is substantially

smaller than that of the classical l1 exact penalty function.

The lower order penalty function

ϕq,v(x) = f(x) + q

m
∑

i=1

(g+
i (x))v , v ∈ (0, 1) (0.3)

has been introduced and investigated in [20] and [21]. It is shown in [21] that any strict

local minimum satisfying the second order sufficiency condition for the original problem
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is a strict local minimum of the lower order penalty function with any positive penalty

parameters. The smoothing of the 1
2 -order penalty function, i.e. f(x) + q

m
∑

i=1

(g+
i (x))

1
2 has

been investigated in [21] and [22].

In this paper, we aim to smooth the lower order penalty function of the general form

(0.3). The main contribution of the paper is the extensions of the results of [21] and [22]

from the case v = 1
2 to the general case v ∈ (0, 1).

The paper is organized as follows. In section 1, a smoothing function to the lower order

penalty function is introduced, and some fundamental properties of the smoothing function

are discussed. In section 2, we present an algorithm to compute an approximate solution to

[P] based on the smooth penalty function and show the convergence of the algorithm. Some

numerical examples are given in section 3.

1 Smoothing exact lower order penalty function

Consider the following lower order penalty problem

[LOP ]v min
x∈Rn

ϕq,v(x).

In this paper, we say that the pair (x∗, λ∗) satisfies the second order sufficient condition[23]

if
∇xL(x∗, λ∗) = 0,

gi(x
∗) 6 0, i ∈ I,

λ∗
i > 0, i ∈ I,

λ∗
i gi(x

∗) = 0, i ∈ I,

yT∇2L(x∗, λ∗)y > 0, for any y ∈ V (x∗),

(1.1)

where L(x, λ) = f(x) +
m
∑

i=1

λigi(x), and

V (x∗) = {y ∈ Rn| ∇Tgi(x
∗)y = 0, i ∈ A(x∗), ∇Tgi(x

∗)y 6 0, i ∈ B(x∗)},

A(x∗) = {i ∈ I| gi(x
∗) = 0, λ∗

i > 0},

B(x∗) = {i ∈ I| gi(x
∗) = 0, λ∗

i = 0}.

In order to establish the global exact penalization, we need the following assumptions.

Assumption 1 f(x) satisfies the following coercive condition

lim
‖x‖→+∞

f(x) = +∞.

Under Assumption 1, there exists a box X such that G([P ]) ⊂ int(X), where G([P ]) is

the set of global minima of problem [P], int(X) denotes the interior of the set X . Consider

the following problem

[P ′]

min f(x)

s.t. gi(x) 6 0, i = 1, · · · , m,

x ∈ X,
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Let G([P ′]) denote the set of global minima of problem [P ′]. Then G([P ′]) = G([P ]).

Assumption 2 The set G([P ]) is a finite set.

Then for any v ∈ (0, 1), we consider the penalty problem of the form

[LOP ′]v min
x∈X

ϕq,v(x).

We know that the lower order penalty function ϕq,k(x) (k ∈ (0, 1)) is an exact penalty

function in [21] under Assumption 1, Assumption 2 and the second order sufficient condition.

But the lower order exact penalty function ϕq,v(x) (v ∈ (0, 1)) is a nondifferentiable function.

Now we consider its smoothing. We have the following definition.

Let pv(u) = (max{0, u})v, that is,

pv(u) =

{

uv if u > 0,

0 otherwise.
(1.2)

Then

ϕq,v(x) = f(x) + q
m

∑

i=1

pv(gi(x)). (1.3)

For any ε > 0, let

pε,v(u) =



















0, if u < 0;
2v − 1

(v + 2)ε2
uv+2, if 0 6 u < ε;

uv + εuv−1 −
5

v + 2
εv, if u > ε.

(1.4)

It is easy to see that the function pε,v(u) is continuously differentiable on R and

lim
ε→0+

pε,v(u) = pv(u).

If v = 1
2 , we have

pε, 1
2
(u) =

{

0, if u < ε;

u
1
2 + εu− 1

2 − 2ε
1
2 , if u > ε.

It is easy to see that pε, 1
2
(u) is twice continuously differentiable.

Let

ϕq,ε,v(x) = f(x) + q

m
∑

i=1

pε,v(gi(x)). (1.5)

Then ϕq,ε,v(x) is continuously differentiable on Rn. Consider the following smoothed opti-

mization problem,

[SP ] min
x∈Rn

ϕq,ε,v(x).

Theorem 1.1 For any x ∈ Rn, v ∈ (0, 1) and ε > 0,

0 6 ϕq,v(x) − ϕq,ε,v(x) 6
5

v + 2
mqεv.
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Proof Note that

pv(gi(x)) − pε,v(gi(x)) =























0, if gi(x) < 0;

(gi(x))v −
2v − 1

(v + 2)ε2
(gi(x))v+2, if 0 6 gi(x) < ε;

5

(v + 2)
εv − ε(gi(x))v−1, if gi(x) > ε.

Let

F (t) = tv −
2v − 1

v + 2
tv+2 −

5

v + 2
.

It is easy to see that F (t) is monotone increasing in [0,1). So we have − 5
v+2 6 F (t) 6 0

when t ∈ [0, 1). Let t = gi(x)/ε, then

0 6 (gi(x))v −
2v − 1

(v + 2)ε2
(gi(x))v+2

6
5

v + 2
εv, when 0 6 gi(x) < ε.

By v ∈ (0, 1), we have

0 6
5

v + 2
εv − ε(gi(x))v−1

6
5

v + 2
εv, when gi(x) > ε.

So we have

0 6 ϕq,v(x) − ϕq,ε,v(x) = q
m

∑

i=1

(pv(gi(x)) − pε,v(gi(x))) 6
5

v + 2
mqεv.

As a direct result of Theorem 1.1, we have the following two theorems.

Theorem 1.2 Let {εk} → 0 be a sequence of positive numbers and assume that xk is

a solution to minx∈Rn ϕq,εk ,v(x) for q > 0 and v ∈ (0, 1). Let x̄ be an accumulating point of

the sequence {xk}. Then x̄ is an optimal solution to minx∈Rn ϕq,v(x).

Theorem 1.3 Let x∗
q,v be an optimal solution of problem [LOP ]v and x̄q,ε,v be an

optimal solution of problem [SP ] for q > 0, v ∈ (0, 1) and ε > 0. Then we have

0 6 ϕq,v(x∗
q,v) − ϕq,ε,v(x̄q,ε,v) 6

5

v + 2
mqεv.

Proof By Theorem 1.1, we have

0 6 ϕq,v(x∗
q,v) − ϕq,ε,v(x∗

q,v)

6 ϕq,v(x∗
q,v) − ϕq,ε,v(x̄q,ε,v)

6 ϕq,v(x̄q,ε,v) − ϕq,ε,v(x̄q,ε,v)

6
5

v + 2
mqεv.

We complete the proof.

Theorem 1.1 and Theorem 1.2 show that an approximate solution to [SP ] is also an

approximate solution to [LOP ]v when the error ε > 0 is sufficiently small.
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Corollary 1.1 Suppose that Assumption 1 and Assumption 2 hold, for any x∗ ∈ G([P ]),

there exists a λ∗ ∈ Rm
+ such that the pair (x∗, λ∗) satisfies the second order sufficient con-

dition. Let x∗ ∈ X be a global solution of problem [P ] and x̄q,ε,v ∈ X be a global solution

of problem [SP ] for given v ∈ (0, 1) and ε > 0. Then there exists q∗ > 0 such that for any

q > q∗,

0 6 f(x∗) − ϕq,ε,v(x̄q,ε,v) 6
5

v + 2
mqεv,

where q∗ is defined in Corollary 2.3 in [21].

Proof By Corollary 2.3 in [21], we have that x∗ is a global solution of problem [LOP ]v.

Then by Theorem 1.3, we have

0 6 ϕq,v(x∗) − ϕq,ε,v(x̄q,ε,v) 6
5

v + 2
mqεv.

Since
m
∑

i=1

pv(gi(x
∗)) = 0, we have

ϕq,v(x∗) = f(x∗) + q

m
∑

i=1

pv(gi(x
∗)) = f(x∗).

We complete the proof.

Definition 1.1 For ε > 0, a point xε ∈ Rn is an ε − feasible solution, if

gi(xε) 6 ε, i = 1, · · · , m (1.6)

Theorem 1.4 Let x∗
q,v be an optimal solution of problem [LOP ]v and x̄q,ε,v be an

optimal solution of problem [SP ] for q > 0, v ∈ (0, 1) and ε > 0. Furthermore, let x∗
q,v be a

feasible solution of problem [P] and x̄q,ε,v be an ε − feasible solution of problem [P], then

we have
2v − 1

v + 2
mqεv

6 f(x∗
q,v) − f(x̄q,ε,v) 6

5

v + 2
mqεv, v ∈ (0,

1

2
),

and

0 6 f(x∗
q,v) − f(x̄q,ε,v) 6

6

v + 2
mqεv, v ∈ (

1

2
, 1).

Proof It is easy to see that
m
∑

i=1

pv(gi(x
∗
q,v)) = 0 and by Theorem 1.3, we have

0 6 ϕq,v(x∗
q,v) − ϕq,ε,v(x̄q,ε,v)

= f(x∗
q,v) + q

m
∑

i=1

pv(gi(x
∗
q,v)) −

(

f(x̄q,ε,v) + q

m
∑

i=1

pε,v(gi(x̄q,ε,v))

)

6
5

v + 2
mqεv.

It follows that

q

m
∑

i=1

pε,v(gi(x̄q,ε,v)) 6 f(x∗
q,v) − f(x̄q,ε,v) 6 q

m
∑

i=1

pε,v(gi(x̄q,ε,v)) +
5

v + 2
mqεv.
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From (1.4), we have

m
∑

i=1

2v − 1

v + 2
εv

6

m
∑

i=1

pε,v(gi(x̄q,ε,v)) 6 0, v ∈ (0,
1

2
)

and

0 6

m
∑

i=1

pε,v(gi(x̄q,ε,v)) 6

m
∑

i=1

2v − 1

v + 2
εv =

2v − 1

v + 2
mεv

6
1

v + 2
mεv, v ∈ (

1

2
, 1).

Then it follows that

2v − 1

v + 2
mqεv

6 f(x∗
q,v) − f(x̄q,ε,v) 6

5

v + 2
mqεv, v ∈ (0,

1

2
).

and

0 6 f(x∗
q,v) − f(x̄q,ε,v) 6

1

v + 2
mqεv +

5

v + 2
mqεv

6
6

v + 2
mqεv, v ∈ (

1

2
, 1).

By Theorem 1.4, an approximately optimal solution to [SP ] becomes an approximately

optimal solution to [P ] if the solution to [SP ] is ε − feasible.

2 A smoothing method

For x ∈ Rn, we define

I0(x) = {i| gi(x) = 0, i ∈ I},

I−(x) = {i| gi(x) < 0, i ∈ I},

I+
ε (x) = {i| gi(x) > ε, i ∈ I},

I−ε (x) = {i| gi(x) < ε, i ∈ I}.

We propose the following algorithm to solve [P].

Algorithm 2.1

Step 1 Choose an initial point x0, and a stopping tolerance ε > 0. Given ε0 > 0, q0 >

0, 0 < η < 1, and N > 1, let k = 0 and go to Step 2.

Step 2 Use xk as the starting point to solve minx∈Rn ϕqk,εk,v(x). Let x∗
k be the optimal

solution obtained (x∗
k is obtained by a quasi-Newton method and a finite difference gradient).

Go to Step 3.

Step 3 If x∗
k is ε − feasible to [P], then stop and we have obtained an approximate

solution x∗
k of the original problem [P]. Otherwise, let qk+1 = Nqk, εk+1 = ηεk, xk+1 = x∗

k,

and k = k + 1, then go to Step 2.

Remark Since 0 < η < 1 and N > 1, hence, as k → +∞, the sequence {εk} is

decreasing to 0 and the sequence {qk} is increasing to +∞.

Theorem 2.1 Suppose that Assumption 1 holds. Let {x∗
k} be the sequence generated by

Algorithm 2.1. Suppose that the sequence {ϕqk,εk,v(x
∗
k)} is bounded where v ∈ (1

2 , 1). Then

{x∗
k} is bounded and any limit point x∗ of x∗

k is feasible to [P] and satisfies

λ∇f(x∗) +
∑

i∈I0(x∗)

ui∇gi(x
∗) = 0, (2.1)



58 LIAN Shujun 16 4
where λ > 0 and ui > 0, i ∈ I.

Proof By the assumptions, there is some number L such that

L > ϕqk,εk,v(x
∗
k), k = 0, 1, 2, · · · (2.2)

Suppose to the contrary that {x∗
k} is unbounded. Without loss of generality, we assume

that ‖x∗
k‖ → ∞ as k → ∞. Then, from (1.4), (1.5), (2.2) and v ∈ (1

2 , 1), we have

L > f(x∗
k), k = 0, 1, 2, · · · ,

which results in a contradiction since lim
‖x‖→+∞

f(x) = +∞.

Now we show that any limit point of {x∗
k} belong to G0. Without loss of generality, we

assume that limk→+∞ x∗
k = x∗. Suppose to the contrary that x∗ /∈ G0. Then there exists some

i such that pv(gi(x
∗)) > 0. As gi (i ∈ I) are continuous, so are ϕqk,εk,v(·), k = 0, 1, 2, · · · .

Note that

ϕqk,εk,v(x
∗
k) =f(x∗

k) + qk

∑

i∈I+
ε

k
(x∗

k
)

(g+
i (x∗

k)v + εkg+
i (x∗

k)v−1 −
5

v + 2
εv

k)

+ qk

∑

i∈I−

ε
k
(x∗

k
)\I−(x∗

k
)

2v − 1

(v + 2)ε2
k

g+
i (x∗

k)v+2.

Then, as k → ∞, ϕqk,εk,v(x
∗
k) → ∞, which contradicts the assumption.

Finally, we show that (2.1) holds. By Step 2, ∇ϕqk ,εk,v(x
∗
k) = 0, that is

∇f(x∗
k) + qk

∑

i∈I+
ε

k
(x∗

k
)

(vg+
i (x∗

k)v−1 + εk(v − 1)g+
i (x∗

k)v−2)∇gi(x
∗
k)

+ qk

∑

i∈I−

ε
k
(x∗

k
)\I−(x∗

k
)

(2v − 1)ε2
kg+

i (x∗
k)v+1∇gi(x

∗
k) = 0. (2.3)

For k = 0, 1, 2, · · · , let

γk = 1 + qk

∑

i∈I+
ε

k
(x∗

k
)

(vg+
i (x∗

k)v−1 + εk(v − 1)g+
i (x∗

k)v−2)

+qk

∑

i∈I−

ε
k
(x∗

k
)\I−(x∗

k
)

(2v − 1)ε2
kg+

i (x∗
k)v+1.

Then γk > 0 for enough large k. From (2.3), we have

1

γk
∇f(x∗

k) +
∑

i∈I+
ε

k
(x∗

k
)

qk(vg+
i (x∗

k)v−1 + εk(v − 1)g+
i (x∗

k)v−2)

γk
∇gi(x

∗
k)

+
∑

i∈I−

ε
k
(x∗

k
)\I−(x∗

k
)

qk(2v − 1)ε2
kg+

i (x∗
k)v+1

γk
∇gi(x

∗
k) = 0. (2.4)

Let λk = 1
γk

,

uk
i =

qk(vg+
i (x∗

k)v−1 + εk(v − 1)g+
i (x∗

k)v−2)

γk
, i ∈ I+

εk
(x∗

k),
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uk
i =

qk(2v − 1)ε2
kg+

i (x∗
k)v+1

γk
, i ∈ I−εk

(x∗
k) \ I−(x∗

k),

uk
i = 0, i ∈ I−(x∗

k)

Then

λk +
∑

i∈I

uk
i = 1, ∀ k. (2.5)

By v ∈ (1
2 , 1) and εk → 0 as k → ∞, we have

uk
i > 0, i ∈ I,

for enough large k.

Clearly, as k → +∞, λk → λ > 0, uk
i → ui > 0, ∀ i ∈ I. By (2.4) and (2.5), as k → ∞,

we have

λ∇f(x∗) +
∑

i∈I

ui∇gi(x
∗) = 0, λ +

∑

i∈I

ui = 1.

For i ∈ I−(x∗), as k → ∞, we have uk
i → 0. Therefore, ui = 0, ∀ i ∈ I−(x∗). Then we

complete the proof.

3 Numerical examples

In this section, we give several numerical examples to show the applicability of the

presented algorithm with v = 1
3 , v = 1

2 and v = 2
3 .

Example 3.1 (See Eg. 4 .2 .9 in page 146 of [23])

min f(x) = (x1 − 3)2 + (x2 − 2)2,

s.t. g1(x) = x2
1 + x2

2 − 5 6 0,

g2(x) = x1 + 2x2 − 4 6 0,

x1, x2 > 0.

Starting point x0 = (1, 1), q0 = 0.01, ε0 = 0.01, η = 0.01, N = 20, ε = 1 × 10−15.

Numerical results are given in Table 1, 2 and 3.

Table 1 Numerical results of Example 3.1 with v = 1

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (2.996704, 1.996741) 0.01 0.01 7.967210 2.990186 0.0000215

1 (2.931383,1.932444) 0.2 0.0001 7.327350 2.796272 0.009272

2 (2.000158, 0.9992276) 4.0 0.000001 -0.000914 -0.001387 2.001230

Table 2 Numerical results of Example 3.1 with v = 1

2

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (2.993250, 1.993579) 0.01 0.01 7.933899 2.980407 0.000087

1 (2.858075,1.865501) 0.2 0.0001 6.648686 2.589077 0.038233

2 (2.000120,0.9992266) 4.0 0.000001 -0.001065 -0.001426 2.001307
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Table 3 Numerical results of Example 3.1 with v = 2

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (2.987660,1.988704) 0.01 0.01 7.881060 2.965069 0.000279

1 (2.743870,1.766386) 0.2 0.0001 5.648941 2.276642 0.1201781

2 (2.000263, 0.9992877) 4.0 0.000001 -0.000370 -0.001161 2.000898

From [23], we know that the global solution is (2,1) with global optimal value 2. It

is clear from these three tables that the obtained approximate global solution is x∗ =

(2.000263, 0.9992877) with corresponding objective function value 2.000898.

Example 3.2 (The Rosen − Suzki problem in [22] and [24])

min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 6 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 6 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 6 0.

Starting point x0 = (0, 0, 0, 0), q0 = 5.0, ε0 = 0.01, η = 0.1, N = 2, ε = 1 × 10−15.

Numerical results are given in Table 4 and 5.

Table 4 Numerical results of Example 3.2 with v = 1

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) g3(x
∗

k) f(x∗

k)

0
(1.065070, 1.203614,

3.707415, −1.911620)
5 0.01 13.88449 17.46277 15.93181 -68.85327

1
(0.2190443, 0.9523497,

1.913380, −1.053221)
10 0.001 0.001171 -0.041455 -1.424329 -44.02423

2
(0.2092652, 0.9399132,

1.916596, −1.069591)
20 0.0001 -0.066786 0.000136 -1.367615 -44.06362

3
(0.1701657, 0.8347672,

1.999031, −0.9810361)
40 0.00001 -0.055064 -0.000185 -1.845512 -44.19109

Table 5 Numerical results of Example 3.2 with v = 1

2

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) g3(x
∗

k) f(x∗

k)

0
(0.2315499, 0.8870426,

1.947699, −1.027912)
5 0.01 0.009838 0.010714 -1.669594 -44.20590

1
(0.1590134, 0.8141334,

1.942331, −1.082092)
10 0.001 -0.4638979 0.000974 -1.611514 -43.82501

2
(0.1645929, 0.8394377,

2.008706, −0.9659035)
20 0.0001 -0.003545 -0.000622 -1.861450 -44.22978

Starting point x0 = (2.0, 2.0, 2.0, 2.0), q0 = 5.0, ε0 = 0.1, η = 0.1, N = 2, ε =

1 × 10−15. Numerical results are given in Table 6.

It is clear from these three tables that the obtained approximate global solution is x∗ =

(0.1645929, 0.8394377, 2.008706,−0.9659035) with corresponding objective function value -

44.22978. From [22], the obtained approximate global solution is x∗ = (0.169234, 0.835656,

2.008690,−0.964901) with corresponding objective function value -44.233582. The solution

we obtained is similar with that obtained in [22].
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Table 6 Numerical results of Example 3.2 with v = 2

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) g3(x
∗

k) f(x∗

k)

0
(0.1146511, 0.8429196,

2.031888, −0.9505037)
5 0.1 -0.012908 0.009810 -1.794490 -44.22678

1
(0.1453490, 0.8286198,

2.018960, −0.9596925)
10 0.01 -0.035314 0.003254 -1.873092 -44.20470

2
(0.1476035, 0.8314404,

2.022063, −0.9505301)
20 0.001 -0.000278 -0.005919 -1.896948 -44.21819

Example 3.3 (Example 3 .1 in [25])

min f(x) = x2
1 + x2

2 − cos(17x1) − cos(17x2) + 3,

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62

6 0,

g2(x) = x2
1 + (x2 − 3)2 − 2.72

6 0,

0 6 x1 6 2,

0 6 x2 6 2.

Starting point x0 = (0, 0), η = 0.01, N = 3, ε = 1 × 10−15.

Let q0 = 1, ε0 = 0.1 when v = 1
3 .

Let q0 = 0.1, ε0 = 0.01 when v = 1
2 .

Let q0 = 1, ε0 = 0.01 when v = 2
3 . Numerical results are given in Table 7, 8 and 9.

Table 7 Numerical results of Example 3.3 with v = 1

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (0.003100, 0.004269) 1 1 × 10−1 1.427628 1.684413 1.004048

1 (0.3833721, 0.7169942) 3 1 × 10−3 0.5675662 -1.930911 1.758740

2 (0.7358550, 0.4022011) 9 1 × 10−5 -0.8001720 0.000004 1.854559

3 (0.7239410, 0.3988712) 27 1 × 10−7 -0.7725754 -0.000039 1.837919

Table 8 Numerical results of Example 3.3 with v = 1

2

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (0.000562, 0.000772) 0.1 1 × 10−2 1.437753 1.705369 1.000133

1 (0.001728, 0.002382) 0.3 1 × 10−4 1.433097 1.695716 1.001260

2 (0.005178, 0.007165) 0.9 1 × 10−6 1.419366 1.667088 1.011359

3 (0.7253758, 0.3992658) 2.7 1 × 10−8 -0.7759201 -0.000012 1.837568

Table 9 Numerical results of Example 3.3 with v = 2

3

k x∗

k qk εk g1(x
∗

k) g2(x
∗

k) f(x∗

k)

0 (0.008104,0.011597) 1 1 × 10−2 1.407784 1.640618 1.029046

1 (0.7848462,1.040875 ) 3 1 × 10−4 0.000019 -2.835846 3.581485

2 (0.7276356,0.3998984) 9 1 × 10−6 -0.7811703 -0.000019 1.838380

It is clear from these three tables that the obtained approximate global solution is

x∗ = (0.7253758, 0.3992658) with corresponding objective function value 1.837568. By Sun

and Li [25], we know that x∗ = (0.7255, 0.3993) is a global minimum with global optimal

value f∗ = 1.8376.
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For the k′th iteration of the algorithm, we define a constraint error ek by

ek =
m

∑

i=1

max{g(xk), 0}.

Example 3.4 (Example 3 .4 in [22] and Example 3 .1 in [9])

min f(x) = 10x2 + 2x3 + x4 + 3x5 + 4x6,

s.t. g1(x) = x1 + x2 − 10 = 0,

g2(x) = −x1 + x3 + x4 + x5 = 0,

g3(x) = −x2 − x3 + x5 + x6 = 0,

g4(x) = 10x1 − 2x3 + 3x4 − 2x5 − 16 6 0,

g5(x) = x1 + 4x3 + x5 − 10 6 0,

0 6 x1 6 12,

0 6 x2 6 18,

0 6 x3 6 5,

0 6 x4 6 12,

0 6 x5 6 1,

0 6 x6 6 16.

Starting point x0 = (0, 0, 0, 0, 0, 0), ε0 = 0.1, ε = 1 × 10−6.

Let q0 = 700.0, η = 0.1, N = 9 when v = 1
3 and v = 2

3 .

Let q0 = 1000.0, η = 0.01, N = 4 when v = 1
2 . Numerical results are given in Table

10.

Table 10 Numerical results of Example 3.4 with different v

v No. iter. qk Cons. error ek Objective value Solution
(x1, x2, x3,

x4, x5, x6)

1

3
10 700 × 99 0.0 117.0368

(1.623695, 8.376305,

0.027677, 0.5992718,

0.9967462, 7.407235)

1

2
7 1000 × 46 1.870848 × 10−7 117.0166

(1.615956, 8.384044,

0.004182, 0.6133483,

0.9984257, 7.389800)

2

3
7 700 × 96 4.470348 × 10−8 117.0573

(1.635022, 8.364978,

0.060010, 0.5812775,

0.9937346, 7.431253)

It is clear from Table 10 that the obtained approximate global solution is x∗ = (1.615956,

8.384044, 0.004182, 0.6133483, 0.9984257, 7.389800)with corresponding objective function value

117.0166. From [22], the obtained approximate global solution is x∗ = (1.847052, 8.152948,

0.607878, 0.244707, 0.994467, 7.766359)with corresponding objective function value 117.038781.

The solution we obtained is similar with that obtained in [22] and better than that obtained

in [9] (the objection function value f(x∗) = 124).
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