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Existence and optimality of accessible and

approximatable global minimizers
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Abstract The concepts of robustness of sets and functions are proposed in view of
the theory of integral global minimization. These concepts are generalized, and global
minimization of quasi and pseudo upper robust function is investigated in this paper.
With the deviation integral optimality condition of global minimum, the existence of
accessible minimizer of quasi upper functions and approximatable minimizer of pseudo
upper robust function is examined.
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0 Introduction

Let X be a topological space, S a subset of X , and f : X → R1 a real valued function.

Consider the following minimization problem: find the minimum value of f over S

c∗ = inf
x∈S

f(x), (0.1)

and the set of global minimizers

H∗ = {x ∈ S : f(x) = c∗}. (0.2)5�21� 2011 . 2 I 28 2
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In [1], several existence theorems of global minimizer were introduced, which almost all

conditions ensure only the emptyness of the set of global minimizers. However, the nonemp-

tyness of the set of global minimizers cannot ensure accessibility and approximatability of

minimizers[2] and finding them numerical.

We still know another kind of existence theorem[3]. They are quite useful because the

requirement of compactness is put on that of the objective function itself.

If X is a Banach space, f ∈ C1 and satisfies Palais− Smale condition, (0.3)

then there exists a point x∗ such that

f(x∗) = c∗ and df(x∗) = θ, (0.4)

where df(x∗) is the differential of f at x∗ and θ is the null vector. Palais-Smale condition

means that for each sequence {xn} ⊂ X ,

{f(xn)} is bounded and df(xn) → θ ⇒ the sequence {xn} has a convergent subsequence.

(0.5)

In this paper, we investigate minimization problems of quasi and pseudo upper robust

functions, and examine the optimality conditions and existence of robust, accessible, and

approximatable minimizers with deviation integral. We recall some basic definitions and

properties of robust sets, functions and three kind of minimizers in Section 0. We establish

optimality conditions for global minimum of a quasi (or pseudo) upper robust function with

deviation integral (see [4]) in Section 1. In Section 2, we prove the existence theorems of

accessible and approximatable minimizers based on these optimality conditions. Several

examples are given to show that these theorems are useful to prove the existence of global

minimizer. We conclude our paper in Section 3.

1 Robust sets, robust and upper robust functions

1.1 Robust sets and functions

We begin with recalling concepts of robust sets, points, and semineighborhood (see [5-7]).

Let X be a topological space, and D a subset of X . A set D ⊂ X is said to be robust iff

cl D = cl int D, (1.1)

where int D denotes the interior of D and cl D the closure of D.

A point x ∈ cl D is said to be robust to D, if for each neighborhood N(x) of x, N(x)∩

int D 6= ∅. A point x ∈ D is a robust point of D if and only if there exists a net {xλ} ⊂ int

D such that

xλ → x.

If x is a robust point of set D, then D is called a semineighborhood of x.

Function f : X → R1 is said to be upper robust iff the set

Fc = {x : f(x) < c}
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is robust for each real number c; it is said to be robust if for each open set G ⊂ R1, f−1(G)

is a robust set in X .

Let X be a metric space and f : X → R1 a real valued function. Suppose C is the set

of points of continuity of f . Then f is said to be upper approximatable iff

1. C is dense in X ;

2. for each point x ∈ X , there is a sequence {xn} ⊂ C such that lim
n→∞

xn = x and

lim sup
n→∞

f(xn) = f(x);

1.2 Robust, accessible, and approximatable minimizers, quasi-upper

robust function

In this subsection, we first recall the definitions of three kinds of minimizer and their

relationships. When c∗ = f(x∗) is the global minimum value, we have

f−1((c∗ − ε, c∗ + ε)) = Fc∗+ε = {x : f(x) < c∗ + ε}.

Thus, the definition of a robust minimizer can be modified as follows.

Definition 1.1 Let X be a topological space, S is a subset of X , and f : X → R1 is a

real valued function. A point x∗ ∈ S is said to be an accessible minimizer if

1. f(x∗) 6 f(x), ∀x ∈ S;

2. for each c > c∗,there is a sequence of points {xα} ⊂ int(S ∩ Fc) such that

xα → x∗ and f(xα) → f(x∗).

Definition 1.2 Let X be a topological space, S is a subset of X , and f : X → R1 is a

real valued function. Point x∗ ∈ X is said to be an approximatable minimizer if

1. f(x∗) 6 f(x), ∀x ∈ S;

2. there is a sequence of points {xα} ⊂ C ∩ S, such that

xα → x∗ and f(xα) → f(x∗),

where C is the set of points of continuity of f .

Proposition 1.3(see [2]) Let X be a topological space, f : X → R1 a real valued

function. Suppose that x∗ is a global minimizer of f over S. Then the function f is upper

robust at x∗ ∈ S if and only if for each number c > c∗ = f(x∗), there is a sequence of points

{xα} ⊂ int(S ∩ Fc), such that xα → x∗ and f(xα) → f(x∗).

Hence a global minimizer is robust if and only if it is accessible.

Proposition 1.4 (see [2]) Let X be a topological space, f : X → R1 a real valued func-

tion. Suppose that x∗ ∈ S is a global minimizer of f . If the minimizer x∗ is approximatable

then it is accessible.

However, an accessible minimizer may be not approximatable.
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Now, we recall the concept of quasi upper robustness.

Definition 1.5 (see [2]) Function f : X → R1 is said to be quasi upper robust on S

iff for each c > c∗, the level set S ∩ Fc = {x ∈ S : f(x) < c} contains a nonempty robust

subset.

2 Optimality Conditions

Let X be a topological space, S a subset of X , f : X → R1 a real valued function, and

c∗ = inf
x∈S

f(x). (2.1)

We now examine the optimality conditions for global minimum using an integral approach

under weaker assumptions. To do so, some of the following assumptions are required.

Assumption (M): (X, Ω, µ) is a Q-measure space.

Assumption (A): S is a measurable set and f is a measurable and bounded below

function.

Assumption (R): f is a quasi upper robust on S.

Note that measure space (X, Ω, µ) is a Q-measure space if

1. Each open set in X is measurable;

2. The measure µ(G) of a nonempty open set G in X is positive: µ(G) > 0;

3. The measure µ(K) of a compact set K in X is finite.

2.1 A Sufficient Condition for Global Minimum

The following lemma leads to a sufficient optimality condition for global minimum.

Lemma 2.1 Suppose that Conditions (M), (A), and (R) hold. If c > c∗ = inf
x∈S

f(x),

then µ(Hc ∩ S) > 0, where Hc ∩ S = {x ∈ S : f(x) 6 c}.

Proof Suppose, on the contrary, that

µ(Hc ∩ S) = 0. (2.2)

By Assumption (R), there exists a nonempty robust set D ⊂ S ∩ Fc. Now we have

∅ 6= D ⊂ S ∩ Hc, (2.3)

and intD 6= ∅. It follows from Assumptions (M) and (A) that

µ(S ∩ Hc) > µ(S ∩ Fc) > µ(intD) > 0. (2.4)

This contradicts (2.2).

Corollary 2.2 Under the assumption of Lemma 2.1, if Hc ∩ S 6= ∅ and µ(Hc ∩ S) = 0,

then c is the global minimum value of f over S.
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2.2 Deviation integral

Definition 2.3 Under the assumptions (M), (A) and (R), let φ : R1 → R1 be a strictly

increasing continuous function and φ(0) = 0. We define deviation integral of f as following:

Vφ(c) =

∫

Hc∩S

φ(c − f(x))dµ, (2.5)

where the integration is with respect to x over Hc ∩ S.

For c > c∗, φ(c− f(x)) is measurable and well defined. We can obtain properties of the

integral Vφ(c).

Proposition 2.4 Integral Vφ(c) has the following properties:

1. Vφ(c) > 0, ∀c > c∗, Vφ(c) = 0, ∀c < c∗ and Vφ(c) is continuous;

2. Vφ(c) is non-decreasing on (−∞, +∞) and strictly increasing on (c∗,∞);

3. Suppose that, in addition, φ is differentiable on (−∞,∞) and φ′(0) = 0, then the

integral Vφ(c) is differential on (−∞,∞), and V ′
φ(c) = Vφ′(c). Moreover, Vφ(c) is

convex.

They can be proved in a similar way as corresponding properties in [4].

2.3 Optimality conditions with deviation integral

We now examine optimality conditions of global minimization. Let {cn}(> c∗ = inf
x∈S

f(x))

be a sequence of deceasing real numbers, and lim
n→∞

cn = c′.

Theorem 2.5 Under the assumptions (M), (A) and (R), c′ is the global minimum value

if and only if for cn ↓ c′,

lim
n→∞

Vφ(cn) = 0 (2.6)

Proof Necessity: c′ = inf
x∈S

f(x), because of continuity of Vφ(c), and Vφ(c) = 0 when

c < c′, From continuity of Vφ(c), we obtain lim
n→∞

Vφ(cn) = 0.

Sufficiency: Suppose c′ is not the global minimum value of f but ĉ is. Then c′ − ĉ =

2η > 0. We have,

Vφ(c′) =

∫

Hc′∩S

φ(c′ − f(x))dµ (2.7)

=

∫

(Hc′\Hĉ+η)∩S

φ(c′ − f(x))dµ +

∫

Hĉ+η∩S

φ(c′ − f(x))dµ

>

∫

Hĉ+η∩S

φ(c′ − ĉ − η)dµ = φ(η) · µ(Hĉ+η ∩ S) > 0,

which is a contradiction.
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3 Existence theorems of robust minimizers

The Palais-Smale condition ensures the existence of robust minimizers. However, the

analytic requirement added on the objective function f is quite demanding. This existence

theorem cannot be applied to a nondifferentiable continuous function, nor a discontinuous

objective function. In this section we will modify Palais-Smale condition into one which fits

the framework of robust analysis.

3.1 Existence of accessible minimizers

Theorem 3.1 Let X be a metric space, S a closed subset of X , f : S ⊂ X → R1 a

bounded below, lower semicontinuous and quasi upper robust function and

G = int(S ∩ Fc∗+ε) = int{x ∈ S : f(x) < c∗ + ε}, ε > 0.

If for each sequence {xn} ⊂ G, from Vφ(f(xn)) → 0, it follows that there is a convergent

subsequence {xnk
} of {xn}, then there exists a minimizer x∗ such that

xnk
→ x∗, and f(xnk

) → f(x∗) = inf
x∈S

f(x). (3.1)

Moreover, the minimizer x∗ is accessible.

Proof Since c∗ is the infimum of f over S, for each integer n, there is a point yn ∈ S

such that

f(yn) < c∗ +
1

2n
.

With the quasi robustness of the objective function f , we also have xn ∈ G(G ⊂ int(S ∩

Fc∗+ε) and 1/n < ε) such that

f(xn) < f(yn) +
1

2n
< c∗ +

1

n
. (3.2)

Indeed, we can take G = int D, where D is a nonempty robust set contained in S ∩ Fc∗+ε.

Thus, int D ⊂ int(S∩Fc∗+ε). We then obtain a sequence of point {xn} ⊂ int Fc∗+ε satisfied

(3.2). Furthermore, we can assume that {f(xn)} is a monotone sequence without loss of

generality. Therefore, we obtain a sequence of point {xn} ⊂ G such that

f(xn) ↓ c∗ = inf
x∈S

f(x). (3.3)

From the deviation integral optimality condition of global minimum, we have

Vφ(f(xn)) → 0. (3.4)

Thus, from condition (3.1), there exists a convergent subsequence {xnk
} of {xn}. It implies

that there is a point x∗ ∈ X such that xnk
→ x∗. The point x∗ is also in S since {xnk

} ⊂ S

and S is closed. We now prove that x∗ is a global minimizer of f satisfying (3.2). Since c∗

is the global minimum value of f , we have

f(x∗) > c∗. (3.5)
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Furthermore, by lower semicontinuity of f , for each η > 0, there is a neighborhood U(x∗)

of x∗ such that

f(x) > f(x∗) − η, ∀x ∈ U(x∗)

Because xnk
→ x∗, there exists a positive integer N such that for nk > N, xnk

∈ U(x∗) and

then

f(xnk
) > f(x∗) − η, ∀nk > N.

Let n → ∞ in the above inequality, we obtain from (3.5) that c∗ > f(x∗)− η. Subsequently,

by the arbitrariness of η, we obtain f(x∗) 6 c∗ It implies f(x∗) = c∗ = minx∈S f(x).

Furthermore, by the above construction, x∗ is a accessible minimizer of f . Therefore, x∗ is

a robust minimizer.

3.2 Existence of approximatable minimizers

We now consider the existence of approximatable minimizers. An accessible minimizer

may be not approximatable. To ensure the existence of approximatable minimizers, we need

more conditions such as pseudo upper robustness.

Definition 3.2 Let X be a topological space, S a subset of X . Function f : X → R1

is said to be pseudo upper robust on S iff for each ε > 0, the level set

S ∩ Fc∗+ε = {x ∈ S : f(x) < c∗ + ε}

contains a nonempty robust subset D on which f is upper robust.

Theorem 3.3 Let X be a metric space, S a closed subset of X , f : X → R1 a bounded

below, lower semicontinuous and pseudo upper robust function, and C is the set of points

of continuity of f . If for each sequence {xn} ⊂ C, from Vφ(f(xn)) → 0, it follows that there

is a convergent subsequence {xnk
} of {xn}, then there exists a minimizer x∗ such that

xnk
→ x∗, and f(xnk

) → f(x∗) = inf
x∈S

f(x). (3.6)

Moreover, the minimizer x∗ is approximatable.

It can be proved in a similar way as Theorem 3.1.

3.3 Examples

We now examine some examples.

Example 3.1 Let X = R1, A =
∞
⋃

n=1

(

1

n + 1
,
1

n

)

⋃

(

−
1

n
,−

1

n + 1

)

⋃

{0},

B =

∞
⋃

n=1

{

1

n

}

⋃

{

−
1

n

}

⋃

(

−∞,−1

)

⋃

(1,∞) and

f(x) =

{

|x|, x ∈ A,

1, x ∈ B.
(3.7)

The function f is lower semicontinuous and quasi upper robust. The function has a unique

global minimizer x∗ = 0. The Palais-Smale condition requires that sequences df(xn) → θ
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but it does not. However, the condition of Theorem 3.1 only requires that sequences {xn}

with Vφ(f(xn)) → 0, it does not require that the function is continuous.

Example 3.2 Consider the following function (see [9])

f(x) =























1.0 +

n
∑

i=1

|xi|

n
+ sgn









sin









n
n
∑

i=1

|xi|









− 0.5









, x 6= θ,

a, x = θ,

(3.8)

where n is the dimension of the function, and x = (x1, . . . , xn).

The function has an infinite number of discontinuous hypersurfaces. It is lower semi-

continuous and quasi upper robust. Let a = 0. Its unique global minimizer is at the

origin θ, where the function has a discontinuity of “the second kind”. The Palais-Smale

condition requires that sequences df(xk) → θ but it does not. However, the condition of

Theorem 3.1 only requires that subsequences {xk} with Vφ(f(xk)) → 0, here, we can take

xk = ( 1
kπ

, 1
kπ

, · · · , 1
kπ

) → θ where take mean deviation integral

m(f(xk)) = Vφ(f(xk)) =

∫

Hf(x)

(f(xk) − f(x))dµ → 0.

Note that if a > 0 then the function has no global minimizer.

We can apply Theorem 3.1 and 3.3 to characterize the existence of critical points.

Example 3.3 Consider the following function:

g(x) =

{

x2 cos
1

x
, x 6= 0,

0, x = 0.

The function is differentiable on X = R1, and

g′(x) =

{

2x · cos
1

x
+ sin

1

x
, x 6= 0,

0, x = 0.

The origin x = 0 is a critical point of g, at which the derivative is discontinuous. Since

g′
(

1
π
2 + kπ

)

=

{

1, k is even,

−1, k isodd,

there is a point xk in
(

1
π
2 +(k+1)π , 1

π
2 +kπ

)

, such that g′(xk) = 0; and g′ is continuous at xk.

We now consider f(x) = |g′(x)|. The infimum of function f is 0, and x = 0 is a global

minimizer at which f is discontinuous. The global minimizer is approximatable. Theorem

3.3 can be applied to this situation, but not Palais-Smale condition.

4 Conclusion

The concept of deviation integral of quasi and pseudo upper robust functions is introduced

in this work. We obtain the optimality condition of a quasi upper robust function. The

existence of robust, accessible and approximatable minimizers are studied with deviation

integral.
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