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Modified lower order penalty functions

based on quadratic smoothing approximation

BAI Fusheng1† LUO Xiaoyan1

Abstract In this paper, two function forms of quadratic smoothing approximation to
the lower order exact penalty function are proposed to generate modified smooth penalty
functions for inequality-constrained optimization problems. It is shown that under certain
conditions, any global minimizer of the modified smooth penalty problem is a global
minimizer to the original constrained optimization problem when the penalty parameter
is sufficiently large. Two numerical examples are given to show the effectiveness of the
present smoothing scheme.
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0 Introduction

Consider the following global optimization problem:

[P ] min f(x),

s.t. gi(x) 6 0, i = 1, 2, . . . , m,

x ∈ R
n,

where f : R
n → R, gi : R

n → R, i = 1, 2, . . . , m are twice continuously differentiable. In the

last fifty years, a significant amount of investigations have been devoted to exact penalty>�95� 2010 3 6 Z 28 9�
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functions.

Let pk(u) = (max{0, u})k, that is,

pk(u) =

{

uk, if u > 0;

0, otherwise.
(0.1)

Denote

ϕq,k(x) := f(x) + q

m
∑

i=1

pk(gi(x)). (0.2)

When k = 1, the function ϕq,k(x) is l1 penalty function of problem [P ]; when k ∈ (0, 1), the

function is a lower order penalty function of problem [P ] (see [1-8]). It is shown in [8] that

the second-order sufficient condition implies local exact penalty property for the lower order

penalty function with any positive penalty parameter.

Since pk(u) is not differentiable, in general ϕq,k(x) (k ∈ (0, 1]) is a non-differentiable

function. However, most powerful methods in optimization require a differentiable cost

function. This motivates the smoothing of ϕq,k(x) via the smoothing of pk(u). The case

with k = 1 has been investigated in e.g. [6, 9]. The case with k = 1
2 has been investigated in

e.g. [5, 8]. References [4] and [10] investigated the general cases for k ∈ (0, 1) and k ∈ (1
2 , 1]

respectively.

In this paper, we propose a quadratic smoothing approximation to pk(u) with k ∈ (0, 1).

The approximation takes two similar function forms. Unlike the smoothing approximations

in [4, 10], where the constructed smooth functions satisfying traditional definition of penalty

function, the auxiliary function constructed on the smoothing approximation in this paper

is a modified penalty function which does not satisfy the traditional definition of penalty

function. However, the present modified penalty function can be used to implement penalty

to infeasible points effectively, as indicated by Theorems 1.1 and 1.2. It should be noted

that modified smooth penalty functions have been proposed in [8, 9] based on quadratic

smoothing approximation to deal with the case of a single k value.

The rest of this paper is organized as follows. In Section 1, we introduce the smoothing

function to pk(u), and give some fundamental properties about the constructed modified

penalty function based on the smoothing function. In Section 2, a simple algorithm is pro-

posed to obtain an appropriate global optimal solution to the original optimization problem.

Two numerical examples are given in this section to show the effectiveness of the present

smoothing scheme.

1 Smoothing approximation

To begin with, we introduce the concept of second-order sufficient condition (see [2],

p. 169). Let

L(x, λ) = f(x) +

m
∑

i=1

λigi(x).
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We say that the pair (x∗, λ∗) satisfies the second-order sufficient condition, if

∇xL(x∗, λ∗) = 0

gi(x
∗) 6 0, i ∈ {1, . . . , m}

λ∗
i > 0, i ∈ {1, . . . , m}

λ∗
i gi(x

∗) = 0, i ∈ {1, . . . , m}

yT∇2L(x∗, λ∗)y > 0, for any y ∈ V (x∗),

(1.1)

where

V (x∗) =

{

y ∈ Rn

∣

∣

∣

∣

∣

∇T gi(x
∗)y = 0, i ∈ A(x∗)

∇T gi(x
∗)y 6 0, i ∈ B(x∗)

}

,

A(x∗) = {i ∈ {1, . . . , m}|gi(x
∗) = 0, λ∗

i > 0},

B(x∗) = {i ∈ {1, . . . , m}|gi(x
∗) = 0, λ∗

i = 0}.

Assumption 1 f(x) satisfied the following coercive condition:

lim
‖x‖→∞

f(x) = +∞.

By Assumption 1, there exists a box X such that G[P ] ⊂ int(X), where G[P ] is the

set of global minimizers of problem [P ], int(X) denotes the interior of the set X . Then,

problem [P ] is equivalent to the following problem [P ′]:

[P ′] min f(x),

s.t. gi(x) 6 0, i = 1, 2, . . . , m,

x ∈ X,

in the sense of G[P ] = G[P ′], where G[P ] is the set of global minimizers of problem [P ].

Let G[P ′] denote the set of global minimizers of problem [P ′], then G[P ] = G[P ′].

Assumption 2 The set G[P ′] is a finite set.

For the following penalty problem:

[LOP ]k min
x∈X

ϕq,k(x),

where ϕq,k(x) is given in (0.2), we have the following lemma.

Lemma 1.1 (See [8]) Suppose that Assumptions 1 and 2 hold, and furthermore, that

for any x∗ ∈ G[P ], there exists λ∗ ∈ Rm
+ such that the pair (x∗, λ∗) satisfies the second-order

sufficient condition (1.1). Then, for any k ∈ (0, 1), there exists q∗ > 0, such that when

q > q∗, G[P ] = G([LOP ]k), where G([LOP ]k) is the set of global minimizers of problem

[LOP ]k.

Now we consider the smoothing approximation to the lower order penalty function

ϕq,k(x). We use a quadratic function l(x) = au2 + bu+ c to approximate pk(u) for u ∈ [δ, 0),

where δ < 0, and a k-order power function r(u) = (u + γ)
k

to approximate pk(u) for u > 0;

that is, we use the following piecewise function to approximate pk(u):
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s(u) =











0, if u < δ;

au2 + bu + c, if δ 6 u < 0;

(u + γ)k, if u > 0.

(1.2)

To determine the unknowns in (1.2), we can follow two different paths. The first one is

to set the difference between l(0) and pu(0) as ε
qm

, i.e. l(0) − pk(0) = c − 0 = c = ε
qm

,

and find the unknowns accordingly. Since the function used for approximation should be

continuously differentiable, we have l(0) = r(0), i.e. c = (0 + γ)
k

which yields γ = ( ε
qm

)
1

k ,

and l′(0) = r′(0), i.e. b = kγk−1 = k( ε
qm

)
1− 1

k . To find a and δ, we need to solve the

following system of linear equations:



















l(δ) = aδ2 + bδ + c = aδ2 + k

(

ε

qm

)1− 1

k

δ +
ε

qm
= pk(0) = 0;

l′(δ) = 2aδ + b = 2aδ + k

(

ε

qm

)1− 1

k

= p′k(0) = 0.

The solution of the above system is

a =
k2

4

(

ε

qm

)1− 2

k

, δ = −
2

k

(

ε

qm

)
1

k

.

Thus

s(u) =







































0, if u < −
2

k

(

ε

qm

)
1

k

;

k2

4

(

ε

qm

)1− 2

k

u2 + k

(

ε

qm

)1− 1

k

u +
ε

qm
, if −

2

k

(

ε

qm

)
1

k

6 u < 0;

(

u +

(

ε

qm

)
1

k

)k

, if u > 0.

(1.3)

The second path is to set the interval [δ, 0] as [−( ε
qm

)
1

k , 0] first, then find all other unknowns

accordingly. Again, since the function used for approximation should be continuously dif-

ferentiable, we have







































l

(

−

(

ε

qm

)
1

k
)

= a

(

ε

qm

)
2

k

− b

(

ε

qm

)
1

k

+ c = pk(−

(

ε

qm

)
1

k

) = 0;

l′
(

−

(

ε

qm

)
1

k
)

= −2a

(

ε

qm

)
1

k

+ b = p′k

(

−

(

ε

qm

)
1

k
)

= 0;

l(0) = c = r(0) = γk;

l′(0) = b = r′(0) = kγk−1.

The solution of the above system is

a =

(

k

2

)k(
ε

qm

)1− 2

k

, b = k

(

k

2

)k−1(
ε

qm

)1− 1

k

, c =

(

k

2

)k
ε

qm
, γ =

k

2

(

ε

qm

)
1

k

.
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Thus we have

s(u) =







































0, if u < −

(

ε

qm

)
1

k

;

(

k

2

)k(
ε

qm

)1− 2

k

u2 + k

(

k

2

)k−1(
ε

qm

)1− 1

k

u +

(

k

2

)k
ε

qm
, if −

(

ε

qm

)
1

k

6 u < 0;

(

u +
k

2

(

ε

qm

)
1

k
)

k

, if u > 0.

(1.4)

Note that the two s(u)s given by (1.3) and (1.4) are very similar to each other. In the

rest of this paper we take the s(u) given by (1.4) as the smoothing function. To indicate

the links with q, ε, k, we use pq,ε,k(u) to denote this function.

Remark 1.1 If the s(u) given by (1.3) is adopted as the smoothing function, all the

following results still hold with minor modification.

Figure 1 shows the behavior of pq,ε,k(u) and pk(u) with m = 2, q = 5, ε = 0.2, k = 1
3 .
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Figure 1: The behavior of pq,ε,k(u) and pk(u) with m = 2, q = 5, ε = 0.2, k = 1
3

Let

ϕq,ε,k(x) = f(x) + q

m
∑

i=1

pq,ε,k(gi(x)). (1.5)

Then it is easy to see that ϕq,ε,k(x) is continuously differentiable on R
n. It should be noted

that ϕq,ε,k(x) does not satisfy the traditional definition of penalty function, as the penalty

term function
m
∑

i=1

pq,ε,k(gi(x)) may take positive value on a feasible point. Thus we call

ϕq,ε,k(x) a modified penalty function.



14 BAI Fusheng, LUO Xiaoyan 16 -
Consider the following modified penalty problem:

[SP ]k min
x∈X

ϕq,ε,k(x)

Proposition 1.1 For any x ∈ Rn, q > 0 and ε > 0, we have

0 6 ϕq,ε,k(x) − ϕq,k(x) 6

(

k

2

)k

ε, (1.6)

where ϕq,ε,k(x) and ϕq,k(x) are given in (1.5) and (0.2) respectively.

Proof

Let

∆pi = pq,ε,k(gi(x)) − pk(gi(x)).

Note that

∆pi =



























































0, if gi(x) < −

(

ε

qm

)
1

k

;

(

k

2

)k(
ε

qm

)1− 2

k

(gi(x))2 + k

(

k

2

)k−1(
ε

qm

)1− 1

k

· (gi(x)) +

(

k

2

)k
ε

qm
, if −

(

ε

qm

)
1

k

6 gi(x) < 0;

(

gi(x) +
k

2

(

ε

qm

)
1

k
)k

− (gi(x))k, if gi(x) > 0.

and for any k ∈ (0, 1), q > 0, x ∈ X ,

0 6

(

k

2

)k(
ε

qm

)1− 2

k

(gi(x))2 + k

(

k

2

)k−1(
ε

qm

)1− 1

k

(gi(x)) +

(

k

2

)k
ε

qm
6

(

k

2

)k
ε

qm

and

0 6

(

gi(x) +
k

2

(

ε

qm

)
1

k

)

k

− (gi(x))k
6

(

k

2

(

ε

qm

)
1

k
)

k

=

(

k

2

)k
ε

qm
,

we have

0 6 ϕq,ε,k(x) − ϕq,k(x) = q

m
∑

i=1

∆pi 6 q

m
∑

i=1

(

k

2

)k
ε

qm
=

(

k

2

)k

ε.

Proposition 1.2 Let x∗
q,k ∈ X be a global minimizer of problem [LOP ]k and xq,ε,k ∈

X be a global minimizer of problem [SP ]k for some q > 0, k ∈ (0, 1) and ε > 0. Then we

have

0 6 ϕ(xq,ε,k) − ϕq,k(x∗
q,k) 6

(

k

2

)k

ε. (1.7)
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Proof By Proposition 1.1

0 6 ϕq,ε,k(xq,ε,k) − ϕq,k(xq,ε,k) 6 ϕq,ε,k(xq,ε,k) − ϕq,k(x∗
q,k)

6 ϕq,ε,k(x∗
q,k) − ϕq,k(x∗

q,k)

6

(

k

2

)k

ε.

Corollary 1.1 Let x∗
q,k ∈ X be a global minimizer of problem [LOP ]k and xq,ε,k ∈ X

be a global minimizer of problem [SP ]k for some q > 0, k ∈ (0, 1) and ε > 0. If x∗
q,k and

xq,ε,k are feasible to problem [P ], then we have

0 6 f(xq,ε,k) − f(x∗
q,k) 6

(

k

2

)k

ε. (1.8)

Proof As x∗
q,k ∈ X is a global minimizer of problem [P ], we have

m
∑

i=1

pk(gi(xq,k)) = 0.

Thus

f(xq,ε,k) − f(x∗
q,k) = f(xq,ε,k) + q

m
∑

i=1

pq,ε,k(gi(xq,ε,k)) − f(x∗
q,k)

+q

m
∑

i=1

pk(gi(x
∗
q,k)) − q

m
∑

i=1

pq,ε,k(gi(xq,ε,k))

= ϕq,ε,k(xq,ε,k) − ϕq,k(x∗
q,k) − q

m
∑

i=1

pq,ε,k(gi(xq,ε,k)).

By Proposition 1.2, we have

ϕq,ε,k(xq,ε,k) − ϕq,k(x∗
q,k) 6

(

k

2

)k

ε.

By the nonnegativity of pq,ε,k(u), we then have

f(xq,ε,k) − f(x∗
q,k) 6

(

k

2

)k

ε.

Since x∗
q,k is feasible to problem [P ′], it is a global minimizer of problem [P ′]. Note that

xq,ε,k is also feasible to problem [P ′], so it holds f(xq,ε,k) − f(x∗
q,k) > 0. Then we have

0 6 f(xq,ε,k) − f(x∗
q,k) 6

(

k

2

)k

ε.

From the above result, if the global minimizer x∗
q,k of the non-smooth penalty problem

[LOP ]k and the global minimizer xq,ε,k of the modified smooth penalty problem [SP ]k are
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feasible to problem [P ], then the difference between the objective function values on xq,ε,k

and x∗
q,k can be controlled through the smoothing parameter ε.

Let

S = {x ∈ X |gi(x) 6 0, i = 1, . . . , m}, (1.9)

S = {x ∈ X |gi(x) < 0, i = 1, . . . , m}. (1.10)

and G[SP ]k be the set of all the global minimizers of problem [SP ]k.

Theorem 1.1 Suppose that Assumptions 1 and 2 hold, and there exists x∗ ∈ G[P ]
⋂

S̄.

Then, for any given ε > 0, there exists q∗ > 0 such that any global minimizer of the modified

smooth penalty problem [SP ]k is a global minimizer of the original constrained optimization

problem [P ], i.e., G[SP ]k ⊂ G[P ] when q > q∗.

Proof For any given ε > 0, k ∈ (0, 1), q > 0 and any xq,ε,k, let

Aq,ε,k =

{

i| −

(

ε

qm

)
1

k

6 gi(xq,ε,k) 6 0, i = 1, . . . , m

}

, (1.11)

Bq,ε,k = {i|gi(xq,ε,k) > 0, i = 1, . . . , m}. (1.12)

If Bq,ε,k 6= ∅, we have

ϕq,ε,k(xq,ε,k) = f(xq,ε,k) + q
∑

i∈Bq,ε,k

(

gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

+q
∑

i∈Aq,ε,k

((

k

2

)k(
ε

qm

)1− 2

k

(gi(xq,ε,k))2

+k

(

k

2

)k−1(
ε

qm

)1− 1

k

gi(xq,ε,k) +

(

k

2

)k
ε

qm

)

> f(xq,ε,k) + q
∑

i∈Bq,ε,k

(

gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

= f(xq,ε,k) + q
∑

i∈Bq,ε,k

(gi(xq,ε,k))k

+q
∑

i∈Bq,ε,k

(

(gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

− (gi(xq,ε,k))k

)

= ϕq,k(xq,ε,k) + q
∑

i∈Bq,ε,k

(

(gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

− (gi(xq,ε,k))k

)

.

By the assumption that there exists x∗ ∈ G[P ]
⋂

S̄, there must exist q1 > 0, such that

gi(x
∗) < −( ε

qm
)

1

k for any i = 1, . . . , m when q > q1. Hence, when q > q1, we have

ϕq,ε,k(x∗) = f(x∗). (1.13)
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By Lemma 1.1, there exists q0 such that G[P ] = G[LOP ]k for any q > q0. Let q∗ =

max{q1, q0}. Then for any q > q∗, we have

ϕq,ε,k(xq,ε,k) 6 ϕq,ε,k(x∗) = f(x∗) = ϕq,k(x∗) 6 ϕq,k(xε,q,k). (1.14)

Then, we claim that xq,ε,k is a feasible solution to the original problem [P ] when q > q∗. In

fact, if q > q∗ and xε,q,k is not feasible to problem [P ], i.e., Bq,ε,k 6= ∅, then we have

ϕq,ε,k(xq,ε,k) > ϕq,k(xq,ε,k)+q
∑

i∈Bq,ε,k

(

(gi(xq,ε,k)+
k

2

(

ε

qm

)
1

k
)k

−(gi(xq,ε,k))k

)

> ϕq,k(xq,ε,k),

which contradicts (1.14).

By (1.13) and

f(x∗) 6 f(xq,ε,k) 6 f(xq,ε,k) + q

m
∑

i=1

pq,ε,k(gi(xq,ε,k)) = ϕq,ε,k(xq,ε,k) 6 ϕq,ε,k(x∗),

we have

f(x∗) = f(xq,ε,k).

Therefore, xq,ε,k is a global minimizer of the original problem [P ], i.e, xq,ε,k ∈ G[P ]. Thus

it follows G[SP ]k ⊂ G[P ] when q > q∗.

Now we give the definition of ε-approximate global minimizer.

Definition 1.1 we say that x is an ε-approximate global minimizer of problem [P ] if

x ∈ X is feasible to problem [P ], and |f(x) − f∗| < ε, where f∗ is the global minimal value

of problem [P ].

The following result is needed to establish the result on achieving approximate global

optimality of the original problem by the global minimizer of the modified penalty problem

[SP ]k.

Lemma 1.2 Let k ∈ (0, 1). Function 1+xk

(1+x)k attains its maximum on (0, +∞) at x = 1

with the associated function value 21−k.

Proof Let v(x) = 1+xk

(1+x)k , x ∈ (0, +∞). Then

v′(x) =
kxk−1(1 + x)

k − k(1 + x)
k−1

(1 + xk)

(1 + x)2k

=
k(1 + k)k−1(xk−1(1 + x) − (1 + xk))

(1 + x)
2k

=
k(xk−1 − 1)

(1 + x)
k+1

.

When 0 < x < 1, it holds x1−k < 1, i.e. xk−1 > 1 or xk−1 − 1 > 0, thus v′(x) > 0. On

the other hand, when x > 1, it holds x1−k > 1, i.e. xk−1 < 1 or xk−1−1 < 0, thus v′(x) < 0.

Therefore, v(x) attains its maximum on (0, +∞) at x = 1, and v(1) = 1+1k

(1+1)k = 21−k.
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Theorem 1.2 Suppose that Assumptions 1 and 2 hold, furthermore, cl(S) = S, where

S and S are given in (1.10) and (1.9) respectively. Then, for any given ε > 0, there exists

q∗1 > 0 such that when q > q∗1 , any global minimizer xq,ε,k of problem [SP ]k is a (k
2 )

k
ε-

approximate global minimizer of problem [P ], and satisfies f(xq,ε,k) − f∗ > 0.

Proof For any given ε > 0, q > 0, k ∈ (0, 1), and xq,ε,k ∈ G[SP ]k, if there exists a

global minimizer x∗ of problem [P ] lying in S, then by Theorem 1.1, it is easy to see that

the conclusions hold; else take an x∗ ∈ S\S. By cl(S) = S, there exists a sequence {xn} ⊂ S,

such that

lim
k→∞

xn = x∗.

Therefore, there exists n0 > 0 such that

f(xn) < f(x∗) +
kkε

2m
,

when n > n0. Especially, we have

f(xn0
) < f(x∗) +

kkε

2m
. (1.15)

By xn0
∈ S, for the given ε > 0, there exists q1 > 0, such that gi(xn0

) < −( ε
qm

)
1

k for any

i = 1, . . . , m when q > q1. Thus, when q > q1, we have

f(xn0
) = ϕq,ε,k(xn0

) > ϕq,ε,k(xq,ε,k). (1.16)

Let q∗1 = 21−k max{q1, q
∗}, where q∗ is given in Lemma 1.1. Then we say that xq,ε,k is a

feasible solution of problem (P ) when q > q∗1 .

In fact, if for q > q∗1 , xq,ε,k is not feasible, then there exists at least one index i0 ∈ Bq,ε,k,

where Bq,ε,k is given in (1.12). Note that q > q∗1 implies q > q1. Let q = 21−kq, then for

q > q∗1 we have q > q∗. Thus it holds

ϕq,ε,k(xq,ε,k) > f(xq,ε,k) + q
∑

i∈Bq,ε,k

(

gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

= f(xq,ε,k) + q
∑

i∈Bq,ε,k

(gi(xq,ε,k))
k

+q
∑

i∈Bq,ε,k

(

21−k

(

gi(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

− (gi(xq,ε,k))k

)

> f(xq,ε,k) + q
∑

i∈Bq,ε,k

(gi(xq,ε,k))k

+q

(

21−k

(

gi0(xq,ε,k) +
k

2

(

ε

qm

)
1

k
)

k

− (gi0(xq,ε,k))k

)

= f(xq,ε,k) + q
∑

i∈Bq,ε,k

(gi(xq,ε,k))k

+q(gi0(xq,ε,k))
k

(

21−k

(

1 +

k
2 ( ε

qm
)

1

k

gi0(xq,ε,k)

)

k

− 1

)
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> f(xq,ε,k) + q
∑

i∈Bq,ε,k

(gi(xq,ε,k))k

+q(gi0(xq,ε,k))
k





k
2 ( ε

qm
)

1

k

gi0(xq,ε,k)





k

(by Lemma 1.2)

= ϕq,k(xq,ε,k) + q

(

k

2

)k
ε

qm

> ϕq,k(x∗) +
kkε

2m
(by q > q∗)

= f(x∗) +
kkε

2m
> f(xn0

) (by (1.15))

which contradicts (1.16).

By Corollary 1.1, we have

0 6 f(xq,ε,k) − f∗
6

(

k

2

)k

ε.

Thus, xq,ε,k is a (k
2 )

k
-approximate global minimizer of problem (P ), and further satisfies

f(xq,ε,k) − f∗ > 0.

Remark 1.2 It is not easy to check whether the conditions of Theorems 1.1 or 1.2

hold. However, many practical inequality-constrained optimization problems do satisfy these

conditions. For simplicity, in the algorithm and the numerical examples presented in the next

section, we assume that when the penalty parameter are appropriately chosen as described

in the algorithm, a global minimizer of the modified penalty function can be regarded as an

approximate global minimizer of the original optimization problem. The gauge of precision

for the approximation is not used in the algorithm and in the numerical examples.

2 Algorithm and numerical examples

In this section, we propose a simple algorithm to solve problem [P ] via solving the

modified smooth penalty problem [SP ]k. Two numerical examples are provided to show the

applicability of the algorithm with k = 1
3 and k = 1

4 respectively.

Algorithm (SP):

Step 1. Choose M > 0, ε > 0, k ∈ (0, 1). Take an initial point x0
1 ∈ X , and two initial

parameters ε1 > ε, q1 < M . Let n = 1.

Step 2. Solve the following modified penalty problem:

[SP ]k min
x∈X

ϕqn,εn,k(x)

with x0
n as the starting point. Let x∗

n be a global minimizer of the smooth problem [SP ]k.
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Step 3. If qn > M and εn = ε, then stop. The obtained global minimizer x∗

n can

be regarded as an approximate global minimizer of problem [P ]. Otherwise, let εn+1 =

max{ε, εn

10 }, qn+1 = max{q2
n, M}, x0

n+1 = x∗
n, n = n + 1, and go to Step 2.

In each of the following examples, we take ε = 10−4, M = 108 and ε1 = 10−2, q1 = 102

and we use

n : the number of iterations to solve the smooth problem [SP ]k;

x0
n : the initial point to solve the smooth problem [SP ]k at the nth iteration;

x∗
n : the obtained global minimizer of problem [SP ]k at the nth iteration.

In the following tables, floating point format with 6 digits is adopted to record the nu-

merical results except the first columns, where the exact values of initial points are recorded.

Also we omit “e + 0” in the entries of the tables.

Example 2.1

min f(x) = −x1 − x2,

s.t. g1(x) = x1 − 2 − 2x4
1 + 8x3

1 − 8x2
1,

g2(x) = x2 − 4x4
1 + 32x3

1 − 88x2
1 + 96x1 − 36,

x ∈ {(x1, x2)|0 6 x1 6 3, 0 6 x2 6 4}.

This example is excerpted from [3] (Test Problem 9 in Section 4.10). Let X = {(x1, x2) |

0 6 x1 6 3, 0 6 x2 6 4}. The corresponding problem [SP ] 1

3

is as follows:

min
x∈X

ϕq,ε, 1

3

(x),

where ϕq,ε, 1

3

(x) = f(x) + q
2
∑

i=1

pq,ε,k(gi(x)) and for i = 1, 2,

pq,ε, 1

3

(gi(x)) (2.1)

=















0, if gi(x) < −( ε
2q

)3;

(1
6 )

1

3 ( ε
2q

)−5(gi(x))2 + 1
3 (1

6 )
− 2

3 ( ε
2q

)−2gi(x) + (1
6 )

1

3 ε
2q

, if − ( ε
2q

)3 6 gi(x) < 0;

(gi(x) + 1
6 ( ε

2q
)
3
)

1

3

, if gi(x) > 0.

We take the initial point x0
1 = (0, 0) and let X = {(x1, x2)|0 6 x1 6 3, 0 6 x2 6 4}.

The global optimizer in each iteration x∗
n is obtained via the quasi-filled function method

proposed in [7]. Table 1 gives the numerical results of solving Example 3.1 by the proposed

Algorithm (SP).

By Table 1, we know that x∗
3 = (2.329521, 3.178489) can be regarded as an approximate

global minimizer of Example 3.1 with function value −5.508010. The global minimizer given

in [3] is (2.3295, 3.17846) with associated function value −5.50796.
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Table 1: Numerical results for Example 2.1

n x0

n
x∗

n
qn εn f(x∗

n
)

(

g1(x
∗

n
)

g2(x
∗

n
)

)

1

(

0

0

) (

2.329521

3.178489

)

102 1 × 10−2
−5.508010

(

−8.489793e − 1

−2.790287e − 7

)

2

(

2.329521

3.178489

) (

2.329521

3.178489

)

104 1 × 10−3
−5.508010

(

−8.489791e − 1

−1.136868e − 13

)

3

(

2.329521

3.178489

) (

2.329521

3.178489

)

108 1 × 10−4
−5.508010

(

−8.489791e − 1

−5.684342e − 14

)

Example 2.2

min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2,

s.t. g1(x) = x1 + x2 − 2 6 0,

g2(x) = −x1 + 2x2 − 2 6 0,

x ∈ {(x1, x2) | 0 6 xi 6 2, i = 1, 2}.

This example is excerpted from [2] ( p. 504). Let X = {(x1, x2) | 0 6 xi 6 2, i = 1, 2}. The

corresponding problem [SP ] 1

4

is as follows:

min
x∈X

ϕq,ε, 1

4

(x),

where ϕq,ε, 1

4

(x) = f(x) + q
2
∑

i=1

pq,ε, 1

4

(gi(x)) with

pq,ε, 1

4

(gi(x)) (2.2)

=















0, if gi(x) < −( ε
2q

)4,

(1
8 )

1

4 ( ε
2q

)−7(gi(x))2 + 1
4 (1

8 )
− 3

4 ( ε
2q

)−3gi(x) + (1
8 )

1

4 ε
2q

, if − ( ε
2q

)4 6 gi(x) < 0,

(gi(x) + 1
8 ( ε

2q
)
4
)

1

4

, if gi(x) > 0.

We take the initial point x0
1 = (0, 0). The global minimizer x∗

n is obtained by the quasi-

filled function method proposed in [7]. Table 2 gives the result of solving Example 3.2 by

the proposed Algorithm (SP).

From Table 2, we know that x∗
3 = (8.004453e − 1, 1.199555) can be regarded as an

approximate global minimizer of Example 3.2 with global optimal value f∗ = −7.199999.

The global minimizer of the problem given in [2] is (0.8, 1.2) with the associated function

value −7.2.

From the above two examples, we can see that the present method is quite effective.
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Table 2: Numerical results for Example 2.2

n xn x∗

n
qn εn f(x∗

n
)

(

g1(x
∗

n
)

g2(x
∗

n
)

)

1

(

0

0

) (

8.004707e − 1

1.199529

)

102 10−2
−7.199999

(

−3.250733e − 13

−4.014121e − 1

)

2

(

8.004707e − 1

1.199529

) (

8.004710e − 1

1.199529

)

104 10−3
−7.199999

(

−1.776357e − 15

−4.014130e − 1

)

3

(

8.004710e − 1

1.199529

) (

8.004453e − 1

1.199555

)

108 10−4
−7.199999

(

−4.440892e − 16

−4.013358e − 1

)
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