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Modified lower order penalty functions
based on quadratic smoothing approximation

BAI Fusheng!!  LUO Xiaoyan'

Abstract In this paper, two function forms of quadratic smoothing approximation to
the lower order exact penalty function are proposed to generate modified smooth penalty
functions for inequality-constrained optimization problems. It is shown that under certain
conditions, any global minimizer of the modified smooth penalty problem is a global
minimizer to the original constrained optimization problem when the penalty parameter
is sufficiently large. Two numerical examples are given to show the effectiveness of the
present smoothing scheme.
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0 Introduction

Consider the following global optimization problem:

[P] min  f(z),
s.t. gi(x) <0,i=1,2,...,m,
xz €R",

where f: R® - R,¢g; : R" - R,i=1,2,...,m are twice continuously differentiable. In the
last fifty years, a significant amount of investigations have been devoted to exact penalty
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functions.
Let p(u) = (max{0,u})¥, that is,

uk,  if u>0;
0, otherwise.

Denote
m

Pan(@) = f(@)+aY_ pi(gi(x)). (0.2)
i=1
When k = 1, the function ¢4 k() is 1 penalty function of problem [P]; when k € (0,1), the
function is a lower order penalty function of problem [P] (see [1-8]). It is shown in [8] that
the second-order sufficient condition implies local exact penalty property for the lower order
penalty function with any positive penalty parameter.

Since pi(u) is not differentiable, in general ¢4 x(z) (k € (0,1]) is a non-differentiable
function. However, most powerful methods in optimization require a differentiable cost
function. This motivates the smoothing of ¢4 x(x) via the smoothing of py(u). The case
with k = 1 has been investigated in e.g. [6, 9]. The case with k = 3 has been investigated in
e.g. [5, 8]. References [4] and [10] investigated the general cases for k € (0,1) and k € (3, 1]
respectively.

In this paper, we propose a quadratic smoothing approximation to py(u) with k € (0, 1).
The approximation takes two similar function forms. Unlike the smoothing approximations
in [4, 10], where the constructed smooth functions satisfying traditional definition of penalty
function, the auxiliary function constructed on the smoothing approximation in this paper
is a modified penalty function which does not satisfy the traditional definition of penalty
function. However, the present modified penalty function can be used to implement penalty
to infeasible points effectively, as indicated by Theorems 1.1 and 1.2. It should be noted
that modified smooth penalty functions have been proposed in [8, 9] based on quadratic
smoothing approximation to deal with the case of a single k value.

The rest of this paper is organized as follows. In Section 1, we introduce the smoothing
function to pg(u), and give some fundamental properties about the constructed modified
penalty function based on the smoothing function. In Section 2, a simple algorithm is pro-
posed to obtain an appropriate global optimal solution to the original optimization problem.
Two numerical examples are given in this section to show the effectiveness of the present
smoothing scheme.

1 Smoothing approximation

To begin with, we introduce the concept of second-order sufficient condition (see [2],
p. 169). Let

L(z,\) = f(z) + ingz«x).
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We say that the pair (z*, \*) satisfies the second-order sufficient condition, if

VaoL(z*,\*) =0
gi(z*) <0, ie{l,...,m}
X200, qe{l,...,m} (1.1)
Afgi(xz*) =0, ie{l,...,m}
yIV2L(z*,\*)y >0, for any y € V(z*),

where

V * — Rn
@) {y S VTgay <0, i€ B

VTgi(x*)y=0, i€ A(x*) }

A(x*)={i e {1,...,m}|g:(z™) =0, A} > 0},
B(z*)={i € {1,...,m}|g:(z*) =0, A} =0}.

Assumption 1 f(z) satisfied the following coercive condition:

e oo (7) = 00

By Assumption 1, there exists a box X such that G[P] C int(X), where G[P] is the

set of global minimizers of problem [P], int(X) denotes the interior of the set X. Then,
problem [P] is equivalent to the following problem [P’]:

[P] min  f(z),
s.t. gi(x) <0,i=1,2,...,m,
r € X,

in the sense of G[P] = G[P’], where G[P] is the set of global minimizers of problem [P].
Let G[P’] denote the set of global minimizers of problem [P’], then G[P] = G[P’].
Assumption 2 The set G[P’'] is a finite set.

For the following penalty problem:

[LOPlr min pqk(@),
where ¢, 1 (2) is given in (0.2), we have the following lemma.

Lemma 1.1 (See [8]) Suppose that Assumptions 1 and 2 hold, and furthermore, that
for any x* € G[P], there exists \* € RY" such that the pair (x*, \*) satisfies the second-order
sufficient condition (1.1). Then, for any k € (0,1), there exists ¢* > 0, such that when
q > q*, G[P] = G([LOP];), where G([LOP]y) is the set of global minimizers of problem
[LOP]y.

Now we consider the smoothing approximation to the lower order penalty function
©q.k(z). We use a quadratic function I(z) = au® + bu+ ¢ to approximate py(u) for u € [6,0),
where § < 0, and a k-order power function r(u) = (u + )" to approximate py(u) for u > 0;
that is, we use the following piecewise function to approximate py(u):
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0, if  w<d;
s(u)y=<¢ au?+bu+c, ifd<u<O0; (1.2)
(u +~)F, if uw>=0.

To determine the unknowns in (1.2), we can follow two different paths. The first one is
to set the difference between [(0) and py(0) as .=, ie. 1(0) = pp(0) = c—0 =c = =,
and find the unknowns accordingly. Since the function used for approximation should be
1
continuously differentiable, we have 1(0) = 7(0), i.e. ¢ = (0+~)" which yields y = ()"
and I'(0) = 7/(0), i.e. b = kyF~1 = k(qim)k%. To find a and §, we need to solve the

following system of linear equations:

-4
1(9) =a52+b5+c=a62+k<qim) b = pi(0) = 0;

1—1
I k

The solution of the above system is

Thus

The second path is to set the interval [d, 0] as [—(qim)% ,0] first, then find all other unknowns
accordingly. Again, since the function used for approximation should be continuously dif-
ferentiable, we have

() o) ) oo ()
())-oo) osl- ()

1(0) b= r'(O)zlm’f—l.

s\m
Il

The solution of the above system is

(NN (YT (=T (R e k(=
‘= 2 qm ’ B 2 qm neT 2) qgm’ 7_2 gm )
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Thus we have

1
3
0, if u<—(i) :
am
k 1-2 k—1 1-% k
swy=4 (EY (=) "wzen(E E) ue (Y2 (2 <u<o
2 qm 2 qm 2) qgm qm

1.k
13
(u—i—ﬁ(i) ), if w>0.
2\ qgm
(1.4)

Note that the two s(u)s given by (1.3) and (1.4) are very similar to each other. In the
rest of this paper we take the s(u) given by (1.4) as the smoothing function. To indicate

el

the links with ¢, ¢, k, we use pg. 1 (u) to denote this function.

Remark 1.1 If the s(u) given by (1.3) is adopted as the smoothing function, all the
following results still hold with minor modification.

Figure 1 shows the behavior of pg . (u) and pg(u) with m =2,¢="5,e =02,k = %

0.05 :
—y=p, (W)

0.045| _aektr
)

0.04}

0.035

Figure 1: The behavior of pg . x(u) and pi(u) with m =2,¢=5,e =02,k = %

Let
Pa.ck(®) = (@) + 0D Paer(9i(x)). (1.5)
i=1
Then it is easy to see that ¢q ¢ 1 () is continuously differentiable on R™. It should be noted

that ¢gq.c.x(z) does not satisfy the traditional definition of penalty function, as the penalty

m

term function Y pgex(gi(z)) may take positive value on a feasible point. Thus we call
i=1

©q.e,k(x) a modified penalty function.
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Consider the following modified penalty problem:

[SPlk minl @g.e1(z)

Proposition 1.1 For any x € R, ¢ > 0 and € > 0, we have

k k
0 < prenlo) - euslo) < (5 = 1.

where pg.e.1(x) and pqr(x) are given in (1.5) and (0.2) respectively.

Proof
Let
Api = pq,e,k(9i(®)) — pr(gi())-
Note that
0, if gi(x) < —(qim)i7
@ e @
(gi(x)) + (g) qim if — (qim> < gilz) < 0;
(60 +5(2)) @ i gu(x) > 0

o< (3) (7)o (3) () 0o (3) < (5) o

and

we have

m m k k
k € k
0% peslo) —pste) =3 am<ad (5) == (5) =
i=1 i=1

Proposition 1.2 Let z} ; € X be a global minimizer of problem [LOP]y and Tq.cx €
X be a global minimizer of problem [SP]y for some ¢ > 0, k € (0,1) and € > 0. Then we

have

* k ¥
0% p@pen) — pualein) < (3 ) & 1.7
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Proof By Proposition 1.1

Paek(Tge k) — Spqyk(xz,k)

Pq,e,k (I;,k) — Pq,k (I;k)

0 < @g,e,k(Taek) = Pk (Tger) <
<

Corollary 1.1 Let z; , € X be a global minimizer of problem [LOP)y, and Tyep € X
be a global minimizer of problem [SP]y for some ¢ > 0, k € (0,1) and ¢ > 0. If z},, and
Tq.ek are feasible to problem [P], then we have

ogﬂ@@w—fuh»<<—y€ (L8)

Proof As z; ; € X is a global minimizer of problem [P], we have

Zpk (9i(zq,r)) = 0.
=1
Thus

F@aen) = F@p) = f@gek) +0D  Dack(9i@qcn) — Flahs)

i=1

+¢ ) pr(9i(x 1) — 0 Pacn(9i(Tgen))

i=1 i=1
m
= Qg k(Tqer) — Sﬁq,k(xz,k) - quq,s,k(gi@q,s,k»-
i=1

By Proposition 1.2, we have

k
— « k
Pa.ek(Taek) = Pan(Tg) < (5) €.
By the nonnegativity of pq-,s,k(u), we then have
k k
ﬂ@@w—f@hﬁ<(5)a

Since zj , is feasible to problem [P], it is a global minimizer of problem [P']. Note that
Tq.ek 1 also feasible to problem [P'], so it holds f(Tg,. ) — f(2 ;) = 0. Then we have

k
0% f(Eaen) - fain) < (5)

From the above result, if the global minimizer a::;’ i of the non-smooth penalty problem
[LOP]; and the global minimizer T, . 5 of the modified smooth penalty problem [SP]; are
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feasible to problem [P], then the difference between the objective function values on Ty ¢ k
and z7 ;. can be controlled through the smoothing parameter .
Let

S={zeX]|gi(x)<0,i=1,...,m}, (1.9)
S={reX|g(x)<0,i=1,...,m}. (1.10)
and G[SP]; be the set of all the global minimizers of problem [SP]y.

Theorem 1.1 Suppose that Assumptions 1 and 2 hold, and there exists z* € G[P](S.
Then, for any given € > 0, there exists ¢* > 0 such that any global minimizer of the modified
smooth penalty problem [SP]i is a global minimizer of the original constrained optimization
problem [P], i.e., G[SP], C G[P] when q > q*.

Proof For any given ¢ > 0, k € (0,1), ¢ > 0 and any Ty ¢k, let

1
. e \* _ .
Agerr = {z| - (q_m> < Gi(Tger) <0,i= ,...,m}, (1.11)
Byer = Hilgi(@ger)>0,i=1,...,m}. (1.12)

If Byer # 0, we have

1k
k 5
Paek(Tqen) = f(@qer)+a Z (gi(fq,s-,w + by <qim) )

’iGBq ek

w3 ((8) (& )l_i@i(zq,&m?

’LGAq ek

o) (@) e (' 5)

qm
s S (s 5(5))

i€Bg,c K

WV

= f@qer) +a Z (Qi(fq,a,k))k

i€Bg ek

k( e
—HJ Z (gz xq,ak +2<q_m)

i€ By,

k

) - GEa))
)k - (gi(fq,s,k))k)-

By the assumption that there exists 2* € G[P]()S, there must exist ¢; > 0, such that
gi(z*) < —(qim)% for any i = 1,...,m when ¢ > ¢;. Hence, when ¢ > ¢1, we have

Bl

=

= Pek(@qer)+4a Y <(gi(iq,5,k)+§(qim)

i€Bg ek

Pq.e k() = f(z7). (1.13)
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By Lemma 1.1, there exists o such that G[P] = G[LOP];, for any ¢ > qo. Let ¢* =
max{qi1,qo}. Then for any ¢ > ¢*, we have

<Pq,s-,k(fq-,s,k) < ‘Pq,s,k(x*) = f(a") = ‘Pq,k(fp*) < ‘Pq,k(fs,q,k)- (1.14)

Then, we claim that Z, . ; is a feasible solution to the original problem [P] when ¢ > ¢*. In
fact, if ¢ > ¢* and T. 4 is not feasible to problem [P], i.e., By # 0, then we have

1k
- — — k(e \F — -
Pa.ek(Taek) 2 Pak(Tqe k)t Z <(gi(xq,s,k)+§(_m> ) —(gi($q=€>k))k) > 0qk(Tq,e.k),
iquys,k q
which contradicts (1.14).
By (1.13) and

m
F@®) S f@gep) < f(@qen) + qu%&k(gi(fq,a,k)) = Pqe,k(Tge,k) < Pgek(T”),
i=1

we have

f(@®) = f(Tqen)-

Therefore, Ty is a global minimizer of the original problem [P], i.e, Ty, € G[P]. Thus
it follows G[SP]; C G[P] when ¢ > ¢*.
Now we give the definition of e-approximate global minimizer.

Definition 1.1 we say that T is an e-approzimate global minimizer of problem [P] if
T € X is feasible to problem [P], and |f(T) — f*| < &, where f* is the global minimal value
of problem [P].

The following result is needed to establish the result on achieving approximate global
optimality of the original problem by the global minimizer of the modified penalty problem
[SP].

Lemma 1.2 Let k € (0,1). Function (Hikk attains its mazimum on (0,+00) at x =1

with the associated function value 2'~*.

Proof Let v(z) = %,x € (0,400). Then

kb (1 +2)F — k(1 4+ 2)" (1 + 2F)

V(@) = (1+2)%
kAR TN @ A a) — (1)
- (1+:17)2k
k(-1

When 0 < x < 1, it holds #' =% < 1, i.e. 2¥~1 > 1 or 21 —1 > 0, thus v'(x) > 0. On
the other hand, when z > 1, it holds ! =% > 1,i.e. ¥ < 1orz¥~!—1 < 0, thus v'(x) < 0.

Therefore, v(z) attains its maximum on (0,+00) at z = 1, and v(1) = (iig’“ =21k
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Theorem 1.2 Suppose that Assumptions 1 and 2 hold, furthermore, cl(S) =S, where

S and S are given in (1.10) and (1.9) respectively. Then, for any given € > 0, there exists

g > 0 such that when q > ¢f, any global minimizer Tqe  of problem [SPly is a (%)ka—

approzimate global minimizer of problem [P], and satisfies f(ZTg.erx) — f* > 0.

Proof For any given € > 0, ¢ > 0, k € (0,1), and Ty € G[SP], if there exists a
global minimizer #* of problem [P] lying in S, then by Theorem 1.1, it is easy to see that
the conclusions hold; else take an z* € S\ S. By cl(S) = S, there exists a sequence {z,,} C S,
such that

lim z, = z*.
k—oo

Therefore, there exists ng > 0 such that

o KFe
n) < YR
Flea) < f@t) + 2
when n > ng. Especially, we have
o KFe
f(xn,) < f(z )—l-% (1.15)
By 2, € S, for the given € > 0, there exists ¢; > 0, such that g;(z,,) < —(qim)% for any
i=1,...,m when ¢ > q;. Thus, when ¢ > ¢;, we have
f(@no) = Pa.ek(Tng) 2 Pa.ek(Tg,e k) (1.16)

Let ¢f = 2 "*max{q:,¢*}, where ¢* is given in Lemma 1.1. Then we say that T, is a
feasible solution of problem (P) when g > ¢j.

In fact, if for ¢ > ¢, Ty4,c,k is not feasible, then there exists at least one index ig € By ¢k,
where By .\ is given in (1.12). Note that ¢ > ¢} implies ¢ > ¢;. Let ¢ = 2'7%g, then for
q > ¢7 we have g > ¢*. Thus it holds

k

=

— _ _ k(€
(Pq,a,k(xq,a,k) > f(xq,a,k) +q Z (gi(xq,a,k) + ) (_)

m
i€Bg ek q

= [(Tger) +7 Z (gi(fq-,s,k))k

1€Bg.c,k

o 3 (e 53

1€Bg.c .k

k

> - (gz‘(fq,s,k))k>

=

WV

f(@qer) +1 Z (gi(fq,a,k))k

’L‘GBQYEJC

sz (gm0 + 5 () ’i)k - ()"
= [@qer)+T Y, (9i(Fgen)”

i€Bg ek
k

+7(Gio (Ta.e k)" (2l_k (1 + g(i))) - 1>

Gig (TQ-,EJC
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> f@qer)+T D, (9i(Tgen)"
i€Bg.c.n
E(L)% »
_ — k 2\gm
+0(9io @qe k) | — = (by Lemma 1.2)
Gig xq,s-,k)
_ [k ke
= ©gk(Tgek) +7 B q_m
N kke _ .
z eqr(@)+ o (bya>q’)
AL
= f(z )+%

> flxn,)  (by (1.15))

which contradicts (1.16).
By Corollary 1.1, we have

k
0< f(Tger) — [ < (g) €.

Thus, Zgck is a (g)k—approximate global minimizer of problem (P), and further satisfies
f(@genr) = f* 20.

Remark 1.2 It is not easy to check whether the conditions of Theorems 1.1 or 1.2
hold. However, many practical inequality-constrained optimization problems do satisfy these
conditions. For simplicity, in the algorithm and the numerical examples presented in the next
section, we assume that when the penalty parameter are appropriately chosen as described
in the algorithm, a global minimizer of the modified penalty function can be regarded as an
approximate global minimizer of the original optimization problem. The gauge of precision
for the approximation is not used in the algorithm and in the numerical examples.

2 Algorithm and numerical examples

In this section, we propose a simple algorithm to solve problem [P] via solving the
modified smooth penalty problem [SP],. Two numerical examples are provided to show the
applicability of the algorithm with k& = % and k = % respectively.

Algorithm (SP):

Step 1. Choose M > 0,e > 0,k € (0,1). Take an initial point 29 € X, and two initial
parameters €1 > ¢, q1 < M. Let n = 1.

Step 2. Solve the following modified penalty problem:

[SP]i min @q, e, k()

with 20 as the starting point. Let x% be a global minimizer of the smooth problem [SP];.
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Step 3. If ¢, > M and &, = ¢, then stop. The obtained global minimizer z} can
be regarded as an approximate global minimizer of problem [P]. Otherwise, let £,11 =
max{e, 2}, qn1 = max{q:, M}, 20 .| =z}, n =n+ 1, and go to Step 2.

In each of the following examples, we take e = 1074, M = 10% and &; = 1072, ¢; = 102
and we use
n : the number of iterations to solve the smooth problem [SP]y;

x, : the initial point to solve the smooth problem [SP]; at the nth iteration;

0
n
*

x} : the obtained global minimizer of problem [SP]; at the nth iteration.

n

In the following tables, floating point format with 6 digits is adopted to record the nu-
merical results except the first columns, where the exact values of initial points are recorded.
Also we omit “e 4 0” in the entries of the tables.

Example 2.1

min f(z) = —z1— 2
st. gi(z) = a1 —2— 227 + 8% —8aF,
ga(x) = mp —4dat + 3223 — 8822 + 96z, — 36,
x € {(x1,22)[0 <1 <3,0< 22 <4}

This example is excerpted from [3] (Test Problem 9 in Section 4.10). Let X = {(x1,z2) |
0 < 21 < 3,0 < 22 < 4}. The corresponding problem [S’P]% is as follows:

min ¢y ¢ 1 (2),

We take the initial point 29 = (0,0) and let X = {(z1,22)[0 < 21 < 3,0 < x5 < 4}.
The global optimizer in each iteration ), is obtained via the quasi-filled function method
proposed in [7]. Table 1 gives the numerical results of solving Example 3.1 by the proposed
Algorithm (SP).

By Table 1, we know that z3 = (2.329521, 3.178489) can be regarded as an approximate
global minimizer of Example 3.1 with function value —5.508010. The global minimizer given
in [3] is (2.3295,3.17846) with associated function value —5.50796.
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Table 1: Numerical results for Example 2.1

n 2% 7 O f(@2) ()
g2(xn)
: 0 2.320521 10?1102 | —5.508010 —8.489793¢ — 1
0 3.178489 —2.790287¢ — 7
9 2.329521 2.329521 10 | 1x1073 | —5.508010 —8.489791e — 1
3.178489 3.178489 —1.136868e — 13
3 2.329521 2.329521 108 | 1x1074 | —5.508010 —8.489791e — 1
3.178489 3.178489 —5.684342¢ — 14
Example 2.2
min  f(zr) = —2x; — 629+ 27 — 22120 + 223,
st. gi(x) = 1 +2a2—2<0,
g2(x) = —x1 42292 —2<0,

z € {(r1,22)|0<2; <2,i=1,2}.

This example is excerpted from [2] ( p. 504). Let X = {(z1,22) | 0 < z; < 2,i=1,2}. The
corresponding problem [SP)] 1 is as follows:

min ¢, 1 (@),

Py, (9i(@)) (22)
0, if gi(x)<—(2£q)4,
= 1 OE @@+ @ e+ g i - (5) <o) <o,
(@) + 3" it gi(2) > 0.

We take the initial point 2{ = (0,0). The global minimizer z}, is obtained by the quasi-
filled function method proposed in [7]. Table 2 gives the result of solving Example 3.2 by
the proposed Algorithm (SP).

From Table 2, we know that x5 = (8.004453e — 1,1.199555) can be regarded as an
approximate global minimizer of Example 3.2 with global optimal value f* = —7.199999.
The global minimizer of the problem given in [2] is (0.8,1.2) with the associated function
value —7.2.

From the above two examples, we can see that the present method is quite effective.
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Table 2: Numerical results for Example 2.2

n Tn :C:L gn En f(m:) o (x:)
92($n)
0 8.004707e — 1 —3.250733e — 13

1 c 102 | 1072 | —7.199999 ©

0 1.199529 —4.014121e — 1

9 8.004707e — 1 8.004710e — 1 10* | 108 | —7.199999 —1.776357¢ — 15

1.199529 1.199529 —4.014130e — 1
8.004710e — 1 8.004453¢ — 1 —4.440892¢ — 16
3 © c 10° | 107 | —7.199999 N
1.199529 1.199555 —4.013358e — 1
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