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Abstract: The paper studied a new generalized convex function which called sub-b-convex function,

and introduced a new concept of sub-b-convex set. The basic properties of sub-b-convex functions were

discussed in general case and differentiable case, respectively. And, obtained the sufficient conditions

that the sub-b convex function become quasi-convex function or pseudo-convex function. Furthermore,

the sufficient conditions of optimality for unconstrained and inequality constrained programming were

obtained under the sub-b-convexity.
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1. Introduction

Convexity plays a vital role in many aspects of mathematical programming, for example,

sufficient optimality conditions and duality theorems. Over the years, many generalized convexity

were presented (see [1]-[11]). In this paper, we introduce a new class of functions, which are called

sub-b-convex functions and present some results about them.

In the following, we review several concepts of generalized convexity which have some rela-

tionships with this work. Though out the paper, we assume that the set S ⊆ Rn is a nonempty

convex set.

Definition 1.1 (see [2]) A real function f : S ⊆ Rn → R is said to be a quasi-convex function, if

f(λx + (1− λ)y) ≤ max{f(x), f(y)}, ∀x, y ∈ S,∀λ ∈ (0, 1).

Definition 1.2 (see [2]) Let f : S ⊆ Rn → R be a differentiable function on S. The function

f is said to be pseudo-convex function, if for each x, y ∈ S with ∇f(x)T (y − x) ≥ 0, we have

f(x) ≥ f(y); or equivalently, if f(x) < f(y), then ∇f(x)T (y − x) < 0.

Theorem 1.1 (see [2]) Let f : S ⊆ Rn → R be differentiable on S. Then f is a quasi-convex

function if and only if the following equivalent statements holds:

(1) If x, y ∈ S and f(x) ≤ f(y), then ∇f(y)T (x− y) ≤ 0;

(2) If x, y ∈ S and ∇f(y)T (x− y) > 0, then f(x) > f(y) .

2. Sub-b-convex Functions and Their Properties

In this section, we present the definition of sub-b-convex function and discuss its some basic

properties.

Definition 2.1 Let S be a nonempty convex set in Rn. The function f : S → R is said to be a

sub-b-convex function on S with respect to map b : S × S × [0, 1] → R, if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + b(x, y, λ),∀x, y ∈ S, λ ∈ [0, 1].
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Remark 2.1 If one defines map

b(x, y, λ) = f(λx + (1− λ)y)− λf(x)− (1− λ)f(y),

then, each function is sub-b-convex with this map. However, our interesting is to study some

b(x, y, λ) with special properties.And, obviously, each convex function f is sub-b-convex function

with respect to the map b(x, y, λ) = 0.

Proposition 2.1 If fi : S → R, (i = 1, 2, 3, . . . ,m) are sub-b-convex functions with respect to

maps bi : S × S × [0, 1] → R, (i = 1, 2, 3, . . . ,m) respectively. Then function

f =
m∑

i=1

aifi, ai ≥ 0, i = 1, 2, 3, . . . ,m

is sub-b-convex with respect to b =
∑m

i=1 aibi.

Proof. For all x, y ∈ S and λ ∈ [0, 1],

f(λx + (1− λ)y) =
∑m

i=1 aifi(λx + (1− λ)y)

≤
∑m

i=1 ai[λfi(x) + (1− λ)fi(y) + bi(x, y, λ)]

= λ
∑m

i=1 aifi(x) + (1− λ)
∑m

i=1 aifi(y) +
∑m

i=1 aibi(x, y, λ)

= λf(x) + (1− λ)f(y) +
∑m

i=1 aibi(x, y, λ).

So, from the definition of sub-b-convexity, knows f is sub-b-convex with respect to b =
∑m

i=1 aibi.�

Proposition 2.2 If functions fi : S → R, (i = 1, 2, 3, . . . ,m) are sub-b-convex functions with

respect to bi, (i = 1, 2, 3, . . . ,m), respectively. Then f = max{fi, i = 1, 2, · · · , m} is sub-b-convex

with respect to b = max{bi, i = 1, 2, · · · , m}.

Proof. For forall x, y ∈ S and λ ∈ [0, 1], from the sub-b-convexity of fi, we have

f(λx + (1− λ)y) = max{fi(λx + (1− λ)y), i = 1, 2, . . . ,m}

= ft(λx + (1− λ)y)

≤ λft(x) + (1− λ)ft(y) + bt(x, y, λ)

≤ λf(x) + (1− λ)f(y) + b(x, y, λ).

So, f(x) is is sub-b-convex with respect to b = max{bi, i = 1, 2, · · · , m}. �

Here, we introduced a new concept of sub-b-convex set.

Definition 2.2 Let X ⊆ Rn+1 be a nonempty set. X is said to be sub-b-convex with respect to

b : Rn ×Rn × [0, 1] → R, if

(λx + (1− λ)y, λα + (1− λ)β + b(x, y, λ)) ∈ X,∀ (x, α), (y, β) ∈ X, x, y ∈ Rn, λ ∈ [0, 1].
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We now give a characterization of sub-b-convex function f : S → R in the term of their

epigraph E(f) given by

E(f) = {(x, α)| x ∈ S, α ∈ R, f(x) ≤ α}.

Theorem 2.1 A function f : S → R is sub-b-convex with respect to b : Rn × Rn × [0, 1] → R if

and only if E(f) is a sub-b-convex set with respect to b.

Proof. Suppose that f is sub-b-convex with respect to b. Let (x1, α1), (x2, α2) ∈ E(f). Then,

f(x1) ≤ α1, f(x2) ≤ α2. Since f is sub-b-convex with respect to b, we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) + b(x1, x2, λ) ≤ λα1 + (1− λ)α2 + b(x1, x2, λ).

Hence, from Definition 2.2 one has

(λx1 + (1− λ)x2, λα1 + (1− λ)α2 + b(x1, x2, λ)) ∈ E(f).

Thus E(f) is a sub-b-convex set with respect to b.

Conversely, assume that E(f) is a sub-b-convex set with respect to b. Let x1, x2 ∈ S, then

(x1, f(x1)), (x2, f(x2)) ∈ E(f). Thus, for λ ∈ [0, 1],

(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2) + b(x1, x2, λ)) ∈ E(f).

This further follows that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) + b(x1, x2, λ).

That is, f is sub-b-convex with respect to b. �

Proposition 2.3 If Xi (i ∈ I) is a family of sub-b-convex set with respect to a same map b(x, y, λ),

then ∩i∈IXi is a sub-b-convex set with respect to b(x, y, λ).

Proof. Let (x, α), (y, β) ∈ ∩i∈IXi, λ ∈ [0, 1]. Then, for each i ∈ I, (x, α), (y, β) ∈ Xi. Since

Xi is a sub-b-convex set with respect to b, it follows that

(λx + (1− λ)y, λα + (1− λ)β + b(x, y, λ)) ∈ Xi, ∀i ∈ I.

Thus,

(λx + (1− λ)y, λα + (1− λ)β + b(x, y, λ)) ∈ ∩i∈IXi.

Hence, ∩i∈IXi is a sub-b-convex set with respect to b(x, y, λ). �

4



Theorem 2.2 If fi (i ∈ I) is a family of numerical functions, and each fi sub-b-convex with

respect to the same map b(x, y, λ), then the numerical function f = supi∈I fi(x) is a sub-b-convex

function with respect to b(x, y, λ).

Proof. Since fi is a sub-b-convex function on S with respect to b(x, y, λ), its epigraph E(fi) =

{(x, α)| x ∈ S, fi(x) ≤ α} is a sub-b-convex set with respect to b. Therefor, their intersection

∩i∈IE(fi) = {(x, α)| x ∈ S, fi(x) ≤ α, i ∈ I} = {(x, α)| x ∈ S, f(x) ≤ α} = E(f)

is also a sub-b-convex set with respect to b. So, from Theorem 2.1 and Proposition 2.2, one know

that f = supi∈I fi(x) is a sub-b-convex function with respect to b(x, y, λ). �

In the follows, we consider continuously differentiable functions which are sub-b-convex func-

tion with respect to a map b. Further, we assume that the limit lim
λ→0+

b(x,y,λ)
λ

is exists for fixed

x, y ∈ S.

Theorem 2.3 Suppose that f : S → R is differentiable and sub-b-convex with respect to map b.

Then

∇f(y)T (x− y) ≤ f(x)− f(y) + lim
λ→0+

b(x, y, λ)

λ
.

Proof. From Taylor expansion and the sub-b-convexity of f , we have

f(y) + λ∇f(y)(x− y) + o(λ) = f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + b(x, y, λ).

This implies that

λ∇f(y)(x− y) + o(λ) ≤ λf(x)− λf(y) + b(x, y, λ).

Dividing the inequality above by λ and taking λ → 0+, we have

∇f(y)T (x− y) ≤ f(x)− f(y) + lim
λ→0+

b(x, y, λ)

λ
.

The proof of this theorem is completed. �

Base on Theorem 3.3.3 of [2] and Theorem 2.3 of this paper, it is easy to get the following

result.

Corollary 2.1 Let f : S → R be differentiable and sub-b-convex with respect to b. If for each

x, y ∈ S, lim
λ→0+

b(x,y,λ)
λ

≤ 0, then f is a convex function on S.

Theorem 2.4 Suppose that f : S → R is differentiable and sub-b-convex with respect to b, then

(∇f(y)−∇f(x))T (x− y) ≤ lim
λ→0+

b(x, y, λ)

λ
+ lim

λ→0+

b(y, x, λ)

λ
.
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Proof. From Theorem 2.3, we have

∇f(y)T (x− y) ≤ f(x)− f(y) + lim
λ→0+

b(x, y, λ)

λ
,

∇f(x)T (y − x) ≤ f(y)− f(x) + lim
λ→0+

b(y, x, λ)

λ
.

Adding the two inequalities above, we have

(∇f(y)−∇f(x))T (x− y) ≤ lim
λ→0+

b(x, y, λ)

λ
+ lim

λ→0+

b(y, x, λ)

λ
.

The proof of this theorem is completed. �

Theorem 2.5 Let f : S → R be differentiable and sub-b-convex with respect to b. If lim
λ→0+

b(x,y,λ)
λ

≤

|f(x) − f(y)|, ∀x, y ∈ S, then f is quasi-convex. Furthermore, if lim
λ→0+

b(x,y,λ)
λ

< |f(x) − f(y)|,

∀x, y ∈ S, then f is pseudo-convex.

Proof. For any x, y ∈ S and λ ∈ (0, 1). Suppose that f(x) ≤ f(y), then from Theorem 2.3,

we have

∇f(y)T (x− y) ≤ f(x)− f(y) + lim
λ→0+

b(x, y, λ)

λ
.

If lim
λ→0+

b(x,y,λ)
λ

≤ |f(x) − f(y)|, then f(x) − f(y) + lim
λ→0+

b(x,y,λ)
λ

≤ 0. So, ∇f(y)T (x − y) ≤ 0.

Therefor, we know from Theorem 1.1, we get that f is quasi-convex.

Similarly, if f(x) < f(y), we also have ∇f(y)T (x − y) < 0. So, from the Definition 1.2, we

get that f is pseudo-convex. �

3. Optimality Conditions

In this section, we apply the associated results above to the nonlinear programming problem.

First, we consider the unconstraint problem.

Theorem 4.1 Let f : S → R be differentiable and sub-b-convex with respect to b. Consider the

optimal problem min{f(x)| x ∈ S}. If x̄ ∈ S and relation

∇f(x̄)T (x− x̄)− lim
λ→0+

b(x, y, λ)

λ
≥ 0 (4.1)

holds for each x ∈ S, then x̄ is the optimal solution of f on S.

Proof. For any x ∈ S, from Theorem 2.3, one has

∇f(x̄)T (x− x̄)− lim
λ→0+

b(x, x̄, λ)

λ
≤ f(x)− f(x̄).
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From (4.1), we have f(x)− f(x̄) ≥ 0. So, x̄ is an optimal solution of f on S. �

Next, we apply the associated results to the nonlinear programming problem with inequality

constraints as follows:

min f(x)

(Pg) s.t. gi(x) ≤ 0, i ∈ I = {1, 2, ...,m},

x ∈ Rn.

Denote the feasible set of (Pg) by Sg = { x ∈ Rn | gi(x) ≤ 0, i ∈ I}. For convenience of discussion,

we assume that f and gi are all differentiable and Sg is a nonempty set in Rn.

Now, we further extend the concept of sub-b-convex function, then discuss the optimality

conditions of the corresponding programming.

Definition 4.4 Let S be a nonempty convex set in Rn. The function f : S → R is said to be

pseudo-sub-b-convex function on S with respect to b : S × S × [0, 1] → R, if for each x, y ∈ S and

λ ∈ (0, 1), from ∇f(y)T (x− y) + lim
λ→0+

b(x,y,λ)
λ

≥ 0 one can get f(x) ≥ f(y).

Theorem 4.2 (Karush-Kuhn-Tucker Sufficient Conditions) The function f(x) is differentiable

and pseudo-sub-b-convex with respect to b : S × S × [0, 1] → R , gi(x) (i ∈ I) are differentiable

and sub-b-convex with respect to bi : S × S × [0, 1] → R (i ∈ I). Assume that x∗ ∈ Sg is a KKT

point of (Pg) i.e., there exist multipliers ui ≥ 0 (i ∈ I) such that

∇f(x∗) +
∑
i∈I

ui∇gi(x
∗) = 0, uigi(x

∗) = 0. (4.2)

If

lim
λ→0+

b(x, x∗, λ)

λ
≥

∑
i∈I

ui lim
λ→0+

bi(x, x∗, λ)

λ
, ∀x ∈ Sg. (4.3)

Then x∗ is an optimal solution of the problem (Pg).

Proof. For any x ∈ Sg, we have gi(x) ≤ 0 = gi(x
∗), i ∈ I(x∗) = {i ∈ I| gi(x

∗) = 0}. Therefore,

from the sub-b-convexity of gi(x) and Theorem 2.3, one obtain ∇gi(x
∗)T (x−x∗)− lim

λ→0+

b(x,y,λ)
λ

≤ 0

for i ∈ I(x∗) From (4.2), one has ∇f(x∗)T (x−x∗) = −
∑

i∈I(x∗)

ui∇gi(x
∗)T (x−x∗). In view of (4.3),

we have ∇f(x∗)T (x− x∗) + lim
λ→0+

b(x,x∗,λ)
λ

≥ −
∑

i∈I(x∗)

ui∇gi(x
∗)T (x− x∗) +

∑
i∈I(x∗)

ui lim
λ→0+

bi(x,x∗,λ)
λ

=

−
∑

i∈I(x∗)

ui(∇gi(x
∗)T (x− x∗)− lim

λ→0+

bi(x,x∗,λ)
λ

).

From Theorem 2.3, one has ∇gi(x
∗)T (x − x∗) − lim

λ→0+

bi(x,x∗,λ)
λ

≤ gi(x) − gi(x
∗) = gi(x) ≤

0, i ∈ I(x∗). So,

∇f(x∗)T (x− x∗) + lim
λ→0+

b(x, x∗, λ)

λ
≥ 0.
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This together with the pseudo-sub-b-convexity of f(x), shows that f(x) ≥ f(x∗), therefor x∗ is an

optimal solution of the problem (Pg). �
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