arXiv:1207.0066v1l [math.GR] 30 Jun 2012

Existence, uniqueness, universality and functoriality

of the perfect locality over a Frobenius P-category
Lluis Puig

CNRS, Institut de Mathématiques de Jussieu, puig@math.jussieu.fr
6 Av Bizet, 94340 Joinville-le-Pont, France

To Pierre Cartier on his 80th birthday

Abstract: Let p be a prime, P a finite p-group and F a Frobenius P-category. The question
on the existence of a suitable category L£3¢ extending the full subcategory of F over the set of
F-selfcentralizing subgroups of P goes back to Dave Benson in 1994. In 2002 Carles Broto, Ran
Levi and Bob Oliver formulate the existence and the uniqueness of the cateogry £5¢ in terms
of the nullity of an obstruction 3-cohomology element and of the vanishing of a 2-cohomology
group, and they state a sufficient condition for the vanishing of these n-cohomology groups.
Recently, Amy Chermak has proved the existence and the uniqueness of £5¢ wia his objective
partial groups, and Bob Oliver, following some of Chermak’s methods, has also proved the
vanishing of those n-cohomology groups for n > 1, both applying the Classification of the finite
simple groups. Here we give direct proofs of the existence and the uniqueness of £3¢, and of
Oliver’s result; moreover, we complete £5¢ in a suitable category £ extending F in such a way

that the correpondence sending F to L is functorial.
1. Introduction

1.1. Let p be a prime, P a finite p-group and F a Frobenius P-cate-
gory [8]. The question on the existence of a suitable category £~ extending
the full subcategory of F over the set of F-selfcentralizing subgroups of P
[8, §3] goes back to Dave Benson in 1994 [1]. Indeed, considering our sugges-
tion of constructing a topological space from the family of classifying spaces of
the F-localizers — a family of finite groups indexed by the F-selfcentralizing
subgroups of P we had just introduced at that time [6] — Benson, in his
tentative construction, had foreseen the interest of this extension, actually
as a generalization for Frobenius P-categories of our old O-locality for finite
groups [5]

1.2. In [2] Carles Broto, Ran Levi and Bob Oliver formulate the exis-
tence and the uniqueness of the cateogry £ in terms of the nullity of an
obstruction 3-cohomology element and of the vanishing of a 2-cohomology
group, respectively. They actually state a sufficient condition for the va-
nishing of the corresponding n-cohomology groups and moreover, assuming
the existence of £, they succeed in the construction of a classifying space.

1.3. As a matter of fact, if G is a finite group and P a Sylow p-subgroup
of G, the corresponding Frobenius P-category Fe [5] admits an extension L¢g
defined over all the subgroups of P where, for any pair of subgroups ) and
R of P, the set of morphisms from R to @ is the following quotient set of
the G-transporter

Lc(Q,R) =Te(R,Q)/0"(Ca(R)) 1.3.1.
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Thus, in the general setting, if we are interested in the functoriality
of our constructions, we need not only the existence of £ but the exis-
tence of a suitable category £ extending F and containing £ as a full sub-
category. Soon after [2], we showed that the functor from Fg mapping Q

on Cg(Q)/0P(Ca(Q)) can be generalized to a functor chf from any Frobe-
nius P-category F (see 2.4 below), and that the existence of £~ forces the

exis-tence of a unique extension L of F by chf7 namely the so-called perfect
F-locality, already introduced in [7].

1.4. Recently, Amy Chermak [3] has proved the existence and the unique-
ness of £ wia his objective partial groups, and Bob Oliver [4], following
some of Chermak’s methods, has also proved, for n > 2, the vanishing of the
n-cohomology groups mentioned above. In reading their preprints, we were
disappointed not only because their proofs depend on the so-called Classi-
fication of the finite simple groups (CFSG), but because in their arguments
they need strongly properties of finite groups. Indeed, since [5] we are con-
vinced that a previous classification of the so-called “local structures” will be
the way to clarify CFSG in future versions; thus, our effort in creating the
Frobenius P-categories was directed to provide a precise formal support to
the vague notion of “local structures”, independent of “environmental” finite
groups and of most of finite group properties.

1.5. Here we will show that, till now, our intuition was correct, namely
that there is a direct proof of the existence and the uniqueness of £ ; that
is to say, a proof that can be qualified of inner or tautological in the sense
that only pushes far enough the initial axioms. But, as we mention above,
the existence and the uniqueness of £~ will guarantee the existence and the
uniqueness of the perfect F-locality £ defined over all the subgroups of P
and then it makes sense to discuss the functoriality of the correspondence
mapping F on L. Moreover, as a kind of converse of the mentioned result
in [2], the existence of £ allows us to get a direct proof of Oliver’s result
in [4].

1.6. Let us explain how our method works. In [9, Chap. 18] we intro-
duce the F-localizers mentioned above and, as a matter of fact, we already
introduce the F-localizer Lz (Q) for any subgroup @ of P (see Theorem 2.10
below), which is indeed an extension of the group F(Q) of F-automorphisms
of @, by the p-group cg_-(Q) (cf. 1.3). More precisely, it makes sense to con-
sider the F-localizer Lxz(q) for any F-chain q (cf. 3.3 below) and then, with
the quotients

Ly(a) = Lr(9)/[5(Q), ¢H(Q)] 1.6.1,

we succeed in building the F-localizing functor locy (see Proposition 3.7
below), which will play a critical role in our proof of the existence of £ .
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1.7. More generally, in [9, Chap. 17] we introduce the F-localities as a
wider framework where to look for the perfect F-locality. Considering the
category Tp where the objects are all the subgroups of P, where the set of
morphisms from R to Q is the P-transporter Tp(R, Q) and where the com-
position is induced by the product in P, we call F-locality any extension
m: L — F of the category F endowed with a functor 7:7p — L such that
the composition 7 o 7:7Tp — F is the canonical functor defined by the con-
jugation in P ; of course, we add some suitable conditions as divisibility and
p-coherence (see 2.8 below). As a matter of fact, a perfect F-locality is just
a divisible F-locality £ where the group £(Q) of L-automorphisms of any
subgroup @ of P coincides with the F-localizer of @ (see 2.11 below).

1.8. It turns out that there are indeed other F-localities, easier to con-
struct, which deserve consideration; they depend on the existence of the
F-basic P x P-sets Q introduced in [9, Chap. 21] which allows the realiza-
tion of F inside the symmetric group of 1, and then, the consideration of
F-localities as defined in [5]. In [9, Chap. 22] we introduce the so-called
basic F-locality which, although too “big”, is canonically associated with
F and will be a “support” for the construction of the perfect F-locality.
More precisely, in [9, Chap. 24] we show that the very structure of a perfect
F " -locality £ supplies a particular F-basic P x P-set that, from the corre-
sponding basic F-locality, allows the construction of the reduced F  -locality
which contains £ [9, Corollary 24.18].

1.9. At this point, on the one hand this particular F-basic P x P-set
can be described directly, without assuming the existence of £ . On the
other hand, any p-coherent F-locality L determines a functor mapping any
L-chain § on the group £(§) of L-automorphisms of § (see 3.2 below); assum-
ing that the kernels of the structural group homomorphisms £(§) — F(q)
are Abelian, this functor enable us to construct a new functor loc; analogous
to the F-localizing functor locy mentioned above and, as a matter of fact,
in this context locr becomes “universal” in the sense that there is a unique
suitable natural map Az :locy — locs (see Proposition 3.9 below).

1.10. What about the “image” of )\é? More precisely, is there a co-
herent F-sublocality L of L such that the corresponding natural map A is
surjective? In this case, restricting our attention to the full subcategories
Fr, £ and £ over the set of F-selfcentralizing subgroups @ of P and as-
suming that L is “big enough” — for instance, that it is the basic F-locality
— it turns out that the group £(Q) of L-automorphisms of @ coincides with
the F-localizer of Q (cf. 1.6.1) and therefore that £ would be a perfect
F“-locality (cf. 1.7). Note that a positive answer to this question would ex-
tend the “universal” character of the F-localizing functor to some universality
of the perfect F -locality.



1.11. As in [2], we have been able to formulate this question in coho-
mological terms [9 Proposition 18.28]; but, our formulation only needs to
consider the so-called stable cohomology groups [9, A3.17], which a priori
can be expected to be smaller than the ordinary ones. Denoting by F* the
exterior quotient of the category F  [9, 1.3], by k a perfect field of charac-
teristic p, by k-mod the category of finite dimensional k-vector spaces and by
m:F — k-mod a contravariant functor, our key result is that, if n > 1, the
stable cohomology groups Hf(]}sc,m) vanish. The fact that this result only
covers characteristic p forbids us to apply [9, Propositions 18.28 and 18.29]
as it stands, but an inductive argument will solve the problem.

1.12. Although this result and the choice of L as the basic F -locality
would suffice to prove the existence of a perfect F -locality, the choice of
a F  -locality which has to contain £, as described above, and our key
result allow us to prove the uniqueness of the perfect F -locality [9, Proposi-
tion 18.29]. Then, as mentioned above, we already get the existence and the
uniqueness of the perfect F-locality £ [9, Chap. 20].

1.13. Once we have the existence and the uniqueness of £ and £, the
universality of the perfect F-locality in the category of p-coherent F-localities
will follow from the “universal” character of the F-localizing functor men-
tioned above, from our key result, and from a suitable inductive argument.
Finally, from this universality we will obtain the functoriality of the perfect
F-localities, from the category formed by the pairs (P, F) where P is a finite
p-group and F a Frobenius P-category, and by the morphisms

(a,fa) 1 (P,F) — (P, F') 1.13.1

where a: P — P’ is a (F,F’)-functorial group homomorphism and f, the
corresponding Frobenius functor [9, 12.1].

1.14. Moreover, denoting by O a complete discrete valuation ring of
characteristic zero lifting k, by O-mod the category of finitely generated
O-modules and by m: F = — O-mod a contravariant functor sending the
F“-morphisms to injective O-module homomorphisms, we consider a new
contravariant functor m: F — O-mod containing m, in such a way that the
existence of L enable us to prove that, for any n > 1, we have

FSC o~ ZSC A~

H"(F ,m)={0} and H"(F ,m/m)={0} 1.14.1,
which, for any n > 2, forces

1, 55¢ ~ 1 o~ . o~ . n s 7=5¢ o
H' (F ,m)_lgn(m/m)/(hilm/lgnm) and H"(F ,m)={0} 1.14.2.

1.15. After recalling our terminology and some quoted results, we follow
the pattern of the Introduction since 1.6, except that, for inductive purposes,
we replace the whole set of F-selfcentralizing subgroups of P by a nonempty
set X of F-selfcentralizing subgroups containing any subgroup of P admitting
an F-morphism from some subgroup in X.



2. Frobenius P-categories and coherent F-localities

2.1. Denote by i®t the category formed by the finite groups and by the
injective group homomorphisms. Recall that, for any category €, €° denotes
the opposite category and, for any €-object C', €¢ (or (€)¢ to avoid confu-
sion) denotes the category of “€-morphisms to C” [9, 1.7] ; if any €-object
admits inner automorphisms we denote by ¢ the corresponding quotient and
call it the exterior quotient of € [9, 1.3]. Let p be a prime; for any finite
p-group P we denote by Fp the subcategory of i®tr where the objects are
all the subgroups of P and the morphisms are the group homomorphisms
induced by conjugation by elements of P .

2.2. A Frobenius P-category F is a subcategory of i®t containing Fp
where the objects are all the subgroups of P and the morphisms fulfill the
following three conditions [9, 2.8 and Proposition 2.11]

2.2.1  For any subgroup Q of P the inclusion functor (F)g — (i®t)q is full.
2.2.2 Fp(P) is a Sylow p-subgroup of F(P).

2.2.3  Assume that Q is a subgroup of P fulfilling £(Cp(Q)) = Cp(£(Q))
for any F-morphism £:Q-Cp(Q) — P, that ¢:Q — P is an F-morphism
and that R is a subgroup of Np(o(Q)) containing ©(Q) such that Fp(Q)
contains the action of Fr (cp(Q)) over Q via @ . Then there is an F-morphism

C:R— P fulfilling ¢(¢(u)) =u for anyu € Q.

Asin [9, 1.2], for any pair of subgroups @ and R of P, we denote by F(Q, R)
the set of F-morphisms from @ to R and set F(Q) = F(Q,Q). If G is a
finite subgroup admitting P as a Sylow p-subgroup, we denote by Fg the
Frobenius P-category where the morphisms are the group homomorphisms
induced by conjugation by elements of G .

2.3. Fix a Frobenius P-category F ; for any subgroup @ of P and any
subgroup K of the group Aut(Q) of automorphisms of @), we say that @ is
fully K-normalized in F if we have [9, 2.6]

E(NE(@Q) = NE(£Q)) 2.3.1

for any F-morphism ¢:Q-NE (Q) — P, where NEX(Q) is the converse image
of K in Np(Q) via the canonical group homomorphism Np(Q) — Aut(Q)
and °K is the image of K in Aut(¢(Q)) via £. Recall that if @ is fully
K-normalized in F then we have a new Frobenius N (Q)-category NX(Q)
where, for any pair of subgroups R and T of NF(Q), (NX(Q))(R,T) is
the set of group homomorphisms from T to R induced by the F-morphisms
¥ :Q-T — @Q-R which stabilize @ and induce on it an element of K [9, 2.14
and Proposition 2.16].



2.4. We denote by Hr the F-hyperfocal subgroup of P which is the
subgroup generated by the sets {u~'o(u)},eq where @ runs over the set of
subgroups of P and o over the set of p’-elements of F(Q) [9, 13.2]. As above,
for any subgroup Q of P fully centralized in F — namely, with K = {1} — we
have the Frobenius Cp(Q)-category Cr(Q) and therefore we can consider the
Cr(Q)-hyperfocal subgroup H¢ . (q) of Cp(Q) ; then, in [9, Proposition 13.14]
we exhibit a unique contravariant functor

A F— 6 2.4.1

where &t denotes the exterior quotient of the category &t of finite groups,
mapping any subgroup @ of P fully centralized in 7 on Cp(Q)/Hc,(q) and
any F-morphism ¢: R — @ from a subgroup R of P fully centralized in F

on a Gr-morphism induced by an F-morphism
¢(R)-Cp(Q) — R-Cp(R) 24.2
sending ¢(v) to v for any v € R.

2.5. We say that a subgroup U of P is F-stable if we have p(QNU) C U
for any subgroup @ of P and any F-morphism ¢:@ — P; then, setting
P = P/U , there is a Frobenius P-category F = F/U such that the canonical
homomorphism @ : P — P is (F, F)-functorial and the corresponding Frobe-
nius functor fo : F — F is surjective over the subgroups of P containing U
[9 Proposition 12.3]. In particular, if @ is a subgroup of P fully normalized
in F, it follows from [9, Proposition 13.9] that He, (q) is a Nx(Q)-stable
subgroup of Np(Q) and therefore we can consider the quotients

NP(Q) = NP(Q)/HC].—(Q) and N]:(Q) = N]:(Q)/HC]:(Q) 2.5.1.
2.6. We say that a subgroup @ of P is F-selfcentralizing if we have
Cr(#(Q)) C (Q) 2.6.1

for any ¢ € F(P,Q); we denote by F the full subcategory of F over the set
of F-selfcentralizing subgroups of P. More generally, as mentioned above we
consider a nonempty set X of subgroups of P containing any subgroup of P
admitting an F-morphism from some subgroup in X and then we denote by
F the full subcategory of F over the set X of objects; in most situations,
the subgroups in X will be F-selfcentralizing.

2.7. Denote by 'T; the full subcategory of Tp over the set X and by

KX :’T;6 — F the canonical functor determined by the conjugation. An

F x—locality £ isa category where X is the set of objects, endowed with two
functors . N . .
% :Tp — L and 7*:L — F 2.71
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which are the identity on the set of objects and fulfill 7% o 7% = g 7%
being full; as above, for any pair of subgroups @ and R in X, we denote by

EX(Q, R) the set of £ -morphisms from R to @ and by
73, Tp (QR) = LY(Q,R) and 7%, :L(Q,R) = F (QR) 2.7.2

Q.R
the corresponding maps; we write @@ only once if Q = R.

2.8. We say that £ is divisible if, for any pair of subgroups @ and R
in X, Ker(m%) acts regularly on the “fibers” of 7}, and that £ is coherent

if moreover, for any x € rr (Q,R) and any v € R. we have [9, 17.8 and 17.9]
w7 (0) = 73 (75 1 (@) 0)) 2 25.1.

More precisely, we say that £'is p-coherent if moreover, for any subgroup
in X, the kernel Ker(72 ) is a p-group; in this case, it follows from [9, 17.13]
that if @ is fully centralized in F then we have

HC].-(Q) C Ker(TS) 2.8.2.

Finally, we say that £ s perfect if it is p-coherent and for any subgroup @
in X fully centralized in F we have [9, 17.13]

HC]:(Q) = KeI’(Tg) 2.8.3.

2.9. With the notation in 2.5.1, we are interested in the Nz (Q)-locality

Nz o(Q) where the morphisms are the pairs formed by an Nz(Q)-morphism
and by an automorphism of @, both determined by the same F-morphism
[9, 18.3], and where the composition and the structural functors are the
obvious ones. Similarly, if L is a finite group acting on @ , we are interested
in the Fr-locality Fr o where the morphisms are the pairs formed by an
Fr-morphism and by an automorphism of ), both determined by the same
element of L . We are ready to describe the F-localizer of Q [9, Theorem 18.6].

Theorem 2.10. For any subgroup Q of P fully normalized in F there is a
triple formed by a finite group Lx(Q) and by two group homomorphisms

T, i Np(Q) — Lr(Q) and 7, :Lr(Q) — F(Q) 2.10.1
such that , o7, is induced by the Np(Q)-conjugation, that we have the exact
sequence

1 — Hepg) — Cr(Q) ~ Lr(Q) ~% F(Q) — 1 2.10.2
and that m, and 7, induce an equivalence of categories

Nr Q)= Frr(Q).q 2.10.3.

Moreover, for another such a triple L', Té and ﬂ"Q , there is a group isomor-
phism A: Lr(Q) = L', unique up to C?T(Q)—conjugation, fulfilling Ao T, = 7’(’2

! —
andeo/\—wQ.



2.11. For any subgroup @ of P fully normalized in F , we call F-localizer
of @ any finite group L endowed with two group homomorphisms as in 2.10.1

fulfilling the conditions 2.10.2 and 2.10.3. Note that, if £ is an F -locality
then, for any @ € X, the structural functors 7% and 7* determine two group
homomorphisms (cf. 2.7.2)

TX i Np(Q) — £(Q) and 7% :L(Q) — F(Q) 2.11.1

and 7} is surjective; in particular, if @ is fully normalized in F then, since
Fp(Q) is a Sylow p-subgroup of F(Q) [9, Proposition 2.11], 72 (Np(Q)) is
a Sylow p-subgroup of ct (Q) if and only if it contains a Sylow p-subgroup
of Ker(ﬂ'g). Consequently, if £ is divisible and, for any @ € X fully nor-

malized in F , the group c (Q) endowed with 7% and 7% is an F-localizer

of @, it is easily checked from [9, Proposition 17.10] that L" is coherent and

therefore that it is a perfect F x—locality. Actually, the converse statement is
true and it is easily checked from [9, Proposition 18.4].

3. The F-localizing functor

3.1. For any n € N, let us consider the n-simplex A,, as a category where
the objects are the elements of A, and the set of morphisms from ¢ € A, to
j € A, is either the set of one element iej or the empty set according to i < j
ori>j[9, AL.7). Then, the proper category of chains c¢b*(F) of F [9, A2.8]
is the category formed by the pairs (q,A,) where n € N and q:A,, — F is
a functor, with the morphisms from (q,A,) to another object (r,A,,) given
by the pairs (v, ) where 6: A,, — A, is a functor or, equivalently, an order-
preserving map, and v:qo ¢ = ¢t is a natural isomorphism, the composition

with another morphism (u,€) : (v, A,) — (£, Ag) being defined by [9, A2.6.3]
(€)oo (v,6) = (no(v*e),do¢) 3.1.1.

Occasionally, we write (v, )4 instead of (v,d) to avoid confusion.

3.2. Then, it is easily checked that we have a functor [9, Proposi-
tion A2.10]

autr : ch*(F) — Gt 3.2.1

mapping any ch*(F)-object (q,A,) on its group of automorphisms in ch*(F),

denoted by F(q) . Similarly, for any F * -locality £" we have the proper cate-

x

gory of chains ch*(L") of £" and the corresponding functor
aut,x : cb*(ﬁx) — &t 3.2.2;

once again, we denote by ﬁi((i) the group of cf)"(ﬁ36 )-automorphisms of an
ch* (L )-object (4, Ay,).
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3.3. Actually, we identify F(q) with the stabilizer in F(q(n)) of all
the subgroups Im(q(ien)) when i runs over A, and we say that q is fully
normalized in F if q(n) is fully F(q)-normalized in F; in this case, we set

Np(q) = N2V (q(n)) and Nz(q) = N5 (q(n)) 3.3.1
and we know that Nz(q) is a Frobenius Np(q)-category [9, Proposition 2.16];
moreover, since there is an F-morphism ¢ : q(n)-Np(q) — P such that ¢(q(n))
is fully normalized in F [9, Proposition 2.7], it easily follows from Theo-

rem 2.10 that we also have an F-localizer of q, namely a finite group Lx(q)
endowed with two group homomorphisms

Tq: Np(q) — Lr(q) and w4 :Lr(q) — F(q) 3.3.2

such that 7y 074 is induced by the Np(q)-conjugation, that we have the exact
sequence

1 — Hep(qmy) — Cr(a(n)) =% Lr(q) = F(q) — 1 3.33

and that 7y and 74 induce an equivalence of categories
Nz am)(@) = FLr(9),a(n) 3.3.4.

3.4. On the other hand, let us denote by Loc the category where
the objects are the pairs (L, Q) formed by a finite group L and a normal
p-subgroup @ of L and where the morphisms from (L,Q) to (L',Q’) are
the group homomorphisms f:L — L’ fulfilling f(Q) C Q'. Actually, any
object (L, Q) admit as inner automorphisms the automorphisms determined
by the @-conjugation; we denote by Coc the corresponding exterior quotient
(cf. 2.1). That is to say, the category Loc has the same objects as Loc and the
morphisms from (L, Q) to (L', Q") are the Q'-conjugacy classes of group ho-
momorphisms f: L — L' fulfilling f(Q) C @Q'. Note that we have an evident
functor -

lb: Loc — Bt 3.4.1

mapping (L, Q) on L/Q.

3.5. Assume that any element of X is F-selfcentralizing; in particular,
any @ € X is fully centralized in F and we have [9, 4.3 and 13.2.2]

Cr(Q)=Fz and Hc,q) = {1} 3.5.1.

Moreover, assuming the existence of a perfect }'x—locality 733{, it follows
from 2.11 that the functor 3.2.2 induces a new functor

loc,x @ ch*(F ) — Loc 3.5.2

mapping any ch*(F " )-object (g, Ay) on (Pi(ﬁ), Z(q(n))) where 4: A, — P
is a functor lifting q and we identify Z(q(n)) with its structural image; as
a matter of fact, from the existence of the F-localizers we can obtain this

functor — called the F x—localizing functor — without assuming the existence
x
of P .
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3.6. Indeed, let (,6): (t, Ap) — (9, Ayn) be a ch*(F " )-morphism; thus,
the functor autr gives a group homomorphism
autr(v,0) : F(r) — F(q) 3.6.1

and, assuming that q is fully normalized in F, there is p € F(q) such that
[9, Proposition 2.11]

(autf(u, 5)) (]:p(t)) C Fr(g)? 3.6.2.

Then, assuming that t is fully normalized in F too, it follows from [9, Propo-
sition 18.16] that there is a group homomorphism

)\(,j)(;) : L]:(t) — L]-'(q) 3.6.3

such that
Tq © A(v,5) = autz(v,d) o my 3.6.4

and that, identifying Np(q) and Np(t) with their respective images via 74
and 7, for some r € Lz(q) lifting p we have

)\(,45) (’U) = C(u,é) (U)T 3.6.5.
for any v € Np(t), where the F-morphism
Cws) : Np(v)-Im(x(5(n) e m)) — Np(q)-q(n) 3.6.6

comes from [9, Proposition 2.11] and fulfillis ¢, 5 (tv(6(n) em)(v)) = p(vy(v))
for any v € t(é(n)) . Now, the following statement is easily checked from
[9, Proposition 18.19].

Proposition 3.7 Assume that any element of X is F-selfcentralizing. There
s a unique isomorphism class of functors

x __
locrx @ ch™(F ) — Loc 3.7.1

mapping any ch*(]—'x)-object (4, A) such that q is fully normalized in F , on
(Lx(9),Z(q4(n))) and any cf)*(]—“i)—morphism (v, 0): (v, An) = (q,Ay) such

that v is also fully normalized in F , on the i/l\o/c—morphism
loc ,x (,0) : (Lz(x), Z(x(n)) — (Lr(q), Z(q(n))) 3.7.2

determined by A, 5) . In particular, we have o o loc x = aut .« .
3.8. More generally, let a category £" endowed with two functors
T :’T];E — £ and 7L — F 3.8.1

be a p-coherent F x—locality and assume that Ker(w;) is Abelian for any
Q € X; then, the functor aut,x still induces a new functor

foc,x : ch*(F ) — Loc 3.8.2
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mapping any ¢h*(F " )-object (g, A,) on (Ex(d),Ker(w;E(n))) where as above
q:A, — £" is a functor lifting q, and we still have [v o loc,x = aut x .
A critical point for our argument is the following “universal” property of the

F x—localizing functor which is easily checked from [9, Proposition 18.21] and
from 2.11 above.

Proposition 3.9 With the notation and hypothesis above, there is a unique
natural map
/\Lx : [Ucfse — [Otﬁx 3.9.1

such that To % X iduutfx and that, for any F-chain q:4, — 7 fully

c* =
normalized in F, we have (A,x)(q,a,) © T8 = T where q: A, — £ isa
functor lifting q. In particular, A.x is an isomorphism if and only if £ois
a perfect F * -locality.

3.10. Till the end of this section, we will seek for the possible existence
of a }'x—sublocality P oof £ realizing the “image” of A.x [9, 18.23-18.29].
Note that, denoting by L the quotient ]-"x—locality of £ defined by

L£°(Q,R) =L (Q,R)/7* (Z(R)) 3.10.1

for any @, R € X, which is easily checked to be coherent, it follows from
Proposition 3.9 that the existence of P s equivalent to the existence of a
section F~ — L of the structural functor 7% : £ — F , and we will do a

careful choice of liftings for any o -morphism z: R — Q.
3.11. Thus, till the end of this section, we assume that 72 (Z2(Q)) ={1}
for any Q € X . Denoting by (Q, Ag) the obvious ch* (.7’:3E )-object and choosing

a representative Ag of the Loc-morphism
(Arx)@,n0) ¢ (LF(Q), Z2(Q)) — (ﬁx(Q)aKer(Wé)) 3.11.1,

it is clear that the image of the F-localizer in £ (Q) is isomorphic to F(Q)
and therefore we have

£(Q) = Ker(r3) » F(Q) 3.11.2.
Similarly, for any F -morphism ¢:R — Q, let us denote by (p, A1) the
cf)*(]—"i )-object determined by the F-chain mapping 0 on R, 1 on @ and
the Aj-morphism 0 e 1 on ¢; then, the diwvisibility of F [9, 2.4] forces a
canonical isomorphism

U.Ut]_-as ((p, Al) %J]:(Q)R/ 3.11.3
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where we set R’ = ¢(R) and, as usual, 7(Q)r denotes the stabilizer of R’
in 7(Q), and moreover the functor aut,x [9, Proposition A2.10] maps the

obvious ¢h*(F " )-morphism
(idr, 80)y @ (0, A1) — (R, Ao) 3.11.4,

in the group homomorphism F(Q)r — F(R) mapping p € F(Q)r on the
unique o € F(R) fulfilling poo =pogp.

3.12. Mutatis mutandis, for any Ex—morphism z: R — @Q, let us denote
i .

by (x, A1) the ch*(L" )-object determined by the £ -chain mapping 0 on R,
1 on Q and the Aj-morphism O e 1 on z ; then, the divisibility of £ [9, 17.7]
forces a canonical isomorphism

x

auth ({E, Al) =L (Q)R/ 3.12.1

where we set R’ = (wéR (z))(R) and, as above, ﬁx(Q)R/ denotes the stabilizer
of R' in £7(Q), and moreover the functor aut . [9, Proposition A2.10] maps

the obvious ch* (Ex )-morphism
(1, (1),60) : (x, A1) — (R, Ao) 3.12.2,

in the group homomorphism ¢, : £ (Q)r — £ (R) mapping r € £ (Q)p
on the unique s € £ (R) fulfilling z-s = r-z . Then, the functor loc,x in 3.8
above maps (z, A1) on (EX(Q)R/, Ker(wz )) and, setting ¢ = 7% (), it maps
(idg, 0Y), in the Loc-morphism

x

(£5(Q)r Ker(n2)) — (L7(R), Ker(r%)) 3.12.3
determined by ¢, .

3.13. Moreover, the structural functor 7= L — F' determines a na-
tural map [9. Proposition A2.10]

aut_x :aut,x — autxoch* (1) 3.13.1

which, identifying &t with the full subcategory of Loc over the objects (G,{1})
where GG runs over the finite groups, it factorizes through a natural map

loc_x :loc,x — aut =« 3.13.2;

then, this natural map and the natural map A,.x :loczx — loc,x in Propo-
sition 3.9, both applied to the cf)*(]—"}€ )-morphism 3.11.4, yield the following
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commutative Loc-diagram

(A x)(Rr.00)
<=

(L#(R), Z(R)) (L(R),Ker(nx)) — F(R)

Troc x ((dr.69)p) o, x ((dr,69)e) | aut_x ((idr,69),) | 3.13.3;
()‘Ef)(%Aﬂ x
(Lr(Qr.2(Q) ——— (L(Qr Ker(r)) — F(Q)r

hence, for a suitable z, € EX(Q,R) lifting ¢ € F(Q, R), we still have the

commutative diagram of group homomorphisms

Ar x

Lr(R) L'R) — F(R)

T coy | T 3.13.4.

Lr@Qr — L(Qr — FQr

3.14. Now, it is clear that the images of the horizontal left-hand homo-
morphisms supplie sections for the horizontal right-hand homomorphisms;
in particular, identifying F(R) and F(Q)g with their respective images
in £(R) and £ (Q)r , for any p € F(Q)r and any ¢ € F(R) fulfilling
poo =poy,in ﬁx(Q,R) we still have z,-0 = p-z,. Consequently, con-
sidering a set of representatives in X for the set of its F-isomorphism classes,
and the action of F(Q) x F(R) on EI(Q, R) defined by the composition on
the left and on the right via the inclusions F(Q) C £ (Q) and F(R) C L (R)

chosen in 3.10, for any ¢ € F(Q, R) we can choose a lifting z, € EX(Q, R)
in such a way that [9, 18.27.3]

3.14.1 We have xpopos = p-Tp-0 for any p € F(Q) and any o € F(R).

4. The key result

4.1. Let k be a field of characteristic p and denote by k-mod the cate-
gory of finite dimensional k-vector spaces. Assume that any element of X is

F-selfcentralizing, denote by F * the usual exterior quotient of F * (cf. 2.1)
and consider a contravariant functor m* : F° — k-mod. In this section, we
will prove the nullity of the stable cohomology groups ]HIZ:(]:' * ,m*) forn > 1.

4.2. Recall that the usual cohomology groups are defined by
H™(F", m*) = Ker(d,)/Tm(d,_1) 42.1

where, denoting by Sct(An,}ﬁ) the set of functors from A, to ]:"x, and
setting

Im(d_1) = {0} and C*(F ,m%)= H m*(q(0)) 4.2.2,
qEF (A, FY)
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for any n € N we denote by
dy i C*(F,m2) — C"HYFE  m¥) 4.2.3

the usual differential map [9, A3.11]. Then, for any n € N consider the

k-submodule C} (]}i ,m*) of stable elements of C" (]j"x,mf) , namely the el-

ements m = (mq)qegct(An,ﬁ*) fulfilling

mq = (m(2))(mg) 4.24

for any natural isomorphism 7: ¢ 2 q’ between two F* -chains q:4A, = Fr

and q': A, — F ; it is easily checked that, for any n € N, the differential
map d,, preserve the stable elements and, denoting by d the corresponding
restriction, we define

H(F",m*) = Ker(d?)/Im(d,_,) 4.2.5.

4.3. In order to prove that these groups vanish for n > 1, let us recall
some features of the category F *. It follows from [9, Corollary 4.9] that,
for any triple of subgroups @, R and T in X, any F-morphism &:Q — R
induces an injective map from F (T, R) to F(T,Q) and then we set

F(T,Q)a = F(1,Q) — | JF(T,Q") 0 &' 431,
'a

where 6’ runs over the set of F-nonisomorphisms 6':Q — Q' from Q or,
equivalently, the set of nonfinal (F°)g-objects (cf. 2.1) fulfilling & o 6’ = &
for some &' € .7:'(R7 Q') ; in this case, according to [9, Corollary 4.9], &' is
uniquely determined, and we simply say that 6’ divides & setting & = a/ 6.
Note that the existence of & is equivalent to the existence of a subgroup of R
which is F-isomorphic to @’ and contains a(Q) for a representative « € &; in

particular, we have F(T,Q)s = F(T, Q) if and only if & is an isomorphism.
4.4. Actually, an element 3 € F(T,Q) which can be extended to @’
via 0", a fortiori it can be extended to Ng (9’(@)) for a representative 0’ € 6’ ;

hence, it follows from condition 2.2.3 above that 3 belongs to F (T, Q)s if and
only if, for some representative § € B, we have

“Fr(a(@) NP Fr(B(Q) = Fol(Q) 441

where o*: (@) = @Q and 8*:5(Q) = @ denote the inverse of the isomor-
phisms respectively induced by « and 3, and, in particular, we get

4.4.2 Be F(T,Q)s is equivalent to & € F(R, Q)j-
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Moreover, the quotient

Nr(a(Q))/a(Q) = Nr(a(Q)) = * Fr(a(Q)) 4.4.3
clearly acts on F(T,Q)s by composition on the right-hand, and from equal-
ity 4.4.1 it is easily checked that [9, 6.6.4]
444 Ng(a(Q)) acts freely on F(T,Q)a. In particular, if & is not an
F-isomorphism then p divides | F(T,Q)a] .
The next result follows from [9, Proposition 6.7].

Proposition 4.5 For any triple of subgroups @, R and T in X and any
&€ F(R,Q), we have

]:—(Tu Q) = |_| ]}(Ta Ql)d/é/ o él 4.5.1

'a
where 9~’:Q — Q' runs over a set of representatives for the isomorphism
classes of (F°)g-objects dividing & . Moreover, p does not divide |F(P,Q)|.
4.6. If Q is a subgroup of P and R a subgroup of @) , we denote by Lg the

group homomorphism determined by the inclusion. Now, for any F-chain
q:A, — Fr (cf. 3.1), let us denote by Wy the set of pairs (fi, q') formed by
an F -chain q:A, — F* fulfilling

¢(i-1)Cq'(i) and q(i—lei)=211) 46.1

for any 1 < i < n, and by a natural map f:q" — q such that Zf/(i) belongs
to f'(P,q’(i))ﬂ_ for any i € A, (cf. 4.3.1). Note that, for any 1 < i < n,
applying Proposition 4.5 to the F-morphism Zf,(ifl) , the composition

q(i —1ed)ofi;—1 :q'(i —1) — q(i) 4.6.2
determines a subgroup q'(7) of P containing q'(i — 1) and an F-morphism
fi; € F(q(i),q'(i)) fulfilling

q(i —1ei)o fii1 = i o T\, 4.6.3;

that is to say, the pair (fi,q’) is actually determined by the subgroup ¢'(0)
and the F-morphism fig: ¢’ (0) — g(0) .

4.7. For any (f1,q") € Wy and any £ € A, , recall that we denote by

by (i) : A1 — F* the functor which coincides with q’ over A, and maps
i€ N1 —Agonq(i—1)and £el+1on fi:q'(¢) — q(¢) [9, Lemma A4.2];
moreover, denote by

Po(): Ap — F 47.1
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the ]:"ﬁ—chain extending ¢’ and mapping n + 1 on P and nen +1 on Zf/(n) .
Then, any ch*(F * )-isomorphism 7:q = v between two F*-chains clearly
induces a bijection between W, and W, mapping (f,q') € Wy on (7o f1,q’)
and, for any ¢ € A, 41, we have the natural isomorphism

by (7) : hy (1) = hi (o 1) 4.7.2

mapping i € Ay on ﬁq,(i) oronidp ifi=¢=n+ 1,and i € A1 — Ay
on 7;_1 ; note that the bijection Wy = W, is already induced by 7y . Moreover,
for any u € P, it makes sense to consider q"* and the conjugation by u

defines a natural isomorphism Rg/ :q* = q’; then, the pair (fi o (,gg/)—17 q")
still belongs to W, and we have an analogous natural isomorphism
b7 (RY) by (o (RL) ™) = b7 (i) 4.7.3.

Teorem 4.8. For any contravariant functor m* FT — k-mod and any
n > 1, we have

HY(F,m*) = {0} 48.1.
Proof: Since F(P) is a p/-group (cf. 2.2.2), if X = {P} then we clearly have
[9, Proposition A4.13]
H (F,m*) = H*(F, m¥) = H*(F(P), m(P)) = {0} 48.2.
Assuming that X # {P}, we argue by induction on |X| and, setting
X=9uU{0U) |0 F(PU)} 4.8.3,
for a minimal element U € X, we may assume that for any n < 1 we have
H(F”, m?) = {0} 4.8.4

where m? denotes the restriction of m* to F v

With the notation in 4.2 above, consider the following commutative dia-
gram

0 0 0
T ll ll
e a2 1,29 d; 2/ 29 d
CHF ,m?») — C(F ,m?) — Ci{(F ,m?) —
T i i
~ X ~ x ~ x 4.8.5
CO(F",m¥) b, CLF",m¥) N C2(F",m¥) Ly
0 T )
K9 Kl — K?
T ll ll
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where the top and the vertical sequences are exact; now, in order to prove
that the middle sequence is exact, it is easily checked that it suffices to show
that the bottom sequence is so.

Forn > 1, let m = (mq)qeg[t(An 71y
in KI; that is to say, mq belongs to mf(q(O)) , it is equal to zero whenever
q(0) € 9 and we have

d,(m) =0 and (m¥(do))(mq) = mq 48.6

be a stable m*-valued n-cocycle

for any natural isomorphism &: q 2 q’. Consider an F*-chain t: Apo1 — Fr
such that v(0) € 9 ; according to 4.6, any pair in the set W, is determined
by an element of }'(P, r(O)) ; let us denote by (v, fin) the pair determined
by n € F(P,¢(0)), so that we have t,(0) = 1(r(0)) and the isomorphism
1. :t(0) = ¢, (0) induced by 7 is a representative of (i, )" -

At this point, since p does not divide ‘]:'(P, t(O))‘ (cf. Proposition 4.5),
we define an element n, of m* (¢(0)) by setting

ne = [F(Pe(0)] - Y ms (n*)(Z(—nfmb?fl(ﬂn)) 4.8.7

€ F (Pye(0)) =0
where, for any 77 € F(P,t(0)), 1 denotes a representative of 7; note that,
for another representative ' = n* of 7 where u € P, we have a natural
isomorphism (cf. 4.7.3)

b7 () = 7 (i) 22 b7 (fin) 48.8
and therefore, since b7 (. )o = (n.)~1
for any ¢ € A,,, we have (cf. 4.2.4)

(mx (i)) (mbfl(ﬂn/)) - (mx (,’7“*)) (mh,?’l(ﬂn)) 4.8.9.

ony , the stability of a guarantees that,

Moreover, if 7: t = v/ is a natural isomorphism between F*-chains then a
representative v of 7y induces a bijection between F (P, v(0)) and F(P,'(0))

and, setting ' = no Vo_l for any n € f(P, t(O)) , it is quite clear that we have
ty =t, and [,y =Vo [y, 4.8.10
and, since bg_l(ﬂ)o = id, (o) , We get Mgn=t ) = Mgr=1(4,) forany £ € A, ;

consequently, we obtain

n

e = [F(PEO) 3 mr ) () mypg )

ﬁ’E]}(P,t’(O)) =0
3 _ & 4.8.11.
= |F(Pr)] " > mE() tom (i) (D (=) mg-1s,))
HEF(P,(0)) =0

=m* (%)~ (1)
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Hence, the family n = (n,) where we set n, = 0 whenever t(0)

tEFct(Ay— 1]: )’
belongs to ), is stable and we claim that dn 1(n) =m.

Indeed, for any F -chain q:A, — F* such that q(0) € 9 and any
0 e f(P, q(O)) , considering the components of the differential of m at the
F_chains by (i) : Apy1 — F* for any £ € Ap1, we get [9, A3.11.2]

n+1
0= (m*((f20)0)) (mq) + Y _(=1)"myp g)osn
4.8.12.
n+1
0= (m* (a0(091))) (g, (resy) + D_(=1) Mg oyos:
1=1

for any ¢ € A,, . Let us consider the sum of all the second members of these
equalities indexed by ¢ € A, 11, respectively multiplied by (—1)*; it follows
from [9, Lemma A4.2] that we have the cancellation of the (£41)-th terms
(—1)é+1mb?( 0)osy, , and (—1)€+1m})?+1(ﬁ9)052+1 in the ¢-th and (¢1)-th equal-
ities for any £ € A,, . Moreover, since (qg, fig) belongs to X, it is clear that
for any i € A,, the pair (qg 087", fig 6] ) belongs to X jo5n—1 and that we
have '

b1 (i) 0 67 = b (fig x 677 1) 4.8.13.

It follows from [9, Lemma A4.2] and from equality 4.8.13 above that the
alternating sum of all the first terms in equalities 4.8.12 above yields

n

(% ((fi0)0)) (mq) — (m* (2900 1) (D (-1 myn-s (s pnr)) 4814,

£=0
First of all, since (fig)o = (é;)*l and p does not divide ’f(P, q(O))‘ , we have
~ -1 ~ ~
F(Pa@)] Y me @) (M= (0)0)) (ma)) =mq 4815
0eF(P,q(0))
moreover, for any 6 € f(P, q(O)) , it is clear that
m* (0,) o m* (qo(0e1)) 0w ((g)1) = m*(q(0e1)) 4816

if q(0e1) is an isomorphism then we have q¢(0) = qg(1) and go(0e1) = i?iqe(o)
for any 6 € F(P,q(0)), and therefore we get

n

Z m"(@N)((m36 (qe(0e1 Z Moyn=1 (fgoy " )))

GeF(P,q(0)) £=0

:m’f(q(O.l))( Z Z b? (g #87" 1))) 4817

éeﬁ(P,q(O)) £=0

= |F(P,q(0))|-(m* (q(0e1))) (nge5n-1)
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Otherwise, either q¢(0) # qo(1) and, since

(b7 (20 057 1))(0) = qp(1) € 48.18
for any ¢ € A,, , we have
¢ _
> (=1 Mign1 a1y = 0 4.8.19.
=0
Or go(1) = Gg(0), go(0el1) = i?iae(o) and 0 belongs to ]:'(P,q(O)) q(0e1) > but, we

know that }'q(l (4(0)) acts freely on }'(P q(0)) 4(0e1) (
ou = 0. 0 K5 (u) (6.)~! for any u € Ny(1y(q(0)) , from the commutative

cf. 4.4.4) and, setting

]}x—diagram
~ a(l)
(#9)1/\ 7\(#9)1
qo(1 T qe(1)
q(0) 4.8.20
[ N
q0(0) = q0(0)

and from Proposition 4.5 we obtain a natural automorphism K :qg9 = qp
(cf. 4.7) such that (k%)y = &, and then, for any ¢ € A, 11 we have the
natural isomorphism (cf. 4.7.3)

b7 (RY7) = b7 (fio o (7)) = b7 (i) 4.8.21.
Moreover, in this situation it is quite clear that we have
(fig o (RY) ™M) %05 " =fig *0y~ " and  qoon, = do 78.22;

hence, for any ¢ € A, 41 we have

. _
(M (3)) (M1 (g ey 1)) = Mo (go(520)-1)e57 ) 1.8.23.

= Myn-1 n—1
by~ (fBoxdy ")
Finally, since ]:'q(l)(q(O)) is a nontrivial p-group, since (q o 65~ )(0) € Y
forces Mgosn—1 = 0 and since we have gp(0 e 1) = i?iae(o), we still have

n

Z mx(@)((mi qe(Oel Z Myn=1(fgwon 1)))

6 F(P,q(0)) £=0
~ n 4.8.24
= me(o*)<zmi Z b? 1 (fio *6”71))) =0
) u =0

= [F(P,a(0))[-(m* (a(001))) (nggn-1)
where § runs over a set of representatives for f(P, q(O))q(O.l)/.ﬁq(l)(q(O))

and u over a set of representatives for N1y (q(0)) .
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Now, according to the cancellations mentioned above, for any F-chain
q:A, — F* such that q(0) ¢ Y and any 60 in F(P,q(0)) the sum of all the
remaining terms in equalities 4.8.12 multiplied by (—1)* yields

n+1

Yoo DT g,

=1 leA,1—{i—1} 4.8.25
. .8.25.

n
z+1
= 2 (DTN My i)
£=0

=1

In conclusion, the alternating sum of the sum over all the 8 € ]:"(P, q(0)) in

equalities 4.8.10 proves that, for any F* _chain q:A, — F* such that q(0)
does not belong to X, we have (cf. 4.8.14, 4.8.15, 4.8.17, 4.8.24 and 4.8.25)

n

mq = (m¥ (q(0°1)))(nqoag*1) + ;(_1)%“0‘5?71 4.8.26;

- dn 1(n)q

but, if q(0) € Q then we get mq = 0 = d._,(n n)q; hence, we finally get

m = dn 1(n) which proves our claim. We are done.

5. The natural F-basic P x P-sets

5.1. Recall that a basic P x P-set [9, 21,4] is a finite nonempty P x P-set
Q such that {1} x P acts freely on Q, we have

2°~Q and |Q|/|P]# 0mod p 5.1.1,

where we denote by Q° the P x P-set obtained by exchanging both factors,
and, for any subgroup @ of P and any group homomorphism ¢:Q — P such
that © contains a P x P-subset isomorphic to (P x P)/A,(Q), we have a
@ X P-isomorphism

Resyxidp () = Resngidp Q) 5.1.2

where, for any ¢, ¢’ € F(P,Q), we set
Apr (@) = {(p(u), ¢ (W) tueq and  Ay(Q) = Aidg,(Q) 5.1.3

and, as above, denote by Lg the corresponding inclusion map.

5.2. Then, for any pair of subgroups @ and R of P, denoting by
FQ, R) the set of group homomorphisms ¢: R — P such that

e(R) C @ and Resy,xidp(£2) = Res PdeP(Q) 5.2.1,
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it follows from [9, Proposition 21.9] that F* is a Frobenius P-category; we
say that Q is a F-basic P x P-set whenever F¥ = F; on the other hand, it
follows from [9, Proposition 21.12] that the Frobenius P-category F admits
an F-basic P x P-set.

5.3. More generally, we say that a P x P-set Q" is F-basic if either is
empty or it fulfills condition 5.1.1 and the statement

5.3.1 The stabilizer of any element of 0" coincides with Ay g (R) for some
R € X and suitable ¥,v' € F(P,R), and we have

|(Q*)A¢,¢/(Q)} _ }(Q*)A(Q)|

for any Q € X and any ¢, ¢’ € F(P,Q).

Recall that, according to [9, Proposition 21.12], for any Fbasic Px P-set Q"
there is an F-basic P x P-set () containing Q" and fulfilling

02« (@) — (Qx)Acp(Q) 5.3.9
for any Q € X and any ¢ € F(P,Q).

Proposition 5.4. Assume that any element of X is F-selfcentralizing.
Then, the P x P-set

Q = |5| U(P x P)/A,(Q) 5.4.1,

where Q) Tuns over a set of representatives for the P-conjugacy classes in X
and @ runs over a set of representatives for the set of Fp(Q)-orbils in
F(P, Q)Zg ,is an F -basic P x P-set which for any Q € X fulfills

(Q)2@] = (2(Q)| 5.4.2.

Proof: Since we clearly have
x x x ~
(Q)y=Q and |Q/P|=|F(P)| modp 5.4.3,
it suffices to check that, for any R € X and any ¢ € F(P, R), we have
(@) = |Z(R) 5.4.4;

but, for any subgroup @ of P and any ¢ € F(P,R), Ay(R) fixes the class of
(u,v) € P x Pin (P x P)/A,(Q) if and only if it is contained in A, (Q)®?)

or, equivalently, we have

uRu™' CcQ and @(uwu™t) =vyp(w)v! for any w € R 5.4.5,
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which amounts to saying that the following F-diagram is commutative

P . ) P
N I
P Q P 5.4.6
[g\ RQ,R(U)T /‘1/;
R

where k,, (u): R — @ is the group homomorphism determined by the con-
jugation by u .
Since ¢ belongs to F(P, Q)zg , it follows from Proposition 4.5 that the
pair (i%,1)) determines the isomorphism class of the (F°)z-object
Rop(u):R— Q 5.4.7;

that is to say, if (u/,v') € P x P is another element such that A, (Q)® ")
contains Ay (R), we have v’ = su for some s € () and therefore we get

Y(w) = v o(suwut s = go(uwufl)“"(s)flvl 5.4.8

for any w € R; at this point, it follows from [9, Proposition 4.6] that, for a
suitable z € Z(R), we have ¢(s)'v’ = vz, which proves our claim.

5.5. Moreover, we say that an F-basic P x P-set ) is thick outside of X
if the multiplicity of the indecomposable P x P-set (P x P)/A,(Q) is at
least two for any subgroup @ of P outside of X and any ¢ € F(P,Q). Let
us call natural any F-basic P x P-set 2 which is thick outside of the set of
F-selfcentralizing subgroups of P and, for any F-selfcentralizing subgroup @
of P and any ¢ € F(P,Q), it fulfills

Q4@ = |Z(Q)| 5.5.1;

then, the existence of natural F-basic P x P-sets follows from Proposition 5.4
and from [9, Proposition 21.12].

5.6. Let ©2 be an F-basic Px P-set and @ a subgroup of P ; it follows from
our definition in 5.2 that any orbit of Resgx p(€2) is isomorphic to the quotient
set (QxP)/Ay(T) (cf. 21.3) for some subgroup T of Q and some n € F(P,T);
note that the isomorphism class of this Q x P-set (Q x P)/A,(T) only depends

on the conjugacy class of T' in @ and on the class 77 of 7 in ]}(P, T) ; moreover,

it is quite clear that Ngxp(A,(T)) acts regularly on ((Q x P)/AU(T))A"(T)
and that we have a group isomorphism

Aut((Q x P)/A(T)) 2 Nowp (A,(T)) 5.6.1



23

Proposition 5.7. Let Q be a natural F-basic P x P-set, Q and T JF-self-
centralizing subgroups of P such that T C @, and n an element of F(P,T).
Then, the multiplicity of (Q x P)/A,(T) in Resgxp(Q) is at most one, and

it is one if and only if 1) belongs to ]:"(P, T);q . Moreover, in this case we have
T

Aut((Q x P)/A,(T)) = Z(T) 5.7.1.

Proof: According to our definition, we have

Q2D | = | Z(T)| 5.7.2;
hence, if the multiplicity of (Q x P)/A,(T) in Resgxp(£2) is not zero, then
it is one and we have (cf. 5.6)

Nawr (8y(T))] < 12(T)| 5.73

which forces isomorphism 5.7.1; finally, since Ngxp(A,(T)) covers the in-
tersection Fo(T') N Fp (n(T)) , in this case it follows from 4.4 that 7 belongs
to F(P,T)q .

T

6. Construction of F-localities from F-basic P x P-sets

6.1. Let Q be an F-basic P x P-set and denote by G the group of
automorphisms of Resg1yxp(Q2); it is clear that we have an injective map
from P x {1} into G and we identify this image with the p-group P, so that
from now on P is contained in G and acts freely on 2. Recall that, for any
pair of subgroups @ and R of P, we have (cf. 5.2)

Tc(R,Q)/Ca(R) = F(Q, R) 6.1.1.

6.2. Let @ be a subgroup of P; clearly, the centralizer C(Q) coin-
cides with the group of automorphisms of Resgxp(2) and therefore, de-
noting by O¢g a set of representatives for the isomorphism classes of the
set of ) x P-orbits of ©, by ko the multiplicity of O € O¢g in Q and
by &k, the ko-symmetric group, it is easily checked that we have a canonical

Gr-isomorphism [9, 22.5.1]
Go:Ca(@) = [ Aut(0)164, 6.2.1.
0€eDq

More precisely, as in [9, Proposition 22.11], for any subgroup R of @ we have
a commutative &-diagram
Ca(Q) — Ca(R)

T I
[Iew — 11k

0€eDg 0'€Dr

6.2.2

where the bottom homomorphism depends on Resgxp(O) for any O € D¢ .
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6.3. As in [9, Proposition 22.7], let us denote by S¢(Q) the minimal
normal subgroup of C(Q) containing (w,, )™ ( HOGDQ Sk, ) for a represen-
tative w, of @, ; then, denoting by Of, the subset of O € D¢ with multiplicity
one and by ab(Aut(0)) the maximal Abelian quotient of Aut(O), it follows
from [9, Lemma 22.8] that

Ca(Q)/66(Q) = ] Aut(O [T ab(Aut(0)) 6.3.1.

0eoy, OeDQfD'Q

Moreover, although in [9, Chap. 22] we assume that  is thick outside of 0,
it is easily checked that the elementary arguments in [9, Proposition 22.11]
still prove that, for any subgroup R of @), we have

6@(@) C GG(R) 6.3.2.

First of all, let us recall the definition of the basic F-locality [9, Proposi-
tion 22.12].

Propsition 6.4. If Q is thick outside of () then the correspondence mapping
any pair of subgroups Q and R of P on the quotient set

£(Q,R) = Ta(R,Q)/Sc(R) 6.4.1,

endowed with the natural maps

T Tp(Q,R) — Eb(Q,R) and w° Eb(Q,R) — F(Q,R) 6.4.2,

Q.R

defines a p-coherent JF-locality (Tb,Eb,wb) which does not depend on the
choice of the F-basic P x P-set thick outside of 0.

6.5. Here, we are interested in the analogous construction starting with
a natural F-basic set. Till the end of this section, assume that € is a natural
F-basic set; then, denoting by DZ the subset of @ x P-orbits O € Dq such
that the stabilizers come from F-selcentralizing subgroups of P, it follows
from isomorphism 6.3.1 and from Proposition 5.7 that

Ca(@)/66(@) = ] II zaox ] ab(Aut(0)) 651

TeSq 7EF(P, T).Q 0€Dq-97
T

where S’Q denotes a set of representatives for the set of Q-conjugacy classes of
F-selfcentralizing subgroups of ) . The following result introduces the natural
F-locality.
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Proposition 6.6. If Q is natural then the correspondence mapping any pair
of subgroups @Q and R of P on the quotient set

£(Q.R) = Te(R,Q)/Sa(R) 6.6.1,
endowed with the natural maps

o Te(QR) =~ LY(Q,R) and 7 :L(Q,R)— F(QR) 662,

Q.R

defines a p-coherent F-locality (T“,EH,F“). This F-locality does not depend
on the choice of the natural F-basic P x P-set and we have a canonical
surjective functor of F-localities

(Tb,ﬁb,ﬂ'b) — (L, ) 6.6.3.

Proof: From inclusion 6.3.2 it is not difficult to check that, for any triple of
subgroups @, R and T of P, the product in G induces a map

L(Q,R) x L (R,T) — L (Q,T) 6.6.4;

then, it is quite clear that these maps determine a composition in the cor-
respondence £ above and that the natural maps in 6.6.2 define structural
functors

™:Tp— L and m:L — F 6.6.5;

moreover, the divisibility and the coherence of £ (cf. 2.8) are easy conse-
quences of the fact that G is a group.

On the other hand, for another choice of a natural F-basic P x P-set ',
we already know that we can embed their disjoint union QU Q' in a third
F-basic P x P-set Q" containing the same isomorphism classes of indecom-
posable P x P-sets [9, 21.5]; thus, setting

G/ = Aut{l}xp(ﬂ/) and G” = Aut{l}xp(Q”) 6.6.6

and denoting by (G")q,q the stabilizer in G” of the images of © and ', we
have canonical surjective group homomorphisms

G «— (G//)QQ/ — G 6.6.7

mapping P C (G")q,o onto both P C G and P C G’.

More precisely, for any pair of subgroups @ and R of P, it is easily
checked that we still have surjective maps

TG(Ru Q) — T(G”)ngl (R7 Q) — Te (R7 Q) 6.6.8;

then, denoting by S (R) and & (R) the corresponding normal subgroups
of Ce/(R) and Cgr (R) defined above, it is easily checked that we get

TG” (R7 Q) = T(G”)Q’Q/ (RaQ)GG”(R) 669
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and that this equality, together with the surjective maps 6.6.8, induce bijec-
tions

To(R,Q)/6a(R) = Ton (R, Q)/Sa(R) = Ta (R, Q)/6c(R)  6.6.10

which are clearly compatible with the corresponding natural maps 6.6.2. Con-
sequently, the three F-localities we obtain are mutually equivalent.

Analogously, we can embed the disjoint union of € and of an F-basic
P x P-set V' thick outside of § in a third F-basic P x P-set Q" [9, 21.5],
which will be necessarily thick outside of () ; then, setting

é/ = Aut{l}xp(Ql) and é” = Aut{l}xp(()”) 6.6.11

for any pair of subgroups @ and R of P, the argument above respectively
supplies surjections

Ta(R,Q)/6G(R) «— TaR,Q)/SeR)
| Ul 6.6.11
£'(Q,R) £(Q,R)

which are clearly compatible with the corresponding natural maps 6.6.2. This
proves the last statement.

6.7. More generally, let us denote by £ the Sfull F x—subcategory of £"
over X (cf. 2.7). Assuming that any group in X is F-selfcentralizing, we are
actually interested in the following quotient of o ; for any @@ € X denote
by S’; the subset of T € S’Q belonging to X and by 6;(@) the subgroup
of Cg(Q) fulfilling

66(Q)/66(Q)

1%

II T[z@mx [ ab(Aut(0)) 6.7.1;

TeSq-85 7 0€Dq-9y

where 7 runs over a set of representatives for the set of Fg(T')-orbits in

F(P,T)e [9, 23.7]; then, it is easily checked from diagram 6.2.2 that, for any
T
R € X contained in @), we still have

65(Q) C 64(R) 6.7.2.

Consequently, we obtain a new p-coherent F * -locality L' as the quotient
of £ defined by
£ (Q, R) = To(R, Q)/S¢(R) 6.7.3

for any pair of subgroups @ and R in X, together with the induced functors
Tox :71'336 L7 and ar L S F 6.7.4;

note that 7=* is a faithful functor.
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7. Construction of F -basic P x P-sets from perfect F -localities
7.1. Assume that any group in X is F-selfcentralizing. As in [9, A4.10],

let us consider the additive cover ac(F i) of 7, namely the category where

the objects are the finite sequences {Q; }ie; — denoted by Q@ = P,.; Q; — of
subgroups @; in X , and where a morphism from another object R = EB]EJ R;
to Q@ = @,; Qi is a pair (&, f) formed by a map f:J — I and by a family
& = {a&;}es of F -morphisms a;j:Rj — Qy(;y. The composition of (&, f)
with another ac(F " )-morphism
(B,g):Tz@Tg—m:@Rj 7.1.1,
teL jeJ
formed by a map ¢g: L — J and by a family 3 = {BZ}ZGL , is the pair formed
by f o g and by the family {ay) o Be}eer of composed morphisms
dg(g) o Bg Ty — Rg(g) — Q(fog)(f) 7.1.2.

7.2. As in [9, Chap. 6], Proposition 4.5 allows us to define a distributive
direct product in ac(F 36) . First of all, if R and T are two subgroups in X, we
consider the set i;T of triples (&, Q, 3) where Q € ¥ and we have (cf. 4.3.1)

a€F(RQ); and [eF(T,Q)a 7.2.1;

we say that two triples (&, @, 8) and (&, Q’,B’) are equivalent if there is an
F-isomorphism 0: Q = Q' fulfilling

&@of=a and B of=28 7.2.2;

then, 6 is unique since, assuming that the triples coincide and choosing o € &,
B € pand €0, it is easily checked that 6 belongs to (cf. 4.4.1)

a*}—R(a(Q)) N ﬂ*]:T(ﬁ(Q)) = Fo(@Q) 7.2.3.

< x
7.3. Denoting by Ty 1 a set of representatives for the set of equivalence

classes in ‘i;T , we call 7~ -intersection of R and T the rJ.c(]:'36 )-object

RAF T = d @ 7.3.1;

(@.Q.5) €Tk r
note that, if we choose another set of representatives, then the uniqueness
of the isomorphism above yields a unique ac(]:' * )-isomorphism between both

ctc(]}aE )-objects; in particular, with the notation in 6.7 above, we have

RO T D Pe 7.3.2.

Qesy 7
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where 4 runs over a set of representatives for the set of Fr(Q)-orbits in
F(T, Q);x - Finally, if R = ¢ ; R; and T = @, Tr are two ac(F " )-ob-
jects, we define
~X ~ X
R T= P Rn" T 7.3.3.
(JL)eTXL

Although in [9, Chap. 6] we consider the set of all the F-selfcentralizing
subgroups of P, the same arguments there show that the F-intersection
defines a distributive direct product in ac(F ).

7.4. Analogously, the existence of a perfect F 36-locality P actually de-
termines a distributive direct product in the additive cover ac(’Px) of P* and

then a suitable 7 -basic P x P-set; this fact is already proved in [9, Chap. 24]
whenever X is the set of all the F-selfcentralizing subgroups of P ; although
the same arguments apply to the general case, we partially recall them.
The starting point is the following result which admits the same proof as
in [9, Proposition 24.2].

Lemma 7.5. Any Px—morphism z:R — @ is a monomorphism and an
epimorphism.
7.6. For any triple of subgroups @, R and T in X, as in 4.3 above any

morphism z € P (T, Q) induces an injective map from P’{(T, R) to P’{(T, Q)
and then, as in 4.3.1, we set

PUT,Q. =P (1,Q) - P (1.Q) % 7.6.1

where 2’ runs over the set of Px—nonisomorphisms Z:Q — @ from Q or,
equivalently, the set of nonfinal objects in the category ((’PX)O)Q (cf. 2.1)
fulfilling «’.2" = x for some x’ € Pt (R,Q’); then, 2 is uniquely determined
by this equality and we simply say that 2’ divides x setting ' = z/z’. Note
that the existence of 2’ for some 2/ € P (Q', Q) is equivalent to the existence
of a subgroup of R which is F-isomorphic to @’ and contains (TFRYQ, (x)) (@Q);
thus, it is quite clear that

7.6.2 PX(T,Q)UE is the converse image of F (T,Q)

| in PT, Q).

TR.Q

Proposition 7.7. For any triple of elements Q, R and T in X, and any
x € 'Pi(R, Q) , we have
Ed

PUT,Q) =] [P (T.Q)uyur? 7.7.1

where 2/ :QQ — Q' runs over a set of representatives for the isomorphism
classes of ((Pi)O)Q—objects dividing x .
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7.8. As above, if R and T are two subgroups in X, we consider the
set ‘I;T of P’{-triples (z,Q,y) where Q € X and moreover = and y re-

spectively belong to PX(R, @), and to P (T, Q). or, equivalently, setting
a=7% (z)and B =mF (y) we have (cf. 4.4.1)

“Fr(a(@) N7 Fr(8(Q)) = Fo(@Q) 78.1;
note that, for any v € R and any w € T, the P’{-triple
v-(z,Q,y)w " = (1% (v)-x,Q, X (w)-y) 7.8.2
still belongs to T;)T and the quotient set (R X T)\f;T clearly coincides
with ‘i;T .

7.9. Similarly, we say that two P -triples (z,Q,y) and (¢',Q’,y') are

equivalent if there exists a ’Px—isomorphism z:Q = Q' fulfilling
¥z=x and yz=y 7.9.1;

since P is divisible, such a Px—isomorphism z is unique; in particular, in
any equivalent class we may find a unique element fulfilling ) C R and
z = 7% ,(1). Consequently, for any @ € X denoting by 85 the set of sub-

groups of @ belonging to X, in ac(Px) we can define

RAP T = T T Q 7.9.2

x x
QESQ yeP (T7Q)T§’Q (1)

and we clearly have canonical ac(Px)—morphisms

x
R+— RN T —T 7.9.3

respectively determined by 7% Q (1) and y . Note that, for any choice of a set
of representatives for the set of equivalence classes in T;T, we get an iso-

morphic object and a unique ac(Px)—isomorphism, which is compatible with
the canonical morphisms. Once again, we get following result [9, Proposi-
tion 24.8].

Proposition 7.10. The category ac(?”{) admits a distributive direct product
x
mapping any pair of elements R and T of X on their P intersection RNP T.
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7.11. Here, we are particularly interested in the P intersection of P
with itself; more explicitly, denoting by Q" the set of pairs (@, y) formed by
QexandyeP (P, Q)T;’EQ(D , we have

x
p” P= P @ 7.11.1;

(Qyen™

moreover, since P X P acts on the set ‘I; p (cf. 7.8.2) preserving the equiva-

lence classes, this group acts on Q" and it is easily checked that [9, 24.9]
7112 (u,v) € P x P maps (Q,y) € on (Q“71,7§ (v)-y-T»’E - (u™h)).
Q.Qu

In particular, {1} x P acts freely on Q" . On the other hand, it is clear that
the map sendmg a P -triple (z,Q,y) € SPP to (y, @, x) induces a P x P-set

isomorphism € 2 (2" )°. The point is that, from [9, Proposition 24.10 and
Corollary 24.11], and from Proposition 5.4 above, we can give a complete

description of Q"

Proposition 7.12. With the notation above, the stabilizer of (Q,y) € Q
in P x P coincides with AWfiQ(y) (Q). In particular, we have a P x P-set

isomorphism

g|_||_|PxP/A Q) 7.12.1

where Q Tuns over a set of representatives for the set of P-conjugacy classes
in X, and ¢ runs over a set of representatives for the set of ]:—p(Q)—orbits
in F (P, Q)zg

7.13. Consequently, we may assume that Q" is contained in a natural
F-basic P x P-set Q (cf. 5.5) and our purpose is to show that the per-
fect F x—locality P is contained in the quotient Ja above, of the natural

F-locality £ (cf. 6.7). First of all, it follows from Proposition 7.10 that
for any @ € X the inclusion Q C P determines an ac(P )-morphism

x x x
MNP rE1):Qn” P—Pn” P 7.13.1;

actually, according to 7.9.2 and denoting by Q; the set of pairs (7', z) formed
by a subgroup 7" in X contained in @ and by an element z of PX(P, T)TS,T (1)
we have
QNP P = b r 7.13.2,
(T,2)eQy
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the group @Q x P acts on Q; , and the fJ.c(’PBE )-morphism 7.13.1 determines a
@ X P-set homomorphism

fé : Q; — Restp(Qx) C Resgxp(£2) 7.13.3.

From the arguments in [9, Proposition 24.15] we get the following result.

Proposition 7.14. For any Q € X, the map fé Q; — Q" sends an
element (T,z) € Q; to (R,y) € @ if and only if we have T = QN R

and z = y-7%_(1). In particular, this map is injective.

7.15. Thus, according to this proposition, the image of Qg in the na-
tural F-basic P x P-set () coincides with the union of all the Q x P-orbits
isomorphic to (Q x P)/A,(T) for some T' € X. On the other hand, for any

P’{-isomorphism z:Q = Q' it follows again from Proposition 7.10 that we
have an ac(P )-isomorphism

x x x
zn” rx(1):Qn” P=Q'n” P 7.15.1

and therefore we get a bijection between the sets of indices Qg and QZ, , which
is compatible via T o (x) with the respective actions of @ X P and Q' x P;
that is to say, we get @Q X P-set isomorphism

x x x
f;E : QQ = ResFQ’,Q(I)XidP (QQ/) 7.15.2.

Proposition 7.16. For any Px—isomorphism :Q = Q' the Q x P-set
isomorphism

x x x
fw : QQ = Reswé/ Q(m)xidp (QQ() 7.16.1

can be extended to an element f, of Te(Q,Q’) and the image of f. in
£ (Q', Q) is uniquely determined by x .

Proof: Since the @) x P-sets Resgxp(£2) and Res 7%, o (@)xidp (Res Q/XP(Q))
are isomorphic (cf. 5.1.2), and the @ x P- and @’ x P-set homomorphisms

fo: 99— Resgup() and  fo : Qo — Resqrxp()  7.16.2

are injective (cf. Proposition 7.14), identifying Q; and Q;/ with their images

in Q, fj can be extended to a ) X P-set isomorphism
fo i Resoxp(92) = Res 7%, o (@)xidp (Res grxp(£2)) 7.16.3;

that is to say, we get an element f, of Tg(Q, Q') (cf. 6.1).
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Then, we claim that the image of f, in £~ (Q',Q) (cf. 6.6.1) is inde-
pendent of our choices; indeed, for another choice g, € T¢(Q, Q') fulfilling
the above conditions, the composed map (f,)~! o g, belongs to Cq(Q) and

induces the identity map on Q;; but, we have Cq(Q) = Autgxp(2) and,
considering the obvious decomposition 2 = le_l(Q—Qg) , it follows from 7.15
that iy .

AthXp(Q) = AthXp(QQ) X AthXp(Q — QQ) 7.16.4;

moreover, it is easily checked that (‘52(@) contains Autgx p(Q — Q;) ; hence,
(fz)~!ogs. belongs to GG(Q) and therefore it has a trivial image in £ (@),

so that f, and g, have the same image in E_H’X(Q’,Q) (cf. 6.7.3). We are
done.

Corollary 7.17. There is a faithful functor NPT = LT which is compati-
ble with the structural functors, and sends any P’{-isomorphism :Q = Q'
to the image of f. in En’i(Q’ Q).

Proof: Let us denote by Y ( ) the image of f, in £ (Q',Q); first of all, let

' Q" = Q" be a second P —1sornorphlsm it is clear that the automorphism
X X

Res,, z, (@dep(fm) [z of Resgxp(2) extends Resﬂgl , (@)xidp (fi)o fos
consequently, by the proposition above, we get

A (@ z) = X ()X (2) 7.17.1.

On the other hand, by the divisibility of P , any ’Px—morphism z2:T —Q

is the composition of T (1) with a Px—isomorphism zo: T =2 T where we
set T = (2 x -(2))(T) ; then, we simply define

X (2) =723, (1)X (=) 7.17.2.

Now, in order to prove that this correspondence defines a functor, it suffices
to show that, for any P -isomorphism z: Q = @’ and any subgroup Rof Q,

setting R’ = (ﬂ'g/ Q(:c)) (R) and denoting by y: R = R’ the P “isomorphism
induced by z (cf. 2.8), we still have
x

X (z) 7% (1) = 7% (1)X (y) 7.17.3.

Q.R Q'R
But, it is quite clear that the commutative ac(Px)—diagram (cf. Propo-
sition 7.10)

()P rE (1)

3 T'{
RAP p  2n orP'p
x x
yP rE )] Lz 7z 7.17.4

7) X
R/ ﬂP{P Q’ R,(l)ﬂ 36(1) Q/ ﬂP{P
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determines a commutative diagram of R x P-sets (cf. 7.13)

. 0
il IRes@XE (1) 7.17.5.

Resw, xidp (V) — ResiXp (Rese, wia ()

Consequently, the element f, of T¢(Q, Q') extending ff also extends f; and

we can choose f, = f,. Moreover, since 7% is faithful (cf. 6.7), it is easily
—n, X

checked that X" induces an injective group homomorphism P~ (Q) — £ (Q)
for any @@ € X and therefore this functor is faithful too. We are done.
8. Existence and uniqueness of the perfect F jE-locality

8.1. Let P, F and X be as above and denote by X the subset of subgroups
Q@ in X which are F-selfcentralizing. As in §2 above, consider a p-coherent

F x—locality £" with the structural functors
T* :'T;6 L and wri L — F 8.1.1;
in the notation, we replace X by X for the corresponding restrictions. Let us
denote by E_i the quotient F jE-locadity of E’% defined by
L (Q R) = L£5(Q,R)/rz (Z(R))-®(Ker(r2)) 8.1.2

for any @, R € X , which is easily checked to be p-coherent, and denote by 7"§€

and 7 its structural functors.

Lemma 8.2. With the notation and hypothesis above, we have a contra-
variant functor

BT
m :F — k-mod 8.2.1
mapping any Q subgroup in X on Ker(ﬁg) and any F -morphism ¢: R — @
on the k-linear map sending u € Ker(ﬁz) to the unique element v € Ker(ﬁ;)
fulfilling T-v = @ for some T € o (Q, R) lifting ¢ .
. _x _ X,
Proof: Setting p = 7,  (z) and o = 7, (u), clearly a(p(R)) = ¢(R) and
therefore the existence and the uniqueness of v follow from the divisibility
of £ ; moreover, for another lifting ' of ¢, we have T’ = 53-7_'; (z) for some
z € R; but, since L s coherent, it follows from [9, Proposition 17.10] that
_x . _x
7. (2) centralizes Ker(7 ) ; hence, we get

o =27,(2)0=207,(2) = ud 8.2.2;

at this point, the functoriality of m s easily checked.
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8.3. Since 72 (Z2(Q)) = {1} for any Q € X, it follows from 3.14 that, for
any pair of subgroups @ and R in X, and any F-morphism ¢: R — @, we
can choose a lifting z, € E_X(Q, R) in such a way that we have

jpogpoo’ = p'i'<p'0' 8.3.1

for any p € F(Q) and any o € F(R); this choice and Theorem 4.8 lead to
the following result.

Theorem 8.4. If Ei is a p-coherent fi-locality such that the structural

functor 7% is faithful then a minimal fﬁ—sublocality ’PﬁE of Ei is perfect.

Proof: Actually, arguing by induction, we already may assume that ﬁﬁ has
no proper F *_sublocalities.

For any triple of subgroups @, R and T in X, and any pair of F-mor-
phisms ¢: T — R and ¢: R — @, since T, Ty and oy have the same image

in 7(Q,T), the divisibility of * guarantees the existence and the uniqueness

of Mgy € m (T) fulfilling
{fsa',’fw = Li'g,ow-m%w 8.4.1;

that is to say, we have a correspondence mapping any F *_chain q:Aq = F *
ON Mg(0e1),q(1e2) and we claim that this correspondence is stable (cf. 4.2).

Indeed, for any F-isomorphisms c:Q = Q', p: R R and w:T =T,
setting ¢’ =copoptand ¢y = poypow™!, we get
fwlow/~m@/7¢/ = if@/'.fwl = (O".fgp'pil)'(p'.fw'wil)
= 0 (Zpoypy M) W+ = (- Fpoypw™ 1) (WM pw™ ') 8.4.2
= fso’ow"(‘ﬁi ((Z’)) (M)
and therefore we obtain M v = (M# (D)) (M) . In particular note that,

since ¢ o £} (w) = K3 ((w)) o ¢ for any w € R, we obtain

mné (u)ogp,n% (v)oyp = m%"vw

8.4.3,

for any v € @ and any v € R, proving that m, , only depends on the
classes ¢ € F(Q, R) of ¢ and ¢ € F(R,T) of v ; that is to say, the above

correspondence factorizes throughout the set of F *_chains q:Ay — F.
Moreover, for a third ]-"x—morphism n:U — T, it is clear that
Lo Ty Ty = Tpop M,y Ty = fwow'fn'(ﬁ"’% (ﬁ))(m%w)

) i RN 8.4.4
= Tpopon Mypop,n* (mx (77)) (m@ﬂl))
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and, similarly, we have
T Typ-Ty = Tporpon M pon M,y 8.4.5;
hence, in the k-vector space m (T') we get the 2-cycle condition

Mo,y + (M2 (7)) (Mep) = M pon + My 8.4.6.

In conclusion, the above correspondence determines a stable m" -valued
2-cocycle over F x, and then it follows from Theorem 4.8 that, for any
F -morphism @:R — Q, there exists an element £ € m (R) in such a

way that in rﬁi(R) we have
M op = (‘ﬁ (7/1))( 3) — (52501;) + % 8.4.7;

then, the image in Ei(Q, T) of equality 8.4.1 becomes

(T (le) ™) (Ty(£5) 1) = Tgpoy- (L) ™ 8.4.8.
Thus, we get a functorial section
G F L 8.4.9

of the structural functor 7 ; then, the converse image in L of the image of
this section yields a F * -sublocality c which, by minimality, has to coincide

with £ ; hence, ¢ is an isomorphism and this fact forces

Ker(nt) =12 (Z(Q))@(Ker(ﬂ'é)) 8.4.10

for any Q € X, so that we obtain Ker(n%) = 7& (Z(Q)) ; hence, it follows
from 2.11 and Theorem 2.10 that £ is a perfect f’{-locality.
8.5. Given a family 2 = {zg}qex of elements 2o € Ker(n}), we can

define a bijective functor k, L7 = £* which is the identity map over X
and sends any o -morphism z: R — Q to zg-x-(2g)"1; let us call inner

F -automorphisms of £" this kind of functors.

Theorem 8.6. With the notation and the hypothesis above, if P and P’ are
minimal F_ -sublocalities of L then there exists an inner ]-'x—automorphism

K. of L such that P = k(P
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Proof: Once again, arguing by induction, we may assume that any proper
F x—sublocality of £° containing P"* does not contain IQZ(PX) for any inner

F x—automorphism K, of £". Denote by
Pt 2t and Pt o 8.6.1

the functors determined by the inclusions; actually, it follows from Theo-
rem 8.4 that they induce two functorial sections

& F 2P L and & F =P L 862

of the structural functor 77'5€ ; in particular, for any pair of subgroups ) and
Rin X , and any F 36—morphism ¢: R — @ there is a unique element m, in
@ (R) such that

@' (p) = @(p)me 8.6.3.

On the other hand, it follows from Proposition 3.9 that there are unique
natural maps

)\735E :[OC]__gg — [ocpgE and )\7)/55 :locfgE — [ocp/gE 8.6.4

such that
[o * )\,Pi = iduutfje = Ilb )\7),3"5 8.6.5

and that, for any F *_chain q:4A, = F * fully normalized in F, we have

Api)@an ot =75 and (A z)@ga,) °T =75 8.6.6
where q: A, — P* and q:4A, — 7" are functors lifting q; but, it is quite

clear that the functors i and i’ determine natural maps (cf. 3.8.2)
Gi; tloc sz — loc,x  and ﬁi/}% tloc,x — loc 8.6.7;

then, it is easily checked that the compositions Eig oA pE and Gi, £ 0O\ ik
from [oc]__gg to [ocigg fulfill the corresponding conditions 8.6.5 and 8.6.6 above

and therefore, once again from Proposition 3.9 they coincide.

In particular, considering representatives for the corresponding Loc-mor-
phisms (cf. 3.4), for any Q € & there exists zo € m (Q) C £ (Q) fulflling

75[(@) =P (Q)* 8.6.8.
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That is to say, up to replace 733% by its image via a suitable inner }'i—auto—
morphism of L’%, in 8.6.2 above we may assume that, for any Q € X, in
c (Q) we have

@' (F(Q)) = =(F(Q)) 8.6.9.

In this situation, we claim that the correspondence in 8.6.3 above map-

ping any ]—"%-chain Ay > F on My (o) is stable (cf. 4.2); indeed, for any

F-isomorphisms 0:Q = Q' and p: R = R’ setting ¢’ = 0 o 9 o p~! we have
@(0)@(p)@(p) ™ My = w(p)my = &' (¢)
=&'(0)@ (p) @ (p)* 8.6.10;

but, since @' (F(Q)) = @(F(Q)), the element ©(c)~!-@'(0) belongs to
@(]—' (Q)) and therefore isomorphism 3.11.2 and equality 8.6.3 implies that
@' (0) = @(0o) ; similarly, we get @' (p) = @(p) and thus equality 8.6.10 forces

@ (p) tmy = myw(p) ! 8.6.11,

proving the stability of the above correspondence. In particular, for any
u € @, note that we obtain mﬁg(u)w = m, proving that m, only depends
Q

on the class ¢ € F(Q, R) of ¢; thus, the above correspondence factorizes

throughout the set of F* -chains t: Ay — 7

Moreover, for a second ]-"ﬁ—morphism ¥:T — R, we have (cf. 8.2.2)

(V) = @(p) My @(h) My 8.6.12

Moy = (W (1)) (M) + 1My 8.6.13.

In conclusion, the above correspondence determines a stable m" -valued 1-co-
cycle over F * and then it follows from Theorem 4.8 that for any @Q-subgroup

in X there exists zg € @’ (Q) in such a way that in @ (R) we have

X

me = (M (3))(2q) — Zr 8.6.14.
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Consequently, the image in EQ(Q, T) of equality 8.6.3 becomes

.y & = \—1

@' (p) = @) (M (9))(20) (2r) " = 2o @(¢)(2r) 8.6.15;

that is to say, lifting zg to zo € Ker(nd) for any Q € X and considering
the family z = {ZQ}QG:%’ equalities 8.6.15 show that the converse image

in £ of the image of the functor @ in £ contains P’ and . (7336) ; hence,

.. . . . . X _y .
by minimality, this converse image is equal to £ and therefore @’ is an
isomorphism which once again forces

Ker(rt) =72 (Z2(Q)) -@(Ker(wé)) 8.6.16

for any Q € X, so that we obtain Ker(r3) = 73
get P- =L =P . We are done.

(Z(Q)) ; consequently, we

Corollary 8.7. There exists a perfect ]—'x-locality ’PI, unique up to isomor-
phisms.

Proof: Considering the quotient i (cf. 6.7) of the natural }'i—locality ﬁn’ﬁ,
we know that 7% is a faithful functor and therefore it suffices to apply
Theorem 8.4 to get the existence of a perfect ]-"x—locality P c £, On the
other hand, if follows from Corollary 7.17 that any perfect F x—locality P s

contained in £"" and therefore the uniqueness follows from Theorem 8.6.

9. Existence, uniqueness, universality and functoriality of P

9.1. Tt follows from Corollary 8.7 that there exists a perfect F  -locality
P, unique up to isomorphisms, and therefore it follows from [9, Chap. 20]f
that there also exists a perfect F-locality P, unique up to isomorphisms; in

particular, there exists a perfect F x-locality 73367 but its possible uniqueness
has to be discussed; more generally, the announced wuniversality has to be
discussed in all the cases.

Theorem 9.2. There exists a perfect ]-"x—locality 'Px, unique up to isomor-

phisms. Moreover, for any p-coherent F x-locality Ex, there exists a functor

h P — L , compatible with the structural functors, unique up to inner
x . x

F -automorphism of L.

Proof: As we mention above, it follows from [9, Theorem 20.24] that there

exists a perfect F-locality P and therefore a perfect F 36—1ocadity 7336; denote

T The argument in [9, 20.16] has been scratched; below we develop the correct argument.
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by # and % the corresponding structural functors. Note that the unique-
ness of P will follow from the last statement applied to another perfect
F -locality P (cf. 3.5.1).

Let £ be a p-coherent ]-"x—locality and denote by 7* and 7* its struc-
tural functors; restricting everything to X (cf. 8.1), consider the p-coherent

F ﬁ—locality defined by the pull-back

X

F A
/‘ y\ﬂ'x
p* ct 9.2.1;
(156\ /(655
'PaE ><]__55 Ex

it is easily checked that the structural functor

T — P L 9.2.2

is faithful and therefore it follows form Theorem 8.4 that the bottom left-hand
functor in the diagram above

e :Pxxfgg P 9.2.3

admits a functorial section ot : P" — Pxx]__i L.
Thus, we get a functor
h' =8 oo :P — L 9.2.4
which is easily checked to be compatible with the structural functors; more-

over, any such a functor f)'3E Pt L determines, in the pull-back 9.2.1, a
new functorial section

E - % %

o P —P x i L 9.2.5
which fulfills b’ = B’% oo : then, it follows from Theorem 8.6 that there is
an inner F 36-automorphism ks of P x FE c fulfilling

N E:

o (P)=rz(cx(P")) 9.2.6.

In particular, for any @ € x fully normalized in F , the functors ¢’ * and
Kk, o g% determine a group automorphism

x x
Lr(@Q) =P (Q) =P (Q)=Lr Q) 9.2.7
which is compatible with the structural group homomorphisms

72 :Np(Q) — Lr(Q) and 72 :Lr(Q)— F(Q) 9.2.8;
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hence, it follows from Theorem 2.10 that this automorphism coincides with
the conjugation by some element zg € 73 (Z (Q)) , and this fact remains true
for any Q € X.

Consequently, it follows from [9, Corollary 5.14] suitably translated to

P that, setting z = {zq} 0ci - the self-equivalence of P~ determined by o’

and K, o 0% coincides with the inner F -automorphism &, of P ; that is to

e . . X .
say, up to modifying our choice of 2, we may assume that ¢/~ =k, o0 ; in
this case, since b = 3 oo’ , we still have

X x

b =R,z b 9.2.9

for an obvious definition of ﬂx(z) .

At this point, it suffices to prove that the functor [33E can be extended to a
unique functor h : P~ — L | compatible with the corresponding structural
functors. Our proof follows the same pattern as the proof in [9, Chap. 20]
of the existence of P from the existence of P, and we borrow our notation
and arguments there.

Let Q and Q' be F-isomorphic subgroups in X, R € X a subgroup of Q
and R’ € X a subgroup of @', and let us assume that the set F(Q',Q)r' r
of p € F(Q', Q) fulfilling (R) = R’ is not empty; since F is divisible, there
is a unique restriction map

Q.Q
R’',R

: ]:(QI,Q)R/)R —>]:(R/,R) 9.2.10

sending ¢ € F(Q',Q)r.r to v € F(R',R) such that L% o) = o Lg;
similarly, since P* and £ are also divisible, we can define the restriction
maps

T PNQ Q) wn — P (R, R)
S . 9.2.11
& LNQ Qrr — L (R R)

where we replace L% and Lg by the corresponding images of 1 via the struc-
tural functors.

If all these groups are F-selfcentralizing, it is clear that b3E determines
a commutative diagram

P(Q,Qrr — P (R,R)
o ol 9.2.12;
£Q.Qrr — L (R,R)
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conversely, in order to get the announced functor f)jE , it is easily checked that
it suffices to define such maps

x
Q

b, P(Q.Q — L(Q,Q) 9.2.13

for all the elements of X, in such a way that they are compatible with both
compositions and both structural functors, and that the corresponding dia-
grams above are commutative.

In the general case, let T and T’ be F-isomorphic subgroups in X res-
pectively containing and normalizing ) and Q' ; then, we claim that the map

PNT Ty .o — L (T, T)or g 9.2.14

determined by h" composed with tZXZ factorizes through the image of 5;; ;

indeed, if z,y € PX(T’,T)QQQ have the same image in PX(Q’,Q) then we
have y = x-z for some z in the kernel K, of the group homomorphism

x

P(T)q — P (Q) 9.2.15

and it suffices to prove that the group homomorphism ’PX(T)Q — EX(T)Q

determined by h3E sends K ,x to the kernel K ,x of the group homomorphism

x

LY(T)o — L£(Q) 9.2.16.

Respectively denoting by Cpx(T)(Q) and C LX(T)(Q) the kernels of the
obvious group homomorphisms

P (T — F(Q) and L (T)g — F(Q) 9.2.17,

it is clear that homomorphisms 9.2.15 and 9.2.16 induce group homomor-
phisms

Cpx(T) Q) — Ker(ﬁg) and Cﬁx(T)(Q) — Ker(wg) 9.2.18

and that [35€ also determines a group homomorphism
Cox (Q) — CLX(T)(Q) 9.2.19.

But, up to F-isomorphisms, we may assume that @ is fully normalized in
F [9, Proposition 2.7]; in this case, since P s perfect and L£is p-coherent,
Ker(r}) is a p-group and we have (cf. 2.8.2)

Ker(ﬁ'é) = OP(Q)/HC]:(Q) and HC]:(Q) C Ker(rg) 9.2.20.
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Consequently, we get

O"(Kpx) =07 (Cpx(Q)) and 07K x) = 07(Cpx 1 (Q)  9.2.21

and, always from 9.2.20, it is easily checked that [jjE sends a Sylow p-subgroup
of Kx to a Sylow p-subgroup of K ,x , proving our claim.

Assuming that @ and Q' are fully centralized in F and choosing
T=QCp(Q) and T =Q-Cp(Q) 9.2.22,

we already know that the restriction map

T/, T

‘CQ, o : .F(T/, T)Q/)Q — .7:(@/, Q) 9.2.23
is surjective (cf. condition 2.2.3), so that the corresponding maps 5;’: and
T/, T . . ,
tQ, o are surjective too; consequently, from the remark above we get a com-
mutative diagram
o

PUT Toq — LT T)qq

ST o 9.2.24

Q'.Q Q@

PYQQ) 2% £NQ.Q)

which defines the bottom map f)g/@ .

These maps are compatible with the structural functors; this is clear for
ﬁg,ﬁQ and w;,yQ; moreover, if Tp(Q’,Q) is not empty and u € Tp(Q', Q)
then v still belongs to Tp(T”,T) and therefore we get

a0 (ar.e() = b, s (b2 (7o p(w) )
T, T x

=t (rr r(u) = T;%Q(U)

9.2.25.

On the other hand, since the top map in diagram 9.2.24 is defined by
a functor, for a third Q” € X fully centralized in F and isomorphic to Q

and Q' setting 7" = Q"-Cp(Q") the compositions in P* and £° supply the
commutative diagram

P, Tgrg x P (I T)g.q — P (I". T
| | 9.2.26
LT, Tgng x LT\ T)gg — L (T".T)grq
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which forces the commutativity of the following diagram

PUQR",Q)xP(Q,Q) — P(Q",Q)
h;/,&Q,XhZ,,Q ! \ \ L oodi g 9.2.27.
Q) xL(Q,Q) — L(Q.Q)

Actually, we claim that diagram 9.2.24 remains true for any choice of
F-isomorphic subgroups T and T" in X containing and normalizing Q and Q' ;
indeed, consider x € PX(Q’, Q) and set a = ﬂ'; (z); it is clear that

’,Q

Fr(Q) c Fp(Q N Fp(Q) and Fr(Q') C “Fp(Q)NFp(Q') 9.2.28;

denoting by N, and N/, the respective converse images of these intersections
in Np(Q) and Np(Q') , we know that a can be extended to an F-isomorphism
&: Ny = N/, (cf. condition 2.2.3) and therefore we can find an element # in

P’{(NQ,NQ)QQQ lifting 2 ; then, since & clearly maps Q = Q-Cp(Q) onto
Q'.Q , N/} .Na

Q' = Q'-Cp(Q'), we have
f)fy,@(%/g (#) = borq (5@,@ S ))

N/, .Na
Q.Q [ % Nl.Na , . Nl .No , % R
=0, (0 o len " @)) = 0" (9, v, (@)

—
>
N

9.2.29.

But, if y is an element of ’PI(T', T)q @ lifting x then for some z € Cp(Q)
we have (cf. 9.2.20)

Nl .Na x N/ ,Na x

y=s, " @) 7 r(z) =5 " (&7 N, (2) 9.2.30;
hence, we get
x T/, T x NL . Na ;.. _X
bo o (5Q,,Q(y)) =by o (5Q,1Q (x'TN&,Na (2)))

9.2.31,

N/, .Na x

=00 (g, (B, (20)) = 7 (020 2(0)

which proves our claim.

In particular, if R € X is a normal subgroup of @ and R’ € X a normal
subgroup of )", both fully normalized in F , the argument above proves that
the following diagram is commutative

X, A A ’ X A A
P(Q.Qrr — L(Q,Qr.r
Q,Q Q.Q .
s | L 9.2.32;
X
x hR/,R
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but, with evident notation, in the following commutative diagram

A~ b o X A A
(Q Qo rorn —% £NQ, Q)Q',{%GQ,R
Q tz:‘z 9.2.33

PI(Q’, Q)r' R M L(Q,Qr.r

the left-hand vertical arrow is surjective; hence, in this situation we finally
obtain the commutative diagram announced in 9.2.12

X
3 b
PUQ.Qrr —% L£(Q,Qnrnr
s @Q 9.2.34.

R’,R R’,R

X
hR/R
PY(R,R) & LY(R.R)

We are ready to define the map b;,yQ for any pair of F-isomorphic
subgroups @ and @’ in X; we proceed by induction on |P: Q| and, obvi-
ously, our definition will extend the previous ones; thus, we may assume that
Np(Q) # Q. Tt follows from [9, Corollary 2.21] that there is an F-morphism
v :Np(Q) — P such that v(Np(Q)) and v(Q) are both fully centralized
in F; so, let us consider the nonempty set M(Q) of pairs (N,s) formed
by a subgroup N of P which strictly contains and normalizes ), and by
s€ P’{(p(N), N) lifting an F-morphism p: N — P such that p(N) and p(Q)
are both fully centralized in F; note that, according to our induction hy-
pothesis, we may assume that the map f)j( NN is already defined and then

t = hZ(N),N(S) makes sense and belongs to ﬁx(p(N),N) ; moreover, we re-
spectively denote by sg and tg the corresponding elements of Px(p(Q), Q)
and £ (p(Q), Q) -

For another pair (N, 5) in 91(Q) , denoting by 5: N — P the F-morphism
determined by 5, setting N = (N, N) and considering a new F-morphism

p:N — P such that p(N) and p(Q) are both fully centralized in F, we
can obtain a third pair (N, 5) in 9(Q) ; then, the elements §~7‘; N (1)-s7! and

57 (1)-57! respectively belong to Px(ﬁ(ﬁ), p(N)) and to Pi(ﬁ(ﬁ), p(N));

in ga];tlcular, since p(Q) , ﬁ(Q) and p(Q) are fully centralized in F, the maps
h:(@,p(@) , b;@,p@) nd bp(Q) L) Are already defined and, considering the
element

ns.s = 5q:(sQ) " € P (3(Q), p(Q)) 9.2.34,
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we clearly have
x — _ X, _
hﬁ(Q),p(Q) (n-§75) = tQ(tQ) ! = mf,t e E (p(Q)7 p(Q)) 9'2'36'
Note that all these elements fulfill a transitive property as in [9, 20.16.2].1
At this point, choosing pairs (N, s) in M(Q) and (N’,s’) in M(Q') , and
denoting by p: N — P and p': N’ — P the F-morphisms respectively de-
termined by s and s’, and by ¢ and t’ the respective images of s and s via

f)36 and [)x, N v, the map [)x, , is already defined and then we
P(N),N P/ (N').N P (Q).p(Q) Y
define the map

boo: P (Q.Q) — L£1(Q.Q) 9.2.37
sending = € P (Q’, Q) to
b;/7Q($) - (tb/)ilb;/(g/))p(g) (Sb,I(SQ)il)tQ 9238

We claim that this element does not depend on our choice; indeed, respec-
tively replacing (N, s), (N/,s’), pand p’ by (N,3), (N',5), p and p we get
the element (E’Q,)*Lf);@,)’ﬁ(@ (85-2+(5)~")tq and therefore it suffices to
prove the equality (cf. 9.2.36)
x _ x _ o
M B (0),0@) (507 (50) ™) = 0501 5(0) (S w+(50) ) mes 9.2.39;
but, from the commutativity of diagram 9.2.27 and equality 9.2.36 we get

x 1 x _ —1
m{/ﬁt/'bp/(Q/Lp(Q) (SIQ/.’I](SQ) ) = bﬁ’(Q’),p(Q) (SIQ/'.’I]'(SQ) ) 0.9 40

x B 1 X - .
b (@500 (B0 (80) ) mie = 05 (gn,pi@) (Bora(sq) )
which proves the claim.

For a third subgroup Q" in X isomorphic to @ and Q’, we claim that the
corresponding diagram 9.2.27 defined by both compositions is also commuta-
tive; indeed, choosing a pair (N”,s”) in 9(Q") and denoting by p” : N — P
the F-morphism determined by s”, for any z’ € P’{(Q”, Q') we have

x _ x —
hQ//,QI (J;/) = (tlé//) ! .bp”(Q”),p’(Q’) (Slé// 'J;/'(Sb/) 1) tb/ 9.2.41
and therefore we get
x x
té”'bQ”,Q/ (I/){)Q/,Q(I)t@
W= " 1 =1\ ¥ / -1
= bP"(Q"),P/(Q/) (SQ//'I (SQ/) )'bp/(Q’),p(Q) (SQ/I(SQ) ) 9242,
x - x

= bP”(Q”),p(Q) (S/C/Q” (JI/JI)(SQ) 1) = té”.hQ”,Q’ ((E/Jf)tQ

which proves the claim.

T The argument above provides the right way to obtain the elements g7, in [9, 20.16.1].
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Finally, it remains to prove that the commutativity of diagram 9.2.12
holds in the general case. Let T and T’ be F-isomorphic subgroups in x
respectively containing @ and @', and fulfilling F(7",T),, , # 0; assume
that @ # T and set N = Np(Q) and N’ = Ny (Q') ; since we are arguing by
induction on |P: Q| , we may assume that we have the following commutative
diagram

x
b ¢
P T — LT T)gq
T, T T, T
s | Lo 9.2.43

x
N, :
PN Ngo — LN N)g.q
and therefore it suffices to prove the commutativity of the diagram
%
; N,
PN Ng.o — LN, N)g.o
SN N 9.2.44.
Q. Q.
Ed bx/ X
PQR.Q 5 L(Q.Q

As above, we can choose pairs (N, s) in 9(Q) and (N',s") in N(Q');
let us denote by p: N — P and p': N’ — P the F-morphisms respectively
determined by s and s’, and by ¢ and ¢’ the respective images of s and s’

via hj(N),N and b;(N'),N/ ; then, for any y € P’{(N’,N)Q/)Q it follows from
definition 9.2.38 and from the commutativity of diagram 9.2.24 that we have
x N',N 1. X% N/, N _1
hor (5(9/,@ (y)) = (t/Q') 'hp/(Q/),p(Q) (SIQI Soio (v)-(sq) )'tQ
x P! (N'),p(N)

_ (4 -1 1 -1
- (tQ’) 'hp’(Q’),p(Q) (5p’(Q/),p(Q) (S Y-S ))tQ

i =1 PN , 1
= (th) .tp’(Q,),p(Q) (hp’(N’),p(N)(S Y-S ))tQ 9245,
N',N 1. %

- -1
=toq (¢ By, ov) (8798 )t)
N',N , X
= tQ,,Q (hN’,N(y))
proving the commutativity of diagram 9.2.44. The compatibility of the func-
tor f)jE with the structural functors is easily checked. We are done.

9.3. It remains to dicuss the functoriality of the perfect F-locality P ; as a
matter of fact, assuming its existence we already prove in [9, Theorem 17.18|
the existence of all the possible perfect quotients P of P, which presently
simplifies our work. Let us recall the construction of P; let U be an F-stable
subgroup of P (cf. 2.5), set P = P/U and denote by F the quotient Frobe-
nius P-category F/U [9, Proposition 12.3]; for any subgroup @ of P, denote
by @ the image of Q in P and by Ux(Q) the kernel of the canonical group
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homomorphism F(Q) — F(Q) ; moreover, if @ is fully normalized in F , for
short we set

P? =NI7@(Q) and F°=NLTQ(Q) 9.3.1,

so that F* is a Frobenius PQ—category; in the group P(Q) we define (cf. 2.4)

Up(Q) = 07 (7, (Ur(Q) ) 7 (Nu(Q)- H ) 9.3.2;
actually, via P-isomorphisms we can extend the definition of Up(Q) to any
subgroup Q of P. Then, P is the perfect F-locality fulfilling [9, 17.15-17]

P(Q,R) =P(Q,R)/Up(R) 9.3.3
for any pair of subgroups @ and R of P.
9.4. Let P’ be a second finite p-group, ' a Frobenius P’-category and
P’ the corresponding perfect F'-locality, and denote by
7 :Tp — P and 7 :P —F 9.4.1

the structural functors; let a: P — P’ be an (F,F’)-functorial group ho-
momorphism [9, 12.1]; recall that we have a so-called Frobenius functor
fo: F — F'[9, 12.1] and denote by t,: Tp — Tps the functor induced by «.

Theorem 9.5. With the notation above, there is a functor go:P — P’,
unique up to inner F'-automorphisms of P, fulfilling

T oty =gaoT and mogy=Ffaom 9.5.1.
Moreover, if P" is a third finite p-group, F" a Frobenius P"-category, P"
the perfect F'"'-locality and o/ : P' — P" an (F', F")-functorial group homo-
morphism, then the functors go © ga and garoa from P to P” coincide up to
inner F" -automorphisms of P" .

Proof: As we mention above, if a is surjective then the existence of g,
follows from [9, Theorem 17.18].

Assume that « is injective and consider the F-locality £, defined by the
pull-back

Fols o7
1 T 9.5.2;
Lo, — P

that is to say, for any pair of subgroups @ and R of P, setting Q' = a(Q)
and R’ = a(R) we have the pull-back

F(Q,R) — F(Q.R)
1 1 9.5.3;
Lo(Q,R) — P(Q,R)

then, since « is injective, the divisibility and the p-coherence of P’ forces the
the divisibility and the p-coherence of L, .
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Consequently, it follows form Theorem 9.2 that we have a functor
ho : P — La 9.5.4

which is compatible with the structural functors and unique up to inner
F'-automorphisms of L, ; then, the composition of f, with the bottom func-
tor in diagram 9.5.2 is a functor g, :P — P’ clearly compatible with the
corresponding structural functors. Conversely, for any functor g/, : P — P’
compatible with the structural functors, the pull-back 9.5.2 clearly determines
a functor b/, : P — L, compatible with the structural functors, and it suffices
to apply the uniqueness of b, .

Once again, from [9, Theorem 17.18] the last statement is easily checked
whenever a and o are both surjective. If « and o’ are both injective then
the last statement follows from the following commutative diagram

Foly g op

T T T

Lotoa —> Lo —> PV

4 o, N 9.5.5
Lo — P

Toa

P

where all the possible rectangles and squares are pull-back.

Now, in order to discuss the general case, it suffices in the situation above
to consider an F’-stable subgroup U’ of P’ and then, setting U = a~(U’)
which is clearly an F-stable subgroup of P, to prove the commutativity, up
to inner F’-automorphisms of P’, of the following diagram

N
T T 9.5.6
p Ly P

where, setting P = P/U and P’ = P'/U’, @: P — P’ is the injective group
homomorphism induced by a and, denoting by F and JF’ the respective
quotients F /U and F' /U’ [9, Proposition 12.3], P and P’ are the respective
perfect F- and F'-localities.

From 9.3 above, we already know that, for any pair of subgroups @ and
R of P, setting Q' = a(Q) and R’ = a(R) we have

75(@5 R) = P(Qv R)/UP(R) and ﬁ/(Qla R/) = P/(Q/a R/)/UP' (R/) 9577

hence, it suffices to prove that the functor g, sends Up(R) to Up, (R') ; indeed,
in this case g, induces a functor g, :P — P’ which is easily checked to be
compatible with the structural functors; then, the uniqueness proved above
shows that g, coincides with g up to inner F’-automorphisms of P’.
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But, the commutative diagram of group homomorphisms

F(R) — F(R)
+ 4 9.5.8

F(R) — F(R)
already proves that the functor f, sends Ur(R) to Uz/(R') and therefore
the functor g, sends OF (7' (U#(R))) to QP (x_ ' (Ur/(R'))) ; moreover, it
is clear that a(Ny(R)) C Ny/(R'). Finally, assuming that R is fully normal-
ized in F and choosing a P’-isomorphism 3 : R’ = R’ such that R’ is fully
normalized in F' , it follows from condition 2.2.3 that there is an F’-morphism

¢:aP")y—P" 9.5.9
extending w;, o (y); then, it is easily checked that the composition ¢ of &

with the restriction of a to P is (]—'R,f'R,)-functorial [9, 12.1]; hence, we

get a Frobenius functor f¢: F o i and therefore we have
C(Hzr) C H_w 9.5.10.

Consequently, considering the suitable P’-isomorphisms, we obtain that g,
sends Up(R) to Up/(R'). We are done.

10. Vanishing cohomology

10.1. As we mention in 1.5 above, the existence of the perfect F -locality
P allows us to give a direct proof of Oliver’s result in [4] on vanishing co-
homology. More generally, assume that all the subgroups in X are F-selfcen-
tralizing and denote by O a complete discrete valuation ring of characteristic
zero lifting k, by O-mod the category of finitely generated O-modules and
by @ F — O-mod a contravariant functor; we will give a direct proof of
that for any n > 2 we have

H*(F @) = {0} 10.1.1,

X X
3

together with a suitable description of H'(F @ ).

10.2. Denote by P~ the perfect F x-locality and by 7* and 7* the struc-
tural functors; note that the exterior quotient P~ of P~ (cf. 2.1) coincides
with F x, and let us denote by m* :P" = O-mod the contravariant functor

x

induced by @' . Consider the additive covers ac(P" ) of P* and ac(F ) of F
(cf. 7.1) and denote by

x . - x ~x

7P —acP) and i i F —ad(F) 10.2.1

the canonical functors mapping any ) € X on the ac(733€ )- and ac(]:"}€ )-object
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@{@} @ that we still denote by @ . Note that m* and " can be additively
extended to contravariant functors
mx ac(Px) — O-mod and m : ac(]:'x) — O-mod 10.2.2
mapping ®i61 Q; on Hiel m*(Q;) .
10.3. On the other hand, we need to consider the functors (cf. Proposi-
tion 7.10)

x . . _x -
inth P ac(’Pi) and int} L F ac(]—'x) 10.3.1

~ x
mapping any ) € X on the respective P and F -intersections QNP P
- X oy
and QN7 P, and any P*_ and ]-"i—morphisms z:R—Qand p: R — @ on

ES ~ X

the corresponding ac(P" )- and ac(F )-morphisms

Ed Ed x
zn” 7¥(1): RN” P—Qn” P

e . L 10.3.2;
¢n” idp:RNT P—Qn" P
note that we have obvious natural maps (cf. 7.9.3)
x x x - -x _x
WwP orinth — 7 and W’ cinth — 7 10.3.3;

Ed
moreover, any v € P determines a natural automorphism of intg mapping
x
any Q € Xon 7x(1) NP 7x(ut).
10.4. Explicitly, denoting by Q a natural F-basic P x P-set (cf. 5.5) and

by Qg C Q the @Q x P-subset of elements w €  such that the projection
Q. in Q of the stabilizer of w in @ x P belongs to X, recall that we have
(cf. 7.9.2 and Proposition 7.14)

x
Qn” P= P Q. 10.4.1.
weﬂé

Actually, choosing a set of representatives I'g C Q; for the set of Q) x P-orbits
in Q; , and denoting by w"@ the representative of the @ x P-class of w € Q; ,
we have ac(P" )-isomorphisms
x
Q" P= P Q,ro 10.4.2;
weﬂé
but, note that the action of @ x P on Qg determines a unique O-module

isomorphism m¥(Q_r ) = m¥(Q.,) ; hence, up to identification, we may write

w Q" P) = [ m*(Qura) 10.4.3;

weﬂé
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Ed
through this isomorphism, the actions of v € P and v € Q on m(Q N P)
are just given by the permutation of the indices.

10.5. Note that we actually have
S x P VQXP ~ 5% 7
m*(Q N~ P) >2m (QN" P) 10.5.1

since the quotient set (Q x P)\Tq p coincides with g p (cf. 7.8) and, once
again, the stabilizer of w € Q; in @ x P acts trivially on m*(Q,,) (cf. 7.8.1).

ES
Clearly, we have a contravariant functor (m* ointh )¥ from P to O-mod
x
mapping any @ € X on m*(Q N7 P)F | and it follows from [9, 14.21] that
Ed .
it determines a new contravariant functor h°((m* o intp )¥) from P to

x
O-mod , mapping Q € X on m*(Q N* P)@*F which factorizes through the
exterior quotient

~ x - ~
(% ointp )P):PT = F — O-mod 10.5.2;

hence, from the naturality of isomorphism 10.5.1 we get a natural isomor-
phism

~ x ~ ~ X
b0 (M= ointh )F) = m” oint} 10.5.3.

X
10.6. Moreover, the natural map w’” in 10.3.3 above determines an
injective natural map

2 x X o= cx . FF
m xw’ m —m ointp 10.6.1

and therefore, up to identification, we get the exact sequence of contravariant
functors
3

Ay A =X 3
0—m —m ointh — (M ointh /M — 0 10.6.2;

thus, in order to prove equality 10.1.1, it suffices to show that the n-cohomo-
logy groups of the middle and the right-hand members vanish for n > 1.

10.7. For the middle term, according to isomorphism 10.5.3 we may re-
~ ~ X ~ ~ x
place m* o int, by = ho((tﬁ»’f ointh )P ) ; this contravariant functor is
Ed
nothing but the factorization of [ = b0((m= ointh )¥) through the exterior

quotient P of P and, denoting by Z (’Px) the subcategory of P formed by
all the objects and all the “inner isomorphisms” — in some sense, the “ker-
nel” of the canonical functor P° — P~ — we claim that the n-cohomology
* )-stable

n-cohomology group of P over [ [9, A3.18]; we actually will prove that the
last one is zero for n > 1.

group of the exterior quotient P* over [ coincides with the (P
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10.8. Explicity, recall that we set (cf. 4.2.2)

~X ~ x a
CECHDEEN | B COT v
GETct(An,PT
o e 10.8.1;
c P )= [ o) n? )0

qEF (A, PY)
we say that an element m = (mq) czcq(a, px) of C" (P, 07) is Z(P")-stable
if it fulfills [9, A3.17]

mq = (¥ (n)) (mg) 10.8.2
for any natural I(Px)—isomorphism v:q = g between two P -chains

0:A, — P and §:4A, — P 10.8.3

and then we denote by C” (7),{)(79*, [') the O-submodule of Z(P")-stable
elements of (C"(Px, [x); note that, for any ¢ € A, , we have q(i) = q(¢) and

v; = 7% (v;) for some v; € q(i); in particular, r (o) is the conjugation by

q(i)
an element of q(0). Now, it is easily checked that the homomorphism

~ X ~X x x

cH P T —Ccr(P,) 10.8.4

determined by the canonical map Fct(A,, P ) — Fet(A,,P ) induces an

isomorphism (C"(’Pi,fi) =Cr

I(Px)(’Pi, [i) and therefore for any n € N we
have [9, A3.18]

~x X X x
HY(P, 1) =H px (P, 1) 10.8.5.

Actually, this does not depend on the nature of the functor .

10.9. In order to prove that right member vanish for n > 1, for any
P -chain q: A, — P we have to consider the set V, of triples (¢, q’, ")
formed by a P -chain q:A, — P* | by a natural map 4/ q — q and by
and element z’ € PX(P, q'(n)) in such a way that g’(i) belongs to I'y/(;y and
that a, = z’-q'(i e n) belongs to PX(P, q’(i))u{ for any i € A, ; similarly as
above, we say that two such triples (¢/,q’,2’) and (1", q",2") are equivalent
if there is a natural isomorphism 6 :q = q” fulfilling

o=y and z2"0,=2 10.9.1;

in this case, note that 6 is actually a natural I(Px)-isomorphism (cf. 7.8.1);
moreover, denoting by ¢q : q' = g’ the identity natural map, it is obvious that
the triple (¢q/,q’,2") belongs to V.
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10.10. It is clear that any element u € P acts on Vg sending (¢/,q’, 2)
to (¢, q’, 7% (u)-2") and therefore it acts on the set of equivalence classes;
similarly, any natural I('Pi)—isomorphism a:q = g maps Vg, on V5 sending
(1, q',2") to (o, q,2") since we have q(i) = q(i) for any i € A, ; once
again, « acts on the set of equivalence classes; in particular, any element
v € q(0) acts on V, preserving the equivalence classes, since it defines a

natural I(Px)—isomorphism 7 :q = q sending i € Ay, to 7 (q(0 @ i) (v)) .
Let us denote by f/q a set of representatives for the set of equivalent classes
in V,; then, it follows from 7.9 and Proposition 7.10 that, for any P _chain
q:A, — P, an element (1, q',x") in Vy is determined by (uf, q'(0), zf) and
therefore it is easily checked from 10.4.1 that we have

x
10" P= & 40 10.10.1;
(H/7q,)ml)ev‘l

in particular, according to 10.4.3, we get

@*(q(0) NP P) = [ w o) 10.10.2
(w,a’,x")EVq
and this decomposition does not depend on the choice of f)q; we denote
by m(,,q',2 € Mm*(q’(0)) the corresponding component of any element m
in tﬁx(q(O) ﬁpxP) ; note that q(0) x P acts on tﬁx(q(O) ﬁpxP) by permuting
the indices via its action on the set of equivalent classes.
10.11. As in 4.7 above, for any triple (¢/,q’,2") € V,; and any £ € A, ,
let us denote by
b ) Dpr — P 10.11.1
the functor which coincides with g’ over Ay, mapsi € A, 11 —Apon g(i—1),
maps iei+1on q(i—1e4)if i <n,and maps £ e {+1 on us:q'(¢) — q(f)
[9, Lemma A4.2]; moreover, denote by
T R Ng— 10.11.2
the P -chain extending ¢’ and mapping n+1 on P and nen+1 on z’. Note
that if (u”,q"”,2") € Vq is a triple equivalent to (4, q’,2") then, according
to 10.9, we have a natural Z(P")-isomorphism 6:v = v" and therefore, for
any £ € A,y , we get the natural I(Px)—isomorphism
b7 (0) = by (1, ") = by (", 2") 10.11.3
sending i € Apto §; oron 73(1) if i = =n+1,and i € Apy1 — Ay
to T;(i_l)(l) . Moreover, for any natural I(Px)—isomorphism a:qqto an-
other P ~chain g, and any £ € A1, we get the natural I(PI)—isomorphism
by (o) : hp (i ") 2 h (o, 2") 10.11.4
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sending i € Ay to 7';}(1.)(1) ortoTE(l)ifi=¢=n+1,and i € Apy1 — LAy
to a1 ; similarly, for any w € P we have hj (4,7} (u)-2') = hy(p',2') if
e A, , and a natural I(Px)-isomorphism

b (W2’ 2Rl (T (u)-a) 10.11.5

sending i € A, to 7';5,(1.)(1) and n + 1 to 7% (u).
Theorem 10.12. With the notation above, for any n > 1 we have
~x
H"(F ,m ointy ) = {0} 10.12.1.

~ ~ ~ X
Moreover, we have H° (]:x, m o int}, ) = ﬁ"x(P)-

Proof: First of all, let us prove the last isomorphism; we already know that
HO(FS @ ointd ) = lim (o inth ) 10.12.2;
) P - P Mt

but, an element of this inverse limit has the form m = (mg)gex for elements
mq belonging to

N - X

m(@n” P = [[ #®(@) 10.12.3,

(’:3/ 7Q/1§/)
where @' € X runs over a set of representatives of the set of Q-conjugacy
classes of subgroups of @ such that 7~ (P,Q");e #0,and 0" over a set of re-
Q/

presentatives for the set of f; (Q")-orbits in Fr (P,Q');e ,insuch a way that,
Q/

~ Ay ~X ~
for any F 36—morphism @: R — @, the group homomorphism rﬁi(@ N7 idp)
maps mg Oon Mmge .

In particular, denoting by (mg) 2,08 the corresponding component
Q/7 9

of mg in rﬁx(Q’) , we necessarily have

(mQ)(zg/leaél) = (mQ/)(iA(iiQ/,Q’,é’) 10124,

~ ~ ~X ~
moreover, it is easily checked that the group homomorphism ﬁlx(H' N7 idp)

sends (mp) to (mgr) ) Conversely, for any m € ’ (P), it

(idgr Q0"

suffices to consider the element mg in m(Q ﬂ]}xP) defied by (cf. 10.12.3)

(idp,P,idp)

(mQ) 2, g3y = (B¥(8)) (m) 10.12.5

to get an element m = (mg)gex in the inverse limit. We are done.
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For n > 1, let m = (mg) be an Z(P")-stable [ -valued

4EFct(An,PT)
n-cocycle; that is to say, mq belongs to rﬁx(q(O) NP P)q( <P and, denoting

by di the corresponding differential map, we have

x
dy(m) =0 and (@ (aon? 7. (1)) (mq) = mq 10.12.6

P

for any natural I(P )-isomorphism «:q = §. In particular, for any triple
(W,q',2") € Vg, since v € q(0) fixes mq we have (cf. 10.10)

(Ma) (raopwq7ar) = (M) (w,a27) 10.12.7;
similarly, since u € P fixes mq, we also have (cf. 10.10)
(mq)(u’,q’,Tf:f (u)-z') — (mq)(,u/,q’,z’) 10.12.8.

At this point, for any P -chain q:4, — P, any triple (W, q',2") in Vq
and any ¢ € A4, consider the component of di (m) on the P -chain

b2, ) Apyr —> P 10.12.9;

since di (m) =0, we get the following equalities
n+1
O ([ ,U() mq + Z mbn H m/)o6"

10.12.10
n+1

x i
0= ([ (q/(o.l))) (mb?(#/ﬂz/)o(;g) —+ Z(—l) mh?(#/ﬁz/)o(;?
i=1

for any 1 < ¢ < n+ 1, and then the theorem follows from the following
lemma.

Lemma 10.13. Forn > 1, let m = (mq)qegct(An pxy be an I(’Px)-stable

element of (C"(Px, [x) such that, for a P -chain q: N, — P, any triple
(W,q',2") in Vq and any 1 < £ <n+1, we have

. n+1 )
0= (I"(10)) (mq) + > (=1) My (21087

. n+1
0= ([i(q/(o.ln)(mh” (p 2’ 05" + Z mbn (' ,x")odT

10.13.1.

x
For any P -chain t: A1 — P consider n, € tﬁx(t(O) ala P) defined by

(e = (DD mgnt000) (o 10.13.2
£=0

for any (V',¢',y') € Ve. Then n = (n, is an I(P")-stable

)YGSC’L(An—ly,Px)
element of (C"_l(’Px, [x) and we have d271(n)q =myg.
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Proof: According to 10.9 and 10.10, our definition of n. makes sense since
for any ¢ € A,, we have

N x

M1, ) € T ((0)n” P) and (wv,v,y) € Vo 10.13.3.
Moreover, the definition of n. does not depend on the choice of V;: in-
deed, if (v"/,¢",y") is a triple equivalent to (v',t/,y’) then, according to 10.9
and 10.11, we have natural I(Pi)—isomorphisms

n:d = and by r(n) by, Y) =26y 10.13.4
for any ¢ € A, ; hence, on the one hand (Lt// v, y"") is equivalent to (¢, v/, y")
and, on the other hand, since m is I(P )-stable, for any ¢ € A,, we have

Myn—1 = Myn—1( 10.13.5.

v"y) vy’

We claim that n is an Z(P" )-stable element of C"~1(P", " ) ; indeed, for
any natural I(P )-isomorphism B:t = T, it follows from 10.11 above that,

for any ¢ € A,,, we have a natural I(P )-isomorphism
NP TNy ) 2 R (Bo Y 10.13.6

and therefore, since m is I(’Px)-stable, We get Myn1(, ) = Myn—i(go,r 41y i

hence, we obtain

(ne) (v e ) Z 02 (o)) gy = () B0y 10.13.7,
{=

proving our claim; in particular, note that v(0) fixes n. . Similarly, we claim

that u € P fixes n, for any t € Fct(A,,_1, Px) ; indeed, since u € P fixes mq,
we also get (cf. 10.10)

NE

_ 4
(M) w2 ) = (DD Myna10n) (o ()

14

Il
=]

[
NE

4
(—1) (mbzlfl(u’))(Lt/,t/,Tg(u)'y/) 10138,

~
Il
o

I
NE

J4
(=D (myn=1,)) (o) = (00 (1,72 (w)-)

o~
Il
o

thus, n. belongs to rﬁ( (0) QPXP) (0)x P

Denoting by dn 1(n)q the component of dn 1(n) on g, it remains to

prove that d._,(n n)q = mq or, equivalently, that for any triple (4/,q’,2’)

in V4 we have
x

(@ 1(0)q) ( gr 2y = (Ma) 72 10.13.9.
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In equalities 10.13.1, the alternating sum of all the first terms of the right-
hand members yields

n+1
a0 = (' (o)) (mq) + Z(—nf([”E(q’(o.m))(mh?(u,@/)ogg) 10.13.10;
=1

but, it follows from [9, Lemma A4.2] that, for any 1 </ <n+ 1, we have
by (u,2') 088 = by (1 * oy, ") 10.13.11;

hence, in rﬁx(q’(()) ﬁPxP) we get
ao = (' (110)) (mq) — Z(_mf([*(q’(oq)))(mbfl(#,mg’z,)) 10.13.12.

£=0

Let us consider the (g7, q’, 2")-component of this element (cf. 10.10); on
the one hand, by the very definitions we have

(([x(uo))(mq)) = (M) (ur.qa”) 10.13.13;

(Lq’ 7q/7$/)

on the other hand, for any ¢ € A, , it is easily checked that

x
(& (001))) (1 55 00)
(( ) by (w8, ))(Lq,,q/,m/) 10.13.14;
— (m{(q/(o.l))) ((mb?71(#,*587'7x,))(b‘|/05g"qloé(?’;ﬂ/))

consequently, according to the definition of ngosn , we get

(00)(tyr a7,27) = (M) (' 072~

n

- (mx(q/(()' 1))) ((Z(‘Uemh;;*l(#f*ég,x/))(bq/osg 7q/068,w'))
=0 10.13.15.

= (mq)(w g2y — (M0 (001))) (Rgosy ) (wxop a7 27))
= (ma) ey = ((7(0'(001))) (ngosy))

(w'a’,2")

Moreover, for any 1 < i < n+ 1, the alternating sum of all the i-terms
of the right-hand members in 10.13.1 yields

n+1

a; = Z(—1)£+imh?(ul7m/)06? 101316,
=0
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more precisely, it follows from [9, Lemma A4.2] that the terms ¢ — 1 and i of
this sum cancel each other and therefore, setting

.
[

S~

(]

a, = (—1)€+imh?(ul)$/)051n

14

Il
=]

10.13.17

n+1

+

S
=3
|

£+i
(_1) Zmb?(#lym/)oain
{=i+1

we get a; = a;+a! . Then, always from [9, Lemma A4.2], forany 1 <i <n—1
we obtain

1—1
_ 041
Gy ==Y () F st )
-0 10.13.18
L+1
af ==Y (D) My it )
=1

and therefore we finally have

afpy Faf = (=1 Y (1) gm0 10.13.19.
=0

As above, according to the definition of Mgosn =1 the (tq/,9’,2")-com-

ponent of aj ; + aj yields
(@1 + @)y a.a)

= _(_1)1 ( Z(_l)emh?71(#,*6?71111)) (Lq/,q’,w’)

£=0
= 10.13.20
_ [ 4
=—(=D)"( Q-1 mh;*(u/*éz‘*l,z'))(Lq,oénfl,q'oéz‘*l,w
£=0 i

- _(_1)i(nq05?71)(H’*éffl,q’oéffl,w’)

= —(—1)i(”q05f*1)(u’,q’yw’)

since the equivalence classes of (vq7,q’,2") and (Lq,05@71,q’ o 5?71,33’) are de-
termined by the triple (cf. 10.10)

((ear)0, a'(0), 26) = ((tqro5n-1)0, (a" 0 6771)(0), z() 10.13.21,
and the same happens with (u' * 5?71, q o 5?71, z') and (¢/,q’,2"), namely

(' %67 Mo, (q" 0677 )(0),20) = (6,9’ (0), ) 10.13.22.
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Finally, we have a7 =0, a; = —myn—1(,5n-1, ) (cf. 10.9) and
n n n—1
n—1
Qg1 = —(—1)" Z(—1)4mb?71(#,*52717%1) 10.13.23.
=0

Once again, according to the definition of Ngosn-1 » the (tq7, 9", 2")-component
of any1 + all yields

1
(@ny1 + a’n)(bqhq/@/)

= _(_1)1( Z(—l)emb?fl(#/*égflyx/ )) (Lq/,q’,w’)

n—1

£=0
e 10.13.24
_ ) l
= =D (D Myttt )
£=0 "

= (1) (Ngosn=1) uresp =t qrosn 1t )

n—1

- _(_1)i(nq05271)(#/vq/vz/)

since the equivalence classes of (tq/,q',2") and (¢yo5n-1,9" © o=t ) are
determined by the same triple, and the same happens with the equivalence

classes of (/' 6"~ q o671 2! 1) and (¢/,q',2").

s Pn—1
In conclusion, from equalities 10.13.15, 10.13.20 and 10.13.24 we obtain
n+1
(mq)(#zyq/@/) = (mq)(#/ﬁq/@/) — Z(ao)(thqum/)
i=0
= ; 10.13.25.
_ (([x(q/(od)))(nqogg))W v DG DL COR s
e i=1

X

= (dn—l(n)q)(ugq/@/)
We are done.

Theorem 10.14. With the notation above, assume that the functor m*

sends the F -morphisms to injective O-module homomorphisms. Then, for
any n > 1 we have

a ~ X 3
H*(F*, (m" ointl )/m" ) = {0} 10.14.1.

Proof: Since F(P) is a p/-group (cf. 2.2.2), if X = {P} then we clearly have
H*(F,T /") = HY(F(P), (I /@ )(P)) = {0} 10.14.2.

Assuming that X # {P}, we argue by induction on |X| and, setting
X=9U{0U) |0 F(PU)} 10.14.3,
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for a minimal element U € X, we may assume that for any n < 1 we have
H(F7, 1 /@) = {0} 10.14.4

where I” and " denote the respective restrictions of M andm™ to £~ .

That is to say, considering the commutative diagram (cf. 10.8)

0 0 0

T N T N T
COF? P /m”y Ly o F P /mY) I e F T mY)

T . T . T

- ; xoxx 10.14.5

COF T M) oy o FLT MY S A F T M) L

1 ) 1

KO — K! — K2

T T T

0 0 0

where the vertical sequences are exact, the induction hypothesis guaranties
that the top sequence is also exact and therefore, in order to prove that the
middle sequence is exact, it suffices to prove that the bottom sequence is so.

In particular, we may assume that m (U) # {0} .

But, considering the new commutative diagram (cf. 10.8)

0 0 0 0
) 1) ) T . 0
‘(ﬁx(P)—>CO(]:—ED,~[ED) d_0> (C1(]_-2)ja,)) d_1> CQ(fQ'),fQ'))
I T 0 4
x x
' (P) — COF, T Dy o (FTY) Ly c(FTY ... 10146
1) 0 4
KO — Kl — K2
1) 0 4

where again the vertical sequences are exact, Theorem 10.12 implies that the
top and the middle sequences are exact, and then it is easily checked that
the bottom sequence is exact too.

Moreover, it is quite clear that the surjective O-module homomorphisms

~ ~ ~ 2 )

c(F ) s e FENT

2 X

/m”) and CF 1) CMF T /m") 10.14.7
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for any n € N, determine a commutative diagram

0 0 0
T T )
B P B P B P
K = K!' & Rz = ... 10.14.8
T T T
x x x

where the vertical sequences are exact. Consequently, since the bottom

sequence is exact, it suffices to prove that any element in the intersection
X x

K" N Ker(d,,) can be lifted to K" N Ker(d,,) for any n € N.
Recall that, for any n € N, we have O-module isomorphisms (cf. 10.8)

~X ~X x x
=P 10.14.9;

x

CHF T /M") = O (P17 /mY)

hence, an element m = (mq)
only it fulfills

qeget(a, p¥) in C" (P',1") belongs to K" if and

x

mg = (I (ag))(mq) 10.14.10

for any natural T (733E )-isomorphism «: q 2 q’ between two P -chains q and q’

(cf. 10.8) and, for any P? -chain t, m. belongs to the kernel of the canonical
map

t(0)x P t(0)x P

@*(x(0) NP P) — @’ (x(0) NP P) 10.14.11,

which, denoting by U, a set of representatives for the set of equivalent classes
of triples (¢, U, s) such that ¢ € ’Pi(t(O), U)s and s € PX(P, U)t, is equal to

Ky =( [[ wx@) " 10.14.12;
(t,U,s) €U,

note that, identifying m*(¢(0)) with its “diagonal” image in " (¢(0) mpxp) :
we have

Keo) Nm*(x(0)) = {0} 10.14.13;
moreover, we may assume that Uy = {(73(1),U,s)}
ticular, we get Ky # {0} .

sePX(PU) and, in par-
Let m = (mq)qegct(An,Px) be an element of K" such that d, (m) = 0.

First of all, for any q € ﬁct(An,P’{) assume that we have mg # 0 only
if q(0) € 9 ; in this case, in order to lift m to K™ N Ker(di), it suffices to
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consider m = (mq)qeg[t(An pxy where mq # 0 only if q(0) € 9 and then
mg is the unique element in Kq ) lifting mq (cf. 10.14.13); indeed, for any
P _chain t: Apt1 — P we obviously have
. . n+1 )
d,, (m)e = (1" (t(0 0 1))) (muosy) + > (—1)mogn 10.14.14;
i=0

if £(0) belongs to 2 then dz (m)¢ is the unique element lifting JZ (m)y =0
(cf. 10.14.13), so that we get d., (m); = 0; otherwise, we have Mmiosn = 0 for
any 1 <i <n+ 1 and therefore we get

0= ((C/m)((0 » 1)) (Miosy) 10.14.15;

if ¢(1) does not belong to 9 then we have msn = 0 since (to d5)(0) € Y ;
but, if ¢(1) belongs to 9 and we have myosp # 0 then, since m* sends the

F*-morphisms to injective O-module homomorphisms and we have
x 2
w(4(1) 0P P) Y = w (k1) 0P P) Y Ky 10.14.16,

the element ([x(t(O e 1)) (mosp) does not belong to the “diagonal” image
x

of m¥(t(0)) in tﬁx(t(O) NP P); thus, we also have Mmiosy = 0 and therefore

we still get di (m)¢=0.

Now, we may assume that there is q € Fct(A,, P’{) such that mq # 0
and that q(0) does not belong to 9); then, we argue by induction on the

cardinal of the set of natural I(’Px)-isomorphism classes of this set. Let
us choose a minimal element g, of this set; that is to say, we assume that,

for any q € Sct(An,PI) admitting a natural map ¢ — go which is not an

isomorphism, we have mq = 0. At this point, for any q € Sct(An,P’{) such
that q(0) does not belong to ), we define a section

x
aq i (q(0) NP P)IOXP _ mx(q(0)) 10.14.17
of the diagonal map (cf. 10.4.3)
. x
m*(q(0)) — @' (q0)n” Py= [  m(a(0) 10.14.18
teP* (P,q(0))

sending z = (z¢) to the element (cf. Proposition 4.5))

teP™ (P,q(0))

oq(2) = [F(Pa() Y 10.14.19
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where t runs over a set of representatives for the set of P-orbits in the set
P’{(P, q(1)) oq(0e1); then, we consider m = (mq)qGSct(An,Px) where my lifts
mq and moreover it belongs to Ker(oq) whenever q(0) does not belong to 9 ;

note that, since the intersection of Ker(oy) with the image of the diagonal
map is trivial, m is uniquely determined.

At this point, for any q € Fct(A,,, Px) admitting a natural map q — qo,
any triple (¢/,q’,2’) in Xy and any ¢ € A1, consider the component of
Jz (m) on the P -chain by (', 2'): App1 — P since Jz (m) = 0, we get
the following equalities

X n+1 )
0 = ((C/m) (1)) (mg) + D (1) gy

— 10.14.20;
x B i
0= (('/m*)(a(0 @ 1)) (M (ur aryosy) + Y (=1) Mgy (s wryosr
i=1
forany 1 </<mn.
But, since for any £ € A, 11 and any 1 <47 <n+ 1 we have
(07 (1, 2") 0 67)(0) = q(0) 10.14.21,

and q(0) does not belong to 9), it follows from our choice that Mgy (4! 2" )ob7
belongs to Ker(ab?(#,ﬁz,)o(;?) ;if £ >1ori=1, we have a group homomor-
phism
7'(1) — (0202 0 67) (1) 10.14.22
and therefore Ker(cgy (4 27)0s7) is contained in Ker(og) ; thus, the only case
where Ker(cgy (4,27)0s7) is not contained in Ker(oq) we have £ =0, 1 <
and q'(1) ¢ q’(0) , which forces q(1) 2 q(0), and in this situation we have an
evident natural map
ho(u' ") ool — q 10.14.23
which is not an isomorphism, so that My (! 2" )os7 = 0; hence, in all the
cases, Myr (v a')osn belongs to Kef(%;(#/,y)os;) . Moreover, if £ # 0 then we
have
(b7 (1,2 0 8 (0) = (1) 10.14.24
and this group either belongs to ) which, according to our definition of o,
implies that ([i(q’(Oo1)))(mb?w7w/)053) belongs to Ker(oq), or q'(0e1l) is
a P -isomorphism which implies that ([x(q’(Ool))) (M (ur 2105y ) still be-
longs to Ker(og ) ; finally, since i, has to be a ’Px—isomorphism, the element
([3E (114)) (mq) also belongs to Ker(og/) .
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Consequently, since Ker(oq) is a complement for the image of m*(q’(0))
in rﬁx(q’(()) ﬁPxP)q,(O)XP , we obtain the equalities
n+1
0= (I (uh)) (mq) + Z )i Yooy

10.14.25
n+1

x i
0= ([ (q(o ° 1)))(mb2‘(,u/,z’)06{{) + Z(_l) mh?(u',m/)oéf
=1

forany 1 < ¢ < n.Now, it is quite clear from Lemma 10.13 that, for a suitable
Z(P")-stable element n of C"~1(P", ") and for any q € Fect(A,, 73’{) admit-

ting a natural map p:q — ¢o, we have dn 1(n)q = myq, so that dn 1(@)y =0
if 4 is not an isomorphism; hence, it suffices to apply the induction hypothesis

to m —d,,_,(71). We are done.

Corollary 10.15. With the notatzon above, for any contravariant functor

m F 5 O-mod sending the F* -morphisms to injective O-module homo-
morphisms, we have

H(F @) 2 lim (/@) /®(P) and H'(F @) ={0} 10151

for any n > 2, where M (P) denotes the image of " (P).

Proof: It suffices to apply Theorems 10.12 and 10.14 to the long exact
sequence associated with the short exact sequence of contravariant func-
tors 10.6.2.
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