Strong pseudoprimes to the first 9 prime bases

Yupeng Jiang and Yingpu Deng
Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, 100190
\{jiangyupeng,dengyp\}@amss.ac.cn

Abstract

Define ψ_{m} to be the smallest strong pseudoprime to the first m prime bases. The exact value of ψ_{m} is known for $1 \leq m \leq 8$. Z. Zhang have found a 19-decimal-digit number $Q_{11}=3825123056546413051$ which is a strong pseudoprime to the first 11 prime bases and he conjectured that

$$
\psi_{9}=\psi_{10}=\psi_{11}=Q_{11}
$$

We prove the conjecture by algorithms.
Keywords. Strong Pseudoprimes, Chinese Remainder Theorem

1 Introduction

If n is prime, in view of Fermat's little theorem, the congruence

$$
a^{n-1} \equiv 1 \quad \bmod n
$$

holds for every a with $\operatorname{gcd}(a, n)=1$. There are composite numbers also satisfying the congruence. Such an odd composite number n is called a pseudoprime to base $a\left(\operatorname{psp}(a)\right.$ for short). Moreover for an odd prime n, let $n-1=2^{s} d$ with d odd, we have

$$
a^{d} \equiv 1 \quad \bmod n
$$

or

$$
a^{2^{k} d} \equiv-1 \quad \bmod n
$$

for some k satisfying $0 \leq k<d$. If a composite number n satisfies these two equations, we call n a strong pseudoprime to baes $a(\operatorname{spsp}(a)$ for short). This is the basic of Rabin-Miller test [3].

Define ψ_{m} to be the smallest strong pseudoprime to all the first m prime bases. If $n<\psi_{m}$, then only m strong pseudoprime tests are needed to find out whether n is prime or not. If we know the exact value of ψ_{m}, then for integers $n<\psi_{m}$, there is a deterministic primality testing algorithm which is easier to understand and also faster than ever known other tests. The exact value of ψ_{m} for $1 \leq m \leq 8$ is known [1, 2].

$$
\begin{aligned}
& \psi_{1}=2047 \\
& \psi_{2}=1373653 \\
& \psi_{3}=25326001 \\
& \psi_{4}=3215031751 \\
& \psi_{5}=2152302898747 \\
& \psi_{6}=3474749660383 \\
& \psi_{7}=341550071728321 \\
& \psi_{8}=341550071728321
\end{aligned}
$$

In paper [1], Jaeschke also gave upper bounds for $\psi_{9}, \psi_{10}, \psi_{11}$. These bounds were improved by Z. Zhang for several times and finally he conjectured that

$$
\begin{aligned}
\psi_{9}=\psi_{10}=\psi_{11}=Q_{11} & =3825123056546413051 \\
& =149491 \cdot 747451 \cdot 34233211
\end{aligned}
$$

Zhang also gave upper bounds and conjectures for ψ_{m}, with $12 \leq m \leq 20$ (see [4, 5, 6]).

In this paper, we develop several algorithms to get the following conclusion.
Claim 1. $\psi_{9}=\psi_{10}=\psi_{11}=Q_{11}=3825123056546413051$.
This article is organized like this. In $\S 2$ we give notations and basic facts needed for our algorithms. In $\S 3$ we get the properties of primes up to $\sqrt{Q_{11}}$ which give us much information to design our algorithm. Just as in [1] we consider the number of prime divisors of the testing number. Let $n=p_{1} \cdot p_{2} \ldots p_{t}$. In $\S 4$ we consider $t \geq 5$ and $t=4$ respectively, $\S 5$ for $t=3$ and $\S 6$ for $t=2$. In $\S 7$ we get our conclusion and give the total time we need for our algorithms.

2 Foundations of algorithms

In this section, we give the foundations for our algorithm. Let p be a prime, a is an integer with $\operatorname{gcd}(a, p)=1$, denote the smallest positive integer e such that $a^{e} \equiv 1$ $\bmod p$ by $\operatorname{Ord}_{p}(a)$. For example, we have $\operatorname{Ord}_{5}(2)=4$. Moreover for any integer n,
if $n=p^{e} n^{\prime}$ with $\operatorname{gcd}\left(n, n^{\prime}\right)=1$, we denote e by $\operatorname{Val}_{p}(n)$. In this article, we only use $\operatorname{Val}_{p}(n)$ for $p=2$, we write $\operatorname{Val}(n)$ by abbreviation. For $v \in \mathbb{Z}^{n}, v=\left(a_{1}, \ldots, a_{n}\right)$ with all $\operatorname{gcd}\left(a_{i}, p\right)=1$ we define

$$
\sigma_{p}^{v}=\left(\operatorname{Val}\left(\operatorname{Ord}_{p}\left(a_{1}\right)\right), \ldots, \operatorname{Val}\left(\operatorname{Ord}_{p}\left(a_{n}\right)\right)\right)
$$

If n is a pseudoprime (or strong pseudoprime) for all the $a_{i} \mathrm{~s}$, we denote it by $\operatorname{psp}(v)$ (or $\operatorname{spsp}(v)$).

We need to check all odd integers less than Q_{11} to see if there are strong pseudoprimes to the first nine bases. First we are going to exclude the integers having square divisors. If n is a $\operatorname{psp}(a)$ and $p^{2} \mid n$ for some prime p, then we have

$$
a^{n-1} \equiv 1 \quad \bmod p^{2}
$$

also

$$
a^{p(p-1)} \equiv 1 \quad \bmod p^{2}
$$

As $\operatorname{gcd}(p, n-1)=1$, we have

$$
a^{p-1} \equiv 1 \quad \bmod p^{2}
$$

For $a=2$ and 3 ,

$$
2^{p-1} \equiv 1 \quad \bmod p^{2}, \quad 3^{p-1} \equiv 1 \quad \bmod p^{2}
$$

These two equation do not hold simultaneously for any prime p less than $3 \cdot 10^{9}[2]$, which is greater than $\sqrt{Q_{11}} \approx 1.9 \cdot 10^{9}$, so we only need to consider squarefree integers.

Now we give the following important proposition(also see [1]).
Proposition 1. Let $n=p_{1} \ldots p_{t}$ with different primes $p_{1}, \ldots, p_{t}, v=\left(a_{1}, \ldots, a_{m}\right)$ with different integers such that $\operatorname{gcd}\left(a_{i}, p_{j}\right)=1$ for all $i=1, \ldots, m, j=1, \ldots, t$. Then n is an $\operatorname{spsp}(v)$ iff n is a $p s p(v)$ and $\sigma_{p_{1}}^{v}=\cdots=\sigma_{p_{t}}^{v}$.

Proof. Let $n-1=2^{s} d$ with d odd. By Chinese Remainder Theorem

$$
a^{2^{k} d} \equiv-1 \quad \bmod n \Longleftrightarrow a^{2^{k} d} \equiv-1 \quad \bmod p_{i}
$$

for all $1 \leq i \leq t$, so $\operatorname{Val}\left(\operatorname{Ord}_{p_{i}}(a)\right)=k+1$ for all i. And

$$
a^{d} \equiv 1 \quad \bmod n \Longleftrightarrow a^{d} \equiv 1 \quad \bmod p_{i}
$$

for all $1 \leq i \leq t$, so $\operatorname{Val}\left(\operatorname{Ord}_{p_{i}}(a)\right)=0$ for all i. The proposition is an immediate consequence of the above argument.

This is the main necessary condition that we use to find strong pseudoprimes. In our algorithm, $v=(2,3,5,7,11,13,17,19,23)$, For a given prime p, we need to find prime q satisfying $\sigma_{p}^{v}=\sigma_{q}^{v}$. A problem we have to face is that there are too many candidates of q, so we need another proposition(also see [1]).

Proposition 2. For primes p, q, if $\operatorname{Val}(p-1)=\operatorname{Val}(q-1)$ and $\sigma_{p}^{(a)}=\sigma_{q}^{(a)}$, then the Legendre symbol $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.
Proof. This follows from

$$
\sigma_{p}^{(a)}=\operatorname{Val}(p-1) \Longleftrightarrow\left(\frac{a}{p}\right)=-1 .
$$

Notice that if $p \equiv q \equiv 3 \bmod 4$ in the above proposition, the inverse is also true. This is important and then we can use Chinese Remainder Theorem to reduce candidates. We'll give details in the following sections.

3 Primes up to $\sqrt{Q_{11}}$

From now on, we fix $v=(2,3,5,7,11,13,17,19,23)$. If n is a $\operatorname{psp}(v)$ and prime $p \mid n$, as $a^{n-1} \equiv 1 \bmod p$, then

$$
\operatorname{Ord}_{p}(a) \mid(n-1), \quad a=2,3,5,7,11,13,17,19,23 .
$$

Define λ_{p} to be the least common multiple of the nine orders, then we have

$$
\lambda_{p}\left|(n-1), \quad \lambda_{p}\right|(p-1) .
$$

This point is helpful when designing our algorithms. Let $\mu_{p}=(p-1) / \lambda_{p}$, we develop an algorithm to calculate μ_{p} for p up to $\sqrt{Q_{11}}$. It takes about 15 hours and find that μ_{p} is very small. We tabulate our results as following.

In the table, for each value of μ_{p}, we give the first and last several primes. There are two rows with $\mu_{p}=2$, one for $p \equiv 3 \bmod 4$ and the other for $p \equiv 1 \bmod 4$. The binary row is for primes p with

$$
p \equiv 1 \quad \bmod 4, \quad \sigma_{p}^{v} \in\{0,1\}^{9} .
$$

Since $\left(\frac{2}{p}\right)=-1$ for $p \equiv 5 \bmod 8$, in the second $\mu_{p}=2$ row all p are in the residue class $1 \bmod 8$. For the same reason, in the binary row also with $p \equiv 1 \bmod 8$, as there is no prime with $\mu_{p} \geq 8$, all primes in binary row are $9 \bmod 16$ and with $\mu_{p}=4$. In the last column, we give the total number of each kind of primes.

μ_{p} for p up to $\sqrt{Q_{11}}$			
μ_{p}	primes	total	
2			
$p \equiv 3(4)$	$18191,31391,35279,38639,63839,95471$, $104711,147671, \ldots, 1955593559,1955627519$, $1955645831,1955687159,1955728199$	93878	
2			
$p \equiv 1(4)$	$87481,185641,336361,394969,483289$, $504001,515761, \ldots, 1955712529,1955713369$, $1955740609,1955743729,1955760361$	91541	
3	$4775569,5057839,5532619,7340227,7561207$ $8685379,9734161, \ldots, 1953162751$, $1953185551,1954279519,1955425393$	2226	
4	$25433521,120543721,129560209,138156769$, $148405321,174865681, \ldots, 1838581369$, $1867026001,1892769649,1918361041$	111	
5	$650086271,792798571,858613901$, $1794251801,1820572771,1947963301$	6	
6	1785200041	1	
7	945552637	1	
binary	$120543721,148405321,200893081,224683369$, $421725529,481266361, \ldots, 1717490329$, $1810589881,1828463641,1838581369$	45	

$4 \quad t \geq 5$ and $t=4$

As from the above, we only need to consider squarefree integers. we always denote $n=p_{1} \ldots p_{t}$ with $p_{1}<\cdots<p_{t}$. In this section, we are going to exclude the two cases when $t \geq 5$ and $t=4$.

$4.1 \quad t \geq 5$

For p up to $\left[\sqrt[5]{Q_{11}}\right]=5206$, let S_{p} be the set of all primes q with $\sigma_{q}^{v}=\sigma_{p}^{v}$, and denote k th element in S_{p} by $s_{p, k}$ in ascending order. Our algorithm puts out the first l elements of S_{p} with $l>5$ and

$$
\prod_{i=1}^{5} s_{p, i} \leq Q_{11}, \quad\left(\prod_{i=1}^{4} s_{p, i}\right) s_{p, l}>Q_{11}
$$

It takes less than 22 seconds and puts out six sequences. We give our result in the following table.

	σ_{p}^{v}	No.
167, 3167, 11087, 14423, 21383, 75407	(0,0,1,0,0,1,1,0,1)	1
$\begin{aligned} & 263,1583,8423,9767,12503,18743,50423, \\ & 54623,106367,127247 \end{aligned}$	$(0,0,1,1,0,0,0,1,0)$	13
443, 4547, 5483, 8243, 19163, 26987, 42683	(1,0,1,1,1,0,0,1,1)	2
463, 1087, 13687, 17383, 25447, 37447	(0,1,1,1,1,1,0,1,1)	1
479, 4919, 5519, 6599, 7559, 29399, 51719	(0,0,0,0,0,1,1,1,0)	4
2503, 2767, 5167, 5623, 11887, 31543	(0,1,1,1,0,1,0,0,0)	1

At first glance we know $t>5$ is impossible, Then we check these six sequences if they can make up an $\operatorname{spsp}(v)$ with 5 prime divisors. The last column is the number of integers with $t=5$ and less than Q_{11} in each sequence. Our checking algorithm terminates in less than 0.1 second and finds no strong pseudoprime.

There are details about our algorithm needing to explain. Notice that when $p_{1} \equiv 3 \bmod 4$, and finding q with $\sigma_{p_{1}}^{v}=\sigma_{q}^{v}$, as the least binary prime is 120543721 . In fact we only need to check $q \equiv 3 \bmod 4$. by proposition 2 , consider

$$
\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{q}\right), \quad\left(\frac{3}{p_{1}}\right)=\left(\frac{3}{q}\right) .
$$

we only need to check $q \equiv p_{1} \bmod 24$. also in $p_{1} \equiv 3 \bmod 4$ case, we calculate the Lengedre symbol $\left(\frac{\dot{p}}{p_{1}}\right)$ instead of $\operatorname{Val}\left(\operatorname{Ord}_{p_{1}}(\cdot)\right)$.

$4.2 \quad \mathrm{t}=4$

For $t=4$, we first define $\left(p_{1}, p_{2}, p_{3}\right)$ to be a feasible 3 -tuple if it satisfies

$$
p_{1}<p_{2}<p_{3}, \quad \sigma_{p_{1}}^{v}=\sigma_{p_{2}}^{v}=\sigma_{p_{3}}^{v}, \quad p_{1} p_{2} p_{3}^{2}<Q_{11}
$$

Our algorithm goes like this: for each p_{1} up to $\left[\sqrt[4]{Q_{11}}\right]=44224$, find feasible 3-tuples $\left(p_{1}, p_{2}, p_{3}\right)$. As $\lambda_{p_{i}} \mid n-1$, for $i=1,2,3$. let λ be the least common multiple of these three numbers, and $b=p_{1} p_{2} p_{3}$, then we have

$$
n=b p_{4} \equiv 1 \quad \bmod \lambda
$$

If $\operatorname{gcd}(b, \lambda) \neq 1$, it is impossible to have such n. If $\operatorname{gcd}(b, \lambda)=1$, we need to check all p_{4} with

$$
p_{3}<p_{4} \leq Q_{11} / b, \quad p_{4} \equiv b^{-1} \quad \bmod \lambda
$$

Our algorithm takes about 15 minutes, finding 88729 feasible 3-tuples and no $\operatorname{spsp}(v)$ with $t=4$. As for $t=5$, when $p_{1} \equiv 3 \bmod 4$, we use Legendre symbol and $q \equiv p_{1}$ $\bmod 24$ to shorten our running time.

$5 t=3$

As above, we define feasible 2 -tuple (p_{1}, p_{2}) with

$$
p_{1}<p_{2}, \quad \sigma_{p_{1}}^{v}=\sigma_{p_{2}}^{v}, \quad p_{1} p_{2}^{2}<Q_{11}
$$

Our algorithm is just as $t=4$ case, for each p_{1} up to $\left[\sqrt[3]{Q_{11}}\right]=1563922$, find feasible 2 -tuples $\left(p_{1}, p_{2}\right)$. Let $b=p_{1} p_{2}$ and $\lambda=\operatorname{lcm}\left(\lambda_{p_{1}}, \lambda_{p_{2}}\right)$, then $\lambda \mid n-1$. If $\operatorname{gcd}(b, \lambda)=1$, we check all p_{3} with

$$
p_{2}<p_{3} \leq Q_{11} / b, \quad p_{3} \equiv b^{-1} \quad \bmod \lambda .
$$

We divide our algorithm into three parts according $p_{1} \equiv 3 \bmod 4, p_{1} \equiv 5 \bmod 8$ and $p_{1} \equiv 1 \bmod 8$, also we use Chinese Remainder Theorem to reduce candidates.

$5.1 \quad p_{1} \equiv 3 \bmod 4$

For $p_{1} \equiv 3 \bmod 4$, we first assume $p_{2} \equiv 3 \bmod 4$. as from $\S 3$, we know if $p_{2} \equiv 1$ $\bmod 4, p_{2}$ must be a binary prime and so $\mu_{p_{2}}=4$. There are only 111 such primes up to $\sqrt{Q_{11}}$, we'll check these numbers later. By proposition 2, we use the first 5 primes and

$$
\left(\frac{a}{p_{1}}\right)=\left(\frac{a}{p_{2}}\right), \quad a=2,3,5,7,11
$$

reducing to 30 residue classes module $9240=8 \cdot 3 \cdot 5 \cdot 7 \cdot 11$.
Example 1. For $p_{1}=31$, the first module 4 equaling 3 prime. Feasible 2-tuple $\left(31, p_{2}\right)$ must with

$$
p_{2}<\left[\sqrt{Q_{11} / 31}\right]=351270645
$$

If we do not have $\S 3$, we need to check all the odd number greater than 31 , there are about $1.7 \cdot 10^{8}$ candidates. If we do it as for $t=5$ and 4 , there are $1.4 \cdot 10^{7}$ candidates. For our method, there are only $30 \cdot \frac{351270645}{9240} \approx 1.1 \cdot 10^{6}$ candidates.

There is another trick we used. if $b=p_{1} p_{2}$ is less than $2 \cdot 10^{6}$, the correspond λ may be too small. We do not find p_{3} as the above describes. In fact, as

$$
n=b p_{3} \equiv b \quad \bmod p_{3}-1
$$

and

$$
a^{n-1} \equiv a^{b-1} \equiv 1 \quad \bmod p_{3}, \quad a=2,3
$$

We calculate $\operatorname{gcd}\left(2^{b-1}-1,3^{b-1}-1\right)$ then factor it to get the prime divisor which is greater than p_{2} and less than Q_{11} / b. Without this trick, our algorithm run more
than 24 hours and still din't terminate. When using the trick, the algorithm takes less than 5 hours. It gives 10524046 feasible 2 -tuples and the $\operatorname{single} \operatorname{spsp}(v)$

$$
Q_{11}=3825123056546413051=149491 \cdot 747451 \cdot 34233211 .
$$

The following table gives all the 37 feasible 2-tuples with multiple less than $2 \cdot 10^{6}$, which can explains why the first case takes so long time.
Example 2. Notice that for some b the λ is small. For $b=43 \cdot 9283=339169$, we need to check all p_{3} with

$$
9283<p_{3}<Q_{11} / b \approx 1.1 \cdot 10^{13}, \quad p_{3} \equiv 7771 \bmod 9282
$$

and for $b=571 \cdot 2851=1627921$, all p_{3} with

$$
p_{2}<p_{3}<Q_{11} / b \approx 2.3 \cdot 10^{12}, \quad p_{3} \equiv 2281 \bmod 2580
$$

These are really time-consuming.

$5.2 \quad p_{1} \equiv 5 \bmod 8$

If $p_{1} \equiv 5 \bmod 8$, as $\left(\frac{2}{p_{1}}\right)=-1, \operatorname{Val}\left(\operatorname{Ord}_{p_{1}}(2)\right)=2$, so for each p_{2} with $\sigma_{p_{2}}^{v}=\sigma_{p_{1}}^{v}$, we must have $p_{2} \equiv 1 \bmod 4$. If $p_{2} \equiv 5 \bmod 8$, by proposition 2 , we use the first 5 primes then

$$
\left(\frac{a}{p_{2}}\right)=\left(\frac{a}{p_{1}}\right), \quad a=2,3,5,7,11 .
$$

There are 30 residue classes module 9240 . If $p_{2} \equiv 1 \bmod 8$, for $p_{2} \equiv 1 \bmod 16$, we must have $\mu_{p_{2}}=4$, we'll check these numbers later. For $p_{2} \equiv 9 \bmod 16$, we must have

$$
\left(\frac{a}{p_{2}}\right)=1, \quad a=2,3,5,7,11 .
$$

There are 30 residue classes module 18480 . The total time for checking all p_{1} up to 1563922 is about 10 hours and we find 522239 feasible 2 -tuples with no $\operatorname{spsp}(v)$.

$5.3 \quad p_{1} \equiv 1 \bmod 8$

For $p_{1} \equiv 1 \bmod 8$, denote $e=\operatorname{Val}\left(p_{1}-1\right)$ and $f=\operatorname{Val}\left(\lambda_{p_{1}}\right)$, then $f \leq e$ and

$$
p_{1} \equiv 1+2^{e} \bmod 2^{e+1}, \quad p_{2} \equiv 1 \bmod 2^{f}
$$

for $\sigma_{p_{2}}^{v}=\sigma_{p_{1}}^{v}$. If $f=e$, then we consider two cases. For $p_{2} \equiv 1+2^{e} \bmod 2^{e+1}$, we have

$$
\left(\frac{a}{p_{2}}\right)=\left(\frac{a}{p_{1}}\right), \quad a=2,3,5,7,11
$$

feasible $\left(p_{1}, p_{2}\right)$ with $b<2 \cdot 10^{6}$
$\left.\begin{array}{|l|l|l|l|l|}\hline \mathrm{b} & p_{1} & p_{2} & \lambda & \sigma_{p_{1}}^{v} \\ \hline 685441 & 31 & 22111 & 22110 & (0,1,0,0,1,1,1,0,1) \\ \hline 919801 & 31 & 29671 & 29670 & (0,1,0,0,1,1,1,0,1) \\ \hline 1267249 & 31 & 40879 & 204390 & (0,1,0,0,1,1,1,0,1) \\ \hline 399169 & 43 & 9283 & 9282 & (1,1,1,1,0,0,0,1,0) \\ \hline 703609 & 43 & 16363 & 114534 & (1,1,1,1,0,0,0,1,0) \\ \hline 1379569 & 43 & 32083 & 224574 & (1,1,1,1,0,0,0,1,0) \\ \hline 1487929 & 43 & 34603 & 242214 & (1,1,1,1,0,0,0,1,0) \\ \hline 1772761 & 43 & 41227 & 288582 & (1,1,1,1,0,0,0,1,0) \\ \hline 741049 & 47 & 15767 & 362618 & (0,0,1,0,1,1,0,1,1) \\ \hline 1879201 & 47 & 39983 & 919586 & (0,0,1,0,1,1,0,1,1) \\ \hline 117049 & 67 & 1747 & 19206 & (1,1,1,1,1,1,0,0,0) \\ \hline 1578721 & 67 & 23563 & 23562 & (1,1,1,1,1,1,0,0,0) \\ \hline 1354609 & 71 & 19079 & 667730 & (0,0,0,1,1,1,1,0,1) \\ \hline 722929 & 79 & 9151 & 118950 & (0,1,0,1,0,0,1,0,0) \\ \hline 1272769 & 79 & 16111 & 209430 & (0,1,0,1,0,0,1,0,0) \\ \hline 457081 & 83 & 5507 & 225746 & (1,0,1,0,0,1,0,1,0) \\ \hline 1391329 & 83 & 16763 & 687242 & (1,0,1,0,0,1,0,1,0) \\ \hline 1739929 & 83 & 20963 & 859442 & (1,0,1,0,0,1,0,1,0) \\ \hline 1652401 & 107 & 15443 & 818426 & (1,0,1,1,0,0,1,0,0) \\ \hline 1730689 & 139 & 12451 & 286350 & (1,1,0,0,0,0,1,1,1) \\ \hline 1790881 & 163 & 10987 & 296622 & (1,1,1,1,1,1,1,1,1) \\ \hline 528889 & 167 & 3167 & 262778 & (0,0,1,0,0,1,1,0,1) \\ \hline 1851529 & 167 & 11087 & 920138 & (0,0,1,0,0,1,1,0,1) \\ \hline 1892881 & 211 & 8971 & 62790 & (1,1,0,1,0,0,1,0,1) \\ \hline 1552849 & 229 & 6781 & 128820 & (2,0,1,2,1,2,0,0,2) \\ \hline 416329 & 263 & 1583 & 207242 & (0,0,1,1,0,0,0,1,0) \\ \hline 223609 & 311 & 719 & 111290 & (0,0,0,0,1,0,1,1,1) \\ \hline 1912849 & 331 & 5779 & 317790 & (1,1,0,1,1,1,0,0,1) \\ \hline 825841 & 379 & 2179 & 45738 & (1,1,0,1,1,1,1,0,0) \\ \hline 540409 & 439 & 1231 & 89790 & (0,1,0,0,0,0,1,0,1) \\ \hline 503281 & 463 & 1087 & 83622 & (0,1,1,1,1,1,0,1,1) \\ \hline 929041 & 503 & 1847 & 463346 & (0,0,1,0,0,0,1,1,0) \\ \hline 1627921 & 571 & 2851 & 2850 & (1,1,0,1,0,0,1,1,0) \\ \hline 1280449 & 787 & 1627 & 213006 & (1,1,1,0,0,1,1,0,0) \\ \hline 1616521 & 919 & 1759 & 268974 & (0,1,0,1,0,0,0,1,0) \\ \hline 1538161 & 1063 & 1447 & 255942 & (0,1,1,0,0,0,0,0,0) \\ \hline 1772521 & 1103 & 1607 & 884906 & (0,0,1,1,1,1,0,1,0) \\ \hline & & & & \\ \hline 10,0,1\end{array}\right)$

There are 30 residue classes module $2^{e+1} \cdot 1155$. For $p_{2} \equiv 1+2^{e+1} \bmod 2^{e+2}$, we have

$$
\left(\frac{a}{p_{2}}\right)=1, \quad a=2,3,5,7,11
$$

30 residue classer module $2^{e+2} \cdot 1155$. The $p_{2} \equiv 1 \bmod 2^{e+2}$ case is left for the prime with $\mu_{p_{2}}=4$. If $f<e$, we only check $p_{2} \equiv p_{1} \bmod 2^{f}$. In fact, according to $\S 3$, this only happens when $f=e-1$ and $\mu_{p_{1}}=2$. There are only 50 such primes up to 1563922 . Our algorithm takes less than 100 minutes and finds 30728 feasible 2 -tuples and no $\operatorname{spsp}(v)$.

$5.4 \quad \mu_{p_{2}}=4$

In the above three cases, we don't consider the case $\mu_{p_{2}}=4$. Now we assume $\mu_{p_{2}}=4$, as we also have

$$
p_{1} \geq 29, \quad p_{1} p_{2}^{2} \leq Q_{11}
$$

So $p_{2}<363181490$. According $\S 3$, there only 12 primes under this bound. We check all of them and find no feasible 2-tuples. Until now we finish the $t=3$ case and find only one $\operatorname{spsp}(v) Q_{11}$. The total time is less than 17 hours.

$6 \mathrm{t}=\mathbf{2}$

For $t=2$, there is no need to define feasible 1-tuples. As $\lambda_{p_{1}} \mid n-1$ we have

$$
p_{1}<p_{2} \leq Q_{11} / p_{1}, \quad p_{2} \equiv 1 \quad \bmod \lambda_{p_{1}} .
$$

Since $\lambda_{p_{1}}$ is close to $p_{1}-1$, there are about $Q_{11} /\left(p_{1}\right)^{2}$ candidates for each p_{1}. When p_{1} is small, there are too many. According the value of p_{1}, we divide into three parts.

6.1 small and large p_{1}

If $p_{1}<10^{6}$, we'll use the same method as for $t=3, p_{1} p_{2}<2 \cdot 10^{6}$. We have

$$
a^{p_{1}-1} \equiv a^{n-1} \equiv 1 \quad \bmod p_{2}, \quad a=2,3
$$

so we calculate $\operatorname{gcd}\left(2^{p_{1}-1}-1,3^{p_{1}-1}-1\right)$ and factor it to get prime divisors p_{2} with

$$
p_{1}<p_{2} \leq Q_{11} / p_{1} .
$$

Our algorithm takes about 9 hours and finds no $\operatorname{spsp}(v)$.
For $p_{1}>10^{8}$, There are less than 380 candidates, we just run our algorithm as described at the beginning of this section. It takes about 18 hours and find no $\operatorname{spsp}(v)$.

$6.210^{6}<p_{1}<10^{8}$

When p_{1} is in this interval, we divide into three parts according to $p_{1} \equiv 3 \bmod 4$, $p_{1} \equiv 5 \bmod 8$ and $p_{1} \equiv 1 \bmod 8$. In each case, just as $t=3$ we use Chinese Remainder Theorem to reduce candidates. This time we use the first 6 primes.

For $p_{1} \equiv 3 \bmod 4, p_{2}$ with $\sigma_{p_{2}}^{v}=\sigma_{p_{1}}^{v}$. If $p_{2} \equiv 3 \bmod 4$ then we have $p_{2} \equiv 1$ $\bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{1}}\right)=\left(\frac{a}{p_{2}}\right), \quad a=2,3,5,7,11,13 .
$$

If $p_{2} \equiv 1 \bmod 4$, then we have $p_{2} \equiv 1 \bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{2}}\right)=1, \quad a=2,3,5,7,11,13
$$

Our algorithm takes about 15 hours and finds no $\operatorname{spsp}(v)$.
For $p_{1} \equiv 5 \bmod 8$, then $p_{2} \equiv 1 \bmod 4$. If $p_{2} \equiv 5 \bmod 8$ then we have $p_{2} \equiv 1$ $\bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{1}}\right)=\left(\frac{a}{p_{2}}\right), \quad a=2,3,5,7,11,13 .
$$

If $p_{2} \equiv 1 \bmod 8$, then we have $p_{2} \equiv 1 \bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{2}}\right)=1, \quad a=2,3,5,7,11,13 .
$$

Our algorithm takes about 15 hours and finds no $\operatorname{spsp}(v)$.
For $p_{1} \equiv 1 \bmod 8$, denote $e=\operatorname{Val}\left(p_{1}-1\right), f=\operatorname{Val}\left(\sigma_{p_{1}}\right)$, then $f \leq e$. If $f=e$, there are two cases. For $p_{2} \equiv 1+2^{e} \bmod 2^{e+1}$, then $p_{2} \equiv 1 \bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{1}}\right)=\left(\frac{a}{p_{2}}\right), \quad a=2,3,5,7,11,13 .
$$

For $p_{2} \equiv 1 \bmod 2^{e+1}$, then $p_{2} \equiv 1 \bmod \lambda_{p_{1}}$ and

$$
\left(\frac{a}{p_{2}}\right)=1, \quad a=2,3,5,7,11,13 .
$$

If $f<e$, we only use $p_{2} \equiv 1 \bmod \lambda_{p_{1}}$, Our algorithm takes about 16 hours and finds no $\operatorname{spsp}(v)$.

We also run an algorithm for these cases without use Chinese Remainder Theorem, it took more than 10 days and didn't halt. So the Chinese Remainder Theorem is really helpful here. We need to be careful when writing our algorithm because $\operatorname{gcd}\left(a, \lambda_{p_{1}}\right) \neq 1$ for some p_{1} and $a=2,3,5,7,11,13$.

Then we finish the $t=2$ case and find no strong pseudoprime to the first 9 primes.

7 Conclusion

Until now, we have checked all the odd composite numbers up to Q_{11}, and find only one strong pseudoprime Q_{11} to the first 9 primes. As it is easy to check that Q_{11} is also strong pseudoprime to the bases 29 and 31 , we have our claim in $\S 1$.

$$
\psi_{9}=\psi_{10}=\psi_{11}=Q_{11}
$$

So for an integer less than Q_{11}, only 9 strong pseudoprime tests are needed to judge its primality and compositeness. We use the software Magma and all algorithms are run in my PC(an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93 GHz with 2 Gb of RAM). The total time is about 105 hours.

References

[1] G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61(1993), no. 204, 915-926. MR1192971(94d:11004)
[2] C. Pomerance, J. L. Selfridge and Samual S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35(1980), no. 151, 1003-1026. MR0572872(82g:10030)
[3] M. O. Ranbin, Probabilistic algorithms for testing primality, J. Number Theory 12(1980), 128-138. MR0566880(81f:10003)
[4] Zhenxiang Zhang, Finding strong pseudoprimes to several bases, Math. Comp. 70(2001), no. 234, 863-872. MR1697654(2001g:11009)
[5] Zhenxiang Zhang, Two kinds of strong pseudoprimes up to 10^{36}, Math. Comp.,76(2007), no. 260, 2095-2107. MR2336285(2008h:11114)
[6] Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases II, Math. Comp. 72(2003), no. 244, 2085-2097. MR1986825(2005k:11243)

