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Abstract

Define ψm to be the smallest strong pseudoprime to the firstm prime bases.
The exact value of ψm is known for 1 ≤ m ≤ 8. Z. Zhang have found a 19-
decimal-digit number Q11 = 3825 12305 65464 13051 which is a strong pseudo-
prime to the first 11 prime bases and he conjectured that

ψ9 = ψ10 = ψ11 = Q11.

We prove the conjecture by algorithms.
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1 Introduction

If n is prime, in view of Fermat’s little theorem, the congruence

an−1 ≡ 1 mod n

holds for every a with gcd(a, n)=1. There are composite numbers also satisfying
the congruence. Such an odd composite number n is called a pseudoprime to base
a (psp(a) for short). Moreover for an odd prime n, let n − 1 = 2sd with d odd, we
have

ad ≡ 1 mod n

or
a2

kd ≡ −1 mod n

for some k satisfying 0 ≤ k < d. If a composite number n satisfies these two
equations, we call n a strong pseudoprime to baes a (spsp(a) for short). This is the
basic of Rabin-Miller test[3].
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Define ψm to be the smallest strong pseudoprime to all the first m prime bases.
If n < ψm, then only m strong pseudoprime tests are needed to find out whether
n is prime or not. If we know the exact value of ψm, then for integers n < ψm,
there is a deterministic primality testing algorithm which is easier to understand
and also faster than ever known other tests. The exact value of ψm for 1 ≤ m ≤ 8
is known[1, 2].

ψ1 = 2047

ψ2 = 1373653

ψ3 = 25326001

ψ4 = 32150 31751

ψ5 = 215 23028 98747

ψ6 = 347 47496 60383

ψ7 = 34155 00717 28321

ψ8 = 34155 00717 28321

In paper [1], Jaeschke also gave upper bounds for ψ9, ψ10, ψ11. These bounds were
improved by Z. Zhang for several times and finally he conjectured that

ψ9 = ψ10 = ψ11 = Q11 = 3825 12305 65464 13051

= 149491 · 747451 · 34233211

Zhang also gave upper bounds and conjectures for ψm, with 12 ≤ m ≤ 20 (see
[4, 5, 6]).

In this paper, we develop several algorithms to get the following conclusion.

Claim 1. ψ9 = ψ10 = ψ11 = Q11 = 3825 12305 65464 13051.

This article is organized like this. In §2 we give notations and basic facts needed
for our algorithms. In §3 we get the properties of primes up to

√
Q11 which give us

much information to design our algorithm. Just as in [1], we consider the number of
prime divisors of the testing number. Let n = p1 · p2 . . . pt. In §4 we consider t ≥ 5
and t = 4 respectively, §5 for t = 3 and §6 for t = 2. In §7 we get our conclusion
and give the total time we need for our algorithms.

2 Foundations of algorithms

In this section, we give the foundations for our algorithm. Let p be a prime, a is
an integer with gcd(a, p)=1, denote the smallest positive integer e such that ae ≡ 1
mod p by Ordp(a). For example, we have Ord5(2) = 4. Moreover for any integer n,
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if n = pen′ with gcd(n, n′)=1, we denote e by V alp(n). In this article, we only use
V alp(n) for p = 2, we write V al(n) by abbreviation. For v ∈ Z

n, v = (a1, . . . , an)
with all gcd(ai, p)=1 we define

σvp = (V al(Ordp(a1)), . . . , V al(Ordp(an))).

If n is a pseudoprime (or strong pseudoprime) for all the ais, we denote it by psp(v)
(or spsp(v)).

We need to check all odd integers less than Q11 to see if there are strong pseu-
doprimes to the first nine bases. First we are going to exclude the integers having
square divisors. If n is a psp(a) and p2|n for some prime p, then we have

an−1 ≡ 1 mod p2.

also
ap(p−1) ≡ 1 mod p2.

As gcd(p, n − 1)=1, we have

ap−1 ≡ 1 mod p2

For a = 2 and 3,

2p−1 ≡ 1 mod p2, 3p−1 ≡ 1 mod p2

These two equation do not hold simultaneously for any prime p less than 3 · 109[2],
which is greater than

√
Q11 ≈ 1.9 · 109, so we only need to consider squarefree

integers.
Now we give the following important proposition(also see [1]).

Proposition 1. Let n = p1 . . . pt with different primes p1, . . . , pt, v = (a1, . . . , am)
with different integers such that gcd(ai, pj)=1 for all i = 1, . . . ,m, j = 1, . . . , t.
Then n is an spsp(v) iff n is a psp(v) and σvp1 = · · · = σvpt.

Proof. Let n− 1 = 2sd with d odd. By Chinese Remainder Theorem

a2
kd ≡ −1 mod n⇐⇒ a2

kd ≡ −1 mod pi

for all 1 ≤ i ≤ t, so V al(Ordpi(a)) = k + 1 for all i. And

ad ≡ 1 mod n⇐⇒ ad ≡ 1 mod pi

for all 1 ≤ i ≤ t, so V al(Ordpi(a)) = 0 for all i. The proposition is an immediate
consequence of the above argument.
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This is the main necessary condition that we use to find strong pseudoprimes.
In our algorithm, v = (2, 3, 5, 7, 11, 13, 17, 19, 23), For a given prime p, we need to
find prime q satisfying σvp = σvq . A problem we have to face is that there are too
many candidates of q, so we need another proposition(also see [1]).

Proposition 2. For primes p, q, if V al(p − 1) = V al(q − 1) and σ
(a)
p = σ

(a)
q , then

the Legendre symbol (a
p
) = (a

q
).

Proof. This follows from

σ(a)p = V al(p− 1) ⇐⇒ (
a

p
) = −1.

Notice that if p ≡ q ≡ 3 mod 4 in the above proposition, the inverse is also
true. This is important and then we can use Chinese Remainder Theorem to reduce
candidates. We’ll give details in the following sections.

3 Primes up to
√
Q11

From now on, we fix v = (2, 3, 5, 7, 11, 13, 17, 19, 23). If n is a psp(v) and prime p|n,
as an−1 ≡ 1 mod p, then

Ordp(a)|(n − 1), a = 2, 3, 5, 7, 11, 13, 17, 19, 23.

Define λp to be the least common multiple of the nine orders, then we have

λp|(n− 1), λp|(p− 1).

This point is helpful when designing our algorithms. Let µp = (p−1)/λp, we develop
an algorithm to calculate µp for p up to

√
Q11. It takes about 15 hours and find

that µp is very small. We tabulate our results as following.
In the table, for each value of µp, we give the first and last several primes. There

are two rows with µp = 2, one for p ≡ 3 mod 4 and the other for p ≡ 1 mod 4.
The binary row is for primes p with

p ≡ 1 mod 4, σvp ∈ {0, 1}9.

Since (2
p
) = −1 for p ≡ 5 mod 8, in the second µp = 2 row all p are in the residue

class 1 mod 8. For the same reason, in the binary row also with p ≡ 1 mod 8, as
there is no prime with µp ≥ 8, all primes in binary row are 9 mod 16 and with
µp = 4. In the last column, we give the total number of each kind of primes.
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µp for p up to
√
Q11

µp primes total

2
18191, 31391, 35279, 38639, 63839, 95471,
104711, 147671,. . . , 1955593559, 1955627519, 93878

p ≡ 3(4)
1955645831, 1955687159, 1955728199

2
87481, 185641, 336361, 394969, 483289,
504001, 515761,. . . , 1955712529, 1955713369, 91541

p ≡ 1(4)
1955740609, 1955743729, 1955760361

4775569, 5057839, 5532619, 7340227, 7561207
3 8685379, 9734161,. . . , 1953162751, 2226

1953185551, 1954279519, 1955425393

25433521, 120543721, 129560209, 138156769,
4 148405321, 174865681,. . . , 1838581369, 111

1867026001, 1892769649, 1918361041

650086271, 792798571, 858613901,
5

1794251801, 1820572771, 1947963301
6

6 1785200041 1

7 945552637 1

120543721, 148405321, 200893081, 224683369,
binary 421725529, 481266361,. . . , 1717490329, 45

1810589881, 1828463641, 1838581369

4 t ≥ 5 and t = 4

As from the above, we only need to consider squarefree integers. we always denote
n = p1 . . . pt with p1 < · · · < pt. In this section, we are going to exclude the two
cases when t ≥ 5 and t = 4.

4.1 t ≥ 5

For p up to [ 5
√
Q11] = 5206, let Sp be the set of all primes q with σvq = σvp , and

denote kth element in Sp by sp,k in ascending order. Our algorithm puts out the
first l elements of Sp with l > 5 and

5
∏

i=1

sp,i ≤ Q11, (
4
∏

i=1

sp,i)sp,l > Q11.

It takes less than 22 seconds and puts out six sequences. We give our result in the
following table.
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sequence with equal σvp

σvp No.

167, 3167, 11087, 14423, 21383, 75407 (0,0,1,0,0,1,1,0,1) 1

263, 1583, 8423, 9767, 12503, 18743, 50423,
54623, 106367, 127247

(0,0,1,1,0,0,0,1,0) 13

443, 4547, 5483, 8243, 19163, 26987, 42683 (1,0,1,1,1,0,0,1,1) 2

463, 1087, 13687, 17383, 25447, 37447 (0,1,1,1,1,1,0,1,1) 1

479, 4919, 5519, 6599, 7559, 29399, 51719 (0,0,0,0,0,1,1,1,0) 4

2503, 2767, 5167, 5623, 11887, 31543 (0,1,1,1,0,1,0,0,0) 1

At first glance we know t > 5 is impossible, Then we check these six sequences if
they can make up an spsp(v) with 5 prime divisors. The last column is the number
of integers with t = 5 and less than Q11 in each sequence. Our checking algorithm
terminates in less than 0.1 second and finds no strong pseudoprime.

There are details about our algorithm needing to explain. Notice that when
p1 ≡ 3 mod 4, and finding q with σvp1 = σvq , as the least binary prime is 120543721.
In fact we only need to check q ≡ 3 mod 4. by proposition 2, consider

(
2

p1
) = (

2

q
), (

3

p1
) = (

3

q
).

we only need to check q ≡ p1 mod 24. also in p1 ≡ 3 mod 4 case, we calculate the
Lengedre symbol ( ·

p1
) instead of V al(Ordp1(·)).

4.2 t=4

For t = 4, we first define (p1, p2, p3) to be a feasible 3-tuple if it satisfies

p1 < p2 < p3, σvp1 = σvp2 = σvp3 , p1p2p
2
3 < Q11.

Our algorithm goes like this: for each p1 up to [ 4
√
Q11] = 44224, find feasible 3-tuples

(p1, p2, p3). As λpi |n− 1, for i = 1, 2, 3. let λ be the least common multiple of these
three numbers, and b = p1p2p3, then we have

n = bp4 ≡ 1 mod λ.

If gcd(b, λ) 6= 1, it is impossible to have such n. If gcd(b, λ) = 1, we need to check
all p4 with

p3 < p4 ≤ Q11/b, p4 ≡ b−1 mod λ

Our algorithm takes about 15 minutes, finding 88729 feasible 3-tuples and no spsp(v)
with t = 4. As for t = 5, when p1 ≡ 3 mod 4, we use Legendre symbol and q ≡ p1
mod 24 to shorten our running time.
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5 t = 3

As above, we define feasible 2-tuple (p1, p2) with

p1 < p2, σvp1 = σvp2 , p1p
2
2 < Q11

Our algorithm is just as t = 4 case, for each p1 up to [ 3
√
Q11] = 1563922, find feasible

2-tuples (p1, p2). Let b = p1p2 and λ = lcm(λp1 , λp2), then λ|n− 1. If gcd(b, λ) = 1,
we check all p3 with

p2 < p3 ≤ Q11/b, p3 ≡ b−1 mod λ.

We divide our algorithm into three parts according p1 ≡ 3 mod 4, p1 ≡ 5 mod 8
and p1 ≡ 1 mod 8, also we use Chinese Remainder Theorem to reduce candidates.

5.1 p1 ≡ 3 mod 4

For p1 ≡ 3 mod 4, we first assume p2 ≡ 3 mod 4. as from §3, we know if p2 ≡ 1
mod 4, p2 must be a binary prime and so µp2 = 4. There are only 111 such primes
up to

√
Q11, we’ll check these numbers later. By proposition 2, we use the first 5

primes and

(
a

p1
) = (

a

p2
), a = 2, 3, 5, 7, 11

reducing to 30 residue classes module 9240 = 8 · 3 · 5 · 7 · 11.
Example 1. For p1 = 31, the first module 4 equaling 3 prime. Feasible 2-tuple
(31, p2) must with

p2 < [
√

Q11/31] = 351270645

If we do not have §3, we need to check all the odd number greater than 31, there
are about 1.7 · 108 candidates. If we do it as for t = 5 and 4, there are 1.4 · 107
candidates. For our method, there are only 30 · 351270645

9240 ≈ 1.1 · 106 candidates.
There is another trick we used. if b = p1p2 is less than 2 · 106, the correspond λ

may be too small. We do not find p3 as the above describes. In fact, as

n = bp3 ≡ b mod p3 − 1

and
an−1 ≡ ab−1 ≡ 1 mod p3, a = 2, 3

We calculate gcd(2b−1 − 1, 3b−1 − 1) then factor it to get the prime divisor which
is greater than p2 and less than Q11/b. Without this trick, our algorithm run more

7



than 24 hours and still din’t terminate. When using the trick, the algorithm takes
less than 5 hours. It gives 10524046 feasible 2-tuples and the single spsp(v)

Q11 = 3825 12305 65464 13051 = 149491 · 747451 · 34233211.

The following table gives all the 37 feasible 2-tuples with multiple less than 2·106,
which can explains why the first case takes so long time.
Example 2. Notice that for some b the λ is small. For b = 43 · 9283 = 339169, we
need to check all p3 with

9283 < p3 < Q11/b ≈ 1.1 · 1013, p3 ≡ 7771 mod 9282

and for b = 571 · 2851 = 1627921, all p3 with

p2 < p3 < Q11/b ≈ 2.3 · 1012, p3 ≡ 2281 mod 2580

These are really time-consuming.

5.2 p1 ≡ 5 mod 8

If p1 ≡ 5 mod 8, as ( 2
p1
) = −1, V al(Ordp1(2)) = 2, so for each p2 with σvp2 = σvp1 ,

we must have p2 ≡ 1 mod 4. If p2 ≡ 5 mod 8, by proposition 2, we use the first 5
primes then

(
a

p2
) = (

a

p1
), a = 2, 3, 5, 7, 11.

There are 30 residue classes module 9240. If p2 ≡ 1 mod 8, for p2 ≡ 1 mod 16, we
must have µp2 = 4, we’ll check these numbers later. For p2 ≡ 9 mod 16, we must
have

(
a

p2
) = 1, a = 2, 3, 5, 7, 11.

There are 30 residue classes module 18480. The total time for checking all p1 up to
1563922 is about 10 hours and we find 522239 feasible 2-tuples with no spsp(v).

5.3 p1 ≡ 1 mod 8

For p1 ≡ 1 mod 8, denote e = V al(p1 − 1) and f = V al(λp1), then f ≤ e and

p1 ≡ 1 + 2e mod 2e+1, p2 ≡ 1 mod 2f

for σvp2 = σvp1 . If f = e, then we consider two cases. For p2 ≡ 1 + 2e mod 2e+1, we
have

(
a

p2
) = (

a

p1
), a = 2, 3, 5, 7, 11
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feasible (p1, p2) with b < 2 · 106

b p1 p2 λ σvp1
685441 31 22111 22110 ( 0, 1, 0, 0, 1, 1, 1, 0, 1 )

919801 31 29671 29670 ( 0, 1, 0, 0, 1, 1, 1, 0, 1 )

1267249 31 40879 204390 ( 0, 1, 0, 0, 1, 1, 1, 0, 1 )

399169 43 9283 9282 ( 1, 1, 1, 1, 0, 0, 0, 1, 0 )

703609 43 16363 114534 ( 1, 1, 1, 1, 0, 0, 0, 1, 0 )

1379569 43 32083 224574 ( 1, 1, 1, 1, 0, 0, 0, 1, 0 )

1487929 43 34603 242214 ( 1, 1, 1, 1, 0, 0, 0, 1, 0 )

1772761 43 41227 288582 ( 1, 1, 1, 1, 0, 0, 0, 1, 0 )

741049 47 15767 362618 ( 0, 0, 1, 0, 1, 1, 0, 1, 1 )

1879201 47 39983 919586 ( 0, 0, 1, 0, 1, 1, 0, 1, 1 )

117049 67 1747 19206 ( 1, 1, 1, 1, 1, 1, 0, 0, 0 )

1578721 67 23563 23562 ( 1, 1, 1, 1, 1, 1, 0, 0, 0 )

1354609 71 19079 667730 ( 0, 0, 0, 1, 1, 1, 1, 0, 1 )

722929 79 9151 118950 ( 0, 1, 0, 1, 0, 0, 1, 0, 0 )

1272769 79 16111 209430 ( 0, 1, 0, 1, 0, 0, 1, 0, 0 )

457081 83 5507 225746 ( 1, 0, 1, 0, 0, 1, 0, 1, 0 )

1391329 83 16763 687242 ( 1, 0, 1, 0, 0, 1, 0, 1, 0 )

1739929 83 20963 859442 ( 1, 0, 1, 0, 0, 1, 0, 1, 0 )

1652401 107 15443 818426 ( 1, 0, 1, 1, 0, 0, 1, 0, 0 )

1730689 139 12451 286350 ( 1, 1, 0, 0, 0, 0, 1, 1, 1 )

1790881 163 10987 296622 ( 1, 1, 1, 1, 1, 1, 1, 1, 1 )

528889 167 3167 262778 ( 0, 0, 1, 0, 0, 1, 1, 0, 1 )

1851529 167 11087 920138 ( 0, 0, 1, 0, 0, 1, 1, 0, 1 )

1892881 211 8971 62790 ( 1, 1, 0, 1, 0, 0, 1, 0, 1 )

1552849 229 6781 128820 ( 2, 0, 1, 2, 1, 2, 0, 0, 2 )

416329 263 1583 207242 ( 0, 0, 1, 1, 0, 0, 0, 1, 0 )

223609 311 719 111290 ( 0, 0, 0, 0, 1, 0, 1, 1, 1 )

1912849 331 5779 317790 ( 1, 1, 0, 1, 1, 1, 0, 0, 1 )

825841 379 2179 45738 ( 1, 1, 0, 1, 1, 1, 1, 0, 0 )

540409 439 1231 89790 ( 0, 1, 0, 0, 0, 0, 1, 0, 1 )

503281 463 1087 83622 ( 0, 1, 1, 1, 1, 1, 0, 1, 1 )

929041 503 1847 463346 ( 0, 0, 1, 0, 0, 0, 1, 1, 0 )

1627921 571 2851 2850 ( 1, 1, 0, 1, 0, 0, 1, 1, 0 )

1280449 787 1627 213006 ( 1, 1, 1, 0, 0, 1, 1, 0, 0 )

1616521 919 1759 268974 ( 0, 1, 0, 1, 0, 0, 0, 1, 0 )

1538161 1063 1447 255942 ( 0, 1, 1, 0, 0, 0, 0, 0, 0 )

1772521 1103 1607 884906 ( 0, 0, 1, 1, 1, 1, 0, 1, 0 )
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There are 30 residue classes module 2e+1 · 1155. For p2 ≡ 1 + 2e+1 mod 2e+2, we
have

(
a

p2
) = 1, a = 2, 3, 5, 7, 11

30 residue classer module 2e+2 · 1155. The p2 ≡ 1 mod 2e+2 case is left for the
prime with µp2 = 4. If f < e, we only check p2 ≡ p1 mod 2f . In fact, according to
§3, this only happens when f = e − 1 and µp1 = 2. There are only 50 such primes
up to 1563922. Our algorithm takes less than 100 minutes and finds 30728 feasible
2-tuples and no spsp(v).

5.4 µp2 = 4

In the above three cases, we don’t consider the case µp2 = 4. Now we assume
µp2 = 4, as we also have

p1 ≥ 29, p1p
2
2 ≤ Q11

So p2 < 363181490. According §3, there only 12 primes under this bound. We check
all of them and find no feasible 2-tuples. Until now we finish the t = 3 case and find
only one spsp(v) Q11. The total time is less than 17 hours.

6 t=2

For t = 2, there is no need to define feasible 1-tuples. As λp1 |n− 1 we have

p1 < p2 ≤ Q11/p1, p2 ≡ 1 mod λp1 .

Since λp1 is close to p1− 1, there are about Q11/(p1)
2 candidates for each p1. When

p1 is small, there are too many. According the value of p1, we divide into three
parts.

6.1 small and large p1

If p1 < 106, we’ll use the same method as for t = 3, p1p2 < 2 · 106. We have

ap1−1 ≡ an−1 ≡ 1 mod p2, a = 2, 3

so we calculate gcd(2p1−1 − 1, 3p1−1 − 1) and factor it to get prime divisors p2 with

p1 < p2 ≤ Q11/p1.

Our algorithm takes about 9 hours and finds no spsp(v).
For p1 > 108, There are less than 380 candidates, we just run our algorithm

as described at the beginning of this section. It takes about 18 hours and find no
spsp(v).
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6.2 106 < p1 < 108

When p1 is in this interval, we divide into three parts according to p1 ≡ 3 mod 4,
p1 ≡ 5 mod 8 and p1 ≡ 1 mod 8. In each case, just as t = 3 we use Chinese
Remainder Theorem to reduce candidates. This time we use the first 6 primes.

For p1 ≡ 3 mod 4, p2 with σvp2 = σvp1 . If p2 ≡ 3 mod 4 then we have p2 ≡ 1
mod λp1 and

(
a

p1
) = (

a

p2
), a = 2, 3, 5, 7, 11, 13.

If p2 ≡ 1 mod 4, then we have p2 ≡ 1 mod λp1 and

(
a

p2
) = 1, a = 2, 3, 5, 7, 11, 13.

Our algorithm takes about 15 hours and finds no spsp(v).
For p1 ≡ 5 mod 8, then p2 ≡ 1 mod 4. If p2 ≡ 5 mod 8 then we have p2 ≡ 1

mod λp1 and

(
a

p1
) = (

a

p2
), a = 2, 3, 5, 7, 11, 13.

If p2 ≡ 1 mod 8, then we have p2 ≡ 1 mod λp1 and

(
a

p2
) = 1, a = 2, 3, 5, 7, 11, 13.

Our algorithm takes about 15 hours and finds no spsp(v).
For p1 ≡ 1 mod 8, denote e = V al(p1 − 1), f = V al(σp1), then f ≤ e. If f = e,

there are two cases. For p2 ≡ 1 + 2e mod 2e+1, then p2 ≡ 1 mod λp1 and

(
a

p1
) = (

a

p2
), a = 2, 3, 5, 7, 11, 13.

For p2 ≡ 1 mod 2e+1, then p2 ≡ 1 mod λp1 and

(
a

p2
) = 1, a = 2, 3, 5, 7, 11, 13.

If f < e, we only use p2 ≡ 1 mod λp1 , Our algorithm takes about 16 hours and
finds no spsp(v).

We also run an algorithm for these cases without use Chinese Remainder Theo-
rem, it took more than 10 days and didn’t halt. So the Chinese Remainder Theorem
is really helpful here. We need to be careful when writing our algorithm because
gcd(a, λp1) 6= 1 for some p1 and a = 2, 3, 5, 7, 11, 13.

Then we finish the t = 2 case and find no strong pseudoprime to the first 9
primes.
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7 Conclusion

Until now, we have checked all the odd composite numbers up to Q11, and find only
one strong pseudoprime Q11 to the first 9 primes. As it is easy to check that Q11 is
also strong pseudoprime to the bases 29 and 31, we have our claim in §1.

ψ9 = ψ10 = ψ11 = Q11

So for an integer less than Q11, only 9 strong pseudoprime tests are needed to judge
its primality and compositeness. We use the software Magma and all algorithms
are run in my PC(an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz with 2Gb of
RAM). The total time is about 105 hours.
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