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Abstract

Define ,,, to be the smallest strong pseudoprime to the first m prime bases.
The exact value of 9, is known for 1 < m < 8. Z. Zhang have found a 19-
decimal-digit number (17 = 382512305 65464 13051 which is a strong pseudo-
prime to the first 11 prime bases and he conjectured that

e = P10 = Y11 = Q11.

We prove the conjecture by algorithms.
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1 Introduction

If n is prime, in view of Fermat’s little theorem, the congruence

n—1 _

a 1 modn

holds for every a with ged(a,n)=1. There are composite numbers also satisfying
the congruence. Such an odd composite number n is called a pseudoprime to base
a (psp(a) for short). Moreover for an odd prime n, let n — 1 = 2°d with d odd, we
have

a®=1 modn

or

k
a*’?=-1 modn

for some k satisfying 0 < k£ < d. If a composite number n satisfies these two
equations, we call n a strong pseudoprime to baes a (spsp(a) for short). This is the
basic of Rabin-Miller test[3].
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Define v, to be the smallest strong pseudoprime to all the first m prime bases.
If n < 4y, then only m strong pseudoprime tests are needed to find out whether
n is prime or not. If we know the exact value of 1,,, then for integers n < ¥,
there is a deterministic primality testing algorithm which is easier to understand
and also faster than ever known other tests. The exact value of ¥, for 1 < m < 8
is known[I] 2].

W = 2047

Yy = 1373653

Y3 = 25326001

vi = 3215031751
Y5 = 2152302898747
Yo = 3474749660383

Y7 = 3415500717 28321
Yy = 3415500717 28321

In paper [I], Jaeschke also gave upper bounds for 19, 119, ¥11. These bounds were
improved by Z. Zhang for several times and finally he conjectured that

Yo =119 =111 = Q11 = 382512305 65464 13051
= 149491 - 747451 - 34233211

Zhang also gave upper bounds and conjectures for t,,, with 12 < m < 20 (see
4, 15, [6]).
In this paper, we develop several algorithms to get the following conclusion.

Claim 1. 99 = 910 = Y11 = Q11 = 382512305 65464 13051.

This article is organized like this. In §2 we give notations and basic facts needed
for our algorithms. In §3 we get the properties of primes up to /@11 which give us
much information to design our algorithm. Just as in [I], we consider the number of
prime divisors of the testing number. Let n = py - pa...p:. In §4 we consider t > 5
and t = 4 respectively, §5 for ¢t = 3 and §6 for ¢ = 2. In §7 we get our conclusion
and give the total time we need for our algorithms.

2 Foundations of algorithms

In this section, we give the foundations for our algorithm. Let p be a prime, a is
an integer with ged(a, p)=1, denote the smallest positive integer e such that a® =1
mod p by Ordy(a). For example, we have Ords(2) = 4. Moreover for any integer n,



if n = p°n’ with ged(n,n’)=1, we denote e by Valy(n). In this article, we only use
Valy(n) for p = 2, we write Val(n) by abbreviation. For v € Z", v = (a1,...,ay)
with all ged(a;, p)=1 we define

oy = (Val(Ordy(ar)),...,Val(Ordy(an))).

If n is a pseudoprime (or strong pseudoprime) for all the a;s, we denote it by psp(v)
(or spsp(v)).

We need to check all odd integers less than @11 to see if there are strong pseu-
doprimes to the first nine bases. First we are going to exclude the integers having
square divisors. If n is a psp(a) and p?|n for some prime p, then we have

n—1 _

a 1 mod p?.

also
a?® D =1 mod p°.

As ged(p,n — 1)=1, we have
a®"'=1 mod p?
For a = 2 and 3,
2~ =1 mod p?, 31 =1 mod p?

These two equation do not hold simultaneously for any prime p less than 3 - 1072,
which is greater than /Q1; ~ 1.9 - 10°, so we only need to consider squarefree
integers.

Now we give the following important proposition(also see [I]).

Proposition 1. Let n = p;...p; with different primes p1,...,pt, v = (a1,...,am)
with different integers such that ged(a;,pj)=1 for all i = 1,...,m, j = 1,...,t.
Then n is an spsp(v) iff n is a psp(v) and op = --- = 7p,.

Proof. Let n — 1 = 2°d with d odd. By Chinese Remainder Theorem
=1 modn<=a>?=-1 mod i
for all 1 <i <t, so Val(Ordp,(a)) =k + 1 for all i. And

a®=1 modn<a?=1 mod p;

for all 1 < i <t, so Val(Ordp,(a)) = 0 for all i. The proposition is an immediate
consequence of the above argument. O



This is the main necessary condition that we use to find strong pseudoprimes.
In our algorithm, v = (2,3,5,7,11,13,17,19, 23), For a given prime p, we need to
find prime g satisfying o, = o,. A problem we have to face is that there are too
many candidates of ¢, so we need another proposition(also see [1).

Proposition 2. For primes p,q, if Val(p — 1) = Val(q — 1) and al(ya) = aéa), then

the Legendre symbol (3) = (7).

Proof. This follows from
0’1(,“) =Vallp—1) = (%) =—1

O

Notice that if p = ¢ = 3 mod 4 in the above proposition, the inverse is also
true. This is important and then we can use Chinese Remainder Theorem to reduce
candidates. We'll give details in the following sections.

3 Primes up to Q11

From now on, we fix v = (2,3,5,7,11,13,17,19,23). If n is a psp(v) and prime p|n,
as a"~! =1 mod p, then

Ordy(a)|(n — 1), a=2,3,5"711,13,17,19,23.
Define )\, to be the least common multiple of the nine orders, then we have

Apl(n=1), Xpllp = 1)

This point is helpful when designing our algorithms. Let p, = (p—1)/A,, we develop
an algorithm to calculate p, for p up to v/Qi1. It takes about 15 hours and find
that p, is very small. We tabulate our results as following.

In the table, for each value of 11, we give the first and last several primes. There
are two rows with p, = 2, one for p = 3 mod 4 and the other for p = 1 mod 4.
The binary row is for primes p with

p=1 mod 4, o, €10, 119,
Since (2) = —1for p =5 mod 8, in the second p, = 2 row all p are in the residue
class 1 mod 8. For the same reason, in the binary row also with p =1 mod 8, as
there is no prime with p, > 8, all primes in binary row are 9 mod 16 and with
tp = 4. In the last column, we give the total number of each kind of primes.



pp for p up to Q11

Hp primes total
18191, 31391, 35279, 38639, 63839, 95471,

» 523(4) 104711, 147671,. .., 1955593559, 1955627519, | 93878
1955645831, 1955687159, 1955728199
9 87481, 185641, 336361, 394969, 483289,
p=1(4) 504001, 515761,. .., 1955712529, 1955713369, | 91541

1955740609, 1955743729, 1955760361
4775569, 5057839, 5532619, 7340227, 7561207
3 8685379, 9734161,. .., 1953162751, 92226
1953185551, 1954279519, 1955425393
25433521, 120543721, 129560209, 138156769,
4 148405321, 174865681,. .., 1838581369, 111
1867026001, 1892769649, 1918361041
650086271, 792798571, 858613901,

g 1794251801, 1820572771, 1947963301 6
6 1785200041
7 945552637 1
120543721, 148405321, 200893081, 224683369,
binary | 421725529, 481266361,. .., 1717490329, 45

1810589881, 1828463641, 1838581369

4 t>bandt=4

As from the above, we only need to consider squarefree integers. we always denote
n =pj...ps with p; < --- < pg. In this section, we are going to exclude the two
cases when t > 5 and t = 4.

41 t>5

For p up to [v/Q11] = 5206, let S, be the set of all primes ¢ with oy = o, and
denote kth element in S, by s, in ascending order. Our algorithm puts out the

first | elements of S, with [ > 5 and

5 4
Hsp,z' < Qn1, (H 5p,i)Spl > Q11-

i=1 =1

It takes less than 22 seconds and puts out six sequences. We give our result in the
following table.



sequence with equal o,

ol No.
167, 3167, 11087, 14423, 21383, 75407 (0,0,1,0,0131,1,0,1) 1
263, 1583, 8423, 9767, 12503, 18743, 50423,
54623, 106367, 127247 (0,0,1,1,0,0,0,1,0) | 13
443, 4547, 5483, 8243, 19163, 26987, 42683 | (1,0,1,1,1,0,0,1,1) | 2
463, 1087, 13687, 17383, 25447, 37447 (0,1,1,1,1,1,0,1,1) | 1
479, 4919, 5519, 6599, 7559, 29399, 51719 (0,0,0,0,0,1,1,1,0) | 4
2503, 2767, 5167, 5623, 11887, 31543 (0,1,1,1,0,1,0,0,0) 1

At first glance we know t > 5 is impossible, Then we check these six sequences if
they can make up an spsp(v) with 5 prime divisors. The last column is the number
of integers with ¢ = 5 and less than @11 in each sequence. Our checking algorithm
terminates in less than 0.1 second and finds no strong pseudoprime.

There are details about our algorithm needing to explain. Notice that when
p1 =3 mod 4, and finding ¢ with o = oy, as the least binary prime is 120543721.
In fact we only need to check ¢ =3 mod 4. by proposition 2, consider

2 2 3 3
2)=C).  ()=C),
we only need to check ¢ = p; mod 24. also in p; =3 mod 4 case, we calculate the
Lengedre symbol () instead of Val(Ordp, (-)).

4.2 t=4

For t = 4, we first define (p1,p2,p3) to be a feasible 3-tuple if it satisfies

(

2
p1<p2<p3, O0p =0, =0,, p1p2p3< Q1.

Our algorithm goes like this: for each p; up to [v/@Q11] = 44224, find feasible 3-tuples
(p1,p2,p3). As A\p,|n—1, for i =1,2,3. let A be the least common multiple of these
three numbers, and b = p1pops, then we have

n=btps =1 mod A\

If ged (b, A\) # 1, it is impossible to have such n. If ged(b, \) = 1, we need to check
all py with

p3 <ps < Qu/b, pa=b"" mod A
Our algorithm takes about 15 minutes, finding 88729 feasible 3-tuples and no spsp(v)
with ¢t = 4. As for t = 5, when p; =3 mod 4, we use Legendre symbol and g = p;
mod 24 to shorten our running time.



5 t=3
As above, we define feasible 2-tuple (p1, p2) with

2
p1<p2, 0p =0,, p1p3<@n

Our algorithm is just as ¢ = 4 case, for each p; up to [/Q11] = 1563922, find feasible
2-tuples (p1,p2). Let b = p1pe and A = lem(\,,, Ap, ), then An — 1. If ged(b, A) =1,
we check all ps with

p2 < p3 < Qu/b, p3=b"1 mod \.

We divide our algorithm into three parts according p; =3 mod 4, p1 =5 mod 8
and p;1 =1 mod 8, also we use Chinese Remainder Theorem to reduce candidates.

51 p1 =3 mod4

For p;1 =3 mod 4, we first assume p, = 3 mod 4. as from §3, we know if po = 1
mod 4, p» must be a binary prime and so u,, = 4. There are only 111 such primes
up to v/Q11, we'll check these numbers later. By proposition 2, we use the first 5
primes and " "

pl) (p2), a=2,3,5,711
reducing to 30 residue classes module 9240 =8 -3-5-7-11.
Example 1. For p; = 31, the first module 4 equaling 3 prime. Feasible 2-tuple

(31, p2) must with
p2 < [V/Q11/31] = 351270645

If we do not have §3, we need to check all the odd number greater than 31, there

are about 1.7 - 108 candidates. If we do it as for ¢t = 5 and 4, there are 1.4 - 107

candidates. For our method, there are only 30 - % ~ 1.1-10° candidates.
There is another trick we used. if b = p1ps is less than 2 - 108, the correspond \

may be too small. We do not find p3 as the above describes. In fact, as
n=bp3=b modps—1

and

n—1 b—1 1

a =a mod ps, a=2,3

We calculate ged(2°~! — 1,31 — 1) then factor it to get the prime divisor which
is greater than ps and less than (Q11/b. Without this trick, our algorithm run more



than 24 hours and still din’t terminate. When using the trick, the algorithm takes
less than 5 hours. It gives 10524046 feasible 2-tuples and the single spsp(v)

Q11 = 3825 12305 65464 13051 = 149491 - 747451 - 34233211.

The following table gives all the 37 feasible 2-tuples with multiple less than 2-10°,
which can explains why the first case takes so long time.
Example 2. Notice that for some b the A is small. For b = 43 - 9283 = 339169, we
need to check all p3 with

9283 < p3 < Qi1 /b~ 1.1-10'3,  p3=7771 mod 9282
and for b = 571 - 2851 = 1627921, all p3 with
P2 <p3 < Qu/b~23-102,  p3=2281 mod 2580

These are really time-consuming.

5.2 p; =5 mod38

If p1 =5 mod 8, as (p%) = —1, Val(Ordy, (2)) = 2, so for each py with o), =0, ,

we must have po =1 mod 4. If po =5 mod 8, by proposition 2, we use the first 5

primes then
a a

—)=(—), a=2,3,5"7,11.
(p2) (p1)

There are 30 residue classes module 9240. If p, =1 mod 8, for po =1 mod 16, we

must have p,, = 4, we’ll check these numbers later. For p» =9 mod 16, we must

have a
(—) =1, a=2,3,5,7,11.
b2

There are 30 residue classes module 18480. The total time for checking all p; up to
1563922 is about 10 hours and we find 522239 feasible 2-tuples with no spsp(v).

53 pr=1 mod38
For p; =1 mod 8, denote e = Val(p; — 1) and f = Val(\p, ), then f < e and

p1=1+2° mod 2¢F!, py=1 mod 27

for oy, = 0p,. It f = e, then we consider two cases. For po =1+ 2° mod 2¢t1 we

have a “
—)=(—), a=2,3,5,7,11
(pz) (pl)



feasible (p1,po) with b < 2- 106
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There are 30 residue classes module 2¢t! . 1155. For py = 1 4+ 271 mod 2¢12, we

have

(Ly=1, a=23,5711

b2
30 residue classer module 2612 . 1155. The p» = 1 mod 2672 case is left for the
prime with p,, = 4. If f <e, we only check po = p; mod 2/ In fact, according to
§3, this only happens when f = e — 1 and p,, = 2. There are only 50 such primes
up to 1563922. Our algorithm takes less than 100 minutes and finds 30728 feasible

2-tuples and no spsp(v).

5.4 p,, =4

In the above three cases, we don’t consider the case u,, = 4. Now we assume
Hp, = 4, as we also have

p1 > 29, p1ps < Qu

So pa < 363181490. According §3, there only 12 primes under this bound. We check
all of them and find no feasible 2-tuples. Until now we finish the ¢t = 3 case and find
only one spsp(v) @Q11. The total time is less than 17 hours.

6 t=2
For ¢t = 2, there is no need to define feasible 1-tuples. As A\, [n — 1 we have

p1 <p2 < Qu/p1, p2 =1 mod \p,.

Since A, is close to p; — 1, there are about Q11/ (p1)? candidates for each p;. When
p1 is small, there are too many. According the value of p;, we divide into three
parts.

6.1 small and large p;
If p1 < 10°%, we’ll use the same method as for t = 3, pips < 2-10%. We have

1—1 —

a? a" '=1 mod po, a=2,3

so we calculate ged(2P1~! — 1,371~ — 1) and factor it to get prime divisors py with

p1 < p2 < Qu/pr.

Our algorithm takes about 9 hours and finds no spsp(v).
For p; > 10%, There are less than 380 candidates, we just run our algorithm
as described at the beginning of this section. It takes about 18 hours and find no

spsp(v).

10



6.2 10° < p; <108

When p; is in this interval, we divide into three parts according to p; = 3 mod 4,

p1 = 5 mod 8 and p;1 = 1 mod 8. In each case, just as t = 3 we use Chinese

Remainder Theorem to reduce candidates. This time we use the first 6 primes.
For py = 3 mod 4, p2 with o, = op,. If po =3 mod 4 then we have po =1

p1-
mod A, and
(D=L, a=235711,13
pl p2 ) ) ) ) ) 9y
If p» =1 mod 4, then we have po =1 mod )\,, and

Dy=1,  a=2,3,5711,13.
b2
Our algorithm takes about 15 hours and finds no spsp(v).
For p1 =5 mod &, then po =1 mod 4. If po =5 mod 8 then we have ps = 1

mod \p, and
Dy=(L), a=235711,13.
b1 D2

If po =1 mod 8, then we have pp =1 mod Ay, and

(

4y=1,  a=23,5711,13.
P2
Our algorithm takes about 15 hours and finds no spsp(v).
For p; =1 mod 8, denote e = Val(p; — 1), f = Val(op,), then f <e. If f=e,

there are two cases. For py =1+ 2° mod 2°T!, then p, =1 mod Ap; and

a a
—)=(—), a=2,3,5/"7,11,13.
(pl) (pz)
For po =1 mod 2", then po =1 mod Ap, and

(Ly=1, a=235711,13.

b2
If f <e, weonly use pp =1 mod A,,, Our algorithm takes about 16 hours and
finds no spsp(v).

We also run an algorithm for these cases without use Chinese Remainder Theo-
rem, it took more than 10 days and didn’t halt. So the Chinese Remainder Theorem
is really helpful here. We need to be careful when writing our algorithm because
ged(a, Ap,) # 1 for some p; and a = 2,3,5,7,11,13.

Then we finish the ¢ = 2 case and find no strong pseudoprime to the first 9
primes.

11



7 Conclusion

Until now, we have checked all the odd composite numbers up to 11, and find only
one strong pseudoprime ()11 to the first 9 primes. As it is easy to check that Q11 is
also strong pseudoprime to the bases 29 and 31, we have our claim in §1.

g =10 = Y11 = Qn

So for an integer less than )11, only 9 strong pseudoprime tests are needed to judge
its primality and compositeness. We use the software Magma and all algorithms
are run in my PC(an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz with 2Gb of
RAM). The total time is about 105 hours.

References

[1]

2]

G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp.
61(1993), no. 204, 915-926. MR1192971(94d:11004)

C. Pomerance, J. L. Selfridge and Samual S. Wagstaff, Jr., The pseu-
doprimes to 25 - 109, Math. Comp. 35(1980), no. 151, 1003-1026.
MRO0572872(82g:10030)

M. O. Ranbin, Probabilistic algorithms for testing primality, J. Number
Theory 12(1980), 128-138. MR0566880(81f:10003)

Zhenxiang Zhang, Finding strong pseudoprimes to several bases, Math.
Comp. 70(2001), no. 234, 863-872. MR1697654(2001g:11009)

Zhenxiang Zhang, Two kinds of strong pseudoprimes up to 10%6, Math.
Comp.,76(2007), no. 260, 2095-2107. MR2336285(2008h:11114)

Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes
to several bases II, Math. Comp. 72(2003), no. 244, 2085-2097.
MR 1986825(2005k:11243)

12



	1 Introduction
	2 Foundations of algorithms
	3 Primes up to Q11
	4 t5 and t=4
	4.1 t5
	4.2 t=4

	5 t=3
	5.1 p1312mumod4
	5.2 p1512mumod8
	5.3 p1112mumod8
	5.4 p2=4

	6 t=2
	6.1 small and large p1
	6.2 106<p1<108

	7 Conclusion

