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Abstract. Incremental stability is a property of dynamical and control systems, requiring the uniform as-

ymptotic stability of every trajectory, rather than that of an equilibrium point or a particular time-varying

trajectory. Similarly to stability, Lyapunov functions and contraction metrics play important roles in the study
of incremental stability. In this paper, we provide characterizations and descriptions of incremental stability

in terms of existence of coordinate-invariant notions of incremental Lyapunov functions and contraction met-

rics, respectively. Most design techniques providing controllers rendering control systems incrementally stable
have two main drawbacks: they can only be applied to control systems in either parametric-strict-feedback

or strict-feedback form, and they require these control systems to be smooth. In this paper, we propose a

design technique that is applicable to larger classes of (not necessarily smooth) control systems. Moreover,
we propose a recursive way of constructing contraction metrics (for smooth control systems) and incremental

Lyapunov functions which have been identified as a key tool enabling the construction of finite abstractions
of nonlinear control systems, the approximation of stochastic hybrid systems, source-code model checking for

nonlinear dynamical systems and so on. The effectiveness of the proposed results in this paper is illustrated by

synthesizing a controller rendering a non-smooth control system incrementally stable as well as constructing
its finite abstraction, using the computed incremental Lyapunov function.

1. Introduction

Incremental stability is a stronger property than stability for dynamical and control systems. In incremental
stability, focus is on convergence of trajectories with respect to each other rather than with respect to an
equilibrium point or a specific trajectory. Similarly to stability, Lyapunov functions play an important role in
the study of incremental stability. In [Ang02], Angeli proposed the notions of incremental Lyapunov function
and incremental input-to-state Lyapunov function, and used these notions to provide characterizations of
incremental global asymptotic stability (δ-GAS) and incremental input-to-state stability (δ-ISS). Notions of
δ-GAS, δ-ISS and incremental Lyapunov functions, proposed in [Ang02], are not coordinate invariant, in
general. Since most of the controller design approaches benefit from changes of coordinates, in [ZT11], the
authors proposed different notions of δ-GAS and δ-ISS which are coordinate invariant. In [ZM11], the authors
proposed notions of incremental Lyapunov function and incremental input-to-state Lyapunov function that
are coordinate invariant as well. We use these new notions of Lyapunov functions to fully characterize the
notions of incremental (input-to-state) stability as proposed in [ZT11]. Furthermore, we provide sufficient
conditions for coordinate invariant incremental (input-to-state) stability in the form of contraction metrics
inspired by the work in [AR03].

The number of applications of incremental stability has increased progressively in the past years. Examples
include building explicit bounds on the region of attraction in phase-locking in the Kuramoto system [FCPL10],
modeling of nonlinear analog circuits [BML+10], robustness analysis of systems over finite alphabets [TMD08],
global synchronization in networks of cyclic feedback systems [HSSG12], control reconfiguration of piecewise
affine systems with actuator and sensor faults [RHvdWL11], construction of symbolic models for nonlinear
control systems [PGT08, GPT09, PT09], and synchronization [RdB09, SS07]. Unfortunately, there are very
few results available in the literature regarding the design of controllers enforcing incremental stability of the
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resulting closed-loop systems. Therefore, there is a growing need to develop design methods rendering control
systems incrementally stable.

Related works include controller designs for convergence of Lur’e-type systems [PvdWN05, PvdWN07] and
a class of piecewise affine systems [vdWP08] through the solution of linear matrix inequalities (LMIs). In
contrast, the current paper does not require the solution of LMIs and the existence of controllers is always
guaranteed for the class of systems under consideration. The quest for backstepping design approaches for
incremental stability has received increasing attention recently. Recently obtained results include backstepping
design approaches rendering parametric-strict-feedback1 form systems incrementally globally asymptotically
stable2 using the notion of contraction metrics in [JL02, SK09, SK08], and backstepping design approaches
rendering strict-feedback1 form systems incrementally input-to-state stable3 using the notion of contraction
metrics and incremental Lyapunov functions in [ZT11], and [ZM11], respectively. The results in [PvdWN05]
offer a backstepping design approach rendering a larger class of control systems than those in strict-feedback
form input-to-state convergent, rather than incrementally input-to-state stable. We will build upon these
results in [PvdWN05] and extend those in the scope of incremental stability. The notion of (input-to-state)
convergence requires existence of a trajectory which is bounded on the whole time axis which is not required in
the case of incremental input-to-state stability. The notion of input-to-state convergence can not be applied to
the results in [PGT08, GPT09, PT09], which require the uniform global asymptotic stability of every trajectory
rather than that of a particular trajectory that is bounded on the entire time axis. See [ZT11, PPvdWN04]
for a brief comparison between the notions of convergent system and incremental stability.

Our techniques improve upon most of the existing backstepping techniques in three directions:

1) by providing controllers enforcing not only incremental global asymptotic stability but also incremental
input-to-state stability;

2) by being applicable to larger classes of (non-smooth) control systems;
3) by providing a recursive way of constructing not only contraction metrics but also incremental Lya-

punov functions.

In the first direction, our technique extends the results in [JL02, SK09, SK08], where only controllers enforcing
incremental global asymptotic stability are designed. In the second direction, our technique improves the
results in [JL02, SK09, SK08], which are only applicable to smooth parametric-strict-feedback form systems,
and the results in [ZT11, ZM11], which are only applicable to smooth strict-feedback form systems. In
the third direction, our technique extends the results in [JL02, SK09, SK08, ZT11], where the authors only
provide a recursive way of constructing contraction metrics, and the results in [PvdWN05], where the authors
do not provide a way to construct Lyapunov functions characterizing the input-to-state convergence property
induced by the controller. Note that the explicit availability of incremental Lyapunov functions is necessary
in many applications. Examples include the construction of symbolic models for nonlinear control systems
[GPT09, Gir12, CGG11], robust test generation of hybrid systems [JFA+07], the approximation of stochastic
hybrid systems [JP09], and source-code model checking for nonlinear dynamical systems [KDL+08]. Note
that incremental Lyapunov functions can be used as bisimulation functions, recognized as a key tool for the
analysis in [JFA+07, JFA+07, KDL+08].

Our technical results are illustrated by designing an incrementally input-to-state stabilizing controller for an
unstable non-smooth control system that does not satisfy the assumptions required in [JL02, SK09, SK08,
ZT11, ZM11]. Moreover, we construct a finite bisimilar abstraction for the resulting incrementally stable
closed-loop system using the results in [GPT09], which, however, apply only to incrementally stable systems
with explicitly available incremental Lyapunov functions. When a finite abstraction is available, the synthesis
of the controllers satisfying logic specifications expressed in linear temporal logic or automata on infinite
strings can be easily reduced to a fixed-point computation over the finite-state abstraction [Tab09]. Note that

1See [KKK95] for a definition.
2Understood in the sense of Definition 2.2.
3Understood in the sense of Definition 2.3.
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satisfying those specifications is difficult or impossible to enforce with conventional control design methods.
We synthesize another controller on top of the resulting incrementally stable closed-loop system satisfying
some logic specification explained in details in the example section.

The outline of the paper is as follows. Section 2 provides some mathematical preliminaries, the definition of
the class of control systems that we consider in this paper, and stability notions. Section 3 provides charac-
terizations of incremental stability in terms of existence of incremental Lyapunov functions and contraction
metrics. In Section 4, we present the proposed backstepping design approach. An illustrative (non-smooth)
example is discussed in details in Section 5. Finally, Section 6 concludes the paper.

2. Control Systems and Stability Notions

2.1. Notation. The symbols Z, N, N0, R, R+ and R+
0 denote the set of integer, positive integer, nonnegative

integer, real, positive, and nonnegative real numbers, respectively. The symbols Im, 0m×n, and 0m denote
the identity and zero matrices in Rm×m and Rm×n, and the zero vector in Rm, respectively. Given a vector
x ∈ Rn, we denote by xi the i–th element of x, by |xi| the absolute value of xi, and by ‖x‖ the Euclidean norm

of x; we recall that ‖x‖ =
√
x2

1 + x2
2 + ...+ x2

n for x ∈ Rn. Given a measurable function f : R+
0 → Rn, the

(essential) supremum of f is denoted by ‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0} and ‖f‖[0,τ) :=

(ess)sup{‖f(t)‖, t ∈ [0, τ)}. A function f is essentially bounded if ‖f‖∞ <∞. For a given time τ ∈ R+, define
fτ so that fτ (t) = f(t), for any t ∈ [0, τ), and fτ (t) = 0 elsewhere; f is said to be locally essentially bounded if
for any τ ∈ R+, fτ is essentially bounded. A function f : Rn → R+

0 is called radially unbounded if f(x)→∞
as ‖x‖ → ∞. The closed ball centered at x ∈ Rm with radius ε is defined by Bε(x) = {y ∈ Rm | ‖x− y‖ ≤ ε}.
A continuous function γ : R+

0 → R+
0 , is said to belong to class K if it is strictly increasing and γ(0) = 0; γ

is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function β : R+
0 × R+

0 → R+
0

is said to belong to class KL if, for each fixed s, the map β(r, s) belongs to class K∞ with respect to r
and, for each fixed nonzero r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→∞. If
φ : Rn → Rn is a global diffeomorphism and G : Rn → Rn×n is a smooth map, the notation φ∗G : Rn → Rn×n
denotes the smooth map (φ∗G)(x) = (∂φ∂x )TG(φ(x))(∂φ∂x ). A Riemannian metric G : Rn → Rn×n is a smooth
map on Rn such that, for any x ∈ Rn, G(x) is a symmetric positive definite matrix [Lee03]. For any x ∈ Rn
and smooth functions I, J : Rn → Rn, one can define the scalar function 〈I, J〉G as IT (x)G(x)J(x). We
will still use the notation 〈I, J〉G to denote ITGJ even if G does not represent a Riemannian metric. A
function d : Rn × Rn → R+

0 is a metric on Rn if for any x, y, z ∈ Rn, the following three conditions are
satisfied: i) d(x, y) = 0 if and only if x = y; ii) d(x, y) = d(y, x); and iii) d(x, z) ≤ d(x, y) + d(y, z). We
use the pair (Rn,d) to denote a metric space Rn equipped with the metric d. We use the notation dG to
denote the Riemannian distance function provided by the Riemannian metric G, as defined for example in
[Lee03]. We refer to the proof of Lemma 3.12 in the paper for the definition of dG. For a set A ⊆ Rn,
a metric d, and any x ∈ Rn, we abuse the notation by using d(x,A) to denote the point-to-set distance,
defined by d(x,A) = infy∈A d(x, y). A function f is said to be smooth if it is an infinitely differentiable
function of its arguments. Given measurable functions f : R+

0 → Rn and g : R+
0 → Rn, we define d(f, g)∞ :=

(ess)sup{d(f(t), g(t)), t ≥ 0} and d(f, g)[0,τ) := (ess)sup{d(f(t), g(t)), t ∈ [0, τ)}.

2.2. Control Systems. The class of control systems that we consider in this paper is formalized in the
following definition.

Definition 2.1. A control system is a quadruple:

Σ = (Rn,U,U , f),

where:

• Rn is the state space;
• U ⊆ Rm is the input set;
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• U is the set of all measurable, locally essentially bounded functions of time from intervals of the form
]a, b[⊆ R to U with a < 0 and b > 0;
• f : Rn × U→ Rn is a continuous map satisfying the following Lipschitz assumption: for every compact

set Q ⊂ Rn, there exists a constant Z ∈ R+ such that ‖f(x, u)− f(y, u)‖ ≤ Z‖x− y‖ for all x, y ∈ Q
and all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if there exists υ ∈ U satisfying:

ξ̇(t) = f (ξ(t), υ(t)) ,

for almost all t ∈ ]a, b[. Although we have defined trajectories over open domains, we shall refer to trajectories
ξ :[0, t]→ Rn defined on closed domains [0, t], t ∈ R+ with the understanding of the existence of a trajectory
ξ′ :]a, b[→ Rn such that ξ = ξ′|[0,t] with a < 0 and b > t. We also write ξxυ(t) to denote the point reached at
time t under the input υ from initial condition x = ξxυ(0); the point ξxυ(t) is uniquely determined, since the
assumptions on f ensure existence and uniqueness of trajectories [Son98].

A control system Σ is said to be forward complete if every trajectory is defined on an interval of the form
]a,∞[. Sufficient and necessary conditions for a system to be forward complete can be found in [AS99]. A
control system Σ is said to be smooth if f is smooth.

2.3. Stability notions. Here, we recall the notions of incremental global asymptotic stability (δ∃-GAS) and
incremental input-to-state stability (δ∃-ISS), presented in [ZT11].

Definition 2.2 ([ZT11]). A control system Σ = (Rn,U,U , f) is incrementally globally asymptotically stable
(δ∃-GAS) if it is forward complete and there exist a metric d and a KL function β such that for any t ∈ R+

0 ,
any x, x′ ∈ Rn and any υ ∈ U the following condition is satisfied:

(2.1) d (ξxυ(t), ξx′υ(t)) ≤ β (d (x, x′) , t) .

As defined in [Ang02], δ-GAS requires the metric d to be the Euclidean metric. However, Definition 2.2 only
requires the existence of a metric. We note that while δ-GAS is not generally invariant under changes of
coordinates, δ∃-GAS is. When the origin is an equilibrium point for Σ, with υ(t) = 0 for all t ∈ R+

0 , and the
map ψ : Rn → R+

0 , defined by ψ(·) = d(·, 0), is continuous4 and radially unbounded, both δ∃-GAS and δ-GAS
imply global asymptotic stability.

Definition 2.3 ([ZT11]). A control system Σ = (Rn,U,U , f) is incrementally input-to-state stable (δ∃-ISS)
if it is forward complete and there exist a metric d, a KL function β, and a K∞ function γ such that for any
t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U the following condition is satisfied:

(2.2) d (ξxυ(t), ξx′υ′(t)) ≤ β (d (x, x′) , t) + γ (‖υ − υ′‖∞) .

By observing (2.1) and (2.2), it is readily seen that δ∃-ISS implies δ∃-GAS while the converse is not true in
general. Moreover, whenever the metric d is the Euclidean metric, δ∃-ISS becomes δ-ISS as defined in [Ang02].
We note that while δ-ISS is not generally invariant under changes of coordinates, δ∃-ISS is. When the origin is
an equilibrium point for Σ, with υ(t) = 0 for all t ∈ R+

0 , and the map ψ : Rn → R+
0 , defined by ψ(·) = d(·, 0),

is continuous4 and radially unbounded, both δ∃-ISS and δ-ISS imply input-to-state stability [SW95].

3. Characterizations of Incremental Stability

This section contains characterizations and descriptions of δ∃-GAS and δ∃-ISS in terms of existence of in-
cremental Lyapunov functions and contraction metrics, respectively. We note that only the sufficiency part
of Lyapunov characterizations of δ∃-GAS and δ∃-ISS were presented in [ZM11]. In Section 4, we will use
such incremental Lyapunov functions and contraction metrics to synthesize controllers rendering closed-loop
systems incrementally stable.

4Here, continuity is understood with respect to the Euclidean metric.



BACKSTEPPING CONTROLLER SYNTHESIS AND CHARACTERIZATIONS OF INCREMENTAL STABILITY 5

3.1. Incremental Lyapunov function characterizations. We start by recalling the notions of an incre-
mental global asymptotic stability (δ∃-GAS) Lyapunov function and an incremental input-to-state stability
(δ∃-ISS) Lyapunov function, presented in [ZM11].

Definition 3.1 ([ZM11]). Consider a control system Σ = (Rn,U,U , f) and a smooth function V : Rn × Rn → R+
0 .

Function V is called a δ∃-GAS Lyapunov function for Σ, if there exist a metric d, K∞ functions α, α, and
κ ∈ R+ such that:

(i) for any x, x′ ∈ Rn,
α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii) for any x, x′ ∈ Rn and any u ∈ U,
∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u) ≤ −κV (x, x′).

Function V is called a δ∃-ISS Lyapunov function for Σ, if there exist a metric d, K∞ functions α, α, σ, and
κ ∈ R+ satisfying conditions (i) and:

(iii) for any x, x′ ∈ Rn and for any u, u′ ∈ U,
∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).

To provide characterizations of δ∃-ISS (resp. δ∃-GAS) in terms of the existence of δ∃-ISS (resp. δ∃-GAS)
Lyapunov functions, we need the following technical results.

Here, we introduce the following definition which was inspired by the notion of uniform global asymptotic
stability (UGAS) with respect to sets, presented in [LSW96].

Definition 3.2. A control system Σ = (Rn,U,U , f) is uniformly globally asymptotically stable (U∃GAS) with
respect to a set A ⊆ Rn if it is forward complete and there exist a metric d, and a KL function β such that
for any t ∈ R+

0 , any x ∈ Rn and any υ ∈ U , the following condition is satisfied:

(3.1) d(ξxυ(t),A) ≤ β(d(x,A), t).

We now introduce the following definition which was inspired by the notion of uniform global asymptotic
stability (UGAS) Lyapunov functions in [LSW96].

Definition 3.3. Consider a control system Σ = (Rn,U,U , f), a set A ⊆ Rn, and a smooth function V : Rn →
R+

0 . Function V is called a U∃GAS Lyapunov function, with respect to A, for Σ, if there exist a metric d,
K∞ functions α, α, and κ ∈ R+ such that:

(i) for any x ∈ Rn,
α(d(x,A)) ≤ V (x) ≤ α(d(x,A));

(ii) for any x ∈ Rn and any u ∈ U,
∂V
∂x f(x, u) ≤ −κV (x).

The following theorem characterizes U∃GAS in terms of the existence of a U∃GAS Lyapunov function.

Theorem 3.4. Consider a control system Σ = (Rn,U,U , f) and a set A ⊆ Rn. If U is compact and d is a
metric such that the function ψ(·) = d(·, y) is continuous4 for any y ∈ Rn then the following statements are
equivalent:

(1) Σ is forward complete and there exists a U∃GAS Lyapunov function with respect to A, equipped with
the metric d.

(2) Σ is U∃GAS with respect to A, equipped with the metric d.

Proof. First we show that the function φ(·) = d(·,A) is a continuous function with respect to the Euclidean
metric. Assume {xn}∞n=1 is a converging sequence in Rn with respect to the Euclidean metric, implying that
‖xn − x∗‖ → 0 as n→∞ for some x∗ ∈ Rn. By the triangle inequality, we have:

(3.2) d (x∗, y) ≤ d (x∗, xn) + d (y, xn) ,
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for any n ∈ N and any y ∈ A. Using inequality (3.2), we obtain:

φ (x∗) = d(x∗,A) = inf
y∈A

d (x∗, y) ≤ inf
y∈A
{d (x∗, xn) + d (y, xn)}(3.3)

= d (x∗, xn) + inf
y∈A

d (y, xn) = d (x∗, xn) + φ (xn) ,

for any n ∈ N. Using inequality (3.3) and the continuity assumption on d, implying that limn→∞ d (x∗, xn) =
d(x∗, x∗) = 0, we obtain for any n ∈ N:

(3.4) φ (x∗) ≤ inf
m≥n
{d (x∗, xm) + φ (xm)} ⇒ φ (x∗) ≤ lim

n→∞
inf φ (xn) ,

where limit inferior exists because a lower bounded sequence of real numbers always admit a greatest lower
bound [RRA09]. By doing the same analysis, we have:

(3.5) φ (x∗) ≥ lim
n→∞

supφ (xn) ,

where limit superior exists because an upper bounded sequence of real numbers always admit a lowest upper
bound [RRA09]. Using inequalities (3.4) and (3.5), one obtains:

φ (x∗) = lim
n→∞

φ (xn) ,

implying that φ is a continuous function with respect to the Euclidean metric. Since φ(·) = d(·,A) is a
continuous, positive semi-definite function, by choosing ω1(·) = ω2(·) = d(·,A) in Theorem 1 in [TP00], the
proof completes. �

Before showing the main results, we need the following technical lemma, inspired by Lemma 2.3 in [Ang02].

Lemma 3.5. Consider a control system Σ = (Rn,U,U , f). If Σ is δ∃-GAS, then the control system Σ̂ =

(R2n,U,U , f̂), where f̂(ζ, υ) =
[
f(ξ1, υ)T , f(ξ2, υ)T

]T
, and ζ =

[
ξT1 , ξ

T
2

]T
, is U∃GAS with respect to the

diagonal set ∆, defined by:

(3.6) ∆ =
{
z ∈ R2n|∃x ∈ Rn : z =

[
xT , xT

]T}
.

Proof. Since Σ is δ∃-GAS, there exists a metric d : Rn × Rn → R+
0 such that property (2.1) is satisfied. Now

we define a new metric d̂ : R2n × R2n → R+
0 by:

(3.7) d̂(z, z′) = d(x1, x
′
1) + d(x2, x

′
2),

for any z =
[
x1
T , x2

T
]T

, z′ =
[
x′1
T
, x′2

T
]T
∈ R2n. It can be readily checked that d̂ satisfies all three conditions

of a metric. Now we show that d̂(z,∆), for any z =
[
xT1 , x

T
2

]T ∈ R2n, is proportional to d(x1, x2) that will be
exploited later in the proof. We have:

d̂(z,∆) = inf
z′∈∆

d̂(z, z′) = inf
x′∈Rn

d̂

([
x1

x2

]
,

[
x′

x′

])
= inf
x′∈Rn

{d(x1, x
′) + d(x2, x

′)}(3.8)

≤ inf
x′=x1

{d(x1, x
′) + d(x2, x

′)} = d(x1, x1) + d(x1, x2) = d(x1, x2).

Since d is a metric, by using the triangle inequality, we have: d(x1, x2) ≤ d(x1, x
′)+d(x2, x

′) for any x′ ∈ Rn,
implying that:

(3.9) d(x1, x2) ≤ inf
x′∈Rn

{d(x1, x
′) + d(x2, x

′)} = d̂(z,∆).

Hence, using (3.8) and (3.9), one obtains:

(3.10) d(x1, x2) ≤ d̂(z,∆) ≤ d(x1, x2)⇒ d(x1, x2) = d̂(z,∆).

Using equality (3.10) and property (2.1), we have:

d̂ (ζzυ(t),∆) = d̂

([
ξx1υ(t)
ξx2υ(t)

]
,∆

)
= d (ξx1υ(t), ξx2υ(t)) ≤ β (d (x1, x2) , t) = β

(
d̂ (z,∆) , t

)
,
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for any t ∈ R+
0 , any z =

[
xT1 , x

T
2

]T ∈ R2n and any υ ∈ U , where ζzυ =
[
ξTx1υ, ξ

T
x2υ

]T
. Hence, Σ̂ is U∃GAS with

respect to ∆. �

We can now provide characterization of δ∃-GAS in terms of existence of a δ∃-GAS Lyapunov function.

Theorem 3.6. Consider a control system Σ = (Rn,U,U , f). If U is compact and d is a metric such that the
function ψ(·) = d(·, y) is continuous4 for any y ∈ Rn then the following statements are equivalent:

(1) Σ is forward complete and there exists a δ∃-GAS Lyapunov function, equipped with the metric d.
(2) Σ is δ∃-GAS, equipped with the metric d.

Proof. The proof from (1) to (2) has been provided in Theorem 2.6 in [ZM11], even in the absence of the
compactness and continuity assumptions on U and d, respectively. We now prove that (2) implies (1). Since

Σ is δ∃-GAS, using Lemma 3.5, we conclude that the control system Σ̂, defined in Lemma 3.5, is U∃GAS with
respect to the diagonal set ∆. Since ψ(·) = d(·, y) is continuous4 for any y ∈ Rn, it can be easily verified that

the function ψ̂(·) = d̂(·, z′) is also continuous4 for any z′ ∈ R2n, where the metric d̂ was defined in Lemma 3.5.
Using Theorem 3.4, we conclude that there exists a U∃GAS Lyapunov function V : R2n → R+

0 , with respect

to ∆, for Σ̂. Thanks to the special form of Σ̂, using the equality (3.10), and slightly abusing notation, the
function V satisfies:

(i) α

(
d̂

([
x
x′

]
,∆

))
≤ V

([
x
x′

])
≤ α

(
d̂

([
x
x′

]
,∆

))
⇒ α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii)
[
∂V
∂x

∂V
∂x′

] [ f(x, u)
f(x′, u)

]
≤ −κV

([
x
x′

])
⇒ ∂V

∂x f(x, u) + ∂V
∂x′ f(x′, u) ≤ −κV (x, x′),

for any x, x′ ∈ Rn, any u ∈ U, some K∞ functions α, α and some κ ∈ R+. Hence, V is a δ∃-GAS Lyapunov
function for Σ. This completes the proof. �

Before providing characterization of δ∃-ISS in terms of existence of a δ∃-ISS Lyapunov function, we need the
following technical lemma, inspired by Proposition 5.3 in [Ang02]. By following similar steps as in [Ang02],
we need to define the proximal point function satU : Rm → U, defined by:

(3.11) satU(u) = arg min
u′∈U
‖u′ − u‖ .

As explained in [Ang02], by assuming U is closed and convex and since ‖ · ‖ : Rm → R+
0 is a proper and convex

function, the definition (3.11) is well-defined and the minimizer of ‖u′ − u‖ with u′ ∈ U is unique. Moreover,
by convexity of U we have:

(3.12) ‖satU(u1)− satU(u2)‖ ≤ ‖u1 − u2‖, ∀u1, u2 ∈ Rm.

Lemma 3.7. Consider a control system Σ = (Rn,U,U , f), where U is closed and convex. If Σ is δ∃-ISS,
equipped with a metric d such that ψ(·) = d(·, y) is continuous4 for any y ∈ Rn, then there exists a K∞
function ρ such that the control system Σ̂ = (R2n,D,D, f̂)5 is U∃GAS with respect to the diagonal set ∆,
where:

f̂(ζ, ω) =

[
f(ξ1, satU(ω1 + ρ(d(ξ1, ξ2))ω2))
f(ξ2, satU(ω1 − ρ(d(ξ1, ξ2))ω2))

]
,

ζ =
[
ξT1 , ξ

T
2

]T
, D = U× B1(0m), and ω =

[
ωT1 , ω

T
2

]T
.

Proof. The proof was inspired by the proof of Proposition 5.3 in [Ang02]. We include the complete details of
the proof to ensure that the interested reader can assess the essential differences caused by using the arbitrary

5D is the set of all measurable and locally essentially bounded functions of time from intervals of the form ]a, b[⊆ R to D with
a < 0 and b > 0.
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metric d rather than the Euclidean metric. Since Σ is δ∃-ISS, equipped with the metric d, there exist some
KL function β and K∞ function γ such that:

(3.13) d(ξxυ(t), ξx′υ′(t)) ≤ max{β(d(x, x′), t), γ(‖υ − υ′‖∞)}.

Note that inequality (3.13) is a straightforward consequence of inequality (2.2) in Definition 2.3 (see Remark 2.5

in [SW95]). Using the results in Lemma 3.5 and the proposed metric d̂ in (3.7), we have that d(x, x′) = d̂(z,∆),

where z =
[
xT , x′T

]T
, and ∆ was defined in (3.6). Without loss of generality we can assume α(r) = β(r, 0) > r

for any r ∈ R+. Let ρ be a K∞ function satisfying ρ(r) ≤ 1
2γ
−1 ◦

(
α−1(r)/4

)
(note that γ, α ∈ K∞). Now we

show that

(3.14) γ
(∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥) ≤ d̂(z,∆)/2,

for any t ∈ R+
0 , any z ∈ R2n, and any ω =

[
ωT1 , ω

T
2

]T ∈ D. Since γ is a K∞ function and ω2(t) ∈ B1(0m) for

any t ∈ R+
0 , it is enough to show

(3.15) γ
(

2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/2.

Since

γ
(

2ρ
(
d̂(ζzω(0),∆)

))
= γ

(
2ρ
(
d̂(z,∆)

))
≤ α−1

(
d̂(z,∆)

)
/4 < d̂(z,∆)/4,

and ϕ(·) = d̂(·,∆) is a continuous4 function (see proof of Theorem 3.4), then for all t ∈ R+
0 small enough, we

have γ
(

2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/4. Now, let

t1 = inf
{
t > 0 | γ

(
2ρ
(
d̂(ζzω(t),∆)

))
> d̂(z,∆)/2

}
.

Clearly t1 > 0. We will show that t1 = ∞. Now, assume by contradiction that t1 < ∞. Therefore, the
inequality (3.15) holds for all t ∈ [0, t1). Hence, for all t ∈ [0, t1), one obtains:

γ
(∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥) ≤ γ (2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/2 < α

(
d̂(z,∆)

)
/2.(3.16)

Let υ and υ′ be defined as:

υ(t) = satU
(
ω1(t) + ρ

(
d̂(ζzω(t),∆)

)
ω2(t)

)
,

υ′(t) = satU
(
ω1(t)− ρ

(
d̂(ζzω(t),∆)

)
ω2(t)

)
.

By using (3.12), we obtain:

‖υ(t)− υ′(t)‖ ≤
∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥ .
Using (3.13) and (3.16), we have:

d̂(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t)) ≤ β (d(x, x′), 0) = β
(
d̂(z,∆), 0

)
= α

(
d̂(z,∆)

)
,(3.17)

for any t ∈ [0, t1), any ω ∈ D, and any z =
[
xT , x′T

]T ∈ R2n. Using ρ(r) ≤ 1
2γ
−1 ◦

(
α−1(r)/4

)
, the inequality

(3.17) implies that

(3.18) γ
(

2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/4,

for any t ∈ [0, t1). Since the function ψ(·) = d̂(·,∆) is continuous4, the inequality (3.18) contradicts the
definition of t1. Therefore, t1 =∞ and inequality (3.14) is proved for all t ∈ R+

0 . Therefore, using (3.13) and
(3.14), we obtain:

d̂(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t)) ≤ max {β (d(x, x′), t) , γ (‖υ − υ′‖∞)} ≤

max
{
β (d(x, x′), t) , γ

(∥∥∥2ω2ρ
(
d̂(ζzω,∆)

)∥∥∥
∞

)}
≤ max

{
β
(
d̂(z,∆), t

)
, d̂(z,∆)/2

}
,
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for any z =
[
xT , x′T

]T ∈ R2n, any ω ∈ D, and any t ∈ R+
0 . Since β is a KL function, it can be readily seen

that for each r > 0 if d̂(z,∆) ≤ r, then there exists some Tr ≥ 0 such that for any t ≥ Tr, β
(
d̂(z,∆), t

)
≤ r/2

and, hence, d̂(ζzω(t),∆) ≤ r/2. Now we show that the set ∆ is a global attractor for the control system Σ̂.
For any ε ∈ R+, let k be a positive integer such that 2−kr < ε. Let r1 = r and ri = ri−1/2 for i ≥ 2, and

let τ = Tr1 + Tr2 + · · · + Trk . Then, for t ≥ τ , we have d̂(ζzω(t),∆) ≤ 2−kr < ε for all d̂(z,∆) ≤ r, and all

ω ∈ D. Therefore, it can be concluded that the set ∆ is a uniform global attractor for the control system Σ̂.

Furthermore, since d̂(ζzω(t),∆) ≤ β
(
d̂(z,∆), 0

)
for all t ∈ R+

0 , all z ∈ R2n, and all ω ∈ D, the control system

Σ̂ is uniformly globally stable and as shown in [TP00], it is U∃GAS. �

Finally, the next theorem provide a characterization of δ∃-ISS in terms of the existence of a δ∃-ISS Lyapunov
function.

Theorem 3.8. Consider a control system Σ = (Rn,U,U , f). If U is compact and convex and d is a metric
such that the function ψ(·) = d(·, y) is continuous4 for any y ∈ Rn then the following statements are equivalent:

(1) Σ is forward complete and there exists a δ∃-ISS Lyapunov function, equipped with metric d.
(2) Σ is δ∃-ISS, equipped with metric d.

Proof. The proof from (1) to (2) has been showen in Theorem 2.6 in [ZM11], even in the absence of the
compactness and convexity assumptions on U and the continuity assumption on d. We now prove that (2)

implies (1). As we proved in Lemma 3.7, since Σ is δ∃-ISS, it implies that the control system Σ̂, defined in
Lemma 3.7, is U∃GAS with respect to ∆. Since ψ(·) = d(·, y) is continuous4 for any y ∈ Rn, it can be easily

verified that ψ̂(·) = d̂(·, z′) is continuous4 for any z′ ∈ R2n, where the metric d̂ was defined in the proof of
Lemma 3.5. Using Theorem 3.4, we conclude that there exists a U∃GAS Lyapunov function V, with respect

to ∆, for Σ̂. By using the special form of Σ̂, defined in Lemma 3.7, the equality (3.10), and slightly abusing
notation the function V satisfies:

(i) α

(
d̂

([
x
x′

]
,∆

))
≤ V

([
x
x′

])
≤ α

(
d̂

([
x
x′

]
,∆

))
⇒ α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

for any x, x′ ∈ Rn, some K∞ functions α, α and

(ii) [
∂V

∂x

∂V

∂x′

] [
f(x, satU(d1 + ρ(d(x, x′))d2))
f(x′, satU(d1 − ρ(d(x, x′))d2))

]
≤ −κV

([
x
x′

])
(3.19)

⇒ ∂V

∂x
f(x, satU(d1 + ρ(d(x, x′))d2)) +

∂V

∂x′
f(x′, satU(d1 − ρ(d(x, x′))d2)) ≤ −κV (x, x′),

for some κ ∈ R+, any x, x′ ∈ Rn, and any
[
dT1 , d

T
2

]T ∈ D. By choosing d1 = (u+ u′)/2 and d2 = (u −
u′)/(2ρ(d(x, x′))) for any u, u′ ∈ U, it can be readily checked that

[
dT1 , d

T
2

]T ∈ U× B1(0m), whenever 2ρ(d(x, x′)) ≥
‖u− u′‖. Hence, using (3.19), we have that the following implication holds:

if ϕ(d(x, x′)) ≥ ‖u− u′‖, then
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −κV (x, x′),(3.20)

where ϕ(r) = 2ρ(r). As shown in Remark 2.4 in [SW95], there is no loss of generality in modifying inequalities
(3.20) to

∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −κ̂V (x, x′) + σ(‖u− u′‖),

for some K∞ function σ and some κ̂ ∈ R+, which completes the proof. �
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3.2. Contraction metrics description. In addition to incremental Lyapunov functions, the δ∃-GAS and
δ∃-ISS conditions can be checked by resorting to contraction metrics. The interested reader may consult
[LS98] for more detailed information about the notion of contraction metrics. Note that for all definitions and
results in this subsection we require function f to be continuously differentiable which was not the case in
characterizations of incremental stability using incremental Lyapunov functions.

Now we recall the notions of contraction metrics, presented in [LS98, ZT11].

Definition 3.9 ([LS98]). Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped with a Riemannian
metric G. The metric G is said to be a contraction metric, with respect to states, for system Σ if there exists

some λ̂ ∈ R+ such that:

(3.21) 〈X,X〉F ≤ −λ̂〈X,X〉G,

for F (x, u) =
(
∂f
∂x

)T
G(x) +G(x)∂f∂x + ∂G

∂x f(x, u), any u ∈ U, X ∈ Rn, and x ∈ Rn. The constant λ̂ is called

the contraction rate.

Note that when the metric G is constant, the condition (3.21) is known as the Demidovich’s condition
[PvdWN05, PPvdWN04, Dem67]. It is shown in [PvdWN05] that such condition implies δ-GAS and the
convergent system property for Σ.

Definition 3.10 ([ZT11]). Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped with a Riemannian
metric G. The metric G is said to be a contraction metric, with respect to states and inputs, for system Σ if

there exist some λ̂ ∈ R+ and α ∈ R+
0 such that:

(3.22) 〈X,X〉F + 2

〈
∂f

∂u
Y,X

〉
G

≤ −λ̂〈X,X〉G + α〈X,X〉
1
2

G〈Y, Y 〉
1
2

Im
,

for F (x, u) =
(
∂f
∂x

)T
G(x) +G(x)∂f∂x + ∂G

∂x f(x, u), any X ∈ Rn, x ∈ Rn, u ∈ U, and Y ∈ Rm. The constant λ̂

is called the contraction rate.

The following theorem shows that existence of a contraction metric, with respect to states and inputs, (resp.
with respect to states) implies δ∃-ISS (resp. δ∃-GAS).

Theorem 3.11. Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped with a Riemannian metric
G and let U be a convex set. If the metric G is a contraction metric, with respect to states and inputs, (resp.
with respect to states) for system Σ and (Rn,dG) is a complete metric space, then Σ is δ∃-ISS (resp. δ∃-GAS).

Proof. Since (Rn,dG) is a complete metric space, using the Hopf-Rinow theorem [Pet97], we conclude that
Rn with respect to the metric G is geodesically complete. The rest of the proof is inspired by the proof of
Theorem 2 in [AR03]. Consider two points x and x′ in Rn and a geodesic χ : [0, 1]→ Rn joining x = χ(0) and
x′ = χ(1). The geodesic distance between the points x and x′ is given by:

(3.23) dG(x, x′) =

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds.

Consider the straight line χ̂t(s) = (1− s)υ(t) + sυ′(t), for fixed t ∈ R+
0 , fixed υ, υ′ ∈ U , and for any s ∈ [0, 1].

The curve χ̂t is a geodesic, with respect to the Euclidean metric, on the subset U ⊆ Rm joining υ(t) = χ̂t(0)
and υ′(t) = χ̂t(1). Consider also the input curve υs defined by υs(t) = χ̂t(s). Let l(t) be the length of the
curve ξχ(s)υs(t) parametrized by s and with respect to the metric G, i.e.:

(3.24) l(t) =

∫ 1

0

√
δξTG(ξχ(s)υs(t))δξds, with δξ =

∂

∂s
ξχ(s)υs(t).
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In the rest of the proof, we drop the argument of the metric G for the sake of simplicity. By taking the
derivative of (3.24) with respect to time, we obtain:

d

dt
l(t) =

∫ 1

0

d
dt

(
δξTGδξ

)
2
√
δξTGδξ

ds

=

∫ 1

0

δξT
((

∂f
∂x

)T
G+ ∂G

∂x f +G∂f
∂x

)
δξ + 2δυT

(
∂f
∂u

)T
Gδξ

2
√
δξTGδξ

ds, with δυ =
∂

∂s
υs(t).

Since G is a contraction metric, with respect to states and inputs, with λ̂ and α the constants introduced in
Definition 3.10, the following inequality holds:

d

dt
l(t) ≤ − λ̂

2
l(t) +

α

2

∫ 1

0

√
δυT δυds = − λ̂

2
l(t) +

α

2
‖υ(t)− υ′(t)‖.(3.25)

Using (3.25) and the comparison principle [Kha96], we obtain:

l(t) ≤e− λ̂2 tl(0) +
α

2
e−

λ̂
2 t ∗ ‖υ(t)− υ′(t)‖

≤e− λ̂2 tl(0) +
α

λ̂

(
1− e−

λ̂
2 t
)
‖υ − υ′‖∞ ≤ e−

λ̂
2 tl(0) +

α

λ̂
‖υ − υ′‖∞,

where ∗ denotes the convolution integral6. From (3.23) and (3.24), it can be seen that l(0) = dG(x, x′).
However, for t ∈ R+, l(t) is not necessarily the Riemannian distance function, determined by G, because
ξχ(s)υs(t) is not necessarily a geodesic, implying that it is always bigger than or equal to the Riemannian

distance function7: dG(ξxυ(t), ξx′υ′(t)) ≤ l(t), and, hence, the following inequality holds:

dG (ξxυ(t), ξx′υ′(t)) ≤ e−
λ̂
2 tdG(x, x′) +

α

λ̂
‖υ − υ′‖∞,

which, in turn, implies that Σ is δ∃-ISS. The proof for the case that G is a contraction metric, with respect to
states, can be readily verified by just enforcing δυ(t) = 0 and υ(t) = υ′(t) for any t ∈ R+

0 . �

Since completeness of the metric space (Rn,dG) is crucial to the previous proof, the following lemma provides
a sufficient condition on the metric G guaranteeing that (Rn,dG) is a complete metric space.

Lemma 3.12. The Riemannian manifold Rn equipped with a Riemannian metric G, satisfying8 ω‖y‖2 ≤
yTG(x)y for any x, y ∈ Rn and for some positive constant ω, is complete as a metric space, with respect to
dG.

Proof. The proof was suggested to us by C. Manolescu. First, for each pair of points x, y ∈ Rn we define the
path space:

Ω(x, y) = {χ : [0, 1]→ Rn | χ is piecewise smooth, χ(0) = x, and χ(1) = y}.
Recall that a function χ : [a, b]→ Rn is piecewise smooth if χ is continuous and if there exists a partitioning
a = a1 < a2 < · · · < ak = b of [a, b] such that χ|(ai,ai+1) is smooth for i = 1, · · · , k− 1. We can then define the
Riemannian distance function dG(x, y) between points x, y ∈ Rn as

dG(x, y) = inf
χ∈Ω(x,y)

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds.

6e−
λ̂
2
t ∗ ‖υ(t)− υ′(t)‖ =

∫ t
0 e−

λ̂
2
(t−τ)‖υ(τ)− υ′(τ)‖dτ .

7Note that given a Riemannian metric G, the Riemannian distance function is the smallest distance, determined by G.
8This condition is nothing more than uniform positive definitness of G.
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It follows immediately that dG is a metric on Rn. The Riemannian manifold Rn is a complete metric space,
equipped with the metric dG, if every Cauchy sequence9 of points in Rn has a limit in Rn. Assume {xn}∞n=1

is a Cauchy sequence in Rn, equipped with the metric dG. By using the assumption on G, we have

dG(xn, xm) = inf
χ∈Ω(xn,xm)

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds(3.26)

≥ √ω inf
χ∈Ω(xn,xm)

∫ 1

0

√(
dχ(s)

ds

)T
dχ(s)

ds
ds =

√
ω‖xn − xm‖.

It is readily seen from the inequality (3.26) that the sequence {xn}∞n=1 is also a Cauchy sequence in Rn with
respect to the Euclidean metric. Since the Riemannian manifold Rn with respect to the Euclidean metric is
a complete metric space, the sequence {xn}∞n=1 converges to a point, named x∗, in Rn. By picking a convex
compact subset D ⊂ Rn, containing x∗, and using Lemma 8.18 in [Lee03], we have: ω‖y‖2 ≥ yTG(x)y for any
y ∈ Rn, x ∈ D, and some positive constant ω. Since the sequence {xn}∞n=1 converges to x∗ ∈ D, there exists
some integer N such that the sequence {xn}∞n=N remains forever inside D. Hence, we have:

√
ω‖xn − x∗‖ ≤ dG(xn, x

∗) ≤
√
ω‖xn − x∗‖,

for any n > N . Therefore, the sequence {xn}∞n=1 converges to x∗ ∈ Rn, equipped with the metric dG.
Therefore, Rn with respect to the metric dG is a complete metric space.

�

Resuming, in this section we have provided a characterization of δ∃-GAS and δ∃-ISS in terms of the existence
of δ∃-GAS and δ∃-ISS Lyapunov functions and we have provided sufficient conditions for δ∃-GAS and δ∃-ISS
in terms of the existence of a contraction metric. Based on these results, in the next section, we propose a
backstepping controller design procedure, providing controllers rendering control systems incrementally stable.
Additionally, we will provide incremental Lyapunov functions and contraction metrics (the latter for smooth
control systems).

4. Backstepping Design Procedure

The backsteping method proposed here is inspired by the backstepping method, described in [PvdWN05].
Here, we will extend this approach to render the closed-loop system δ∃-ISS and to construct δ∃-ISS Lyapunov
functions. Consider the following subclass of control systems:

(4.1) Σ :

{
η̇ = f(η, ζ),

ζ̇ = υ,

where x =
[
yT , zT

]
∈ Rnη+nζ is the state of Σ, y and z are initial conditions for η, ζ-subsystems, respectively,

and υ is the control input.

In support of the main result of this section (Theorem 4.2), we need the following technical result.

Lemma 4.1. Consider the following interconnected control system

(4.2) Σ :

{
η̇ = f(η, ζ, υ),

ζ̇ = g(ζ, υ).

Let the η-subsystem be δ∃-ISS with respect to ζ, υ and let the ζ-subsystem be δ∃-ISS with respect to υ for some
metrics dη and dζ , respectively such that the solutions ηyζυ

10 and ζzυ satisfy the following inequalities:

dη (ηyζυ(t), ηy′ζ′υ′(t)) ≤ βη (dη (y, y′) , t) + γζ (dζ(ζ, ζ
′)∞) + γυ (‖υ − υ′‖∞) ,(4.3)

dζ (ζzυ(t), ζz′υ′(t)) ≤ βζ (dζ (z, z′) , t) + γ̃υ (‖υ − υ′‖∞) ,(4.4)

9A sequence {xn}∞n=1 in a metric space X, equipped with a metric d, is a Cauchy sequence if limn,m→∞ d(xn, xm) = 0.
10Notation ηyζυ denotes a trajectory of η-subsystem under the inputs ζ and υ from initial condition y ∈ Rnη .
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where y, y′ and z, z′ are the initial conditions for the η, ζ-subsystems, respectively. Then, the interconnected
control system Σ in (4.2) is δ∃-ISS with respect to υ.

Proof. The proof was inspired by the proof of Proposition 4.7 in [Ang02]. The essential differences lie in the
choice of the metric for the overall system Σ using the metrics for η, ζ-subsystems. We provide the proof so
that it can be easily compared with the proof in [Ang02]. Using (4.3), (4.4) and triangular inequality, the
following chain of inequalities hold:

dη (ηyζυ(t), ηy′ζ′υ′(t)) ≤ βη (dη (ηyζυ(t/2), ηy′ζ′υ′(t/2)) , t/2) + γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (βη (dη(y, y′), t/2) + γζ (dζ (ζ, ζ ′)∞) + γυ (‖υ − υ′‖∞) , t/2)

+ γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y′), t/2), t/2) + βη (3γζ (dζ (ζ, ζ ′)∞) , t/2) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y′), t/2), t/2) + βη (3γζ (βζ (dζ (z, z′) , 0) + γ̃υ (‖υ − υ′‖∞)) , t/2)

+ βη (3γυ (‖υ − υ′‖∞) , 0) + γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , t/2) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , 0) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ (βζ (dζ (z, z′) , t/2) + γ̃υ (‖υ − υ′‖∞)) + γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , 0) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ (2βζ (dζ (z, z′) , t/2)) + γζ (2γ̃υ (‖υ − υ′‖∞)) + γυ (‖υ − υ′‖∞)

≤ β̂ (dη(y, y′), t) + β̃ (dζ(z, z
′), t) + γ̂ (‖υ − υ′‖∞) ,(4.5)

where γ̂ ∈ K∞ and β̂, β̃ ∈ KL are defined as following:

γ̂(r) = βη (3γζ (2γ̃υ(r)) , 0) + βη (3γυ(r), 0) + γζ (2γ̃υ(r)) + γυ(r),

β̂(r, t) = βη (3βη (r, t/2) , t/2) ,

β̃(r, t) = βη (3γζ (2βζ(r, 0)) , t/2) + γζ (2βζ(r, t/2)) .

Now we define a new metric d : Rnη+nζ × Rnη+nζ → R+
0 by:

d(x, x′) = dη(y, y′) + dζ(z, z
′),

for any x =
[
yT , zT

]T ∈ Rnη+nζ and x′ =
[
y′
T
, z′

T
]T
∈ Rnη+nζ . It can be readily checked that d satisfies all

three conditions of a metric. By defining ξxυ =
[
ηTyζυ, ζ

T
zυ

]T
, using inequalities (4.4) and (4.5), and for any
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t ∈ R+
0 , any x, x′ ∈ Rnη+nζ , and any υ, υ′ ∈ U , we obtain:

d (ξxυ(t), ξx′υ′(t)) = dη (ηyζυ(t), ηy′ζ′υ′(t)) + dζ (ζzυ(t), ζz′υ′(t))

≤ β̂ (dη(y, y′), t) + β̃ (dζ(z, z
′), t) + γ̂ (‖υ − υ′‖∞)

+βζ (dζ (z, z′) , t) + γ̃υ (‖υ − υ′‖∞)

≤ β̂ (dη(y, y′) + dζ(z, z
′), t) + β̃ (dη(y, y′) + dζ(z, z

′), t)

+βζ (dη(y, y′) + dζ (z, z′) , t) + γ̂ (‖υ − υ′‖∞) + γ̃υ (‖υ − υ′‖∞)

≤ β (d(x, x′), t) + γ (‖υ − υ′‖∞) ,

where β ∈ KL and γ ∈ K∞ are defined as following:

β(r, t) = β̂(r, t) + β̃(r, t) + βζ(r, t),

γ(r) = γ̂(r) + γ̃υ(r).

Hence, the overall system Σ of the form (4.2) is δ∃-ISS with respect to υ.

�

We can now state the main result, on a backstepping controller design approach for the control system Σ in
(4.1), rendering the resulting closed-loop system δ∃-ISS.

Theorem 4.2. Consider the control system Σ of the form (4.1). Suppose there exists a continuously differ-
entiable function ψ : Rnη → Rnζ such that the control system

(4.6) Ση : η̇ = f(η, ψ(η) + υ̃)

is δ∃-ISS with respect to the input υ̃. Then for any λ ∈ R+, the state feedback control law:

(4.7) υ = k(η, ζ, υ̂) = −λ(ζ − ψ(η)) +
∂ψ

∂y
(η)f(η, ζ) + υ̂

renders the control system Σ δ∃-ISS with respect to the input υ̂.

Proof. Consider the following coordinate transformation:

χ =

[
χ1

χ2

]
= φ(ξ) =

[
η

ζ − ψ(η)

]
,(4.8)

where ξ =
[
ηT , ζT

]T
. In the new coordinate χ, we obtain the following dynamics:

(4.9) Σ̂ :

{
χ̇1 = f (χ1, ψ(χ1) + χ2) ,

χ̇2 = υ − ∂ψ
∂y (χ1)f (χ1, ψ(χ1) + χ2) .

The proposed control law (4.7), given in the new coordinate χ by

(4.10) υ = k(χ1, χ2 + ψ(χ1), υ̂) = −λχ2 +
∂ψ

∂y
(χ1)f (χ1, ψ(χ1) + χ2) + υ̂,

transforms the control system Σ̂ into:

(4.11) Σ̃ :

{
χ̇1 = f(χ1, ψ(χ1) + χ2),
χ̇2 = −λχ2 + υ̂.

Due to the choice of ψ, the χ1-subsystem of Σ̃ is δ∃-ISS with respect to χ2. It can be easily verified that
the χ2-subsystem is input-to-state stable with respect to the input υ̂. Since any ISS linear control system is
also δ-ISS [Ang02], χ2-subsystem is also δ-ISS11 with respect to υ̂. Therefore, using Lemma 4.1, we conclude

that the control system Σ̃ is δ∃-ISS with respect to the input υ̂. Since, δ∃-ISS property is coordinate invariant
[ZT11], we conclude that the original control system Σ in (4.1) equipped with the state feedback control law
in (4.7) is δ∃-ISS with respect to the input υ̂ which completes the proof. �

11We recall that δ-ISS property is equivalentt to δ∃-ISS property with respect to the Euclidean metric.
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Remark 4.3. The δ∃-ISS property of system Ση in (4.6) can be stablished, for example, using the approaches
provided in [PvdWN05, vdWP08] for some relevant classes of control systems (such as piece-wise affine systems
and Lur’e-type systems).

Remark 4.4. The result of Theorem 4.2 can be extended to the case that we have arbitrary number of
integrators:

Σ :


η̇ = f(η, ζ1),

ζ̇1 = ζ2,
...

ζ̇k = υ.

Note that in this case, the functions f and ψ must be sufficiently differentiable.

Although the proposed approach in Theorem 4.2 provides a controller rendering the control system Σ of the
form (4.1) δ∃-ISS, it does not provide a way of constructing δ∃-ISS Lyapunov functions or contraction metrics.
In the next lemmas, we show how to construct incremental Lyapunov functions and contraction metrics for
the resulting closed-loop system, recursively. Note that the constructed incremental Lyapunov functions can
be used as a necessary tool in the analysis in [GPT09, Gir12, JFA+07, KDL+08]. We will show in the example
section how explicit availability of an incremental Lyapunov function helps us to use the results in [GPT09] to
construct a finite bisimilar abstraction for an incrementally input-to-state stable (non-smooth) control system.

Lemma 4.5. Consider the control system Σ of the form (4.1). Suppose there exists a continuously differ-

entiable function ψ : Rnη → Rnζ such that the smooth function V̂ : Rnη × Rnη → R+
0 is a δ∃-ISS Lyapunov

function for the control system

(4.12) Ση : η̇ = f(η, ψ(η) + υ̃),

and with respect to the control input υ̃. Assume that V̂ satisfies condition (iii) in Definition 3.1 for some
κ ∈ R+ and some σ ∈ K∞, satisfying σ(r) ≤ κ̂r2 for some κ̂ ∈ R+ and any r ∈ R+

0 . Then the function

Ṽ : Rnη+nζ × Rnη+nζ → R+
0 , defined as

Ṽ (x, x′) = V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,

where x =
[
yT , zT

]T
and x′ =

[
y′T , z′T

]T
, is a δ∃-ISS Lyapunov function for Σ as in (4.1) equipped with the

state feedback control law (4.7) for all λ ≥ κ+κ̂+1
2 .

Proof. As explained in the proof of Theorem 4.2, using the proposed state feedback control law (4.7) and the
coordinate transformation φ in (4.8), the control system Σ of the form (4.1) is transformed to the control

system Σ̃ in (4.11). Now we show that

V (x̂, x̂′) = V̂ (x̂1, x̂
′
1) + (x̂2 − x̂′2)T (x̂2 − x̂′2),

is a δ∃-ISS Lyapunov function for Σ̃, where x̂ =
[
x̂T1 , x̂

T
2

]T
and x̂′ =

[
x̂′T1 , x̂

′T
2

]T
are the states of Σ̃ and

x̂1, x̂
′
1, and x̂2, x̂

′
2 are the states of χ1, χ2-subsystems, respectively. Since V̂ is a δ∃-ISS Lyapunov function for

χ1-subsystem when χ2 is the input, it satisfies condition (i) in Definition 3.1 using a metric d as follows:

α(d(x̂1, x̂
′
1)) ≤ V̂ (x̂1, x̂

′
1) ≤ α(d(x̂1, x̂

′
1)),

for some α, α ∈ K∞. Now we define a new metric d̂ : Rnη+nζ × Rnη+nζ → R+
0 by

(4.13) d̂(x̂, x̂′) = d(x̂1, x̂
′
1) + ‖x̂2 − x̂′2‖.

It can be readily checked that d̂ satisfies all three conditions of a metric. Using metric d̂, function V satisfies
condition (i) in Definition 3.1 as follows:

µ
(
d̂(x̂, x̂′)

)
≤ V (x̂, x̂′) ≤ µ

(
d̂(x̂, x̂′)

)
,



16 MAJID ZAMANI, NATHAN VAN DE WOUW, AND RUPAK MAJUMDAR

where µ, µ ∈ K∞, µ
(
d̂(x̂, x̂′)

)
= α(d(x̂1, x̂

′
1)) + ‖x̂2 − x̂′2‖2, and µ

(
d̂(x̂, x̂′)

)
= α(d(x̂1, x̂

′
1)) + ‖x̂2 − x̂′2‖2.

Now we show that V satisfies condition (iii) in Definition 3.1 for Σ̃. Since V̂ is a δ∃-ISS Lyapunov function
for χ1-subsystem when χ2 is the input, λ ≥ κ+κ̂+1

2 , σ(r) ≤ κ̂r2, and using the Cauchy Schwarz inequality, we
have:

∂V

∂x̂

[
f(x̂1, ψ(x̂1) + x̂2)T ,−λx̂T2 + ûT

]T
+
∂V

∂x̂′
[
f(x̂′1, ψ(x̂′1) + x̂′2)T ,−λx̂′T2 + û′T

]T ≤
∂V̂

∂x̂1
f(x̂1, ψ(x̂1) + x̂2) +

∂V̂

∂x̂′1
f(x̂′1, ψ(x̂′1) + x̂′2) + 2(x̂2 − x̂′2)T (−λx̂2 + û)− 2(x̂2 − x̂′2)T (−λx̂′2 + û′) ≤

−κV̂ (x̂1, x̂
′
1) + σ(‖x̂2 − x̂′2‖)− 2λ‖x̂2 − x̂′2‖2 + 2(x̂2 − x̂′2)T (û− û′) ≤

−κV̂ (x̂1, x̂
′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2 + 2‖x̂2 − x̂′2‖‖û− û′‖ ≤

−κV̂ (x̂1, x̂
′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2 + ‖x̂2 − x̂′2‖2 + ‖û− û′‖2 ≤

−κV (x̂, x̂′) + ‖û− û′‖2.

The latter inequality implies that V is a δ∃-ISS Lyapunov function for Σ̃. Since δ∃-ISS Lyapunov functions

are coordinate-invariant [ZM11], we conclude that the function Ṽ : Rnη+nζ × Rnη+nζ → R+
0 , defined by

Ṽ (x, x′) = V (φ(x), φ(x′)) = V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,
is a δ∃-ISS Lyapunov function for Σ, as in (4.1) equipped with the state feedback control law in (4.7). �

Remark 4.6. One can use the LMI based results in [PvdWN05, PvdWN07, vdWP08] to find a quadratic
δ∃-ISS Lyapunov function for system Ση in (4.12).

Remark 4.7. It can be verified that the backstepping design approach for strict-feedback form control systems,
proposed in [ZM11], is a special case of the results in Lemma 4.5. The results in [ZM11] can be easily obtained
by recursively applying the results proposed in Lemma 4.5. Moreover, one can construct a metric d for a
strict-feedback form control system, satisfying (2.3), by recursively applying the construction in (4.13) and
applying the change of coordinate in (4.8).

The next lemma shows how to construct contraction metrics for the closed-loop system resulting from the
backstepping controller synthesis technique in Theorem 4.2.

Lemma 4.8. Consider the control system Σ of the form (4.1) and assume function f is smooth. Suppose

there exists a continuously differentiable function ψ : Rnη → Rnζ such that the metric Ĝ : Rnη → Rnη×nη is a
contraction metric, with respect to states and inputs, for the control system

Ση : η̇ = f(η, ψ(η) + υ̃),

satisfying the condition (3.22) for some λ̂ ∈ R+ and α ∈ R+
0 . Then

G̃(x) =

 Ĝ(y) +
(
∂ψ
∂y

)T
∂ψ
∂y −

(
∂ψ
∂y

)T
−∂ψ∂y Inζ

 ,
where x =

[
yT , zT

]T
, is a contraction metric, with respect to states and inputs, for Σ as in (4.1) equipped with

the state feedback control law in (4.7) for all λ > α2

8λ̂
.

Proof. As explained in the proof of Theorem 4.2, using the proposed control law (4.7) and the coordinate

transformation φ in (4.8), the control system Σ of the form (4.1) is transformed to the control system Σ̃ in
(4.11). Now we show that the metric

G(x̂) =

[
Ĝ(x̂1) 0nη×nζ
0nζ×nη Inζ

]
,
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is a contraction metric, with respect to states and inputs, for Σ̃, where x̂ =
[
x̂T1 , x̂

T
2

]T
is the state of Σ̃, and x̂1,

and x̂2 are states of χ1, χ2-subsystems, respectively. It can be easily seen that G is positive definite because

Ĝ is positive definite since it is a contraction metric for Ση. Now we show that G satisfies the condition (3.22)

for the control system Σ̃. Since Ĝ is a contraction metric, with respect to states and inputs, for χ1-subsystem
when χ2 is the input, we have:

X̂T
1

((
∂f
∂x̂1

)T
Ĝ(x̂1) + Ĝ(x̂1) ∂f∂x̂1

+ ∂Ĝ
∂x̂1

f(x̂1, ψ(x̂1) + x̂2)

)
X̂1 + 2X̂T

2

(
∂f
∂x̂2

)T
Ĝ(x̂1)X̂1

≤ −λ̂X̂T
1 Ĝ(x̂1)X̂1 + α

(
X̂T

1 Ĝ(x̂1)X̂1

) 1
2
(
X̂T

2 X̂2

) 1
2

,(4.14)

for any X̂1, x̂1 ∈ Rnη , X̂2, x̂2 ∈ Rnζ , some λ̂ ∈ R+, and some α ∈ R+
0 . By choosing λ > α2

8λ̂
, using (4.14), and

the Cauchy Schwarz inequality we obtain:

[
X̂T

1 X̂T
2

](∂ [f,−λx̂2 + û]
T

∂x̂

)T
G(x̂) +G(x̂)

∂ [f,−λx̂2 + û]
T

∂x̂
+
∂G

∂x̂

[
f(x̂1, ψ(x̂1) + x̂2)
−λx̂2 + û

][ X̂1

X̂2

]
+

2Y T
[

0nη×nζ
Inζ

]T
G(x̂)

[
X̂1

X̂2

]
=

[
X̂T

1 X̂T
2

]
(
∂f
∂x̂1

)T
Ĝ(x̂1) + Ĝ(x̂1) ∂f∂x̂1

+ ∂Ĝ
∂x̂1

f Ĝ(x̂1) ∂f∂x̂2(
∂f
∂x̂2

)T
Ĝ(x̂1) −2λInζ

[ X̂1

X̂2

]
+ 2Y T X̂2 ≤

−λ̂
〈
X̂1, X̂1

〉
Ĝ

+ α
〈
X̂1, X̂1

〉 1
2

Ĝ

〈
X̂2, X̂2

〉 1
2

Inζ

− 2λX̂T
2 X̂2 + 2Y T X̂2 ≤

−λ̃
〈
X̂1, X̂1

〉
Ĝ
− λ̃X̂T

2 X̂2 + 2
√
Y TY

√
X̂T

2 X̂2 +
〈
X̂1, X̂1

〉
Ĝ
≤

−λ̃
〈
X̂, X̂

〉
G

+ 2
〈
X̂, X̂

〉 1
2

G
〈Y, Y 〉

1
2

Inζ
,

for any X̂ =
[
X̂T

1 X̂T
2

]T
∈ Rnη+nζ , any x̂ =

[
x̂T1 x̂T2

]T ∈ Rnη+nζ , any Y ∈ Rnζ , and some λ̃ ∈ R+. Hence,

G is a contraction metric, with respect to states and inputs, for Σ̃. Since a contraction metric, with respect

to states and inputs, is coordinate invariant [ZT11], we conclude that G̃ = φ∗G is a contraction metric, with
respect to states and inputs, for Σ as in (4.1) equipped with the state feedback control law in (4.7). This
completes the proof. �

Remark 4.9. It can be verified that the backstepping design approach for strict-feedback form control systems,
proposed in [ZT11], is a special case of the results in Lemma 4.8. The results in [ZT11] can be easily obtained
by recursively applying the results proposed in Lemma 4.8.

5. Example

We refer the interested readers to the provided example in [ZvdW12], illustrating the results in this paper
on a four-dimensional non-smooth control system. Here, we study another non-smooth control system and
use the results in this paper to explicitly construct a δ∃-ISS Lyapunov function, which, in turn, is employed
to construct a finite equivalent abstraction using the results in [GPT09]. Consider the following non-smooth
control system:

(5.1) Σ :

{
η̇1 = sat(η1) + η1 + 5ζ1,

ζ̇1 = ζ2
1 + η2

1 + υ,
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where sat : R→ R is the saturation function, defined by:

sat(x) =

 −1 if x < −1,
x if |x| ≤ 1,
1 if x > 1.

It can be readily verified that Σ is unstable at (0, 0), implying that Σ is not δ∃-ISS. The results in [JL02, SK09,
SK08, ZT11, ZM11] can not be applied to design controllers that render the system Σ δ∃-ISS because the right
hand side of Σ in (5.1) is not continuously differentiable. The results in [PvdWN05] also can not be applied
because these results would result in a closed-loop system which is input-to-state convergent rather than δ∃-
ISS. Note that here we require δ∃-ISS and a δ∃-ISS Lyapunov function in order to construct a finite equivalent
abstraction using the results in [GPT09]. By introducing the feedback transformation υ̂ = ζ2

1 + η2
1 + υ, the

control system Σ is transformed into the following form:

Σ̂ :

{
η̇1 = sat(η1) + η1 + 5ζ1,

ζ̇1 = υ̂.

Now by choosing ψ(η1) = −η1 and substituting ψ(η1) + υ̃ instead of ζ1, we obtain the following η-subsystem:

Σ̂η :
{
η̇1 = sat(η1) + η1 + 5(ψ(η1) + υ̃) = sat(η1)− 4η1 + 5υ̃.

It remains to show that Σ̂η is δ∃-ISS with respect to υ̃. By choosing the function V1(y1, y
′
1) = (y1−y′1)2, where

y1 and y′1 are states of Σ̂η, and using the Cauchy Schwarz inequality, we have that:

∂V1

∂y1
(sat(y1)− 4y1 + 5ũ) +

∂V1

∂y′1
(sat (y′1)− 4y′1 + 5ũ′) ≤

−8(y1 − y′1)2 + 2|y1 − y′1||sat(y1)− sat(y′1)|+ 10(y1 − y′1)(ũ− ũ′) ≤
−8(y1 − y′1)2 + 2(y1 − y′1)2 + 10(y1 − y′1)(ũ− ũ′) ≤

−5(y1 − y′1)2 + 25(ũ− ũ′)2,

showing that V1 is a δ∃-ISS Lyapunov function for Σ̂η and, hence, Σ̂η is δ∃-ISS with respect to υ̃. By using

the results in Theorem 4.2 for the control system Σ̂, we conclude that the state feedback control law:

υ̂ = k(η1, ζ1, ῡ) =− λ(ζ1 − ψ(η1)) +
∂ψ

∂y1
η̇1 + ῡ

=− λ (ζ1 + η1)− (sat(η1) + η1 + 5ζ1) + ῡ,

makes the control system Σ̂ δ∃-ISS with respect to input ῡ, for any λ ∈ R+. Therefore, the state feedback
control law

(5.2) υ = k̂(η1, ζ1, ῡ) = k(η1, ζ1, ῡ)− η2
1 − ζ2

1 ,

makes the control system Σ δ∃-ISS with respect to input ῡ.

Using Lemma 4.5, we conclude that the function V : R2 × R2 → R+
0 , defined by:

V (x, x′) = V1(y1, y
′
1) + | (z1 − ψ(y1))− (z′1 − ψ(y′1)) |2

= (y1 − y′1)2 + ((z1 + y1)− (z′1 + y′1))
2

= (x− x′)T P (x− x′) = (x− x′)T
[

2 1
1 1

]
(x− x′) ,

where x = [y1, z1]
T

is the state of Σ, is a δ∃-ISS Lyapunov function for the control system Σ equipped with

the state feedback control law k̂ in (5.2) with λ > 25+5+1
2 . Here, we choose λ = 16.

It can be readily verified that the function V̂ (x, x′) =
√
V (x, x′) is also a δ∃-ISS Lyapunov function for the

control system Σ equipped with the state feedback control law k̂ in (5.2) with λ > 25+5+1
2 , satisfying:
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(i) for any x, x′ ∈ R2,√
λmin(P ) ‖x− x′‖ ≤ V̂ (x, x′) ≤

√
λmax(P )‖x− x′‖;

(ii) for any x, x′ ∈ R2 and for any ū, ū′ ∈ U ⊆ R,
∂V̂
∂x f

(
x, k̂(x, ū)

)
+ ∂V̂

∂x′ f
(
x′, k̂(x′, ū′)

)
≤ −2.5V̂ (x, x′) + |ū−ū′|

λmin(P ) ;

(iii) for any x, y, z ∈ R2∣∣∣V̂ (x, y)− V̂ (x, z)
∣∣∣ ≤ λmax(P )√

λmin(P )
‖y − z‖;

where λmin(P ), and λmax(P ) stand for minimum and maximum eigenvalues of P . Note that the property (iii)
is a consequence of Proposition 10.5 in [Tab09].

Finite abstractions are simpler descriptions of control systems, typically with finitely many states, in which
each state of the abstraction represents a collection or aggregate of states in the control system. Similar finite
abstractions are used in software and hardware modeling, which enables the composition of such abstrac-
tions with the finite abstraction of the control system. The result of this composition are finite abstractions
capturing the behavior of the control system interacting with the digital computational devices. Once such
abstractions are available, the methodologies and tools developed in computer science for verification and
controller synthesis purposes can be easily employed to control systems, via these abstractions. However, for
constructing a bisimilar finite abstraction, using the results in [GPT09] which does not impose any restriction
on the sampling time, the control system is required to be incrementally stable and to exhibit an incremental
Lyapunov function. The incremental stability property bounds the error propagations coming from discretiza-
tion of the state space and input set in the process of constructing the finite bisimilar abstractions. We refer
the interested readers to [Tab09] for more detailed information about the finite abstractions and their great
advantages in controller synthesis problems.

Now, we construct a finite abstraction S(Σ) for the control system Σ, equipped with the control input υ
in (5.2), using the results in [GPT09]. We assume that ῡ(t) ∈ U = [−10, 10], for any t ∈ R+

0 , and ῡ

belongs to set U that contains piecewise constant curves of duration τ = 0.1 second (τ is the sampling
time) taking values in

[
U
]
0.5

=
{
ū ∈ U | ū = 0.5k, k ∈ Z

}
. We work on the subset D = [−1, 1] × [−1, 1]

of the state space Σ. For a given precision12 ε = 0.1 and using properties (i), (ii), and (iii) of V̂ , we
conclude that D should be quantized with resolution of η = 0.009, using the results of Theorem 4.1 in
[GPT09]. The state set of S(Σ) is [D]η = {x ∈ D | xi = kiη, ki ∈ Z, i = 1, 2}. It can be readily seen that
the set [D]η is finite. The computation of the finite abstraction S(Σ) was performed using the tool Pessoa
[Pes09]. Using the computed finite abstraction, we can synthesize controllers, providing ῡ in (5.2), satisfying
specifications difficult to enforce with conventional controller design methods. Here, our objective is to design
a controller navigating the trajectories of Σ, equipped with the control input υ in (5.2), to reach the target set
W = [−0.05, 0.05]× [−0.05, 0.05], indicated with a red box in Figure 2, while avoiding the obstacles, indicated
as blue boxes in Figure 2, and remain indefinitely inside W . Furthermore, we assume that the controller is
implemented on a microprocessor, which is executing other tasks in addition to the control task. We consider
a schedule with epochs of three time slots in which the first slot is allocated to the control task and the other
two to other tasks. A time slot refers to a time interval of the form [kτ, (k + 1)τ [ with k ∈ N and where τ is
the sampling time. Therefore, the microprocessor schedules is given by (depending on the initial slot):

|auu|auu|auu|auu|auu|auu|auu| · · · ,

|uua|uua|uua|uua|uua|uua|uua| · · · ,
|uau|uau|uau|uau|uau|uau|uau| · · · ,

where a denotes a slot available for the control task and u denotes a slot allotted to other tasks. We assume that
in unallocated time slots, the input ῡ is identically zero. The schedulability constraint on the microprocessor
can be represented by the finite system in Figure 1.

12The parameter ε is the maximum error between a trajectory of the control system and its corresponding trajectory from
the finite abstraction at times kτ , k ∈ N0, with respect to the Euclidean metric.
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q1

a

q2

u

q3

u

Figure 1. Finite system describing the schedulability constraints. The lower part of the
states are labeled with the outputs a and u denoting availability and unavailability of the
microprocessor, respectively.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d1

c 1

 

 

Figure 2. Evolutions of the closed-loop system with initial conditions (0.8, 0.9), and (−0.8, −0.9).

A controller, providing ῡ in (5.2) and enforcing the specification has been designed by using standard algorithms
from game theory, implemented in Pessoa, where the finite system is initialized from state q2, see second
sequence above. In Figure 2, we show the closed-loop trajectories of Σ, equipped with the control input υ
in (5.2) (including the additional controller for ῡ) and stemming from the initial conditions [0.8, 0.9] and
[−0.8, −0.9]. It is readily seen that the specifications are satisfied. In Figure 3, we show the evolution of the
input signal ῡ in (5.2) corresponding to the two initial conditions. It can be easily seen that the schedulability
constraint is also satisfied, implying that the control input ῡ is identically zero at unallocated time slots.

Resuming, the explicit availability of an incremental Lyapunov function let us to use the results in [GPT09]
to construct a finite abstraction S(Σ) for the control system Σ in (5.1), equipped with the control input in
(5.2). This finite abstraction allowed us to use tools developed in computer since to synthesize a controller
satisfying some logic specifications difficult to enforce using conventional controller synthesis methods.

6. Discussion

In this paper we provided the characterizations of incremental stability, defined in [ZT11], in terms of existence
of incremental Lyapunov functions, defined in [ZM11]. We also provided sufficient conditions for incremental
stability in terms of contraction metrics. Moreover, we developed a backstepping procedure to design con-
trollers enforcing incremental input-to-state stability (or contraction properties) for the resulting closed-loop
system. The proposed approach in this paper generalizes the work in [JL02, SK09, SK08, ZT11, ZM11] by
being applicable to larger classes of (not necessarily smooth) control systems and the work in [PvdWN05] by
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Figure 3. Evolutions of the input signals ῡ1 and ῡ2, corresponding to initial conditions
(0.8, 0.9), and (−0.8, −0.9), respectively.

enforcing incremental input-to-state stability rather than input-to-state convergence. Moreover, in contrast to
the proposed backstepping design approach in [PvdWN05], here we provided a way of constructing incremental
Lyapunov functions, which are known to be a key tool in the analysis provided in [GPT09, Gir12, JFA+07,
KDL+08]. As we showed in the example, the explicit existence of an incremental Lyapunov function helps us
to use the results in [GPT09] to construct a finite bisimilar abstraction for a resulting incrementally stable
closed-loop (non-smooth) control system.
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