文章编号: 0258-8013 (2010) 24-0061-08 中图分类号: TM 46 文献标志码: A 学科分类号: 470-40

耦合电感式无源无损缓冲电路的优化设计

伍健, 何礼高, 何伟军

(南京航空航天大学自动化学院, 江苏省 南京市 210016)

Optimal Design of Passive Lossless Snubbers With Coupled-inductor

WU Jian, HE Li-gao, HE Wei-jun

(College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu Province, China)

ABSTRACT: The zero current switching (ZCS) turn-on and zero voltage switching (ZVS) turn-off of the power switch can be realized from resonance between the leakage inductance of coupled-inductor and snubber capacitor in the passive lossless snubber with coupled-inductor while the switch is switching. For the purpose of minimizing switching losses while maintaining soft switching over a larger duty ratio range, an optimal design procedure of the snubber resonant elements was proposed according to the loss model of the power switch and the requirements for soft switching of the snubber. The passive lossless snubber with coupled-inductor designed on the base of the proposed methodology eliminated the limitation of resonant elements value in the minimum voltage stress (MVS) passive lossless snubber, the duty ratio range for soft switching is extended, and the efficiency was improved. A 240W Buck converter prototype based on the passive lossless snubber with coupled-inductor was built to verify the theoretical analysis and design methodology.

KEY WORDS: soft switching; snubber; coupled-inductor; passive lossless; optimal design

摘要:耦合电感式无源无损缓冲电路利用耦合电感的漏感与 缓冲电容,在功率管开关过程中进行谐振,实现功率管的零 电流开通和零电压关断。为了尽量减小开关损耗,并保证可 实现软开关的较宽占空比范围,根据功率管的损耗模型并结 合缓冲电路实现软开关的条件,提出一种基于该缓冲电路谐 振元件参数的优化设计方法。采用该方法设计的耦合电感式 无源无损缓冲电路不受最小电压应力无源无损缓冲电路中 谐振元件参数的限制,拓宽了软开关的占空比范围,提高了 效率。通过一台 240 W 的带有该缓冲电路的 Buck 变换器原 理样机,验证了理论分析和设计的正确性。

关键词:软开关;缓冲电路;耦合电感;无源无损;优化设计

提高变换器的效率,国内外学者提出了各种有源和 无源软开关技术。相对于有源软开关^[1-3],无源软开 关技术不需要额外的有源开关及其复杂的控制电 路,所需元器件数量少、成本低、可靠性和变换效 率高,具有较高的性价比,因而被广泛应用于各种 非隔离的单端变换器中^[4-6]。

无源无损缓冲电路是无源软开关技术的一种, 通过在主电路中附加谐振电感、电容和二极管等无 源器件,在开关管开通和关断时建立零电流、零电 压开关条件。目前,关于无源无损缓冲电路方面的 文献较多[7-14]。文献[11]提出了一种最小电压应力 (minimum voltage stress, MVS)的无源无损缓冲电路 结构,它不增加开关管的电压应力,且结构简单, 但谐振电感和谐振电容的比值受到限制,从而限制 了能够实现软开关的占空比范围。文献[12]分析了 一种带耦合电感的无源无损缓冲电路,将缓冲电感 与主电感耦合在一起,获得了较宽的软开关占空比 范围,然而开关管仅实现了零电流开通(zero current switching, ZCS), 还是硬关断。文献[13]在文献[12] 的基础上增加了一个缓冲电容,实现了开关管的零 电流开通和零电压关断(zero voltage switching, ZVS),该电路还能够在较宽的占空比范围内软化开 关过程,但谐振电容的电压振荡不仅增加了电磁噪 声,还可能致使功率管丧失 ZVS 关断条件。为消除 谐振电容的电压振荡, 文献[13]对电路进行了改进, 在谐振电容两端并联了 RC 缓冲电路,大大削弱了 电压振荡。由于 RC 缓冲网络体积大、损耗大等原 因,在有些场合并不适用,因此文献[13]又建议了 另外一种可选缓冲电路结构,即带耦合电感的 MVS 无源无损缓冲电路,但并未对该电路进行分析。

本文在文献[13]建议的耦合电感式 MVS 无源

0 引言

为了减小开关变换器的开关损耗和电磁干扰,

无损缓冲电路基础上,对该电路进行了深入分析, 给出了主开关管实现 ZCS 开通和 ZVS 关断的条件, 并根据开关管的开关损耗模型和实现软开关的条 件,提出一种缓冲网络谐振元件参数的优化设计方 法,消除了缓冲电路对谐振元件参数的限制^[11],拓 宽了能够实现软开关的占空比范围。最后通过实验 验证了这种缓冲电路的优越性和实用性。

1 缓冲电路工作原理分析

图 1(a)为带耦合电感的 MVS 无源无损缓冲电路应用于 Buck 变换器的拓扑结构。其中, VS 为功率管 MOSFET, *L*_m为输出滤波电感, *L*_{couple}为耦合电感, *L*_{lk}为耦合电感漏感, *C*_r、*C*_s为谐振电容, D 为续流二极管, D_{s1}、D_{s2}、D_{s3}为辅助二极管。耦合电感漏感与续流二极管串联,实现二极管 D 的零电流关断和开关管的零电流开通;电容 *C*_r实现开关管的零电压关断;电容 *C*_s实现能量转换;耦合电感和二极管 D_{s1}、D_{s2}、D_{s3} 辅助完成能量恢复。

图 1 耦合电感式无源无损缓冲电路及 Buck 变换器等效电路

Fig. 1 Passive lossless snubber with coupled-inductor and the equivalent circuit in Buck converter

该无源无损缓冲电路与文献[11]提出的 MVS 的区别是:谐振电感与主电感耦合在一起,在 VS 开通和关断时,耦合电感 *L*_{couple} 上可获得一个正向和负向的电压源,分别为 *U*_{cpl_on}、*U*_{cpl_off},如图 1(b) 所示。

若耦合电感与主电感的匝数之比为 n,则由于 磁耦合增加的附加电压源约为

$$U_{\rm cpl_on} = n(U_{\rm in} - U_{\rm out}) \tag{1}$$

(2)

为方便电路分析,先作以下基本假设:1)忽略 D_{s1}、D_{s2}、D_{s3}、D及功率开关管 VS 的导通压降; 2)输入电压 U_{in} 恒定;3)滤波电感 L_m足够大,使

 $U_{\rm cpl off} = nU_{\rm out}$

得流过滤波电感电流 I_o 保持不变;4)输出滤波电容足够大,可认为输出电压 U_{out}恒定不变。基于上述假设,具体分析耦合电感式 MVS 无源无损缓冲电路各个模态的工作过程,各模态对应的等效电路如图 2 所示,电路的理论工作波形如图 3 所示。为了叙述方便,符号定义如下:

$$x = \frac{C_{\rm r}}{C_{\rm s}}$$
, $\omega_{\rm e} = \sqrt{\frac{C_{\rm r} + C_{\rm s}}{L_{\rm lk}C_{\rm r}C_{\rm s}}}$, $\omega_{\rm e2} = \sqrt{\frac{1}{L_{\rm lk}C_{\rm s}}}$, $\omega_{\rm r} = \frac{1}{\sqrt{L_{\rm lk}C_{\rm r}}}$

1) 模态 1[t₀~t₁]。此阶段为功率开关管 ZCS 开 通阶段。t₀时刻, VS 开通,由于耦合电感漏感 L_{lk} 存在,功率二极管 D 的电流缓慢线性下降,流过功 率管 VS 的电流缓慢增大,获得了 ZCS 开通条件。 当耦合电感电流线性下降到 0,开关管电流上升到 负载电流时,本模态结束。由于漏感 L_{lk} 的存在, 极大地抑制了二极管 D 的反向恢复,大大削弱了反 向恢复过程中的电压尖峰。本阶段时间间隔为

$$t_{0-1} = \frac{I_{\rm o} L_{\rm lk}}{U_{\rm in} + U_{\rm cp \ on}}$$
(3)

2) 模态 $2[t_1 \sim t_2]$ 。此阶段为 C_r 的复位阶段。 t_1 时刻, 二极管 D 反向恢复过程结束, C_r 上的电压 $u_{Cr} = U_{in}$, C_s 上的电压 $u_{Cs} = 0$, 耦合电感漏感电流 $i_{Llk} = 0$ 。 C_r 、 C_s 、 L_{lk} 通过 VS、 D_{s2} 构成谐振回路开 始发生谐振, C_r 放电, C_s 充电, C_r 中能量转移到 C_s 中, t_2 时刻 C_r 上的电压下降到 0, 为功率管 VS 创造 ZVS 关断条件。在本阶段中, C_r 上的电压为

$$u_{Cr}(t) = U_{in} - \frac{U_{in} + U_{cpl_on}}{1 + x} \{1 - \cos[\omega_e(t - t_1)]\}$$
(4)

在此阶段末,流过 VS 的电流达到最大,即

$$I_{d_peak} = I_{o} + \frac{U_{in} + U_{cpl_on}}{\omega_{e} L_{lk}}$$
(5)

由式(5)可知, *C*_r的充电电流增加了功率管的电流尖峰, *C*_r越大,尖峰电流越大;增大漏感对尖峰电流有一定的抑制作用。本阶段的时间间隔为

$$t_{1-2} = \frac{1}{\omega_{\rm e}} \arccos(1 - \frac{U_{\rm in}}{U_{\rm in} + U_{\rm cpl_on}} \frac{C_{\rm s} + C_{\rm r}}{C_{\rm s}}) \qquad (6)$$

3) 模态 3[*t*₂~*t*₃]。此阶段为 *L*_{lk} 的复位阶段。当 *u*_{Cr}=0 时, **D**_{s1}导通, 模态 3 开始, 此时 *i*_{Llk} 最大。 *L*_{lk}和 *C*_s通过 **D**_{s1}、**D**_{s2}构成谐振回路发生谐振, 漏 感 *L*_{lk}中的能量通过谐振转移到 *C*_s中, *C*_s电压继续 上升。当 *i*_{Llk}=0 时, **D**_{s1}、**D**_{s2}截止, 谐振过程结束, *u*_{Cs}达到最大值 *u*_{Cs peak}并保持不变。

$$u_{Cs_{peak}} = \sqrt{\frac{x}{1+x}(U_{in} + U_{cpl_{on}})^2 + x^2 U_{in}^2}$$
(7)

(h) 模态 8(a)(t7~t8)

图 2 耦合电感式无源无损缓冲电路各模态等效电路

Fig. 2 Equivalent circuit stages of the passive lossless snubber with coupled-inductor

图 3 耦合电感式无源无损缓冲电路理论工作波形 Fig. 3 Theoretical waveforms of passive lossless snubber with coupled-inductor

由式(7)可以看出, *u*_{Cs_peak}随 *x* 的增大而增大, 且 *U*_{cpl_on}越大, *u*_{Cs_peak}越大。本阶段时间间隔为

$$t_{2-3} = \frac{1}{\omega_{e2}} \arctan(\frac{U_{in} + U_{cpl_on}}{xU_{in} - U_{cpl_on}} \sqrt{\frac{x}{1+x}})$$
(8)

4) 模态 4[t₃~t₄]。此时缓冲电路停止工作,电路
 进入正常脉宽调制(pulse width modulation, PWM)
 开通阶段。

5) 模态 5[t_4 ~ t_5]。此阶段为功率开关管 ZVS 关断。当功率管 VS 关断时,由于电容 C_r 的存在,VS 的漏源电压 $u_{ds} = u_{Cr}$ 且上升缓慢,VS 获得了 ZVS 关断。VS 完全关断后,电流 I_0 全部转移到 C_r 中, u_{Cr} 迅速上升,当其上升至 $U_{in} - u_{Cs}$ _peak - U_{cpl_off} 时,该阶段结束,进入下一模态。本阶段时间间隔为

$$t_{4-5} = \frac{C_{\rm r} (U_{\rm in} - u_{Cs_{\rm peak}} - U_{\rm cpl_off})}{I_{\rm o}}$$
(9)

6) 模态 $6[t_5 \sim t_6]$ 。当 C_r 电压上升至 $U_{in} - u_{Cs_{peak}} - u_{rs_{peak}}$

*U*_{cpl_off}时,二极管 D_{s3} 导通,电容 *C*_s 与漏感 *L*_{lk}开始 谐振放电,使耦合电感电流增大,同时 *C*_r继续充电。 若漏感电流在电容 *C*_r电压上升至 *U*_{in}之前已增大到 负载电流 *I*_o,则不能使功率管在下一开关周期实现 ZCS 开通。因此为保证 VS 在下一开关周期能够实 现 ZCS 开通, *C*_r电压必须在本阶段上升至 *U*_{in},为 此必须满足^[11]:

$$1 < \frac{I_{\text{max}}}{I_{\min}} < k_{c}$$
(10)
式中 $k_{c} = \frac{\sqrt{x}}{(1+x)^{3/2}} [\arccos(-x) + \sqrt{\frac{1}{x^{2}} - 1}] \circ$
当 $u_{Cr} = U_{\text{in}}$ 时,本模态结束。

7) 模态 7[*t*₆~*t*₇]。当 *u*_{Cr}=*U*_{in}时,二极管 D_{s2}导通, *C*_s继续与 *L*_{lk}谐振使其电流增大, *L*_{lk}电流增大 到 *I*₀或 *C*_s电压减小到 0 时,本模态结束。若 *i*_{Llk}先 增大到 *I*₀,则进入模态 8(a);若 *u*_{Cs}先减小到 0,则 进入模态 8(b)。为了在下一开关周期使 VS 获得 ZCS 开通条件,漏感电流必须在本阶段谐振至负载电流 *I*₀,从能量转化的角度考虑,要满足:

$$C_{s}u_{Cs_{peak}}U_{cpl_{off}} + \frac{1}{2}C_{s}u_{Cs_{peak}}^{2} \ge \frac{1}{2}L_{lk}I_{o}^{2}$$
 (11)

要满足式(11),除了改变谐振参数之外,还可 通过增大 U_{cpl_off}来实现,从而体现了耦合电感的作 用。当 *i*_{Llk}=*I*_o时, D_{s1}、D_{s2}截止,进入模态 8(a)。 模态 5、6 两个阶段的时间间隔至少为

$$t_{5-7} = \frac{1}{\omega_{e2}} \arcsin \frac{I_0 \omega_{e2} L_{lk}}{u_{Cs_peak} + U_{cpl_off}}$$
(12)

本模态结束时,电容 C_s上的电压为

$$u_{Cs}(t_7) = \sqrt{(u_{Cs_{peak}} + U_{cpl_{off}})^2 - I_o^2 \frac{L_{lk}}{C_s} - U_{cpl_{off}}}$$
(13)

要使 $i_{Llk}(t_7) = I_0$, 必须保证 $u_{Cs}(t_7) > 0$, 即可得到 式(11)的约束条件。

8) 模态 8(a)[*t*₇~*t*₈]。该阶段中, *i*_{Llk}=*I*_o, *u*_{Cs}线 性下降,当 *u*_{Cs}=0 时, D_{s3}截止,功率二极管 D 导 通,进入下一模态。本阶段时间间隔为

$$t_{7-8} = \frac{C_{\rm s}}{I_{\rm o}} u_{C\rm s}(t_7) \tag{14}$$

9) 模态 8(b)[t₇~t₈]。L_{lk}电流再恢复阶段。若(11) 式的条件不能满足,即电容 C_s电压谐振到0时,耦 合电感电流还没有增大到 I_o,则将进入本模态。耦 合电感电流在电压 U_{drive}=U_{cpl_off}下继续增大,直至 增大到负载电流 I_o。U_{cpl_off}越大,U_{drive}越大,本模 态持续的时间越短,所要求的功率管关断缓冲时间 越短,与 MVS 相比,占空比上限可以提高,这也 体现了耦合电感的优势。

当功率管下一次开通时,耦合电感电流还未增加到负载电流 *I*_o,则 D_{s1}、D_{s2}、D_{s3}同时关断,反向恢复电流重叠,叠加在功率管 VS 上,使其失去了 ZCS 开通条件,大大增加了开通损耗。

10) 模态 9[*t*₈~*t*₀]。此时缓冲电路停止工作,电路进入正常 PWM 关断阶段,直到功率管 VS 下一次开通。

2 软开关的实现条件

*t*₁时刻, D完成反向恢复; *t*₂时刻, *C*_r完成 能量恢复; *t*₃时刻, *L*_{lk}完成能量恢复。截止 *t*₃时刻, *L*_{lk}、*C*_r中的能量全部转移至 *C*_s中,为确保以上过 程在 VS 开通时间内完成,必须满足:

 $T_{r_{-0}n} = t_{0-1} + t_{1-2} + t_{2-3} \le D_{\min}T_s$ (15) 式中: T_s 为开关周期; D_{\min} 为最小占空比。

C_r在 t₄时刻开始充电,t₆时刻充电至 U_{in};
 C_s在 t₅时刻开始放电,t₈时刻放电完成。为确保以上过程在 VS 关断时间内完成,必须满足:

 $T_{r_{off}} = t_{4-5} + t_{5-7} + t_{7-8} \le (1 - D_{max})T_s$ (16) 式中 D_{max} 为最大占空比。

为了保证缓冲网络的正常工作,为软开关的实现创造条件,*L*_{lk}与 *C*_r的谐振时间 2π/ω_r应小于开关周期 *T*_s的某一倍数 *k*(0<*k*<1),即

$$2\pi/\omega_{\rm r} < kT_{\rm s} \tag{17}$$

4)为确保能够实现软开关,缓冲网络参数设 计还应满足式(10)、(11)的要求。

为了使缓冲电路获得最佳工作性能,综合协调 相互矛盾的设计要求,必须对谐振元件参数值进行 优化设计,以使各参数达到最佳匹配。

3 缓冲电路参数的优化设计

3.1 缓冲电路的设计原则与损耗模型

对于无源无损缓冲电路参数的设计,有以下几 个基本原则: 1)尽量减小开关损耗; 2)确保缓冲 电路的工作时间 *T*_{r_on} 和 *T*_{r_off}足够小,在给定负载 范围(*I*_{max}~*I*_{min})和占空比范围(*D*_{max}~*D*_{min})能够实现软 开关; 3)尽量减小开关管的附加电流应力。

开关管 VS 开通时,耦合电感的漏感限制了开 关管电流上升速度,实现了 ZCS 开通。假设开关管 电压在开通时间 *t*on 内线性减小到 0,开通损耗由 式(18)^[15]计算。

$$W_{\rm on} = \frac{U_{\rm in}^2 t_{\rm on}^2}{24 L_{\rm lk}}$$
(18)

开关管 VS 关断时,由于 *C*_r的存在,有相当一 部分电流从 *C*_r中流过,大大降低了 VS 的关断损耗, 其关断损耗可用式(19)^[11]表示。

$$W_{\rm off} = \left(\frac{IR_{\rm g}C_{\rm dg}}{U_{\rm gs}} - C_{\rm r}\right)\frac{U_{\rm in}^2}{2}$$
(19)

式中: I为开关管关断前电流; R_{g} 为栅极驱动电阻; U_{gs} 为 VS 驱动信号高电平; $C_{r} < IR_{g}C_{dg}/U_{gs}$, 若 $C_{r} > IR_{g}C_{dg}/U_{gs}$, $W_{off} \approx 0$ 。

根据以上分析,缓冲电路工作时间为

$$T_{\rm r_on} = t_{0-1} + t_{1-2} + t_{2-3} \tag{20}$$

$$T_{\rm r_off} = t_{4-5} + t_{5-7} + t_{7-8} \tag{21}$$

对 T_{r_off}分别求 L_{lk}和 U_{cpl_off}的导数:

$$\frac{dT_{r_{\rm off}}}{dL_{\rm lk}} = I_{\rm o} / (2 \sqrt{U_{\rm eq}^2 - I_{\rm o}^2 \frac{L_{\rm lk}}{C_{\rm s}}}) > 0$$
(22)

$$\frac{\mathrm{d}T_{\rm r_off}}{\mathrm{d}U_{\rm cpl_off}} = \frac{C_{\rm s}}{I_{\rm o}} \left(\sqrt{U_{\rm eq}^2 - I_{\rm o}^2 \frac{L_{\rm lk}}{C_{\rm s}}} / U_{\rm eq} - 1 \right) - \frac{C_{\rm r}}{I_{\rm o}} < 0 \quad (23)$$

式中 $U_{eq} = u_{Cs_peak} + U_{cpl_off}$ 。

3.2 缓冲电路参数优化设计

1)缓冲电容 Cr 的最优值选择。

由式(19)的关断损耗模型可以看出, C_r值越大, 关断损耗 W_{off}越小。文献[11]给出了 MOSFET 的关 断损耗随电容 C_r变化的关系曲线,对其分析可知, MOSFET 关断损耗随 C_r的增大而减小,但电容增 大到一定值后,对关断损耗的影响很小。另外,根 据对式(5)的分析, C_r越大,MOSFET 开通时电流 尖峰越大,因而缓冲电容 C_r的最优值为

$$C_{\rm ropt} = \frac{IR_{\rm g}C_{\rm dg}}{U_{\rm gs}}$$
(24)

2) 耦合电感漏感及匝比的选择。

由式(18)的开通损耗模型可知,为减小开通损 耗,必须尽量增大耦合电感漏感 *L*_{lk}。同时,由式(22) 可知, *L*_{lk}越大, *T*_{r_off}也越大,当 *L*_{lk}取值过大时, 将不能满足式(11),缓冲电路不再工作在软开关范 围,所以 *L*_{lk}的选择必须兼顾开关损耗和实现软开 关的占空比范围两方面,两者之间需要折中考虑, 使 *L*_{lk}取值最优化。

依据式(10)的条件选择 k_c , 由 k_c 的表达式可得 k_c 随 x 变化的关系曲线, 如图 4 所示。 k_c 值选好后, 由图 4 读出相应的 x 值。一般 x 取值要比较小(1/30~ 1/10), 较小的 x 值有利于降低整流二极管 D 的反压 峰值;同时 x 越小, u_{Cs_peak} 也越小。假定耦合电感 匝比取 n=0.1,则由式(1)、(2)、(7)、(11)可得

图 4 k_c 值随 x 变化关系曲线 Fig. 4 Curve between k_c value and x

$$\frac{L_{\rm lk}}{C_{\rm s}} \le \frac{u_{C_{\rm s}\text{-peak}}^2 + 2u_{C_{\rm s}\text{-peak}}U_{\rm cpl_off}}{I_{\rm o}^2}$$
(25)

式(25)取等号时,式(11)中实现软开关的条件可 以得到保证。式(21)中 $I_o = I_{min}$ 时, T_{r_off} 最大,是缓 冲电路关断过程持续时间的最差情况。式(17)中 ω_r 取最大值 $2\pi/(kT_s)(0 < k < 1)$ 。联立式(1)、(2)、(7)、 (11)、(17)、(25),可得到 L_{lk} 的上限值为

$$L_{\rm lk(max)} = \frac{k^2 T_{\rm s}^2}{4\pi^2 C_{\rm ropt}}$$
(26)

功率开关管 VS 开通时,续流二极管 D 电流逐 渐减小,当电流减小到 0 后,在输入电压 U_{in}和耦 合电压 U_{cpl_on}的共同作用下,反向增大到 I_m。为了 尽量减小开通损耗,抑制二极管的反向恢复电流, 则 L_k有一下限值:

$$L_{\rm lk(min)} = \frac{U_{\rm in} + U_{\rm cpl_on}}{I_{\rm rm}} t_{\rm rr}$$
(27)

式中: *I*_m为二极管反向恢复电流峰值; *t*_n为二极管 反向恢复时间。

 L_{lk} 的值必须在 $L_{lk(min)}$ 与 $L_{lk(max)}之间。为减小开$ $通损耗和开关管的电流应力,应尽量增大<math>L_{lk}$ 。同时, 由式(20)分析可知, L_{lk} 太大时, T_{r_on} 会变长,此时 可以通过调节匝比n使 T_{r_on} 减小,使其在软开关范 围内。

3) 验证缓冲电路工作时间 T_{r_on} 是否满足要求。

将由步骤2)确定的漏感L_{lk}和匝比n代入式(15), 验证该式是否成立。若算得的T_{r_on}>D_{min}T_s,则将 匝比n减小,重复步骤2)计算L_{lk},直至满足式(15)。 对耦合电感匝比n的选择:n越大,U_{cpl_off}越大, 式(11)越容易满足,C_r、C_s、L_{lk}的选择范围越大, 消除了MVS无源无损缓冲电路对谐振参数的限 制;由式(23)可知,U_{cpl_off}越大,T_{r_off}越小,占空 比上限升高,但同时n越大,U_{cpl_on}越大,T_{r_on}越 大。设计时应按变换器要求的占空比范围灵活选取 匝比n。

4 实验验证

为了验证本文提出的耦合电感式无源无损缓 冲电路优化设计方法的有效性,制作了一台 240 W 的带该缓冲电路的 Buck 变换器原理样机。该变换 器的规格和按照上述方法设计的缓冲电路主要参 数为: $U_{in}=90~130$ V, $U_{o}=48$ V, $I_{o}=5$ A, $f_{s}=100$ kHz。 主开关管 VS 的型号为 IRF644B,整流二极管 D 和 辅助二极管 D_{s1}、D_{s2}、D_{s3} 选用 MUR1540T,滤波 电感 $L_{m}=454$ µH,耦合电感 $L_{couple}=5.76$ µH, 匝比 n=1/8,漏感 $L_{lk}=2.52$ µH,谐振电容 $C_{r}=9$ nF, $C_{s}=110$ nF,控制芯片型号为 SG3526N。

图 5(a)、(b)为硬开关条件下,U_{in}=110V时, 开关管 VS 和续流二极管 D 开通关断时的电压、电 流波形。由图 5 可知,硬开关条件下,开关管关断 时电压剧烈振荡,电压、电流波形在高处交叠,关 断损耗大;续流二极管开通关断时都有振荡,关断 电压尖峰较大。

图 6 为附加耦合电感式无源无损软开关单元 后,输入电压分别为 90、110、130 V 时,开关管 VS 开通和关断瞬间的电压、电流波形。由图 6 可 见,此时很好地实现了开关管的软开关运行,在 U_{inmin}=90 V(最大占空比)和 U_{inmax}=130 V(最小占空 比)时, VS 开通时,漏极电流 i_{ds}都从零开始上升, 上升速度较慢,从而实现了开关管的 ZCS 开通; VS 关断时,低电压小电流交叠,关断损耗小,实 现了主开关管的 ZVS 关断。

图 7(a)为附加缓冲单元后, U_{in}=110V 时,续 流二极管 D 的电压、电流波形。由图中波形可以看 出,在二极管关断时,由于耦合电感漏感 L_{lk} 的存 在抑制了二极管 D 的反向恢复电流,因此大大削弱 了因续流二极管 D 关断引起的电压尖峰。

图 7(b)为谐振电容 Cs上的电压 uCs与耦合电感

Fig. 6 Voltage and current waveforms of VS in passive lossless snubber with coupled-inductor

图 7 续流二极管 D、u_{Cs}和 i_{Llk} 的实验波形 Fig. 7 Experimental waveforms of freewheeling diode D, u_{Cs} and i_{Llk}

漏感电流 *i*_{Llk} 的波形,由波形可知,电容 *C*_s 与漏感 *L*_{lk} 谐振时,漏感电流 *i*_{Llk} 在 *C*_s 电压谐振到 0 之前先 增大到 *I*_o,这说明缓冲电路参数符合模态 7 中的约 束条件式(11),此时电路将进入模态 8(a),从而为 开关管在下一周期实现 ZCS 开通创造条件。

图 8 给出了在相同的电源输入(U_{in}=110 V)和 负载条件下,分别采用本文提出的优化设计方法设 计的耦合电感式无源无损缓冲单元、文献[11]提出 的 MVS 无源无损缓冲单元、文献[13]提出的飞跨电 容型耦合电感无源无损缓冲单元以及硬开关 4 种 情况下,Buck 变换器的效率η对比曲线。可见采 用参数优化的耦合电感式无源无损缓冲单元时 Buck 变换器效率最高,实验中测得最高效率可以达 到 94.6%。

5 结论

本文对耦合电感式 MVS 无源无损缓冲电路进

行了深入分析,并提出一种对该缓冲电路谐振元件 参数优化设计的方法,实现了开关管的零电流开通 和零电压关断,有效降低了电压、电流和热应力, 并能抑制整流二极管的反向恢复电流,获得较高的 变换效率。相对于 MVS 无源无损缓冲电路而言, 采用参数优化后的耦合电感式无源无损缓冲电路 消除了对谐振元件参数的限制,同时提高了占空比 上限,扩展了能够实现软开关的占空比范围。

参考文献

- 胡宗波,张波,邓卫华. PWM 直流变换器中一种新型的零电压零 电流转换软开关单元[J].中国电机工程学报,2004,24(3):126-134.
 Hu Zongbo, Zhang Bo, Deng Weihua. Novel ZVZCT soft-switching cell in PWM DC-DC converter[J]. Proceedings of the CSEE, 2004, 24(3): 126-134(in Chinese).
- [2] 张卫平,张晓强,陈振更,等. 一种新型软开关 Buck 变换器[J]. 中国电机工程学报, 2007, 27(22): 110-115.
 Zhang Weiping, Zhang Xiaoqiang, Chen Zhengeng, et al. A novel soft switching for Buck converter[J]. Proceedings of the CSEE, 2007, 27(22): 110-115(in Chinese).
- [3] 秦岭,张航,谢少军.低电压应力零电流开关降压变换器[J].中国电机工程学报,2008,28(6):55-61.
 Qin Ling, Zhang Hang, Xie Shaojun. A novel ZCS-PWM Buck converter with lower voltage stress[J]. Proceedings of the CSEE, 2008, 28(6): 55-61(in Chinese).
- [4] Tseng C J, Chen C L. A passive lossless snubber cell for nonisolated PWM DC/DC converter[J]. IEEE Trans. on Industrial Electronics, 1998, 45(4): 593-601.
- [5] Wu Xuezhi, Jin Xinmin, Huang Lipei, et al. A lossless snubber for DC/DC converters and its application in PFC[C]. IEEE IPEMC, Beijing, China, 2000.
- [6] Dong Wei, Zhao Qun, Liu Jinjun, et al. A Boost converter with lossless snubber under minimum voltage stress[C]. IEEE APEC, Los Cabos, Mexico, 2002.
- [7] Smith Jr K M, Smedley K M. Lossless passive soft switching methods for inverters and amplifiers[J]. IEEE Trans. on Power Electronics, 2000, 15(1): 164-173.
- [8] 邓焰,吴燮华,何湘宁,等.一种新型高功率逆变桥臂无源无损 耗吸收电路[J].中国电机工程学报,2000,20(3):5-9.
 Deng Yan, Wu Xiehua, He Xiangning, et al. A novel passive lossless snubber for power inverter bridge legs[J]. Proceedings of the CSEE, 2000, 20(3): 5-9(in Chinese).
- [9] 吴洪洋,邓焰,何湘宁. 一种新颖的多电平逆变器无源无损吸收 电路[J]. 中国电机工程学报,2002,22(10):71-76.
 Wu Hongyang, Deng Yan, He Xiangning. A novel passive lossless snubber for multilevel inverters[J]. Proceedings of the CSEE, 2002, 22(10):71-76(in Chinese).
- [10] 杜忠,陈治明,严百平. 一种基于 Boost 变换器的无源无损吸收 方法[J]. 电工技术学报,2003,18(4):35-40.
 Du Zhong, Chen Zhiming, Yan Baiping. A passive lossless snubber

method based on Boost converter[J]. Transactions of China Electrotechnical Society, 2003, 18(4): 35-40(in Chinese).

- [11] Smith Jr K M, Smedley K M. Engineering design of lossless passive soft switching methods for PWM converters-part I: with minimum voltage stress circuit cells[J]. IEEE Trans. on Power Electronics, 2001, 16(3): 336-344.
- [12] Levy H, Zafrany I, Ivensky G, et al. Analysis and evaluation of a lossless turn-on snubber[C]. IEEE APEC, Atlanta, GA, USA, 1997.
- [13] Kamath, G R. A passive coupled-inductor flying-capacitor lossless snubber circuit for plasma cutting power supply[C]. IEEE APEC, Austin, Texas, USA, 2005.
- [14] Ben-Yaakov S, Ivensky G. Passive lossless snubber for high frequency PWM converters[C]. IEEE PESC, St. Louis, Missouri, USA, 1997.

[15] McMurray W. Selection of snubber and clamps to optimize the design of transistor switching converters[J]. IEEE Trans. on Industry Application, 1980, 16(4): 513-523.

收稿日期: 2009-11-20。 作者简介:

伍健(1985—),男,硕士研究生,研究方向为 功率电子变换技术,wujian85@nuaa.edu.cn;

何礼高(1951一),男,硕士生导师,高级工程 师,从事变频调速控制和电源变换技术研究工作, heligao@nuaa.edu.cn;

伍健

何伟军(1984—),男,硕士研究生,研究方向 为功率电子变换技术。

(责任编辑 张玉荣)