第30卷第31期	中 国 电 机 工 程 学 报	Vol.30 No.31 Nov.5, 2010
2010年11月5日	Proceedings of the CSEE	©2010 Chin.Soc.for Elec.Eng. 1

文章编号: 0258-8013 (2010) 31-0001-06 中图分类号: TM 72 文献标志码: A 学科分类号: 470-40

±800 kV/4 750 A 特高压直流换流阀 宽频建模及电压分布特性研究

张文亮, 汤广福

(中国电力科学研究院,北京市 海淀区 100192)

Study on Wide-band Model and Voltage Distribution of ±800 kV/4 750 A UHVDC Valves

ZHANG Wenliang, TANG Guangfu

(China Electric Power Research Institute, Haidian District, Beijing 100192, China)

ABSTRACT: The voltage distribution performance of high voltage DC (HVDC) converter valve is one of important research contents about its electric characteristics. It influences the reliability even cost of converter valve. However, the calculation of voltage distribution performance is affected by analysis method and the circuit model of converter valve. In this paper, the wide-band model of ± 800 kV/4 750 A ultra HVDC (UHVDC) converter valve was built. The results of test and simulation indicate that the model is available. Further, both the influences of power circuit parameters and stray capacitances on the voltage distribution of such a converter valve were investigated and the key factors were also summarized. They indicate that for even voltage distribution, both the design of saturable reactor and the value of stray capacitances between valve layers and earth are important.

KEY WORDS: ultra high voltage DC (UHVDC); converter valve; voltage distribution; wide-band model

摘要:直流输电换流阀的电压分布性能是其重要电气特性之一。它不但影响换流阀的可靠性,甚至也影响阀的成本。而 电压性能的计算不但与分析方法有关,也受电路模型精确度 的影响。针对±800 kV/4 750 A 特高压换流阀建立宽频电路 模型,试验和仿真结果表明所建的宽频模型是可行的,并具 有较高的精确度。此外,也就电路元件参数和杂散电容对该 特高压换流阀电压分布的影响进行分析,并总结其中的关键 因素。结果表明对于阀的电压分布性能来说,饱和电抗器设 计和阀层对地杂散电容尤为重要。 关键词:特高压直流输电;换流阀;电压分布;宽频模型

0 引言

换流阀是直流输电系统的核心设备,由众多晶 闸管及相关元器件串联而构成,其三相桥式电路在 运行中要承受来自交、直流系统的操作过电压、雷 电过电压以及陡波过电压。如由于高频下换流变压 器和平波电抗器的高阻抗特性及其穿墙套管的存 在,上升沿较陡的过电压传播到换流阀时,其作用 相当于操作过电压。此外,换流站内换流变压器阀 侧短路故障以及平波电抗器阀侧短路故障时,将产 生波前很陡的过电压,类似雷电过电压;另外,换 流站内的一个换流阀在最大电压下触发时,将在另 一个阀上出现接近冲击电压的波形^[1-2]。

换流阀具有由晶闸管串联而成的链式结构,电 压分布是其重要的电气特性之一。尤其是在遭受速 变电压,包括雷电、陡波前冲击电压时,分布特性 尤为关键。较均匀的电压分布不但可减小晶闸管承 受的电压应力,确保阀安全稳定运行;还可使所需 的晶闸管数量减少,降低换流阀成本,提高换流阀 的可靠性^[3]。因此,研究各种过电压下换流阀内的 电压分布特性是十分必要的。

迄今为止,已有部分文献运用经典电路法对冲 击电压下换流阀的电压分布进行了分析^[4-6]。除了分 析方法,电路模型的建立对电压分布计算也尤为关 键。2010年6月30日,中国电力科学研究院自主 研发的±800kV/4750A特高压换流阀通过了相关通 用标准的所有型式试验^[7],这标志着中国乃至世界 上首个大电流(4500A以上)特高压换流阀的诞生。 本文首先对该换流阀建立宽频电路模型,并针对该

基金项目:国家电网公司科技项目(SGKJ[2007]107);国家科技部科 技项目(2006BAA02A27)。

Program Supported by State Grid Corporation of China (SGKJ[2007]107); Program Supported by Ministry of Science and Technology of China (2006BAA02A27).

特高压换流阀在冲击电压下的电压分布及其影响 因素进行分析研究,找出影响电压分布的关键因 素,为换流阀绝缘和均压设计以及换流阀的结构设 计提供技术支持。

1 直流换流阀的宽频模型

如上所述,高压直流输电换流阀在运行和试验 中要经受直流、工频交流电压和各类冲击电压。而 运行中换流阀经受的电压波形,也含有多种频率成 分。因此需要建立合理的换流阀宽频模型,便于在 各类电压形式下,尤其是速变型电压下,对换流阀 电压分布等电气特性进行分析^[8]。与上述各类电压 形式相对应,要求模型适用于 0~5 MHz 甚至更高的 频率范围。

换流阀是由众多电气元器件组成的复杂系统, 若考虑周围环境和相关设备对换流阀电压分布特 性的影响,情况将更为复杂。本文采用宽频电路模 型,以保证在相当宽的频率范围内(从直流到陡波前 冲击)保持足够的精确度,又可避免过于繁杂的分析 计算。

1) 晶闸管的宽频模型。

晶闸管的阴极和阳极间存在结电容。试验结果 表明,该结电容与晶闸管承受的电压有关。且电压 越大,电容越小。此外也存在晶闸管及电路的杂散 电容和杂散电感。最后得到晶闸管宽频模型如图 1 所示。图中: *C*_{Thy}为晶闸管的阴阳极间的杂散电容; *R*_{Thy} 为晶闸管等效电阻; *L*_{Thy} 为晶闸管的杂散电 感。对于 *C*_{Thy},有

$$C_{\text{Thy}} = \begin{cases} a_0 + a_1 u + a_2 u^2, & u \le 10 \text{ V} \\ k / \sqrt{|u|}, & u \ge 10 \text{ V} \end{cases}$$
(1)

式中: $a_0=10^{-6}$; $a_1=-0.3331\times10^{-6}$; $a_2=0.048\times10^{-6}$; $k=0.3224\times10^{-6}$;u为晶闸管阴阳极间电压。

图 1 晶闸管宽频模型 Fig. 1 Wide-band model of thyristor

2) 饱和电抗器的宽频模型。

在不同厂家饱和电抗器的设计不尽相同,但作 用原理几乎一致^[9-10];其主要作用有:①在冲击电 压下,主要是雷电和陡波前冲击电压下减小阀内晶 闸管的电压应力;②在换流阀开通时,尤其是在线 路发生过电压而阀避雷器有一定电流时,抑制晶闸 管承受的电流应力[11]。

为了减小通态阀中饱和电抗器的压降,降低其 重量和成本,一般饱和电抗器励磁电感都具有随电 流增加而饱和下降的特性,此处的饱和电抗器模型 也大同小异。根据相关理论^[12-15],最后获得的饱和 电抗器宽频模型 SR 如图 2 所示。

图 2 饱和电抗器的宽频模型 Fig. 2 Wide-band model of saturable reactor

图中: C_r为饱和电抗器出线端间杂散电容; L_{air} 和 R_{Cu}分别代表空心电感和铜损; L_m和 R_e是非线性 电感和非线性电阻,分别代表铁芯的电感和涡流损 耗。L_m和 R_e可以表示为电流的函数,在电抗器饱 和后随电流衰减,其表达式为

$$L_{\rm m} = \begin{cases} L_{\rm m0}, & i_{\rm m} < I_{\rm m0} \\ L_{\rm m0} \frac{I_{\rm mL}}{i_{\rm m}}, & i_{\rm m} \ge I_{\rm m0} \end{cases}$$
(2)

$$R_{\rm e} = \begin{cases} R_{\rm e0}, & i_{\rm m} < I_{\rm m0} \\ R_{\rm e0} \frac{I_{\rm mR}}{i_{\rm m}}, & i_{\rm m} \ge I_{\rm m0} \end{cases}$$
(3)

利用上述模型,在雷电冲击下,算得单阀内饱 和电抗器和晶闸管的总电压,波形如图3所示。

单阀雷电冲击耐受水平为 456kV,即雷电冲击 波峰值为 456kV。而饱和电抗器和晶闸管总电压的 峰值分别为 317 和 390kV。可见饱和电抗器承担了 相当大一部分冲击电压,大大减轻了晶闸管承受的 电压应力,也减缓了晶闸管的电压陡度。

3) 阀组件晶闸管压装及其辅助电路的宽频 模型。 由于换流阀元器件众多,若以晶闸管级为单元 进行建模,电路结构庞大。阀组件的晶闸管压装 (thyristors clamped assembly, TCA)由9个晶闸管压 装而成,每个晶闸管及其散热器对地形成杂散电 容。对 TCA 晶闸管及其对地杂散电容进行简化合 并,且考虑阻尼均压等辅助电路,最后得到 TCA 及其辅助电路的宽频电路模型 T&A,如图4所示。 图中: *R*_d和 *C*_d分别为晶闸管级的阻尼电阻和阻尼 电容; *R*_{dc} 为直流均压电阻; *C*_{te} 为晶闸管及其散热 器的对地杂散电容。

4) 换流阀的杂散电容分布。

换流阀由成千上百个元器件组成,此外,还有 阀模块内外的连接母排、模块框架和模块屏蔽等数 目众多的金属件。所有金属件之间及金属件对地间 存在电容耦合,这些电容耦合在冲击电压下发生作 用,从而导致换流阀内电压分布不均匀。因此对换 流阀杂散电容及其分布的电路建模尤为关键。

一般可以把换流阀杂散电容分为3类,即阀层 内部的杂散电容、阀层间的杂散电容及阀层对地杂 散电容。对于阀层内部,又可分为模块内部杂散电 容和模块间杂散电容。

在阀模块内部,由5个金属梁组成模块框架。 此外每个金属梁与若干模块屏蔽相连,每一阀层由 2个阀模块排列而成。综合考虑阀层元器件宽频模 型,最后可得单阀层内部的杂散电容及单阀层宽频 模型,如图5所示。其中,模块内金属梁与屏蔽间 的杂散电容 *C*_s,在不同位置取2种不同数值 *C*_{s1}和

Fig. 5 Wide-band model of single valve layer

*C*_{s2}。阀层内模块间的杂散电容 *C*_m同样如此。为便 于分析,本文中不带数字下坠的杂散电容,如 *C*_s 等,表示某一类杂散电容,根据具体情况,在不同 位置可取不同的数值。

双重阀阀层之间和阀层对地杂散电容如图6所示。阀层之间的杂散电容主要包括阀层框架 (包括阀层屏蔽)之间的电容 C_{ss}、顶、底屏蔽层与邻近阀 层框架之间的杂散电容 C_{st}及 C_{sb}、相邻阀层晶闸管 (包括散热器)之间的电容 C_{tt}。阀层对地杂散电容主 要包括阀层框架对地杂散电容 C_{se}及晶闸管对地之 间的电容 C_{te}。由于过于繁杂, C_{tt}及 C_{te}并未在图中标出。

图 6 换流阀层间及层对地杂散电容分布 Fig. 6 Distribution of stray capacitances between layers and layer-earth

2 换流阀的电压分布及影响因素

为便于分析换流阀的电压分布,引入电压峰值 比 k 来衡量阀内电压分布的均匀度,有

$$k = \frac{u_{ip}}{u_{\text{surgep}}} \times 100\% \tag{4}$$

式中: *u*_{ip} 为第 *i* 个模块的两端电压; *u*_{surgep} 为换流 阀输入冲击波的电压峰值。可见,各阀模块的电压 峰值比越一致,阀内电压分布越均匀。

下文对换流阀阀塔(两重阀)高压端施加陡波前 冲击波,其低压端接地;并就各换流阀的电压峰值 比进行仿真计算,从而就各参数对电压分布的影响 进行分析。

1) 饱和电抗器参数对电压分布的影响。

如式(1)、(2)所示,饱和电抗器含有多项参数,包括 R_e、L_m、L_{air}及 C_r等。调整这些参数,使它们分别为设计标定值的 10%、100%和 200%,最后得到各阀模块的电压峰值比,如图 7 所示。图中 N 为从靠近换流阀(阀塔)的冲击电压入端计起的模块编

号,该入端一般也是换流阀(阀塔)的高压端。

调整 *R*_{cu}大小,对电压分布系数几乎没有影响, 该仿真效果图不再列出。从图 7 可看出,饱和电抗 器的励磁电感和损耗电阻对阀内电压分布有较大 的影响。因此在设计饱和电抗器参数时,需要考虑 *L*_m和 *R*_e的取值对电压分布系数和冲击电压下晶闸 管电压应力的影响。

2) 阀晶闸管级参数对电压分布的影响。

阀晶闸管级包括晶闸管、阻尼电阻和阻尼电容等。同样调整这些元件参数,使它们分别为设计标 定值的 10%、100%和 200%,最后得到雷电冲击下 阀模块的电压峰值比,如图 8 所示。

由图 8 可以看出,阻尼电阻 R_d、阻尼电容 C_d 和晶闸管电容的取值对换流阀电压分布系数有一

图 8 晶闸管级参数对电压分布的影响 Fig. 8 Influence of the parameters of thyristor level on voltage distribution 定的影响,但影响较小。因此一般来说对晶闸管级 电路进行设计时,不需要考虑其影响,而在最后进 行电压应力的校验即可。其中直流均压电阻较大, 其电阻值的改变对电压分布的影响极其微弱,可以 忽略。

3) 杂散参数对电压分布的影响。

换流阀的杂散电容数量众多。即使对于同一阀 层来说,由于所处位置不同,某一类杂散电容如 *C*ss也具有几个不同的数值。但由于换流阀结构的对 称性,可认为它们只能同时增大或减小。同样,分 别调整这些参数,使它们分别为计算获取值的 10%、100%和 200%,最后得到雷电冲击下各阀模 块的电压峰值比,如图 9 所示。

由图 9 可看出,阀层对地杂散电容,包括 C_{se} 和 C_{te},对电压分布的影响较大,且杂散电容越大,电压分布越不均匀。此外,高压端屏蔽层与第 1 阀 层之间的杂散电容对电压分布也有一定影响;且电 容越大,电压分布越均匀。因此在阀结构设计中,要尤其注意这些杂散电容对电压分布的影响。

3 换流阀模块的试验与仿真

为了验证建立的换流阀宽频模型,对模块进行 了试验。首先在模块两端施加雷电冲击波,并测量 各晶闸管级电压及晶闸管对地电压; 然后采用上述 宽频电路模型进行仿真。图 10 为模块内首、末晶 闸管级电压的计算和试验波形; 图 11 为首、末及 中间晶闸管级对地电压的计算和试验波形。从计算 和试验结果可看出, 两者误差小于 10%。因此所建 的阀宽频电路模型是可信的。

Fig. 11 Wave-form of voltage between thyristor and earth

4 结论

对中国电力科学研究院研发的±800 kV/4 750 A 特高压换流阀建立了宽频电路模型,并对该阀模块 进行了相关试验。试验和仿真计算的结果表明:所 建立的宽频电路模型是可行的,误差较小;以此对 换流阀电气特性进行分析也是恰当的。

此外,采用宽频电路模型,对该特高压换流阀 电压分布及影响因素进行了分析。得出如下结论:

1)阀层对地杂散电容对电压分布的影响较大。
 阀层框架(包括阀层屏蔽)对地杂散电容的影响最大;且电容越大,电压分布越不均匀。因此在换流阀结构和均压设计时要注意不同结构对杂散电容取值及电压分布的影响。

2)阀层之间的杂散电容对电压分布的影响较小,但冲击电压入端屏蔽层和第1阀层之间的杂散电容对电压分布有一定影响;此外,模块内部的杂散电容对电压分布影响也很微弱。因此除了在结构和均压设计时无需关注这些参数变化对电压分布的影响。

3)换流阀电路元件参数中,饱和电抗器的励磁 电感和损耗电阻对电压分布有一定影响;此外,饱 和电抗器励磁电感越大,在冲击电压下承受的电压 就越高,从而削弱了晶闸管的电压应力。因此阀饱 和电抗器参数设计对换流阀电压分布也尤为关键。

参考文献

- IEEE Task Force 01. Voltage and current stress on HVDC valves[J]. Electra, 1989, 125(7): 56-87.
- [2] CIGRE WG33.05. Application guide for insulation co-ordination and arrester protection of HVDC converter stations[J]. Electra, 1984, 96(10): 101-156.
- [3] 郭焕,温家良,汤广福,等.直流输电换流阀主电路的可靠性分析与优化设计[J].中国电机工程学报,2009,29(增刊):39-43.
 Guan Huan, Wen Jialiang, Tang Guangfu, et al. Reliability analysis

and optimal design of main circuit within HVDC thyristor valve [J]. Proceedings of the CSEE, 2009, 29(Supplement): 39-43(in Chinese).

- [4] Krady G, Gilsig T. The Calculation of transient voltage distribution in a high voltage DC thyristor valve[J]. IEEE Trans. on Power Apparatus and Systems, 1973, 92(3): 893-899.
- [5] 李晓榕,赵智大.直流输电用可控硅阀内速变型电压分布及其影响因素的研究[J].中国电机工程学报,1986,6(3):19-28.
 Li Xiaorong, Zhao Zhida. Fast-transient voltage distribution in HVDC thyristor valves and influence of various factors[J]. Proceedings of the CSEE, 1986, 6(3): 19-28(in Chinese).
- [6] 赵中原,换流阀内晶闸管组件冲击电压测量技术及均压特性的研究[D]. 西安:西安交通大学,2004.
 Zhao Zhongyuan. Research on measurement technique for impulse voltage across thyristor module and its voltage distribution characteristics in a HVDC valve[D]. Xi'an: Xi'an Jiaotong University, 2004(in Chinese).
- [7] IEC. 60700-1 Thyristor valves for high voltage direct current (HVDC) power transmission, part 1: electrical testing[S]. Geneva: International Electrotechnical Commission, 2008.
- [8] 孙海峰,刘磊,崔翔,等.高压直流换流站换流系统宽频建模研究[J].中国电机工程学报,2009,29(12):24-29.
 Sun Haifeng, Liu Lei, Cui Xiang, et al. Wide-band modeling of converter systems in HVDC converter stations[J]. Proceedings of the CSEE, 2009, 29(12):24-29(in Chinese).
- [9] Cao J, Davidson C, Moulson S. Dynamic modeling of saturable reactor for HVDC applications[J]. IET Science & Measurement Technology, 2007, 1(3): 138-144.

- [10] Trung A L, Fischer W. On the simulation of valve reactors[C]// Proceedings of the 12th European Conference on Power electronics and Applications. Aalborg: Aalborg University, 2007: 1-7.
- [11] Kobayashi S, Imai K. Thyristor valve turn-on stress analysis and optimization of the valve design[J]. IEEJ Trans. on Electrical and Electronic Engineering, 1987, 107-D(11): 1363-1370.
- [12] Fiorillo F, Novikov A. An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform[J]. IEEE Trans. on Magnetics, 1990, 26(5): 2904-2910.
- [13] Subba V. Equivalent circuit of solid iron core for impact excitation problems[J]. Proceedings of IEE, 1964, 111(2): 349-357.
- [14] Zhu J G, Hui S Y R. Discrete modeling of magnetic cores including hysteresis eddy current and anomalous losses[J]. IEE Proceedings-A, 1993, 140(4): 317-322.
- [15] O'Kelly D. Flux penetration and losses in steel plate with nonsinusoidal magnetization[J]. IEE Proceedings-A, 1988, 135(4): 193-198.

收稿日期: 2010-09-07。

作者简介

张文亮(1954),男,教授级高级工程师,博士生导师, 主要研究方向为高电压技术、智能电网,wlzhang@ epri.sgcc.com.cn;

汤广福(1966), 男, 博士, 教授级高级工程师, CIGRE 会员,长期从事 HVDC 和 FACTS 的开发及其相关试验 方法的研究工作。

(责任编辑 谷子)