THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL CURVES

SHOUHEI MA

ABSTRACT. The moduli spaces of trigonal curves are proven to be rational when the genus is divisible by 4.

1. INTRODUCTION

A smooth projective curve is called *trigonal* if it carries a free g_3^1 . When the curve has genus ≥ 5 , such a pencil is unique if it exists. The object of our study is the moduli space \mathcal{T}_g of trigonal curves of genus $g \geq 5$. This space has been proven to be rational when $g \equiv 2$ (4) by Shepherd-Barron [9], and when g is odd in [7]. In the present article we prove that \mathcal{T}_g is rational in the left case $g \equiv 0$ (4), completing the following.

Theorem. The moduli space \mathcal{T}_g of trigonal curves of genus g is rational for every $g \ge 5$.

This can be seen as an analogue of the rationality of the moduli spaces of hyperelliptic curves due to Katsylo and Bogomolov [5], [2].

Note that \mathcal{T}_g is regarded as a sublocus of the moduli space \mathcal{M}_g of genus g curves. When g is large enough, it seems that \mathcal{T}_g has maximal dimension among the known rational subvarieties of \mathcal{M}_g . It would be interesting whether the tetragonal (and pentagonal) locus is rational as well. It is unirational by Arbarello-Cornalba [1], but at present known to be rational only in genus 7 ([3]). In another direction, Castorena and Ciliberto [4] shows that for $g \ge 23$, \mathcal{T}_g has larger dimension than any other locus in \mathcal{M}_g obtained from a linear system on a surface.

We approach our problem from invariant theory for $SL_2 \times SL_2$. Let $V_{a,b} = H^0(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(a, b))$ be the space of bi-forms of bidegree (a, b) on $\mathbb{P}^1 \times \mathbb{P}^1$, which is an irreducible representation of $SL_2 \times SL_2$. It is classically known that a general trigonal curve *C* of genus g = 4N is canonically embedded in $\mathbb{P}^1 \times \mathbb{P}^1$ as a smooth curve of bidegree (3, 2N + 1). This is based on the fact that the canonical model of *C* lies on a unique rational normal scroll which is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. As a consequence, we have a natural birational equivalence

(1.1) $\mathcal{T}_{4N} \sim \mathbb{P}V_{3,2N+1}/\mathrm{SL}_2 \times \mathrm{SL}_2.$

Hence the problem is restated as follows.

²⁰⁰⁰ Mathematics Subject Classification. 14H10, 14H45, 14L30, 14E08.

Key words and phrases. trigonal curve, rationality, $SL_2 \times SL_2$, bi-transvectant.

Supported by Grant-in-Aid for Scientific Research (S), No 22224001.

Theorem 1.1. The quotient $\mathbb{P}V_{3,b}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational for every odd $b \ge 5$.

To prove this, we adopt the traditional and computational method of *double bundle* ([2], [10]) as follows. By examining the Clebsch-Gordan formula for $SL_2 \times SL_2$, we take a suitable $SL_2 \times SL_2$ -bilinear mapping (bi-transvectant)

(1.2)
$$T: V_{3,b} \times V_{a',b'} \to V_{a'',b'}$$

such that $\dim V_{a',b'} > \dim V_{a'',b''}$. Putting $c = \dim V_{a',b'} - \dim V_{a'',b''}$, this induces the rational map to the Grassmannian

(1.3)
$$V_{3,b} \rightarrow G(c, V_{a',b'}), \quad v \mapsto \operatorname{Ker}(T(v, \cdot)).$$

We shall find a bi-transvectant for which (1.3) is well-defined and dominant. In that case, (1.3) makes $V_{3,b}$ birationally an $SL_2 \times SL_2$ -linearized vector bundle over $G(c, V_{a',b'})$. Utilizing this bundle structure and taking care of -1 scalar action, we reduce the rationality of $\mathbb{P}V_{3,b}/SL_2 \times SL_2$ to a stable rationality of $G(c, V_{a',b'})/SL_2 \times SL_2$, which in turn can be shown in a more or less standard way.

The point for this proof is to choose the bi-transvectant *T* carefully so that (i) a', b', c are odd (to care -1 scalar action) and that (ii) *c* is small (for $V_{3,b}$ to have larger dimension than $G(c, V_{a',b'})$). For that, we will provide *T* according to the congruence of *b* modulo 5, based on some easy calculation in elementary number theory. Then the bulk of proof is devoted to the check of non-degeneracy of (1.3), which is facilitated by keeping *c* small but is still rather laborious.

The rest of the article is as follows. In §2.1 we recall bi-transvectants. We explain the method of double bundle in §2.2. In §3 we prepare some stable rationality results in advance, to which the rationality of $\mathbb{P}V_{3,b}/\mathrm{SL}_2 \times \mathrm{SL}_2$ will be eventually reduced. Then we prove Theorem 1.1 in §4.

We work over the complex numbers. The Grassmannian G(a, V) parametrizes *a*-dimensional linear subspaces of the vector space *V*. We shall use the notation ([x, y], [X, Y]) for the bi-homogeneous coordinate of $\mathbb{P}^1 \times \mathbb{P}^1$. Thus elements of $V_{a,b}$ will be expressed as

(1.4)
$$\sum_{i} F_{i}(x, y)G_{i}(X, Y),$$

where F_i , G_i are binary forms of degree a, b respectively.

2. BI-TRANSVECTANT

2.1. **Bi-transvectant.** Let V_d denote the SL₂-representation $H^0(\mathcal{O}_{\mathbb{P}^1}(d))$. Let $e \leq d$. According to the Clebsch-Gordan decomposition

(2.1)
$$V_d \otimes V_e = \bigoplus_{r=0}^e V_{d+e-2r},$$

there exists a unique (up to constant) SL₂-bilinear mapping

(2.2)
$$T^{(r)}: V_d \times V_e \to V_{d+e-2r},$$

which is called the *r*-th transvectant. For two binary forms $F(X, Y) \in V_d$ and $G(X, Y) \in V_e$, we have the well-known explicit formula (cf. [8])

(2.3)
$$T^{(r)}(F,G) = \frac{(d-r)!}{d!} \frac{(e-r)!}{e!} \sum_{i=0}^{r} (-1)^{i} {r \choose i} \frac{\partial^{r} F}{\partial X^{r-i} \partial Y^{i}} \frac{\partial^{r} G}{\partial X^{i} \partial Y^{r-i}}.$$

We will need this formula when r = e and r = e - 1.

The *e*-th transvectant $T^{(e)}: V_d \times V_e \to V_{d-e}$ is especially called the *apolar co-variant*. By (2.3), $T^{(e)}(F, G)$ is calculated by applying the differential polynomial $(d!)^{-1}(d-e)!G(-\partial_Y, \partial_X)$ to F(X, Y). In particular, we have

$$T^{(e)}(X^{i}Y^{d-i}, X^{e-j}Y^{j}) = \begin{cases} (-1)^{e-j} {d \choose i}^{-1} {d-e \choose i-j} X^{i-j}Y^{(d-e)-(i-j)}, & j \le i, \ e-j \le d-i, \\ 0, & \text{otherwise.} \end{cases}$$

For the (e-1)-th transvectant $T^{(e-1)}: V_d \times V_e \to V_{d-e+2}$, we have

$$T^{(e-1)}(\cdot, X^{e-j}Y^{j}) = (-1)^{e-j} \frac{1}{e} \frac{(d-e+1)!}{d!} \left\{ jY \partial_{X}^{j-1} \partial_{Y}^{e-j} - (e-j)X \partial_{X}^{j} \partial_{Y}^{e-j-1} \right\},$$

where $\partial_X^{-1} = \partial_Y^{-1} = 0$ by convention. Therefore

$$T^{(e-1)}(X^{i}Y^{d-i}, X^{e-j}Y^{j}) = \begin{cases} AX^{i-j+1}Y^{(d-i)-(e-j)+1}, & j \le i+1, \ e-j \le d-i+1, \\ 0, & \text{otherwise}, \end{cases}$$

where

$$A = (-1)^{e-j} {\binom{d}{i}}^{-1} {\binom{d-e+2}{i-j+1}} \frac{j(d+2) - (i+1)e}{e(d-e+2)}$$

We stress in particular that

Lemma 2.1. Let
$$0 \le j \le i+1$$
 and $0 \le e-j \le d-i+1$. The bilinear map
(2.4) $T^{(e-1)} : \mathbb{C}X^i Y^{d-i} \times \mathbb{C}X^{e-j} Y^j \to \mathbb{C}X^{i-j+1} Y^{(d-e+2)-(i-j+1)}$

is non-degenerate if and only if $j(d + 2) \neq (i + 1)e$. This is always the case when d + 2 is coprime to e.

Now we consider $SL_2 \times SL_2$ -representations. The space $V_{a,b} = H^0(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(a, b))$ is the tensor representation $V_a \boxtimes V_b$. Substituting (2.1) into

(2.5)
$$V_{a,b} \otimes V_{a',b'} = (V_a \otimes V_{a'}) \boxtimes (V_b \otimes V_{b'}),$$

we obtain the Clebsch-Gordan decomposition for $SL_2 \times SL_2$,

(2.6)
$$V_{a,b} \otimes V_{a',b'} = \bigoplus_{r,s} V_{a+a'-2r,b+b'-2s},$$

where $0 \le r \le \min\{a, a'\}$ and $0 \le s \le \min\{b, b'\}$. To each irreducible summand $V_{a+a'-2r,b+b'-2s}$ is associated the (r, s)-th bi-transvectant

(2.7)
$$T^{(r,s)}: V_{a,b} \times V_{a',b'} \to V_{a+a'-2r,b+b'-2s}.$$

This $SL_2 \times SL_2$ -bilinear mapping is calculated from the above transvectants by

(2.8)
$$T^{(r,s)}(F \boxtimes G, F' \boxtimes G') = T^{(r)}(F,F') \boxtimes T^{(s)}(G,G'),$$

where $F \in V_a$, $G \in V_b$, $F' \in V_{a'}$, and $G' \in V_{b'}$.

2.2. The method of double bundle. In §4, we will use the method of double bundle ([2]) and its generalization ([10]). We here give some account in the present situation. Suppose we have a bi-transvectant

(2.9)
$$T = T^{(r,s)} : V_{a,b} \times V_{a',b'} \to V_{a'',b'}$$

such that $c = \dim V_{a',b'} - \dim V_{a'',b''}$ is positive and that $\dim V_{a,b} > c \cdot \dim V_{a'',b''}$. Then we consider the SL₂ × SL₂-equivariant rational map

(2.10)
$$\varphi: V_{a,b} \to G(c, V_{a',b'}), \qquad v \mapsto \operatorname{Ker}(T(v, \cdot)).$$

We assume (hope) that

(*) φ is well-defined and dominant.

If this holds, then $V_{a,b}$ becomes birational to the unique component \mathcal{E} of the incidence

(2.11)
$$X = \{(v, P) \in V_{a,b} \times G(c, V_{a',b'}), T(v, P) \equiv 0\}$$

that dominates $G(c, V_{a',b'})$. Indeed, the first projection $\pi: X \to V_{a,b}$ is isomorphic over the domain U of regularity of φ , and then the dominance of φ implies that $\pi^{-1}(U)$ is contained in \mathcal{E} . Since \mathcal{E} is (generically) a sub vector bundle of $V_{a,b} \times G(c, V_{a',b'})$ preserved under the SL₂ × SL₂-action, it is an SL₂ × SL₂-linearized vector bundle over $G(c, V_{a',b'})$. In this situation one might try to apply the no-name lemma to $\mathcal{E} \sim V_{a,b}$, taking care of the scalar action of $(\pm 1, \pm 1) \in$ SL₂ × SL₂.

The non-degeneracy requirement (*) may be checked as follows.

Lemma 2.2 (cf. [2]). The condition (*) is satisfied if and only if there exists $(v, w_1, \dots, w_c) \in V_{a,b} \times (V_{a',b'})^c$ such that

(*i*) $w_1, \dots, w_c \in V_{a',b'}$ are linearly independent,

(*ii*) $T(v, w_i) = 0$ for every w_i ,

(iii) the map $T(v, \cdot) : V_{a',b'} \to V_{a'',b''}$ is surjective, and

(iv) the map $(T(\cdot, w_1), \cdots, T(\cdot, w_c)) : V_{a,b} \to V_{a'',b''}^{\oplus c}$ is surjective.

Proof. Let $P \in G(c, V_{a',b'})$ be the span of w_1, \dots, w_c . The conditions (ii) and (iii) mean that v is contained in the domain U of regularity of φ with $\varphi(v) = P$, whence $U \neq \emptyset$. Then (iv) implies that the fiber of the morphism $\varphi \colon U \to G(c, V_{a',b'})$ over P has the expected dimension $\dim V_{a,b} - \dim G(c, V_{a',b'})$. Hence $\varphi(U)$ has dimension $\geq \dim G(c, V_{a',b'})$, and so φ is dominant.

3. Some stable rationality

We set $\overline{G} = \text{SL}_2 \times \text{SL}_2/(-1, -1)$. When a, b > 0 are odd, the element (-1, -1) of $\text{SL}_2 \times \text{SL}_2$ acts on $V_{a,b}$ trivially so that \overline{G} acts on $V_{a,b}$. This linear \overline{G} -action is almost free if $\text{PGL}_2 \times \text{PGL}_2$ acts on $\mathbb{P}V_{a,b}$ almost freely, that is, general bidegree (a, b) curves on $\mathbb{P}^1 \times \mathbb{P}^1$ have no non-trivial stabilizer.

Lemma 3.1. The group \overline{G} acts on $V_{1,1}^{\oplus 3}$ almost freely with the quotient $V_{1,1}^{\oplus 3}/\mathrm{SL}_2 \times \mathrm{SL}_2$ rational.

Proof. The first assertion follows from the almost freeness of the $PGL_2 \times PGL_2$ -action on $(\mathbb{P}V_{1,1})^3$. For the second assertion, we first note that

(3.1)
$$V_{1,1}^{\oplus 3}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim (V_{1,1}^{\oplus 3}/\mathrm{GL}_2 \times \mathrm{GL}_2) \times \mathbb{C}^{\times}.$$

The group $GL_2 \times GL_2$ acts on $V_{1,1}$ almost transitively with the stabilizer of a general point isomorphic to GL_2 (identify $V_{1,1}$ with $Hom(V_1, V_1)$). Hence, applying the slice method to the first projection $V_{1,1}^{\oplus 3} \rightarrow V_{1,1}$, we obtain

(3.2)
$$V_{1,1}^{\oplus 3}/\mathrm{GL}_2 \times \mathrm{GL}_2 \sim V_{1,1}^{\oplus 2}/\mathrm{GL}_2,$$

where GL₂ acts on $V_{1,1}^{\oplus 2}$ linearly in the right hand side. Then the quotient $V_{1,1}^{\oplus 2}/\text{GL}_2$ is rational by the result of Katsylo [6].

A variety X is called *stably rational of level* N if $X \times \mathbb{P}^N$ is rational. In §4, the proof of Theorem 1.1 will be finally reduced to the following stable rationality results.

Corollary 3.2. Let n > 0 be an odd number. Then $\mathbb{P}V_{1,n}/\mathrm{SL}_2 \times \mathrm{SL}_2$ and $\mathbb{P}V_{3,n}/\mathrm{SL}_2 \times \mathrm{SL}_2$ are stably rational of level 13.

Proof. We treat the case of $V_{1,n}$. For dimensional reason we may assume n > 3. Then the group \overline{G} acts on $V_{1,n}$ almost freely. Hence we may apply the no-name lemma to both projections $V_{1,1}^{\oplus 3} \oplus V_{1,n} \to V_{1,n}$ and $V_{1,1}^{\oplus 3} \oplus V_{1,n} \to V_{1,1}^{\oplus 3}$ to see that

(3.3)
$$(V_{1,n}/\mathrm{SL}_2 \times \mathrm{SL}_2) \times \mathbb{C}^{12} \sim (V_{1,1}^{\oplus 3}/\mathrm{SL}_2 \times \mathrm{SL}_2) \times \mathbb{C}^{2n+1}$$

By Lemma 3.1, $V_{1,n}/SL_2 \times SL_2$ is stably rational of level 12. Since $V_{1,n}/SL_2 \times SL_2$ is birational to $\mathbb{C}^{\times} \times (\mathbb{P}V_{1,n}/SL_2 \times SL_2)$, our assertion is proved. The case of $V_{3,n}$ is similar.

Proposition 3.3. When n > 1 is odd, $G(3, V_{3,n})/SL_2 \times SL_2$ is stably rational of level 2.

Proof. Let $\mathcal{F} \to G(3, V_{3,n})$ be the universal sub vector bundle of rank 3, on which $SL_2 \times SL_2$ acts equivariantly. The elements $(\pm 1, \mp 1) \in SL_2 \times SL_2$ act on \mathcal{F} by multiplication by -1. Since \mathcal{F} has odd rank, they act on the line bundle det \mathcal{F} also by -1. Hence the bundle $\mathcal{F}' = \mathcal{F} \otimes \det \mathcal{F}$ is $PGL_2 \times PGL_2$ -linearized. Note that $\mathbb{P}\mathcal{F}$ is canonically identified with $\mathbb{P}\mathcal{F}'$. Since $PGL_2 \times PGL_2$ acts on $G(3, V_{3,n})$ almost freely, we can apply the no-name lemma to \mathcal{F}' to see that

$$(3.4) \qquad \mathbb{P}\mathcal{F}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{F}'/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^2 \times (G(3, V_{3,n})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Thus it suffices to show that $\mathbb{PF}/SL_2 \times SL_2$ is rational.

Regarding $\mathbb{P}\mathcal{F}$ as an incidence in $G(3, V_{3,n}) \times \mathbb{P}V_{3,n}$, we have second projection $\mathbb{P}\mathcal{F} \to \mathbb{P}V_{3,n}$. Its fiber over $\mathbb{C}l \in \mathbb{P}V_{3,n}$ is the sub Grassmannian in $G(3, V_{3,n})$ of 3-planes containing $\mathbb{C}l$, and hence identified with $G(2, V_{3,n}/\mathbb{C}l)$. Therefore, if $\mathcal{G} \to \mathbb{P}V_{3,n}$ is the universal quotient bundle of rank dim $V_{3,n}-1$, then $\mathbb{P}\mathcal{F}$ is identified with the relative Grassmannian $G(2, \mathcal{G})$. The elements $(\pm 1, \pm 1) \in SL_2 \times SL_2$ act on \mathcal{G} by multiplication by -1, and also on $\mathcal{O}_{\mathbb{P}V_{3,n}}(1)$ by -1. Thus the bundle $\mathcal{G}' = \mathcal{G} \otimes \mathcal{O}_{\mathbb{P}V_{3,n}}(1)$ is PGL₂ × PGL₂-linearized, and $G(2, \mathcal{G})$ is canonically isomorphic to $G(2, \mathcal{G}')$. Since PGL₂ × PGL₂ acts on $\mathbb{P}V_{3,n}$ almost freely, we can use the no-name lemma to trivialize the $PGL_2 \times PGL_2$ -bundle G' locally in the Zariski topology. Hence we have

(3.5)
$$G(2,\mathcal{G}')/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim G(2,\mathbb{C}^{4n+3}) \times (\mathbb{P}V_{3,n}/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Now our assertion follows from Corollary 3.2.

We also treat $G(3, V_{3,1})$.

Proposition 3.4. The quotient
$$G(3, V_{3,1})/SL_2 \times SL_2$$
 is stably rational of level 5.

Proof. As before, let \mathcal{F} be the universal sub bundle over $G(3, V_{3,1})$. Using the no-name lemma for the PGL₂ × PGL₂-linearized bundle $\mathcal{F}^{\oplus 2} \otimes \det \mathcal{F}$, we obtain

(3.6)
$$\mathbb{P}(\mathcal{F}^{\oplus 2})/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^5 \times (G(3, V_{3,1})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

On the other hand, we have a natural $SL_2 \times SL_2$ -equivariant morphism

(3.7)
$$\mathbb{P}(\mathcal{F}^{\oplus 2}) \to \mathbb{P}(V_{3,1}^{\oplus 2}), \qquad (P, \mathbb{C}(v_1, v_2)) \mapsto \mathbb{C}(v_1, v_2),$$

where $v_1, v_2 \in V_{3,1}$ are vectors contained in the 3-plane *P*. This is birationally the projectivization of a quotient bundle \mathcal{G} of $V_{3,1} \times \mathbb{P}(V_{3,1}^{\oplus 2})$. Applying the no-name lemma to the PGL₂ × PGL₂-linearized bundle $\mathcal{G} \otimes \mathcal{O}_{\mathbb{P}(V_{3,1}^{\oplus 2})}(1)$, we have

$$\mathbb{P}\mathcal{G}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^5 \times (\mathbb{P}(V_{31}^{\oplus 2})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Thus it suffices to prove that $\mathbb{P}(V_{3,1}^{\oplus 2})/\mathrm{SL}_2 \times \mathrm{SL}_2$ is stably rational of level 5.

Consider the representation $W = V_{1,1} \oplus V_{3,1}^{\oplus 2}$. We apply the no-name lemma to both projections $\mathbb{P}W \dashrightarrow \mathbb{P}(V_{3,1}^{\oplus 2})$ and $\mathbb{P}W \dashrightarrow \mathbb{P}(V_{1,1} \oplus V_{3,1})$ to see that

(3.8)
$$\mathbb{C}^4 \times (\mathbb{P}(V_{3,1}^{\oplus 2})/\mathrm{SL}_2 \times \mathrm{SL}_2) \sim \mathbb{C}^8 \times (\mathbb{P}(V_{1,1} \oplus V_{3,1})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Using the slice method for the projection $V_{1,1} \oplus V_{3,1} \rightarrow V_{1,1}$, we then have

(3.9)
$$(V_{1,1} \oplus V_{3,1})/GL_2 \times GL_2 \sim V_{3,1}/GL_2.$$

Finally, $V_{3,1}/\text{GL}_2$ is rational by Katsylo [6].

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the method of double bundle as explained in §2.2. We provide the bi-transvectants according to the congruence of *b* modulo 5, based on dimensional calculation for the representations involved. The exceptional case b = 7 requires a separate treatment.

4.1. The case $b \equiv 0$ (5). Let n > 0 be an odd number. We consider the bi-apolar covariant

(4.1) $T = T^{(3,n)} : V_{3,5n} \times V_{3,n} \to V_{0,4n}.$

Since dim $V_{3,n} = 4n + 4$ and dim $V_{0,4n} = 4n + 1$, we obtain a rational map

$$(4.2) V_{3.5n} \dashrightarrow G(3, V_{3.n})$$

as in (2.10). We take vectors $v \in V_{3,5n}$, $\vec{w} = (w_1, w_2, w_3) \in (V_{3,n})^3$ by

$$v = {\binom{5n}{n}} X^n Y^{4n} x^3 + 3 {\binom{5n}{2n}} X^{2n} Y^{3n} x^2 y + 3 {\binom{5n}{2n}} X^{3n} Y^{2n} x y^2 + {\binom{5n}{n}} X^{4n} Y^n y^3,$$

$$w_1 = Y^n x^3 - X^n x^2 y,$$

$$w_2 = Y^n x^2 y - X^n x y^2,$$

$$w_3 = Y^n x y^2 - X^n y^3.$$

Lemma 4.1. The vectors $(v, \vec{w}) \in V_{3,5n} \times (V_{3,n})^3$ satisfy the conditions in Lemma 2.2.

Proof. The three vectors $w_1, w_2, w_3 \in V_{3,n}$ are apparently linearly independent. That $T(v, w_i) = 0$ is checked by using the formulae in §2.1. The map $T(v, \cdot): V_{3,n} \to V_{0,4n}$ is surjective because

$$T(v, V_n x^3) = \mathbb{C}\langle X^{4n}, \cdots, X^{3n} Y^n \rangle, \quad T(v, V_n x^2 y) = \mathbb{C}\langle X^{3n} Y^n, \cdots, X^{2n} Y^{2n} \rangle,$$

$$T(v, V_n x y^2) = \mathbb{C}\langle X^{2n} Y^{2n}, \cdots, X^n Y^{3n} \rangle, \quad T(v, V_n y^3) = \mathbb{C}\langle X^n Y^{3n}, \cdots, Y^{4n} \rangle.$$

To see the surjectivity of $T(\cdot, \vec{w}): V_{3,5n} \to V_{0,4n}^{\oplus 3}$, we note that

$$T(V_{5n}x^3 \oplus V_{5n}y^3, \vec{w}) = (V_{0,4n}, 0, V_{0,4n}) \subset V_{0,4n}^{\oplus 3}.$$

Since $T(V_{5n}x^2y, w_2) = V_{0,4n}$, then $(0, V_{0,4n}, 0) \subset V_{0,4n}^{\oplus 3}$ is also contained in the image of $T(\cdot, \vec{w})$.

By this lemma, we may apply the double bundle method so that via (4.2), $V_{3,5n}$ becomes birationally an $SL_2 \times SL_2$ -linearized vector bundle \mathcal{E} over $G(3, V_{3,n})$. Note that \mathcal{E} is a subbundle of $V_{3,5n} \times G(3, V_{3,n})$. Since both 3 and 5*n* are odd, the elements $(\pm 1, \pm 1) \in SL_2 \times SL_2$ act on \mathcal{E} by multiplication by -1. On the other hand, $(\pm 1, \pm 1)$ also act by -1 on the universal sub bundle \mathcal{F} over $G(3, V_{3,n})$. Since \mathcal{F} has odd rank 3, then the bundle $\mathcal{E}' = \mathcal{E} \otimes \det \mathcal{F}$ is PGL₂ × PGL₂-linearized. We thus have

$$(4.3) \qquad \mathbb{P}V_{3,5n}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}'/\mathrm{SL}_2 \times \mathrm{SL}_2.$$

The group $PGL_2 \times PGL_2$ acts on $G(3, V_{3,n})$ almost freely. Therefore we can use the no-name lemma for \mathcal{E}' to obtain

(4.4)
$$\mathbb{P}V_{3,5n}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{8n} \times (G(3, V_{3,n})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Comparing this with Proposition 3.3, we see that $\mathbb{P}V_{3,5n}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational for n > 1. When n = 1, $\mathbb{P}V_{3,5}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational by Proposition 3.4.

4.2. The case $b \equiv 1$ (5). Let n > 0 be an even number. We consider the bi-apolar covariant

(4.5)
$$T = T^{(1,3n+1)} : V_{3,5n+1} \times V_{1,3n+1} \to V_{2,2n}$$

Since dim $V_{1,3n+1} = 6n + 4$ and dim $V_{2,2n} = 6n + 3$, this defines a rational map

$$(4.6) V_{3,5n+1} \dashrightarrow \mathbb{P}V_{1,3n+1}$$

as in (2.10). In order to show that this determines a double bundle, we take the following vectors of $V_{3,5n+1}$ and $V_{1,3n+1}$:

$$v = {\binom{5n+1}{2n}} X^{3n+1} Y^{2n} x^3 + 3 {\binom{5n+1}{n}} X^{4n+1} Y^n x^2 y + 3 {\binom{5n+1}{2n}} X^{2n} Y^{3n+1} x y^2 + {\binom{5n+1}{n}} X^n Y^{4n+1} y^3, w = (X^{3n+1} - Y^{3n+1}) x - (X^n Y^{2n+1} - X^{2n+1} Y^n) y.$$

Lemma 4.2. The vectors $(v, w) \in V_{3,5n+1} \times V_{1,3n+1}$ meet the conditions in Lemma 2.2.

Proof. One calculates that T(v, w) = 0 using the formulae in §2.1. Conversely, suppose we have a vector $w' = G_+(X, Y)x + G_-(X, Y)y$ in $V_{1,3n+1}$ with T(v, w') = 0. Then we have

$$T^{(3n+1)}(X^{n}Y^{4n+1}, G_{+}) = b_{0}T^{(3n+1)}(X^{2n}Y^{3n+1}, G_{-}),$$

$$T^{(3n+1)}(X^{2n}Y^{3n+1}, G_{+}) = b_{1}T^{(3n+1)}(X^{4n+1}Y^{n}, G_{-}),$$

$$T^{(3n+1)}(X^{4n+1}Y^{n}, G_{+}) = b_{2}T^{(3n+1)}(X^{3n+1}Y^{2n}, G_{-}).$$

for suitable constants b_j . Expanding $G_{\pm} = \sum_i \alpha_i^{\pm} X^{3n+1-i} Y^i$, we obtain

$$\begin{aligned} \alpha_i^+ &= c_{1i}\alpha_{i+n}^- \ (0 \le i \le n), \qquad \alpha_i^- = 0 \ (0 \le i \le n-1), \\ \alpha_i^+ &= c_{2i}\alpha_{i+2n+1}^- \ (0 \le i \le n), \qquad \alpha_i^+ = 0 \ (n+1 \le i \le 2n), \\ \alpha_{i+n}^+ &= c_{3i}\alpha_i^- \ (n+1 \le i \le 2n+1), \qquad \alpha_i^- = 0 \ (2n+2 \le i \le 3n+1), \end{aligned}$$

for some fixed constants c_* . This reduces to the relations

$$\alpha_0^+ = d_1 \alpha_{3n+1}^+ = d_2 \alpha_n^- = d_3 \alpha_{2n+1}^-$$

where d_j are appropriate constants, and $\alpha_i^{\pm} = 0$ for other *i*. Hence the map $T(v, \cdot): V_{1,3n+1} \rightarrow V_{2,2n}$ has 1-dimensional kernel, and so is surjective. We also see that the map $T(\cdot, w): V_{3,5n+1} \rightarrow V_{2,2n}$ is surjective, noticing that

$$T(V_{5n+1}y^3, w) = V_{2n}y^2, \qquad T(V_{5n+1}x^3, w) = V_{2n}x^2,$$
$$T(V_{5n+1}xy^2, (X^{3n+1} - Y^{3n+1})x) = V_{2n}xy.$$

Thus we can use the method of double bundle to see that via (4.6), $V_{3,5n+1}$ becomes birational to an SL₂ × SL₂-linearized vector bundle \mathcal{E} over $\mathbb{P}V_{1,3n+1}$. As before, the elements $(\pm 1, \mp 1) \in SL_2 \times SL_2$ act by multiplication by -1 on both \mathcal{E} (which is a subbundle of $V_{3,5n+1} \times \mathbb{P}V_{1,3n+1}$) and $\mathcal{O}_{\mathbb{P}V_{1,3n+1}}(1)$. Hence the bundle $\mathcal{E}' = \mathcal{E} \otimes \mathcal{O}_{\mathbb{P}V_{1,3n+1}}(1)$ is PGL₂ × PGL₂-linearized. The group PGL₂ × PGL₂ acts almost freely on $\mathbb{P}V_{1,3n+1}$. By the no-name lemma for \mathcal{E}' , we obtain

$$(4.7) \quad \mathbb{P}V_{3,5n+1}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}'/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{14n+4} \times (\mathbb{P}V_{1,3n+1}/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Therefore $\mathbb{P}V_{3,5n+1}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational by Corollary 3.2.

4.3. The case $b \equiv 2$ (5). Let n > 0 be an odd number. We use the bi-apolar covariant

(4.8)
$$T = T^{(3,n)} : V_{3,5n+2} \times V_{3,n} \to V_{0,4n+2}.$$

Since dim $V_{3,n} = 4n + 4$ and dim $V_{0,4n+2} = 4n + 3$, we obtain as in (2.10) a rational map

$$(4.9) V_{3,5n+2} \dashrightarrow \mathbb{P}V_{3,n}.$$

To see that this defines a double bundle, we take vectors in $V_{3,5n+2}$ and $V_{3,n}$ by

$$\begin{split} v &= X^n Y^{4n+2} x^3 + X^{2n+1} Y^{3n+1} x^2 y + X^{3n+1} Y^{2n+1} x y^2 + X^{4n+2} Y^n y^3, \\ w &= Y^n x^2 y - X^n x y^2. \end{split}$$

Lemma 4.3. The vectors $(v, w) \in V_{3,5n+2} \times V_{3,n}$ satisfy the conditions in Lemma 2.2.

Proof. It is immediate to check that T(v, w) = 0. The map $T(v, \cdot): V_{3,n} \to V_{0,4n+2}$ is surjective because

$$T(v, V_n x^3) = \mathbb{C}\langle X^{4n+2}, \cdots, X^{3n+2} Y^n \rangle,$$

$$T(v, V_n x^2 y) = \mathbb{C}\langle X^{3n+1} Y^{n+1}, \cdots, X^{2n+1} Y^{2n+1} \rangle,$$

$$T(v, V_n x y^2) = \mathbb{C}\langle X^{2n+1} Y^{2n+1}, \cdots, X^{n+1} Y^{3n+1} \rangle,$$

$$T(v, V_n y^3) = \mathbb{C}\langle X^n Y^{3n+2}, \cdots, Y^{4n+2} \rangle.$$

On the other hand, we have $T(V_{5n+2}xy^2, w) = V_{0,4n+2}$ so that the map $T(\cdot, w) : V_{3,5n+2} \rightarrow V_{0,4n+2}$ is also surjective.

This lemma enables the application of the method of double bundle. Therefore the map (4.9) makes $V_{3,5n+2}$ birationally an SL₂ × SL₂-linearized vector bundle \mathcal{E} over $\mathbb{P}V_{3,n}$. The elements $(\pm 1, \mp 1) \in SL_2 \times SL_2$ act on \mathcal{E} by multiplication by -1. Since both 3 and *n* are odd, $(\pm 1, \mp 1)$ also act by -1 on $\mathcal{O}_{\mathbb{P}V_{3,n}}(1)$. Thus the bundle $\mathcal{E}' = \mathcal{E} \otimes \mathcal{O}_{\mathbb{P}V_{3,n}}(1)$ is PGL₂ × PGL₂-linearized. When n > 1, PGL₂ × PGL₂ acts on $\mathbb{P}V_{3,n}$ almost freely. Then by the no-name lemma we have

$$(4.10) \quad \mathbb{P}V_{3,5n+2}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}'/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{16n+8} \times (\mathbb{P}V_{3,n}/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

By Corollary 3.2, we see that $\mathbb{P}V_{3,5n+2}/SL_2 \times SL_2$ is rational for n > 1.

This argument does not work for the case n = 1 because a general point of $\mathbb{P}V_{3,1}$ has the Klein 4-group as its stabilizer. We treat this case in §4.6.

4.4. The case $b \equiv 3$ (5). Let n > 0 be an even number. We consider the (3, n)-th bi-transvectant

(4.11)
$$T = T^{(3,n)} : V_{3,5n+3} \times V_{3,n+1} \to V_{0,4n+4}.$$

Since dim $V_{3,n+1} = 4n + 8$ and dim $V_{0,4n+4} = 4n + 5$, this induces a rational map as in (2.10),

$$(4.12) V_{3,5n+3} \dashrightarrow G(3, V_{3,n+1}).$$

In order to apply the method of double fibration, we take the following vectors of $V_{3,5n+3}$ and $V_{3,n+1}$ according to the congruence of *n* modulo 5:

(1) When $n \not\equiv 4 \mod 5$, we set

$$v = {\binom{5n+3}{n}} X^n Y^{4n+3} x^3 + {\binom{5n+3}{2n+1}} X^{2n+1} Y^{3n+2} x^2 y + {\binom{5n+3}{2n+1}} X^{3n+2} Y^{2n+1} x y^2 + {\binom{5n+3}{n}} X^{4n+3} Y^n y^3,$$

$$w_1 = X^{n+1} y^3 + Y^{n+1} x y^2,$$

$$w_2 = X^{n+1} x y^2 + Y^{n+1} x^2 y,$$

$$w_3 = X^{n+1} x^2 y + Y^{n+1} x^3.$$

(2) When $n \equiv 4 \mod 5$, we denote n = 2m (remember *n* is even) and set

$$v = \left\{ \frac{7m+3}{m+1} \frac{5m+2}{3m+2} {\binom{5n+3}{m}} X^m Y^{9m+3} + X^{9m+5} Y^{m-2} \right\} x^3 + 3 \frac{5m+2}{3m+2} {\binom{5n+3}{3m+1}} X^{3m+1} Y^{7m+2} x^2 y + 3 {\binom{5n+3}{5m+2}} X^{5m+2} Y^{5m+1} x y^2 + \frac{5m+3}{3m+1} {\binom{5n+3}{7m+3}} X^{7m+3} Y^{3m} y^3,$$

and use the same w_i as above.

Lemma 4.4. The vectors $(v, w_1, w_2, w_3) \in V_{3,5n+3} \times (V_{3,n+1})^3$ meet the conditions in Lemma 2.2.

Proof. The linear independence of w_1, w_2, w_3 is apparent. It is not difficult to check that $T(v, w_i) = 0$ for every *i*, by using the formulae in §2.1. When $n \neq 4 \mod 5$, we have no $0 \leq j \leq n + 1$ with j(5n + 5) = (i + 1)(n + 1) for i = n, 2n + 1, 3n + 2, 4n + 3. Hence by Lemma 2.1, for those *i* the bilinear map

$$(4.13) T^{(n)}: \mathbb{C}X^i Y^{5n+3-i} \times \mathbb{C}X^{n+1-j} Y^j \to \mathbb{C}X^{i-j+1} Y^{4n+3-i+j}$$

is non-degenerate for any j, as far as the indices are non-negative. It follows that

$$T(v, V_{n+1}x^3) = \mathbb{C}\langle X^{4n+4}, \cdots, X^{3n+3}Y^{n+1} \rangle,$$

$$T(v, V_{n+1}x^2y) = \mathbb{C}\langle X^{3n+3}Y^{n+1}, \cdots, X^{2n+2}Y^{2n+2} \rangle,$$

$$T(v, V_{n+1}xy^2) = \mathbb{C}\langle X^{2n+2}Y^{2n+2}, \cdots, X^{n+1}Y^{3n+3} \rangle,$$

$$T(v, V_{n+1}y^3) = \mathbb{C}\langle X^{n+1}Y^{3n+3}, \cdots, Y^{4n+4} \rangle,$$

whence the map $T(v, \cdot) : V_{3,n+1} \to V_{0,4n+4}$ is surjective. We leave it to the reader to check similar surjectivity when $n \equiv 4$ (5). In that case, since $m \equiv 2$ (5), we have no *j* with j(5n + 5) = (i + 1)(n + 1) for i = m + k(n + 1), $0 \le k \le 3$, and i = 9m + 5. Hence for those *i* the map (4.13) is non-degenerate for any relevant *j*, again by Lemma 2.1.

To see that

$$T(\cdot, \vec{w}) = (T(\cdot, w_1), T(\cdot, w_2), T(\cdot, w_3)) : V_{3,5n+3} \to V_{0,4n+4}^{\oplus 3}$$

is surjective (regardless of $[n] \in \mathbb{Z}/5$), we note that the bilinear maps

$$T^{(n)}(\cdot, X^{n+1}): \mathbb{C}X^i Y^{5n+3-i} \to \mathbb{C}X^{i+1} Y^{4n+3-i}$$

10

$$T^{(n)}(\cdot, Y^{n+1}): \mathbb{C}X^i Y^{5n+3-i} \to \mathbb{C}X^{i-n}Y^{5n+4-i}$$

are non-degenerate whenever the indices are non-negative. It follows that

$$T(V_{5n+3}x^3, \vec{w}) = (\langle X^{4n+4}, \cdots, XY^{4n+3} \rangle, 0, 0),$$
$$T(\langle X^n Y^{4n+3} x^2 y, X^{2n+1} Y^{3n+2} x y^2, X^{3n+2} Y^{2n+1} y^3 \rangle, \vec{w}) \supset (\mathbb{C}Y^{4n+4}, 0, 0),$$

so that $(V_{0,4n+4}, 0, 0) \subset V_{0,4n+4}^{\oplus 3}$ is contained in the image of $T(\cdot, \vec{w})$. Similarly, we see that $(0, 0, V_{0,4n+4}) \subset V_{0,4n+4}^{\oplus 3}$ is contained in the image too. Finally, since $T(\cdot, w_2)$ maps the space $V_{5n+3}x^2y \oplus V_{5n+3}xy^2$ onto $V_{0,4n+4}$, we find using the above results that $(0, V_{0,4n+4}, 0)$ is also contained in the image.

Thus, by the method of double bundle for (4.12), $V_{3,5n+3}$ is birationally an $SL_2 \times SL_2$ -linearized vector bundle \mathcal{E} over $G(3, V_{3,n+1})$. The elements $(\pm 1, \mp 1) \in SL_2 \times SL_2$ act on \mathcal{E} by multiplication by -1. Let \mathcal{F} be the universal sub bundle over $G(3, V_{3,n+1})$. On det \mathcal{F} the elements $(\pm 1, \mp 1)$ act also by -1 because both 3 and n + 1 are odd and \mathcal{F} has odd rank. Therefore $\mathcal{E}' = \mathcal{E} \otimes \det \mathcal{F}$ is $PGL_2 \times PGL_2$ -linearized. By the no-name lemma for \mathcal{E}' , we then see that

$$\mathbb{P}V_{3,5n+3}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}'/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{8n} \times (G(3,V_{3,n+1})/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

By Proposition 3.3, $\mathbb{P}V_{3,5n+3}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational.

4.5. The case $b \equiv 4$ (5). Let n > 0 be an odd number. We use the (1, 3n + 3)-th bi-transvectant

(4.14)
$$T = T^{(1,3n+3)} : V_{3,5n+4} \times V_{1,3n+4} \to V_{2,2n+2}.$$

Since dim $V_{1,3n+4} = 6n + 10$ and dim $V_{2,2n+2} = 6n + 9$, we obtain a rational map

$$(4.15) V_{3,5n+4} \dashrightarrow \mathbb{P}V_{1,3n+4}$$

as in (2.10). In order to check that this defines a double bundle, we take the following vectors of $V_{3,5n+4}$ and $V_{1,3n+4}$:

$$v = \frac{3n+4}{n+2} \frac{3n+4}{n+1} {\binom{5n+4}{2n+1}} X^{3n+3} Y^{2n+1} x^3 + 3\frac{3n+4}{n+1} {\binom{5n+4}{n}} X^{4n+4} Y^n x^2 y$$

-3 ${\binom{5n+4}{2n+1}} X^{2n+1} Y^{3n+3} xy^2 - \frac{n+2}{3n+4} {\binom{5n+4}{n}} X^n Y^{4n+4} y^3,$
$$w = (X^{3n+4} + Y^{3n+4}) x + (X^{2n+3} Y^{n+1} + X^{n+1} Y^{2n+3}) y.$$

Lemma 4.5. The vectors $(v, w) \in V_{3,5n+4} \times V_{1,3n+4}$ meet the conditions in Lemma 2.2.

Proof. We leave it to the reader to check that T(v, w) = 0. To show that the map $T(v, \cdot): V_{1,3n+4} \rightarrow V_{2,2n+2}$ is surjective, we first note that 5n + 6 and 3n + 4 are coprime by the Euclidean algorithm. By Lemma 2.1, the bilinear map

$$T^{(3n+3)}: \mathbb{C}X^iY^{5n+4-i} \times \mathbb{C}X^{3n+4-j}Y^j \to \mathbb{C}X^{i-j+1}Y^{2n+1-i+j}$$

is non-degenerate whenever the indices are non-negative. Now suppose a vector $w' = G_+(X, Y)x + G_-(X, Y)y$ in $V_{1,3n+4}$ satisfies T(v, w') = 0. This is rewritten as

$$\begin{split} T^{(3n+3)}(X^{3n+3}Y^{2n+1},G_{-}) &= b_0 T^{(3n+3)}(X^{4n+4}Y^n,G_{+}), \\ T^{(3n+3)}(X^{4n+4}Y^n,G_{-}) &= b_1 T^{(3n+3)}(X^{2n+1}Y^{3n+3},G_{+}), \\ T^{(3n+3)}(X^{2n+1}Y^{3n+3},G_{-}) &= b_2 T^{(3n+3)}(X^nY^{4n+4},G_{+}), \end{split}$$

for some constants b_j . Expanding $G_{\pm}(X, Y) = \sum_{j=0}^{3n+4} \alpha_j^{\pm} X^{3n+4-j} Y^j$, we obtain the relation

$$\begin{aligned} \alpha_{j+n+1}^{+} &= c_{1j}\alpha_{j}^{-} \quad (n+2 \leq j \leq 2n+3), \qquad \alpha_{j}^{-} = 0 \quad (2n+4 \leq j \leq 3n+4), \\ \alpha_{j}^{+} &= c_{2j}\alpha_{j+2n+3}^{-} \quad (0 \leq j \leq n+1), \qquad \alpha_{j}^{+} = 0 \quad (n+2 \leq j \leq 2n+2), \\ \alpha_{j}^{+} &= c_{3j}\alpha_{j+n+1}^{-} \quad (0 \leq j \leq n+1), \qquad \alpha_{j}^{-} = 0 \quad (0 \leq j \leq n), \end{aligned}$$

where c_* are suitable non-zero constants. This is reduced to the relations

$$\alpha_0^+ = d_1 \alpha_{n+1}^- = d_2 \alpha_{2n+3}^- = d_3 \alpha_{3n+4}^+$$

for some constants d_j , and $\alpha_i^{\pm} = 0$ for other *i*. Therefore the map $T(v, \cdot) \colon V_{1,3n+4} \to V_{2,2n+2}$ has 1-dimensional kernel.

On the other hand, the surjectivity of the map $T(\cdot, w)$: $V_{3,5n+4} \rightarrow V_{2,2n+2}$ follows by noticing that

$$T(V_{5n+4}x^3, w) = V_{2n+2}x^2, \qquad T(V_{5n+4}y^3, w) = V_{2n+2}y^2,$$
$$T(V_{5n+4}xy^2, (X^{3n+4} + Y^{3n+4})x) = V_{2n+2}xy.$$

This lemma assures that, via (4.15), $V_{3,5n+4}$ becomes birationally an SL₂ × SL₂linearized vector bundle \mathcal{E} over $\mathbb{P}V_{1,3n+4}$. Since *n* is odd, the elements $(\pm 1, \mp 1) \in$ SL₂ × SL₂ act by multiplication by -1 on both \mathcal{E} and $\mathcal{O}_{\mathbb{P}V_{1,3n+4}}(1)$. Thus $\mathcal{E}' = \mathcal{E} \otimes \mathcal{O}_{\mathbb{P}V_{1,3n+4}}(1)$ is PGL₂ × PGL₂-linearized. Using the no-name lemma for \mathcal{E}' , we have

$$\mathbb{P}V_{3,5n+4}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}'/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{14n+10} \times (\mathbb{P}V_{1,3n+4}/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Then $\mathbb{P}V_{3,5n+4}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational by Corollary 3.2.

4.6. The case b = 7. We treat $V_{3,7}$ which is excluded from §4.3. We use the (2, 3)-th bi-transvectant

(4.16)
$$T = T^{(2,3)} : V_{3,7} \times V_{3,3} \to V_{2,4},$$

which defines a rational map

$$(4.17) V_{3,7} \dashrightarrow \mathbb{P}V_{3,3}$$

as in (2.10). We choose the following vectors of $V_{3,7}$ and $V_{3,3}$:

$$v = \binom{7}{3} X^3 Y^4 x^3 - 9Y^7 x^2 y + \binom{7}{1} X^6 Y x y^2 + \binom{7}{3} X^4 Y^3 y^3,$$

$$w = Y^3 x^3 + X^3 x y^2 + (XY^2 + Y^3) y^3.$$

Lemma 4.6. The vectors $(v, w) \in V_{3,7} \times V_{3,3}$ satisfy the conditions in Lemma 2.2.

Proof. We leave it to the reader to check that T(v, w) = 0 and that w spans the kernel of the map $T(v, \cdot) : V_{3,3} \to V_{2,4}$ (cf. Proofs 4.2 and 4.5). We shall show that $T(\cdot, w) : V_{3,7} \to V_{2,4}$ is surjective. First note that the bilinear map

$$T^{(2)}: \mathbb{C}x^i y^{3-i} \times \mathbb{C}x^{3-j} y^j \to \mathbb{C}x^{i-j+1} y^{j-i+1}$$

is non-degenerate whenever the indices are non-negative, for 3 and 5 are coprime (Lemma 2.1). Then we have

$$T(V_7y^3, w) = T(V_7y^3, Y^3x^3) = V_4xy.$$

Since $T^{(3)}(V_7, X^3) = V_4$, we have $T(V_7x^3, w) \subset V_4x^2 \oplus V_4xy$ with surjective projection $T(V_7x^3, w) \to V_4x^2$. Therefore V_4x^2 is also contained in the image of $T(\cdot, w)$. Finally, since $T(V_7xy^2, X^3xy^2) = V_4y^2$, the space V_4y^2 is contained in the image too.

Thus we may apply the double bundle method to see that (4.17) makes $V_{3,7}$ birational to an SL₂ × SL₂-linearized vector bundle \mathcal{E} over $\mathbb{P}V_{3,3}$. As before, after twisting \mathcal{E} by $\mathcal{O}_{\mathbb{P}V_{3,3}}(1)$, we use the no-name lemma to see that

$$(4.18) \qquad \mathbb{P}V_{3,7}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}\mathcal{E}/\mathrm{SL}_2 \times \mathrm{SL}_2 \sim \mathbb{P}^{16} \times (\mathbb{P}V_{3,3}/\mathrm{SL}_2 \times \mathrm{SL}_2).$$

Then $\mathbb{P}V_{3,7}/\mathrm{SL}_2 \times \mathrm{SL}_2$ is rational by Corollary 3.2.

References

- Arbarello, E.; Cornalba, M. Footnotes to a paper of Beniamino Segre. Math. Ann. 256 (1981), no. 3, 341–362.
- [2] Bogomolov, F. A.; Katsylo, P. I. Rationality of some quotient varieties. Mat. Sb. (N.S.) 126(168) (1985), 584–589.
- [3] Böhning, C.; Graf von Bothmer, H.-C.; Casnati, G. *Birational properties of some moduli spaces* related to tetragonal curves of genus 7. arXiv:1105.0310, to appear in Int. Math. Res. Notices.
- [4] Castorena, A.; Ciliberto, C. On a theorem of Castelnuovo and applications to moduli. Kyoto J. Math. 51 (2011), no. 3, 633–645.
- [5] Katsylo, P. I. Rationality of the moduli spaces of hyperelliptic curves. Izv. Akad. Nauk SSSR. 48 (1984), 705–710.
- Katsylo, P. I. Rationality of fields of invariants of reducible representations of SL₂. Mosc. Univ. Math. Bull. 39 (1984) 80–83.
- [7] Ma, S. *The rationality of the moduli spaces of trigonal curves of odd genus.* arXiv:1012.0983, to appear in J. Reine. Angew. Math.
- [8] Popov, V.L.; Vinberg, E.B. *Invariant theory*. in: Algebraic Geometry, IV, in: Encyclopaedia Math. Sci., vol. 55, Springer, 1994, 123–284.
- [9] Shepherd-Barron, N. I. *The rationality of certain spaces associated to trigonal curves*. Algebraic geometry, Bowdoin, 1985, 165–171, Proc. Symp. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, 1987.
- [10] Shepherd-Barron, N. I. Rationality of moduli spaces via invariant theory. Topological methods in algebraic transformation groups (New Brunswick, 1988), 153–164, Progr. Math., 80, Birkhäuser, 1989.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA 464-8604, JAPAN *E-mail address*: ma@math.nagoya-u.ac.jp