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THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL
CURVES

SHOUHEI MA

Asstract. The moduli spaces of trigonal curves are proven to be ratiohen
the genus is divisible by 4.

1. INTRODUCTION

A smooth projective curve is callemigonal if it carries a freegé. When the
curve has genus 5, such a pencil is unique if it exists. The object of our stigly
the moduli spac&y of trigonal curves of genug > 5. This space has been proven
to be rational wheg = 2 (4) by Shepherd-Barron|[9], and whgiis odd in [7]. In
the present article we prove thgg is rational in the left casg = 0 (4), completing
the following.

Theorem . The moduli spac&y of trigonal curves of genugis rational for every
g=>>5.

This can be seen as an analogue of the rationality of the mephites of hyper-
elliptic curves due to Katsylo and Bogomolav [5]] [2].

Note that7 ¢ is regarded as a sublocus of the moduli sp&tgof genusy curves.
Wheng s large enough, it seems thig§ has maximal dimension among the known
rational subvarieties oMy. It would be interesting whether the tetragonal (and
pentagonal) locus is rational as well. It is unirational bgpbarello-Cornalbal 1],
but at present known to be rational only in genus[7 ([3]). lothar direction,
Castorena and Ciliberto][4] shows that fpr> 23, 74 has larger dimension than
any other locus inMg obtained from a linear system on a surface.

We approach our problem from invariant theory for,S{SL,. Let Vap =
HO(Op1,p1(a, b)) be the space of bi-forms of bidegrea If) on P! x P!, which
is an irreducible representation of S5k SL,. It is classically known that a general
trigonal curveC of genusg = 4N is canonically embedded it x P! as a smooth
curve of bidegree (N + 1). This is based on the fact that the canonical model
of C lies on a unique rational normal scroll which is isomorpli®t x P1. As a
conseguence, we have a natural birational equivalence

(1.1) Tan ~ PV3oni1/SLy X Sbp.
Hence the problem is restated as follows.
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Theorem 1.1. The quotienPV3p/SL, x SLy is rational for every odd Ik 5.

To prove this, we adopt the traditional and computationathwe of double
bundle ([2], [10]) as follows. By examining the Clebsch-Gordannmia for
SL, x Sby, we take a suitable Slx SL,-bilinear mapping (bi-transvectant)

(12) T V3’b X Va/’b/ e Va//’b//

such that diVy y > dimVy . Puttingc = dimVy y — dimVa- 1/, this induces
the rational map to the Grassmannian

(13) V3,b kg G(C5 Va’,b’), Vi Ker(T(V5 ))

We shall find a bi-transvectant for which_(IL.3) is well-definend dominant.
In that case,[(1]13) makegsp, birationally an Sk x SL,-linearized vector bun-
dle overG(c, Vx ). Ultilizing this bundle structure and taking care-ef scalar
action, we reduce the rationality @V3,/SL, x SL, to a stable rationality of
G(c, Va 1) /SL2 x SLp, which in turn can be shown in a more or less standard way.

The point for this proof is to choose the bi-transvectantarefully so that (i)
a,b’,care odd (to care-1 scalar action) and that (ig is small (forV3), to have
larger dimension tha(c, Vy 1y)). For that, we will provideT according to the
congruence ob modulo 5, based on some easy calculation in elementary numbe
theory. Then the bulk of proof is devoted to the check of negeheracy of (113),
which is facilitated by keeping small but is still rather laborious.

The rest of the article is as follows. §2.1 we recall bi-transvectants. We ex-
plain the method of double bundle$&.2. In§3 we prepare some stable rationality
results in advance, to which the rationality®¥3,/SL, x SL, will be eventually
reduced. Then we prove Theoreéml1.X#h

We work over the complex numbers. The Grassman@iémV) parametrizes
a-dimensional linear subspaces of the vector spac&\Ve shall use the notation
([x. Y], [X, Y]) for the bi-homogeneous coordinate®dfx P1. Thus elements 0fp
will be expressed as

(1.4) DR YGIXY),
i
whereF;, G; are binary forms of degres b respectively.

2. BI-TRANSVECTANT

2.1. Bi-transvectant. Let V4 denote the Sj-representatiot®(Oy1(d)). Lete <
d. According to the Clebsch-Gordan decomposition

e
(2-1) Vg ® Ve = @ Vi+e-2rs

r=0

there exists a unique (up to constant)Slilinear mapping

(2.2) TO: Va X Ve = Vgieor,
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which is called ther-th transvectant For two binary formsF(X,Y) € Vy and
G(X,Y) € Ve, we have the well-known explicit formula (cf.][8])

23 TOFEG=ARED) Z(—l)i(r) OF G
' i—0

d el i) oX—aY oXiaYT "

We will need this formula when=eandr = e- 1.

The e-th transvectanT©®: V4 x Ve — Vq_e is especially called thapolar co-
variant By (Z3), TO(F,G) is calculated by applying the fiierential polynomial
(d)~1(d - €)!G(-dv, dx) to F(X, Y). In particular, we have

i 1,4 o A ) ) . .
repove xeiviy = | OO EPIVED, i emj<d-i
0, otherwise.

For the €— 1)-th transvectanT© D : Vg x Ve — Vy_es2, We have

i l(d-e+1) .
TED(, Xyl = (_l)e—lé% {J

wheredy! = 65! = 0 by convention. Therefore

AX—iHLy@-)-(=D+1 <41 e—j<d—i+1,
0, otherwise

Yol o - (e - xala§ I,

T(e_l)(Xin_i,Xe_ij) — {

where

A (C1f d -1 d-e+2)jd+2)-(+De
i i-j+1 ed-e+2)
We stress in particular that
Lemma2l. LetO<j<i+landO<e-j<d-i+1 The bilinear map
(2.4) TED XY x cxelyl - oxi-itly(d-es2)-(-j+1)
is non-degenerate if and only ifd + 2) # (i + 1)e. This is always the case when
d + 2is coprime to e.

Now we consider S x SLp-representations. The spaég, = H%(Os1,:1(a, b))
is the tensor representatidf ® V. Substituting[(Z11) into

(2.5) Vap®Vay = (Va® Vo) B (Vp ® Viy),
we obtain the Clebsch-Gordan decomposition fog SISL,,
(2-6) Va,b ® Va’,b’ = @ Va+a’—2r,b+b’—25,

r,s

where 0< r < min{a,a’} and 0< s < min{b,b’}. To each irreducible summand
Varar—2r b+by—2s IS @ssociated the,(s)-th bi-transvectant

(2.7) TCS Vap X Va iy = Vara—2rbiby—2s.
This SL, x SLy-bilinear mapping is calculated from the above transvestan
(2.8) T9FmG FrG)=TOFF)aTOG,G),

whereF € V,, G € Vy, F’ € Vo, andG’ € V.
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2.2. The method of double bundle. In §4, we will use the method of double
bundle ([2]) and its generalization ([10]). We here give samcount in the present
situation. Suppose we have a bi-transvectant

(29) T = T(r,S) Vab X Va/’b/ e Va//’b//

such thatt = dimVy iy — dimVy - is positive and that div,, > ¢ - dimVar .
Then we consider the Slx SLy-equivariant rational map

(2.10) ¢ Vap --> G(C, Va i), v - Ker(T(v, -)).
We assume (hope) that
(%) ¢ is well-defined and dominant.

If this holds, thernV,, becomes birational to the unique componéruf the inci-
dence

(2.11) X ={(V,P) € Vap X G(C,Va ), T(v,P) =0}

that dominatess(c, Vy ). Indeed, the first projection: X — Vg iS isomor-
phic over the domainJ of regularity of ¢, and then the dominance gf im-
plies thatr~(U) is contained inS. Since& is (generically) a sub vector bundle
of Vap X G(C, Va 1y) preserved under the Six SLp-action, it is an Sk x SLp-
linearized vector bundle ovés(c, Vy 1y). In this situation one might try to apply
the no-name lemma t68 ~ V), taking care of the scalar action afl, 1) e
SL2 X SL2.
The non-degeneracy requiremeaj (nay be checked as follows.

Lemma 2.2 (cf. [2]). The condition(®) is satisfied if and only if there exists
(V, Wy, - ,We) € Vap X (Vo )¢ such that

() wi, .-+ ,W¢ € Vy iy are linearly independent,

(i) T (v,w;) = Ofor every w,

(iii) the map T(v, ) : Vay — Varp is surjective, and

(iv) the map(T(-,wyq),- -+, T(-,W)) : Vap — Vgéffty, iS surjective.
Proof. Let P € G(c, Vx 1) be the span ofvy, - - - ,w.. The conditions (ii) and (iii)
mean thav is contained in the domaid of regularity ofe with ¢(v) = P, whence
U # 0. Then (iv) implies that the fiber of the morphism U — G(c, Va 1) overP
has the expected dimension dfgy, — dimG(c, Vx ). Hencep(U) has dimension
> dimG(c, Vy 1), and sop is dominant. O

3. SOME STABLE RATIONALITY

We setG = SL, x SLy/(~1, -1). Whena,b > 0 are odd, the element{, -1)
of SL, x SLy acts onVay, trivially so thatG acts oNnVap. This linearG-action is
almost free if PGk x PGL, acts onPV,, almost freely, that is, general bidegree
(a, b) curves orP! x P! have no non-trivial stabilizer.

Lemma 3.1. The group G acts on \ﬁ almost freely with the quotient
Vj‘_f/SLg x SL, rational.
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Proof. The first assertion follows from the almost freeness of th& PGPGL,-
action on PVy1)3. For the second assertion, we first note that

(3.1) VE3/SLa x Sl ~ (V§3/GLa X GLy) x C*.

The group Gk x GL; acts onVy 1 almost transitively with the stabilizer of a gen-

eral point isomorphic to G4 (identify V11 with Hom(V1, V1)). Hence, applying
the slice method to the first projectioff — V11, we obtain

(3.2) VE3/GLa x GLy ~ V§2/GLy,
where Gl acts onvfi linearly in the right hand side. Then the quotiMﬁ/GLg
is rational by the result of Katsylo[6]. O

A variety X is calledstably rational of level Nif X x PN is rational. In§4,
the proof of Theorer 111 will be finally reduced to the follogistable rationality
results.

Corollary 3.2. Let n > 0 be an odd number. TheRV;,/SL; x SL, and
PV3,/SL, x SL, are stably rational of level3.

Proof. We treat the case df;,,. For dimensional reason we may assume 3.
Then the groups acts onVy,, almost freely. Hence we may apply the no-name

lemma to both projection¥®3 & Vi, — Vi, andVe3 e Vi — V3 to see that

(3.3) (V1n/SLa X SLp) x € ~ (V§3/SLy x SLp) x C*™2,

By Lemmd3.1V; n/SL, X SL, is stably rational of level 12. Sindé, ,/SL, x SL
is birational toC* x (PV1,/SLy x SLp), our assertion is proved. The case\if,
is similar. O

Proposition 3.3. When n> 1is odd, @3, Vs,)/SLy x SLy is stably rational of
level 2.

Proof. Let ¥ — G(3, V3p) be the universal sub vector bundle of rank 3, on which
SL, x SL, acts equivariantly. The elementsl 1) € SL, x SL, act on¥ by
multiplication by-1. Since¥ has odd rank, they act on the line bundlefdetiso

by —1. Hence the bundig” = F ®@detF is PGL, x PGLy-linearized. Note tha@¥#

is canonically identified witlP#’. Since PGk x PGL; acts onG(3, V35) almost
freely, we can apply the no-name lemma#bto see that

(3.4)  PF/SLyxSlLy ~ PF’/SLy X SLy ~ P? x (G(3, Van)/SLy x SLy).

Thus it sufices to show thaPF /SL, x SLy is rational.

RegardingP# as an incidence (3, Vs ) X PV3,, we have second projection
PF¥ — PV3,. lts fiber overCl € PV3, is the sub Grassmannian @&(3, Vs )
of 3-planes containin@l!, and hence identified witls(2, V3,/Cl). Therefore, if
G — PV3jis the universal quotient bundle of rank dig,—1, thenP¥ is identified
with the relative GrassmannidB(2, G). The elements#1, ¥1) € SL, x SL, act
on G by multiplication by-1, and also o@sy;,,(1) by —1. Thus the bundl¢’ =
G®O0py;,(1) is PGL; x PGLy-linearized, and5(2, G) is canonically isomorphic to
G(2,G"). Since PGk x PGL; acts onPV3,, almost freely, we can use the no-name
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lemma to trivialize the PGLx PGLy-bundle G’ locally in the Zariski topology.
Hence we have

(3.5) G(2,G")/SLy x SLy ~ G(2,C**3) x (PV3,/SLy X SLy).

Now our assertion follows from Corollafy 3.2. O
We also treaG(3, V3 1).

Proposition 3.4. The quotient @3, V31)/SL, x SL; is stably rational of leveb.

Proof. As before, letF be the universal sub bundle ov&(3,Vs;). Using the
no-name lemma for the PGIx PGLy-linearized bundleF®? @ detF, we obtain

(3.6) P(F®2)/SLs X SLy ~ P° x (G(3, Va.1)/SLy x SLy).
On the other hand, we have a naturab$L.SL,-equivariant morphism
(3.7) P(F®) > P(V§3),  (P.C(v1.V2)) = C(v1, Vo),

wherevy, vz € V31 are vectors contained in the 3-plaBe This is birationally the
projectivization of a quotient bundig of V31 X P(V?f). Applying the no-name
lemma to the PGLx PGLy-linearized bundl@@OP(Vgai)(l), we have

PG/SLy x Sk ~ P° x (P(V§3)/SL2 x SLy).

Thus it sufices to prove thaP(Vfi)/SLz x SLy is stably rational of level 5.
Consider the representatiofil = Vj 1 @vgfi. We apply the no-name lemma to

both projection®W --» P(VZ2) andPW --» P(V11 @ V31) to see that

(3.8)  C*x(P(V§9)/SLa x SLy) ~ C® x (P(V11 ® Va1)/SLz x SLy).

Using the slice method for the projectidfi; @ V31 — Vi1, we then have

(3.9) (V11®V31)/GLz X GLz ~ V31/GL,.

Finally, V31/GL; is rational by Katsylo[[5]. O

4. ProoF oF THEOREM[L.]

In this section we prove Theordm 1.1 by using the method oblgobundle as
explained in§2.2. We provide the bi-transvectants according to the amge
of b modulo 5, based on dimensional calculation for the reptatiens involved.
The exceptional cade= 7 requires a separate treatment.

4.1. Thecaseb = 0 (5). Letn > 0 be an odd number. We consider the bi-apolar
covariant

(4.1) T=TC": Va5, % Van = Vo
Since dinV3 ), = 4n + 4 and dimVp 4, = 4n + 1, we obtain a rational map
(4.2) V35n --» G(3,V3p)



as in [Z.1D). We take vectovse Vasn, W = (W, Wo, W3) € (V3)3 by
5n 5n 5n 5n
vi= (T IXTYANE 4+ 3 XYy 3T IXENY Ay T XATYNYS,
( n) (Zn) y 2n y n Y
wi o= Y™ = XMy,
wo = Y™y — X"xyA,
Wz = Y'xy? - XMy,
Lemma 4.1. The vectorgv, W) € Va5, x (V35) satisfy the conditions in Lemma
2.2.

Proof. The three vectorsvi,w,,w3 € V3, are apparently linearly indepen-
dent. ThatT(v,w;) = 0 is checked by using the formulae §2.1. The map
T(v,-): Van — Voan is surjective because

TV, Vax®) = COXAN oo XYM, T(v, VaxPy) = COXGMYN, . X20y20y,

TV, Vaxy?) = COCY20 o XT3N T (v, Vy®) = COXTY3N, L Ay,

To see the surjectivity of (-, W): V35, — V(?fm, we note that

T(VnX> @ Vsny®, W) = (Von. 0. Voun) € Vg,
SinceT (Vsn X2y, W) = Vo.an, then (QVo.4n, 0) C Vg;in is also contained in the image
of T(-, ). O

By this lemma, we may apply the double bundle method so tlaafdR),Vs s,
becomes birationally an $lIx SLp-linearized vector bundl€ over G(3, V3 p).
Note that& is a subbundle oWVs5, X G(3,Vs,). Since both 3 andrbare odd,
the elements#1, 1) € SL, x SL, act on&E by multiplication by—1. On the other
hand, &1, 1) also act by-1 on the universal sub bundfe overG(3, Vs). Since
¥ has odd rank 3, then the bundlé = € ® detF is PGL, x PGLy-linearized. We
thus have

(4.3) PV3’5n/SL2 X SL2 ~ P(C}/SLz X SLz ~ PB'/SLz X SL2.

The group PGk x PGL; acts onG(3, V) almost freely. Therefore we can use
the no-name lemma f&’ to obtain

(4.4) PV3s5n/SLo x SLy ~ P& x (G(3, V3,)/SL2 x SLy).

Comparing this with Propositidn_3.3, we see th&g5,/SL, x SL; is rational for
n> 1. Whenn = 1, PV35/SL, x SLy is rational by Proposition 3.4.

4.2. Thecaseb =1 (5). Letn > 0 be an even number. We consider the bi-apolar
covariant

(4.5) T = 73D . V3sn41 X Vianer — Voon.
Since dinVq 3,41 = 6n+ 4 and dinV, 2, = 6n + 3, this defines a rational map
(4.6) V3sni1 --» PVians1
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as in [Z10). In order to show that this determines a doubielley we take the
following vectors ofV3 5n,1 andVy ans1:

on+1 x3mly2n3 . 3 on+1 XA+ 1yny2y,
2n n

5n+1 5n+ 1
3 X2nY3n+1 XnY4n+1
+ ( ) Xy + . Ve,

\Y

2n
W = (X3n+1 _ Y3n+1)x _ (XnY2n+1 _ X2n+1Yn)y‘

Lemma4.2. The vectorgv,w) € V35n:1 X V13041 Meet the conditions in Lemma
22

Proof. One calculates thak(v,w) = 0 using the formulae i§Z.1. Conversely,
suppose we have a vectwof = G, (X, Y)x+ G_(X, Y)yin Vi 3ns1 With T(v,w’) = 0.
Then we have

T(3n+l)(an4n+l G+) boT(3n+l)(X2nY3n+l G_)

T(3n+1)(x2nY3n+1 G+) — blT(3n+1)(X4n+1Yn G_)

T(3n+1)(x4n+1Yn G+) — b2-|-(3n+1)(x3n+1Y2n G_).

for suitable constants;. ExpandingG.. = ¥; a=X3™1-Y!, we obtain

o =qia;,, (0<i<n), a =0 (0<i<n-1),

@ =i, (0<i<n), af=0MN+1<i<2n),

o p=Csiq; N+1<i<2n+1), o =0 (2+2<i<3n+1),

for some fixed constants. This reduces to the relations
+ _ + _ - _ -
@y = d1a3n+1 = dzan = d3aZn+1

where d; are appropriate constants, anfl = 0 for otheri. Hence the map
T(v,"): Visnr1 — Vaon has 1-dimensional kernel, and so is surjective. We also
see that the map(-, w): Vasn1 — Vo on iS surjective, noticing that

T(V5n+1y3, W) = V2ny2, T(V5n+1X3, W) = V2nX2,
T (Vsne1Xy?, (XM = Y3 x) = Vonxy.
O

Thus we can use the method of double bundle to see thdt vip W.&..1 be-
comes birational to an Slx SLp-linearized vector bundl& over PVy zn,1. AS
before, the elements:{, ¥1) € Sl x SL, act by multiplication by—1 on both
& (which is a subbundle 0¥350,1 X PV13n41) andOpy, 4,,,(1). Hence the bundle
& = E® Opvy,,.,(1) is PGl x PGLy-linearized. The group PGlx PGL, acts
almost freely orPVy 3n+1. By the no-name lemma f@’, we obtain

(4.7) PVasni1/Sla x SLy ~ PE'/SLy x SLy ~ P4 x (PVy13n41/SLo x SLy).
ThereforePV3sn,1/SLy X SLy is rational by Corollary 3]2.
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4.3. Thecaseb = 2 (5). Letn > 0 be an odd number. We use the bi-apolar
covariant

(4.8) T =T V3gn.2 X Van — Voanio.

Since dinVz,, = 4n + 4 and dinVy 4n:2 = 4n + 3, we obtain as i (2.10) a rational
map

(4-9) V3,5n+2 a4 PV&n-
To see that this defines a double bundle, we take vectdarggn ., andVsy, by
V= XnY4n+2X3 + X2n+1Y3n+1X2y + X3n+1Y2n+1Xy2 + X4n+2Yny3
w = Y"Py — X"xy2.
Lemma 4.3. The vectorgv,w) € V3sn2 X V3, satisfy the conditions in Lemma

2.2

Proof. It is immediate to check that(v,w) = 0. The mapT (v,-): Van — Voan+2
is surjective because

T(V, VnX3) — C(x4ﬂ+2’ cee X3n+2Yn>’

T(V anzy) — C(X3n+1Yn+1 X2n+1Y2n+1>
TV, Vaxy?) = CXEmly2md .. xelysned,
T Vay) = CXTY3™2 ... ydne2)

On the other hand, we havi&(Vsn,2Xy?,W) = Von.2 SO that the ma (-, w) :
V35n+2 = Voans2 IS also surjective. O

This lemma enables the application of the method of doubtelleu Therefore
the map[(4.9) make¥ssn.2 birationally an Sk x SLy-linearized vector bundl€
overPVs,. The elements«1, ¥1) € SL, x SL, act on& by multiplication by—1.
Since both 3 and are odd, £1, ¥1) also act by-1 onOpy,,(1). Thus the bundle
& = E®O0py;,(1) is PGLp x PGLy-linearized. Whem > 1, PGL, x PGL; acts on
PV3,, almost freely. Then by the no-name lemma we have

(4.10) PVasn,2/SLo x SLy ~ PE'/SLy X SLy ~ P8 x (PV3,,/SLy x SLy).

By Corollary[3.2, we see th&V35n,2/SLy x SLy is rational forn > 1.
This argument does not work for the case 1 because a general pointieis 1
has the Klein 4-group as its stabilizer. We treat this cas&lif.

4.4, Thecaseb = 3 (5). Letn > 0 be an even number. We consider thenfah
bi-transvectant

(4.11) T =T Va50.3 X Vane1 — Voansa.
Since dinVz 41 = 4n + 8 and diMVpan+4 = 4n + 5, this induces a rational map as

in (2.10),
(4.12) V35n:+3 --» G(3, Vani1).

In order to apply the method of double fibration, we take tHfdng vectors of
V35043 andVs .1 according to the congruence mmodulo 5:
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(1) Whenn £ 4 mod 5, we set

5n+ 3 5n+ 3
— ( nl: )XnY4n+3X3+( n-+ )X2n+1Y3n+2X2y

2n+1
5n+ 3 5n+ 3
X3n+2Y2n+lX X4n+3Yn ,
+(2n + l) Y+ n Y
Wy = Xn+1y3 + Yn+le2’
Wy = Xn+le2 + Yn+1X2y,
W3 = Xn+lX2y + Yn+1X3.

(2) Whenn = 4 mod 5, we denota = 2m (rememben is even) and set

v = m+35m+2/(5n+3 XMYImH3 |y OmeSym-2 | 3
m+1 3m+2\ m

5m+2(5n+3 5n+3
X3m+1Y7m+2 2 3 X5m+2Y5m+1
" 3m+2(3m+1) YT em+ 2 Xy

5Sm+3(5n+ 3\ 7mi3u3
+3m+l(7m+3)x Yy,

and use the samg as above.

Lemma 4.4. The vectorgv, Wy, Wo, W) € V3543 X (V3,n+1)3 meet the conditions

in Lemmd2.P.

Proof. The linear independence wf, w,, w3 is apparent. Itis not élicult to check
that T(v,w;) = O for everyi, by using the formulae i§2. 1. Whenn % 4 mod 5,
wehavenox j<n+1withjbn+5)=(i+1)(h+1)fori=n2n+1,3n+2,
4n + 3. Hence by Lemma 2.1, for thos¢he bilinear map
(413) T(I’]) : CxiY5n+3—i X an+1—ij — Cxi—j+lY4n+3—i+j
is non-degenerate for arjyas far as the indices are non-negative. It follows that
T(V, Vn+1X3) — C<x4n+4, e X3n+3Yn+1>’
T(V, Vn+1X2y) C<X3n+3Yn+1, - X2n+2Y2n+2>,
T(V, Vn+1Xy2) C<X2n+2Y2n+2, . Xn+1Y3n+3>,
T(Va Vn+ly3) C<Xn+1Y3n+35 Y Y4I’l+4>’
whence the map (v, ) : Vani1 — Voana IS surjective. We leave it to the reader
to check similar surjectivity when = 4 (5). In that case, sinca = 2 (5), we
have noj with j(5n+5) = (i+ 1)(n+ 1) fori = m+ k(n+1),0< k < 3, and
i = 9m+ 5. Hence for thosethe map[(4.13) is non-degenerate for any releyant
again by Lemma2]1.
To see that
T(" V_\)/) = (T(’ Wl)’ T(’ WZ)’ T(’ W3)) V3,5n+3 - Vé‘)?zsln+4
is surjective (regardless af € Z/5), we note that the bilinear maps
T(I’])( Xn+1) : CxiY5n+3—i — Cxi+lY4n+3—i
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T(n)( Yn+1) : CXiY5n+3_i N Cxi—nY5l’l+4—i
are non-degenerate whenever the indices are non-negéafiolows that

T(VaneaxC, W) = (X4, ... XY4*3y 0,0),

T((an4n+3X2y’ X2n+1Y3n+2X)l2, X3n+2Y2n+1y3>’ W) ) (CY4n+4’ O, 0),

so that VQ’4n+4, 0, O) C V@3

oans4 IS contained in the image of (-, w). Similarly,
we see that (,CD, V0,4n+4) C VeB3

0an+4 1S contained in the image too. Finally, since

T(-, W) maps the spaces,,3x2y @ Vsn,3Xy? onto Vo an+4, we find using the above
results that (Vo an+4, 0) is also contained in the image. O

Thus, by the method of double bundle for (4.1®}sn.3 is birationally an
SL, x SLp-linearized vector bundl€ overG(3, V3 n.1). The elements«1, 1) €
SL, x Sy act on& by multiplication by—1. Let# be the universal sub bundle
over G(3,Vszns1). On deff the elements«1, 1) act also by-1 because both 3
andn + 1 are odd andr has odd rank. Therefo® = €& ® detF is PGL, x PGLy-
linearized. By the no-name lemma #6f, we then see that

PVasne3/SLa X SLy ~ PE’/SLy x SLy ~ P8 x (G(3, Vans1)/SLa X SLy).
By Propositio 3.BPV3sn.3/SLy x SL; is rational.

4.5. Thecaseb = 4 (5). Letn > 0 be an odd number. We use the3a + 3)-th
bi-transvectant

(4.14) T =T33 . V35ni4 X Vi3nia — Voonso.
Since dinVq 3n44 = 6n + 10 and dinY, 2n.2 = 6n + 9, we obtain a rational map
(4.15) V3,5n+4 e PV1,3n+4

as in [2.10). In order to check that this defines a double lsundé take the fol-
lowing vectors oiV3 sn.4 andVy ania:

3N+43n+4(5n+4 3n+4(5n+4
— X3n+3Y2n+lX3 3 X4n+4Yn 2
Y n+2 n+1(2n+1) H T Xy
5n+4 n+2 (5n+4
-3 X2n+1Y3n+3X _ XnY4n+4
(2n + 1) y 3n+4\ n Y.
W = (x3n+4 + Y3n+4)x + (X2n+3Yn+1 + xn+1Y2n+3)y‘

Lemma4.5. The vectorgv,w) € Vzsnia X V13044 Meet the conditions in Lemma

2.2.

Proof. We leave it to the reader to check thiatv,w) = 0. To show that the map
T(V,"): Visnta — Va2ns+2 IS surjective, we first note than5+ 6 and 31 + 4 are
coprime by the Euclidean algorithm. By Lemfmal2.1, the bdineap

T(3ﬂ+3) : CxiY5n+4—i X Cx3n+4—ij — Cxi—j+1Y2n+1—i+j
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is non-degenerate whenever the indices are non-negatige. sSNppose a vector
W = G.(X, Y)x+ G_(X, Y)yin Vi 3n4 satisfiesT (v, w') = 0. This is rewritten as
T(3n+3)(X3n+3Y2n+1,G_) — bOT(3n+3)(X4n+4Yn, G+),
T(3n+3)(x4n+4Yn G_) — blT(3n+3)(X2n+lY3n+3 G+)
T(3n+3)(X2n+1Y3n+3 G_) — b2-|—(3n+3)(XnY4n+4 G+)
for some constants;. ExpandingG.(X,Y) = %% o X¥™41YI, we obtain the
relation

@fineg = Cjo; (N+2<j<2n+3), o] =0 (N+4<j<3n+4),

J
aj = Cja 03 (0<j<n+1) =0 (+2<j<2n+2),
i

aj =C3jaj,nyg (0O<j<n+1), aj=0 (0<j<n),

wherec, are suitable non-zero constants. This is reduced to thioreta
0[8 = tiay, g = Gy 3 = d3a§n+4

for some constantdj, ande;" = O for otheri. Therefore the map(v,-): Viznia —
V2. 2n+2 has 1-dimensional kernel.

On the other hand, the surjectivity of the miBf, w): Vasnia — V2 2n.2 follows
by noticing that

T(V5n+4X3, W) = V2n+2X2, T(V5n+4y3, W) = V2n+2y2,
T (VsneaXy?, (3™ + Y3M4)%) = Vanioxy.
O

This lemma assures that, via (4.19),5,.4 becomes birationally an $lx SL,-
linearized vector bundl€& overPVj 3n.4. Sincen is odd, the elementst(, 1) €
SL, x SL, act by multiplication by-1 on both& and Opy,,,,,(1). Thus&' =
E ® Opv, 4,,4(1) is PGl x PGLy-linearized. Using the no-name lemma &, we
have

PV3’5n+4/SL2 X SL2 ~ PS//SLZ X SL2 ~ P14n+10 X (PV1’3n+4/SL2 X SLZ).
ThenPV3s0.4/SLy x SLy is rational by Corollary 312.

4.6. Thecase b = 7. We treatV37 which is excluded fron§4.3. We use the
(2, 3)-th bi-transvectant

(4.16) T=T%3:Vz7%x V33— Vou,
which defines a rational map
(4.17) V37 --> PV33

as in [2.10). We choose the following vectors\af; andVs 3:
(;)X3Y4x3 —9Y'xy + (I)XGY Xy + (;)X4Y3y3,
Y33 + X3xy? + (XY? + Y3)2.

Lemma4.6. The vectorgv,w) € V37 x V33 satisfy the conditions in LemrhaP.2.

\Y

w
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Proof. We leave it to the reader to check thatv,w) = 0 and thatw spans the
kernel of the maf (v, -) : Va3 — Va4 (cf. Proofd4.2 and 415). We shall show that
T(-,w): V37 = Va4 is surjective. First note that the bilinear map

T@: Xy x Cxlyl - ox-irlyl-i+l
is non-degenerate whenever the indices are non-negativd,&nd 5 are coprime
(Lemmd2.1). Then we have

T(V7y®,w) = T(V7y2, Y353) = Vaxy.

SinceT®)(V7, X3) = V., we haveT (V7x3,w) c Vax2 ® Vaxywith surjective projec-
tion T(V7x3, w) — Vax2. ThereforeV,x? is also contained in the image -, w).
Finally, sinceT(V7xy2, X3xy?) = Vay?, the spacé/sy? is contained in the image
too. m|

Thus we may apply the double bundle method to see hatl(4.8ke$V3;
birational to an Sk x SLy-linearized vector bundl€ overPV3 3. As before, after
twisting & by Opv,,(1), we use the no-name lemma to see that

(4.18) ]PV3,7/SL2 X SL2 ~ PS/SLz X SL2 ~ PlG X (PV3,3/SL2 X SLz).
ThenPV;7/SL; x SL; is rational by Corollary 312.
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