THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL CURVES

SHOUHEI MA

Abstract

The moduli spaces of trigonal curves are proven to be rational when the genus is divisible by 4 .

1. Introduction

A smooth projective curve is called trigonal if it carries a free g_{3}^{1}. When the curve has genus ≥ 5, such a pencil is unique if it exists. The object of our study is the moduli space \mathcal{T}_{g} of trigonal curves of genus $g \geq 5$. This space has been proven to be rational when $g \equiv 2(4)$ by Shepherd-Barron [9], and when g is odd in [7]. In the present article we prove that \mathcal{T}_{g} is rational in the left case $g \equiv 0(4)$, completing the following.
Theorem . The moduli space \mathcal{T}_{g} of trigonal curves of genus g is rational for every $g \geq 5$.

This can be seen as an analogue of the rationality of the moduli spaces of hyperelliptic curves due to Katsylo and Bogomolov [5], [2].

Note that \mathcal{T}_{g} is regarded as a sublocus of the moduli space \mathcal{M}_{g} of genus g curves. When g is large enough, it seems that \mathcal{T}_{g} has maximal dimension among the known rational subvarieties of \mathcal{M}_{g}. It would be interesting whether the tetragonal (and pentagonal) locus is rational as well. It is unirational by Arbarello-Cornalba [1], but at present known to be rational only in genus 7 ([3]). In another direction, Castorena and Ciliberto [4] shows that for $g \geq 23, \mathcal{T}_{g}$ has larger dimension than any other locus in \mathcal{M}_{g} obtained from a linear system on a surface.

We approach our problem from invariant theory for $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$. Let $V_{a, b}=$ $H^{0}\left(O_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(a, b)\right)$ be the space of bi-forms of bidegree (a, b) on $\mathbb{P}^{1} \times \mathbb{P}^{1}$, which is an irreducible representation of $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$. It is classically known that a general trigonal curve C of genus $g=4 N$ is canonically embedded in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ as a smooth curve of bidegree $(3,2 N+1)$. This is based on the fact that the canonical model of C lies on a unique rational normal scroll which is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. As a consequence, we have a natural birational equivalence

$$
\begin{equation*}
\mathcal{T}_{4 N} \sim \mathbb{P} V_{3,2 N+1} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} . \tag{1.1}
\end{equation*}
$$

Hence the problem is restated as follows.

[^0]Theorem 1.1. The quotient $\mathbb{P} V_{3, b} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational for every odd $b \geq 5$.
To prove this, we adopt the traditional and computational method of double bundle ([2], [10]) as follows. By examining the Clebsch-Gordan formula for $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$, we take a suitable $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-bilinear mapping (bi-transvectant)

$$
\begin{equation*}
T: V_{3, b} \times V_{a^{\prime}, b^{\prime}} \rightarrow V_{a^{\prime \prime}, b^{\prime \prime}} \tag{1.2}
\end{equation*}
$$

such that $\operatorname{dim} V_{a^{\prime}, b^{\prime}}>\operatorname{dim} V_{a^{\prime \prime}, b^{\prime \prime}}$. Putting $c=\operatorname{dim} V_{a^{\prime}, b^{\prime}}-\operatorname{dim} V_{a^{\prime \prime}, b^{\prime \prime}}$, this induces the rational map to the Grassmannian

$$
\begin{equation*}
V_{3, b} \rightarrow G\left(c, V_{a^{\prime}, b^{\prime}}\right), \quad v \mapsto \operatorname{Ker}(T(v, \cdot)) . \tag{1.3}
\end{equation*}
$$

We shall find a bi-transvectant for which (1.3) is well-defined and dominant. In that case, (1.3) makes $V_{3, b}$ birationally an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle over $G\left(c, V_{a^{\prime}, b^{\prime}}\right)$. Utilizing this bundle structure and taking care of -1 scalar action, we reduce the rationality of $\mathbb{P} V_{3, b} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ to a stable rationality of $G\left(c, V_{a^{\prime}, b^{\prime}}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$, which in turn can be shown in a more or less standard way.

The point for this proof is to choose the bi-transvectant T carefully so that (i) $a^{\prime}, b^{\prime}, c$ are odd (to care -1 scalar action) and that (ii) c is small (for $V_{3, b}$ to have larger dimension than $G\left(c, V_{a^{\prime}, b^{\prime}}\right)$). For that, we will provide T according to the congruence of b modulo 5 , based on some easy calculation in elementary number theory. Then the bulk of proof is devoted to the check of non-degeneracy of (1.3), which is facilitated by keeping c small but is still rather laborious.

The rest of the article is as follows. In $\$ 2.1$ we recall bi-transvectants. We explain the method of double bundle in $\$ 2.2$ In $\$ 3]$ we prepare some stable rationality results in advance, to which the rationality of $\mathbb{P} V_{3, b} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ will be eventually reduced. Then we prove Theorem 1.1] in \$4.

We work over the complex numbers. The Grassmannian $G(a, V)$ parametrizes a-dimensional linear subspaces of the vector space V. We shall use the notation ($[x, y],[X, Y]$) for the bi-homogeneous coordinate of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus elements of $V_{a, b}$ will be expressed as

$$
\begin{equation*}
\sum_{i} F_{i}(x, y) G_{i}(X, Y), \tag{1.4}
\end{equation*}
$$

where F_{i}, G_{i} are binary forms of degree a, b respectively.

2. Bi-transvectant

2.1. Bi-transvectant. Let V_{d} denote the SL_{2}-representation $H^{0}\left(O_{\mathbb{P}^{1}}(d)\right)$. Let $e \leq$ d. According to the Clebsch-Gordan decomposition

$$
\begin{equation*}
V_{d} \otimes V_{e}=\bigoplus_{r=0}^{e} V_{d+e-2 r}, \tag{2.1}
\end{equation*}
$$

there exists a unique (up to constant) SL_{2}-bilinear mapping

$$
\begin{equation*}
T^{(r)}: V_{d} \times V_{e} \rightarrow V_{d+e-2 r}, \tag{2.2}
\end{equation*}
$$

which is called the r-th transvectant. For two binary forms $F(X, Y) \in V_{d}$ and $G(X, Y) \in V_{e}$, we have the well-known explicit formula (cf. [8])

$$
\begin{equation*}
T^{(r)}(F, G)=\frac{(d-r)!}{d!} \frac{(e-r)!}{e!} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{\partial^{r} F}{\partial X^{r-i} \partial Y^{i}} \frac{\partial^{r} G}{\partial X^{i} \partial Y^{r-i}} . \tag{2.3}
\end{equation*}
$$

We will need this formula when $r=e$ and $r=e-1$.
The e-th transvectant $T^{(e)}: V_{d} \times V_{e} \rightarrow V_{d-e}$ is especially called the apolar covariant. By $\left([2.3), T^{(e)}(F, G)\right.$ is calculated by applying the differential polynomial $(d!)^{-1}(d-e)!G\left(-\partial_{Y}, \partial_{X}\right)$ to $F(X, Y)$. In particular, we have

$$
T^{(e)}\left(X^{i} Y^{d-i}, X^{e-j} Y^{j}\right)=\left\{\begin{array}{cl}
(-1)^{e-j}\binom{d}{i}^{-1}\binom{d-e}{i-j} X^{i-j} Y^{(d-e)-(i-j)}, & j \leq i, e-j \leq d-i, \\
0, & \text { otherwise. }
\end{array}\right.
$$

For the ($e-1$)-th transvectant $T^{(e-1)}: V_{d} \times V_{e} \rightarrow V_{d-e+2}$, we have

$$
T^{(e-1)}\left(\cdot, X^{e-j} Y^{j}\right)=(-1)^{e-j} \frac{1}{e} \frac{(d-e+1)!}{d!}\left\{j Y \partial_{X}^{j-1} \partial_{Y}^{e-j}-(e-j) X \partial_{X}^{j} \partial_{Y}^{e-j-1}\right\},
$$

where $\partial_{X}^{-1}=\partial_{Y}^{-1}=0$ by convention. Therefore

$$
T^{(e-1)}\left(X^{i} Y^{d-i}, X^{e-j} Y^{j}\right)=\left\{\begin{array}{cl}
A X^{i-j+1} Y^{(d-i)-(e-j)+1}, & j \leq i+1, e-j \leq d-i+1, \\
0, & \text { otherwise },
\end{array}\right.
$$

where

$$
A=(-1)^{e-j}\binom{d}{i}^{-1}\binom{d-e+2}{i-j+1} \frac{j(d+2)-(i+1) e}{e(d-e+2)} .
$$

We stress in particular that
Lemma 2.1. Let $0 \leq j \leq i+1$ and $0 \leq e-j \leq d-i+1$. The bilinear map

$$
\begin{equation*}
T^{(e-1)}: \mathbb{C} X^{i} Y^{d-i} \times \mathbb{C} X^{e-j} Y^{j} \rightarrow \mathbb{C} X^{i-j+1} Y^{(d-e+2)-(i-j+1)} \tag{2.4}
\end{equation*}
$$

is non-degenerate if and only if $j(d+2) \neq(i+1)$. This is always the case when $d+2$ is coprime to e.

Now we consider $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-representations. The space $V_{a, b}=H^{0}\left(O_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(a, b)\right)$ is the tensor representation $V_{a} \boxtimes V_{b}$. Substituting (2.1) into

$$
\begin{equation*}
V_{a, b} \otimes V_{a^{\prime}, b^{\prime}}=\left(V_{a} \otimes V_{a^{\prime}}\right) \boxtimes\left(V_{b} \otimes V_{b^{\prime}}\right), \tag{2.5}
\end{equation*}
$$

we obtain the Clebsch-Gordan decomposition for $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$,

$$
\begin{equation*}
V_{a, b} \otimes V_{a^{\prime}, b^{\prime}}=\bigoplus_{r, s} V_{a+a^{\prime}-2 r, b+b^{\prime}-2 s} \tag{2.6}
\end{equation*}
$$

where $0 \leq r \leq \min \left\{a, a^{\prime}\right\}$ and $0 \leq s \leq \min \left\{b, b^{\prime}\right\}$. To each irreducible summand $V_{a+a^{\prime}-2 r, b+b^{\prime}-2 s}$ is associated the (r, s)-th bi-transvectant

$$
\begin{equation*}
T^{(r, s)}: V_{a, b} \times V_{a^{\prime}, b^{\prime}} \rightarrow V_{a+a^{\prime}-2 r, b+b^{\prime}-2 s} . \tag{2.7}
\end{equation*}
$$

This $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-bilinear mapping is calculated from the above transvectants by

$$
\begin{equation*}
T^{(r, s)}\left(F \boxtimes G, F^{\prime} \boxtimes G^{\prime}\right)=T^{(r)}\left(F, F^{\prime}\right) \boxtimes T^{(s)}\left(G, G^{\prime}\right), \tag{2.8}
\end{equation*}
$$

where $F \in V_{a}, G \in V_{b}, F^{\prime} \in V_{a^{\prime}}$, and $G^{\prime} \in V_{b^{\prime}}$.
2.2. The method of double bundle. In $\$ 4$ we will use the method of double bundle ([2]) and its generalization ([10]). We here give some account in the present situation. Suppose we have a bi-transvectant

$$
\begin{equation*}
T=T^{(r, s)}: V_{a, b} \times V_{a^{\prime}, b^{\prime}} \rightarrow V_{a^{\prime \prime}, b^{\prime \prime}} \tag{2.9}
\end{equation*}
$$

such that $c=\operatorname{dim} V_{a^{\prime}, b^{\prime}}-\operatorname{dim} V_{a^{\prime \prime}, b^{\prime \prime}}$ is positive and that $\operatorname{dim} V_{a, b}>c \cdot \operatorname{dim} V_{a^{\prime \prime}, b^{\prime \prime}}$. Then we consider the $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-equivariant rational map

$$
\begin{equation*}
\varphi: V_{a, b} \rightarrow G\left(c, V_{a^{\prime}, b^{\prime}}\right), \quad v \mapsto \operatorname{Ker}(T(v, \cdot)) . \tag{2.10}
\end{equation*}
$$

We assume (hope) that

$$
\begin{equation*}
\varphi \text { is well-defined and dominant. } \tag{*}
\end{equation*}
$$

If this holds, then $V_{a, b}$ becomes birational to the unique component \mathcal{E} of the incidence

$$
\begin{equation*}
\mathcal{X}=\left\{(v, P) \in V_{a, b} \times G\left(c, V_{a^{\prime}, b^{\prime}}\right), \quad T(v, P) \equiv 0\right\} \tag{2.11}
\end{equation*}
$$

that dominates $G\left(c, V_{a^{\prime}, b^{\prime}}\right)$. Indeed, the first projection $\pi: \mathcal{X} \rightarrow V_{a, b}$ is isomorphic over the domain U of regularity of φ, and then the dominance of φ implies that $\pi^{-1}(U)$ is contained in \mathcal{E}. Since \mathcal{E} is (generically) a sub vector bundle of $V_{a, b} \times G\left(c, V_{a^{\prime}, b^{\prime}}\right)$ preserved under the $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-action, it is an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}-$ linearized vector bundle over $G\left(c, V_{a^{\prime}, b^{\prime}}\right)$. In this situation one might try to apply the no-name lemma to $\mathcal{E} \sim V_{a, b}$, taking care of the scalar action of $(\pm 1, \mp 1) \in$ $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$.

The non-degeneracy requirement (\$) may be checked as follows.
Lemma 2.2 (cf. [2]). The condition (\%) is satisfied if and only if there exists $\left(v, w_{1}, \cdots, w_{c}\right) \in V_{a, b} \times\left(V_{a^{\prime}, b^{\prime}}\right)^{c}$ such that
(i) $w_{1}, \cdots, w_{c} \in V_{a^{\prime}, b^{\prime}}$ are linearly independent,
(ii) $T\left(v, w_{i}\right)=0$ for every w_{i},
(iii) the map $T(v, \cdot): V_{a^{\prime}, b^{\prime}} \rightarrow V_{a^{\prime \prime}, b^{\prime \prime}}$ is surjective, and
(iv) the map $\left(T\left(\cdot, w_{1}\right), \cdots, T\left(\cdot, w_{c}\right)\right): V_{a, b} \rightarrow V_{a^{\prime \prime}, b^{\prime \prime}}^{\oplus c}$ is surjective.

Proof. Let $P \in G\left(c, V_{a^{\prime}, b^{\prime}}\right)$ be the span of w_{1}, \cdots, w_{c}. The conditions (ii) and (iii) mean that v is contained in the domain U of regularity of φ with $\varphi(v)=P$, whence $U \neq \emptyset$. Then (iv) implies that the fiber of the morphism $\varphi: U \rightarrow G\left(c, V_{a^{\prime}, b^{\prime}}\right)$ over P has the expected dimension $\operatorname{dim} V_{a, b}-\operatorname{dim} G\left(c, V_{a^{\prime}, b^{\prime}}\right)$. Hence $\varphi(U)$ has dimension $\geq \operatorname{dim} G\left(c, V_{a^{\prime}, b^{\prime}}\right)$, and so φ is dominant.

3. Some stable rationality

We set $\bar{G}=\mathrm{SL}_{2} \times \mathrm{SL}_{2} /(-1,-1)$. When $a, b>0$ are odd, the element $(-1,-1)$ of $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ acts on $V_{a, b}$ trivially so that \bar{G} acts on $V_{a, b}$. This linear \bar{G}-action is almost free if $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts on $\mathbb{P} V_{a, b}$ almost freely, that is, general bidegree (a, b) curves on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ have no non-trivial stabilizer.

Lemma 3.1. The group \bar{G} acts on $V_{1,1}^{\oplus 3}$ almost freely with the quotient $V_{1,1}^{\oplus 3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ rational.

Proof. The first assertion follows from the almost freeness of the $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}{ }^{-}$ action on $\left(\mathbb{P} V_{1,1}\right)^{3}$. For the second assertion, we first note that

$$
\begin{equation*}
V_{1,1}^{\oplus 3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim\left(V_{1,1}^{\oplus 3} / \mathrm{GL}_{2} \times \mathrm{GL}_{2}\right) \times \mathbb{C}^{\times} . \tag{3.1}
\end{equation*}
$$

The group $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ acts on $V_{1,1}$ almost transitively with the stabilizer of a general point isomorphic to GL_{2} (identify $V_{1,1}$ with $\operatorname{Hom}\left(V_{1}, V_{1}\right)$). Hence, applying the slice method to the first projection $V_{1,1}^{\oplus 3} \rightarrow V_{1,1}$, we obtain

$$
\begin{equation*}
V_{1,1}^{\oplus 3} / \mathrm{GL}_{2} \times \mathrm{GL}_{2} \sim V_{1,1}^{\oplus 2} / \mathrm{GL}_{2} \tag{3.2}
\end{equation*}
$$

where GL_{2} acts on $V_{1,1}^{\oplus 2}$ linearly in the right hand side. Then the quotient $V_{1,1}^{\oplus 2} / \mathrm{GL}_{2}$ is rational by the result of Katsylo [6].

A variety X is called stably rational of level N if $X \times \mathbb{P}^{N}$ is rational. In $\$ 4$ the proof of Theorem 1.1 will be finally reduced to the following stable rationality results.
Corollary 3.2. Let $n>0$ be an odd number. Then $\mathbb{P} V_{1, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ and $\mathbb{P} V_{3, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ are stably rational of level 13 .

Proof. We treat the case of $V_{1, n}$. For dimensional reason we may assume $n>3$. Then the group \bar{G} acts on $V_{1, n}$ almost freely. Hence we may apply the no-name lemma to both projections $V_{1,1}^{\oplus 3} \oplus V_{1, n} \rightarrow V_{1, n}$ and $V_{1,1}^{\oplus 3} \oplus V_{1, n} \rightarrow V_{1,1}^{\oplus 3}$ to see that

$$
\begin{equation*}
\left(V_{1, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \times \mathbb{C}^{12} \sim\left(V_{1,1}^{\oplus 3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \times \mathbb{C}^{2 n+2} \tag{3.3}
\end{equation*}
$$

By Lemma $3.1 V_{1, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is stably rational of level 12 . Since $V_{1, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is birational to $\mathbb{C}^{\times} \times\left(\mathbb{P} V_{1, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)$, our assertion is proved. The case of $V_{3, n}$ is similar.

Proposition 3.3. When $n>1$ is odd, $G\left(3, V_{3, n}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is stably rational of level 2.

Proof. Let $\mathcal{F} \rightarrow G\left(3, V_{3, n}\right)$ be the universal sub vector bundle of rank 3 , on which $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ acts equivariantly. The elements $(\pm 1, \mp 1) \in \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act on \mathcal{F} by multiplication by -1 . Since \mathcal{F} has odd rank, they act on the line bundle $\operatorname{det} \mathcal{F}$ also by -1 . Hence the bundle $\mathcal{F}^{\prime}=\mathcal{F} \otimes \operatorname{det} \mathcal{F}$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized. Note that $\mathbb{P F}$ is canonically identified with $\mathbb{P F}^{\prime}$. Since $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts on $G\left(3, V_{3, n}\right)$ almost freely, we can apply the no-name lemma to \mathcal{F}^{\prime} to see that

$$
\begin{equation*}
\mathbb{P F} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P} \mathcal{F}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{2} \times\left(G\left(3, V_{3, n}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{3.4}
\end{equation*}
$$

Thus it suffices to show that $\mathbb{P F} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational.
Regarding $\mathbb{P F}$ as an incidence in $G\left(3, V_{3, n}\right) \times \mathbb{P} V_{3, n}$, we have second projection $\mathbb{P F} \rightarrow \mathbb{P} V_{3, n}$. Its fiber over $\mathbb{C l} \in \mathbb{P} V_{3, n}$ is the sub Grassmannian in $G\left(3, V_{3, n}\right)$ of 3-planes containing $\mathbb{C} l$, and hence identified with $G\left(2, V_{3, n} / \mathbb{C} l\right)$. Therefore, if $\mathcal{G} \rightarrow \mathbb{P} V_{3, n}$ is the universal quotient bundle of rank $\operatorname{dim} V_{3, n}-1$, then $\mathbb{P F}$ is identified with the relative Grassmannian $G(2, \mathcal{G})$. The elements $(\pm 1, \mp 1) \in \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act on \mathcal{G} by multiplication by -1 , and also on $O_{\mathbb{P} V_{3, n}}(1)$ by -1 . Thus the bundle $\mathcal{G}^{\prime}=$ $\mathcal{G} \otimes O_{P_{V_{3, n}}}(1)$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized, and $G(2, \mathcal{G})$ is canonically isomorphic to $G\left(2, \mathcal{G}^{\prime}\right)$. Since $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts on $\mathbb{P} V_{3, n}$ almost freely, we can use the no-name
lemma to trivialize the $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-bundle \mathcal{G}^{\prime} locally in the Zariski topology. Hence we have

$$
\begin{equation*}
G\left(2, \mathcal{G}^{\prime}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim G\left(2, \mathbb{C}^{4 n+3}\right) \times\left(\mathbb{P} V_{3, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{3.5}
\end{equation*}
$$

Now our assertion follows from Corollary 3.2
We also treat $G\left(3, V_{3,1}\right)$.
Proposition 3.4. The quotient $G\left(3, V_{3,1}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is stably rational of level 5 .
Proof. As before, let \mathcal{F} be the universal sub bundle over $G\left(3, V_{3,1}\right)$. Using the no-name lemma for the $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized bundle $\mathcal{F}^{\oplus 2} \otimes \operatorname{det} \mathcal{F}$, we obtain

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{F}^{\oplus 2}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{5} \times\left(G\left(3, V_{3,1}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{3.6}
\end{equation*}
$$

On the other hand, we have a natural $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-equivariant morphism

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{F}^{\oplus 2}\right) \rightarrow \mathbb{P}\left(V_{3,1}^{\oplus 2}\right), \quad\left(P, \mathbb{C}\left(v_{1}, v_{2}\right)\right) \mapsto \mathbb{C}\left(v_{1}, v_{2}\right) \tag{3.7}
\end{equation*}
$$

where $v_{1}, v_{2} \in V_{3,1}$ are vectors contained in the 3-plane P. This is birationally the projectivization of a quotient bundle \mathcal{G} of $V_{3,1} \times \mathbb{P}\left(V_{3,1}^{\oplus 2}\right)$. Applying the no-name lemma to the $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized bundle $\mathcal{G} \otimes O_{\mathbb{P}\left(V_{3,1}^{\oplus 2}\right)}(1)$, we have

$$
\mathbb{P} \mathcal{G} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{5} \times\left(\mathbb{P}\left(V_{3,1}^{\oplus 2}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)
$$

Thus it suffices to prove that $\mathbb{P}\left(V_{3,1}^{\oplus 2}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is stably rational of level 5 .
Consider the representation $W=V_{1,1} \oplus V_{3,1}^{\oplus 2}$. We apply the no-name lemma to both projections $\mathbb{P} W \rightarrow \mathbb{P}\left(V_{3,1}^{\oplus 2}\right)$ and $\mathbb{P} W \rightarrow \mathbb{P}\left(V_{1,1} \oplus V_{3,1}\right)$ to see that

$$
\begin{equation*}
\mathbb{C}^{4} \times\left(\mathbb{P}\left(V_{3,1}^{\oplus 2}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \sim \mathbb{C}^{8} \times\left(\mathbb{P}\left(V_{1,1} \oplus V_{3,1}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{3.8}
\end{equation*}
$$

Using the slice method for the projection $V_{1,1} \oplus V_{3,1} \rightarrow V_{1,1}$, we then have

$$
\begin{equation*}
\left(V_{1,1} \oplus V_{3,1}\right) / \mathrm{GL}_{2} \times \mathrm{GL}_{2} \sim V_{3,1} / \mathrm{GL}_{2} \tag{3.9}
\end{equation*}
$$

Finally, $V_{3,1} / \mathrm{GL}_{2}$ is rational by Katsylo [6].

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the method of double bundle as explained in $\$ 2.2$. We provide the bi-transvectants according to the congruence of b modulo 5 , based on dimensional calculation for the representations involved. The exceptional case $b=7$ requires a separate treatment.
4.1. The case $b \equiv 0$ (5). Let $n>0$ be an odd number. We consider the bi-apolar covariant

$$
\begin{equation*}
T=T^{(3, n)}: V_{3,5 n} \times V_{3, n} \rightarrow V_{0,4 n} \tag{4.1}
\end{equation*}
$$

Since $\operatorname{dim} V_{3, n}=4 n+4$ and $\operatorname{dim} V_{0,4 n}=4 n+1$, we obtain a rational map

$$
\begin{equation*}
V_{3,5 n} \rightarrow G\left(3, V_{3, n}\right) \tag{4.2}
\end{equation*}
$$

as in (2.10). We take vectors $v \in V_{3,5 n}, \vec{w}=\left(w_{1}, w_{2}, w_{3}\right) \in\left(V_{3, n}\right)^{3}$ by

$$
\begin{gathered}
v=\binom{5 n}{n} X^{n} Y^{4 n} x^{3}+3\binom{5 n}{2 n} X^{2 n} Y^{3 n} x^{2} y+3\binom{5 n}{2 n} X^{3 n} Y^{2 n} x y^{2}+\binom{5 n}{n} X^{4 n} Y^{n} y^{3}, \\
w_{1}=Y^{n} x^{3}-X^{n} x^{2} y, \\
w_{2}=Y^{n} x^{2} y-X^{n} x y^{2}, \\
w_{3}=Y^{n} x y^{2}-X^{n} y^{3} .
\end{gathered}
$$

Lemma 4.1. The vectors $(v, \vec{w}) \in V_{3,5 n} \times\left(V_{3, n}\right)^{3}$ satisfy the conditions in Lemma 2.2

Proof. The three vectors $w_{1}, w_{2}, w_{3} \in V_{3, n}$ are apparently linearly independent. That $T\left(v, w_{i}\right)=0$ is checked by using the formulae in $\$ 2.1$. The map $T(v, \cdot): V_{3, n} \rightarrow V_{0,4 n}$ is surjective because

$$
\begin{aligned}
& T\left(v, V_{n} x^{3}\right)=\mathbb{C}\left\langle X^{4 n}, \cdots, X^{3 n} Y^{n}\right\rangle, \quad T\left(v, V_{n} x^{2} y\right)=\mathbb{C}\left\langle X^{3 n} Y^{n}, \cdots, X^{2 n} Y^{2 n}\right\rangle, \\
& T\left(v, V_{n} x y^{2}\right)=\mathbb{C}\left\langle X^{2 n} Y^{2 n}, \cdots, X^{n} Y^{3 n}\right\rangle, \quad T\left(v, V_{n} y^{3}\right)=\mathbb{C}\left\langle X^{n} Y^{3 n}, \cdots, Y^{4 n}\right\rangle .
\end{aligned}
$$

To see the surjectivity of $T(\cdot, \vec{w}): V_{3,5 n} \rightarrow V_{0,4 n}^{\oplus 3}$, we note that

$$
T\left(V_{5 n} x^{3} \oplus V_{5 n} y^{3}, \vec{w}\right)=\left(V_{0,4 n}, 0, V_{0,4 n}\right) \subset V_{0,4 n}^{\oplus 3} .
$$

Since $T\left(V_{5 n} x^{2} y, w_{2}\right)=V_{0,4 n}$, then $\left(0, V_{0,4 n}, 0\right) \subset V_{0,4 n}^{\oplus 3}$ is also contained in the image of $T(\cdot, \vec{w})$.

By this lemma, we may apply the double bundle method so that via (4.2), $V_{3,5 n}$ becomes birationally an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle \mathcal{E} over $G\left(3, V_{3, n}\right)$. Note that \mathcal{E} is a subbundle of $V_{3,5 n} \times G\left(3, V_{3, n}\right)$. Since both 3 and $5 n$ are odd, the elements $(\pm 1, \mp 1) \in \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act on \mathcal{E} by multiplication by -1 . On the other hand, $(\pm 1, \mp 1)$ also act by -1 on the universal sub bundle \mathcal{F} over $G\left(3, V_{3, n}\right)$. Since \mathcal{F} has odd rank 3 , then the bundle $\mathcal{E}^{\prime}=\mathcal{E} \otimes \operatorname{det} \mathcal{F}$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized. We thus have

$$
\begin{equation*}
\mathbb{P} V_{3,5 n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P} \mathcal{E} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \tag{4.3}
\end{equation*}
$$

The group $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts on $G\left(3, V_{3, n}\right)$ almost freely. Therefore we can use the no-name lemma for \mathcal{E}^{\prime} to obtain

$$
\begin{equation*}
\mathbb{P} V_{3,5 n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{8 n} \times\left(G\left(3, V_{3, n}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{4.4}
\end{equation*}
$$

Comparing this with Proposition 3.3, we see that $\mathbb{P} V_{3,5 n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational for $n>1$. When $n=1, \mathbb{P} V_{3,5} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational by Proposition 3.4,
4.2. The case $b \equiv 1$ (5). Let $n>0$ be an even number. We consider the bi-apolar covariant

$$
\begin{equation*}
T=T^{(1,3 n+1)}: V_{3,5 n+1} \times V_{1,3 n+1} \rightarrow V_{2,2 n} \tag{4.5}
\end{equation*}
$$

Since $\operatorname{dim} V_{1,3 n+1}=6 n+4$ and $\operatorname{dim} V_{2,2 n}=6 n+3$, this defines a rational map

$$
\begin{equation*}
V_{3,5 n+1} \cdots \mathbb{P} V_{1,3 n+1} \tag{4.6}
\end{equation*}
$$

as in (2.10). In order to show that this determines a double bundle, we take the following vectors of $V_{3,5 n+1}$ and $V_{1,3 n+1}$:

$$
\begin{aligned}
v= & \binom{5 n+1}{2 n} X^{3 n+1} Y^{2 n} x^{3}+3\binom{5 n+1}{n} X^{4 n+1} Y^{n} x^{2} y \\
& +3\binom{5 n+1}{2 n} X^{2 n} Y^{3 n+1} x y^{2}+\binom{5 n+1}{n} X^{n} Y^{4 n+1} y^{3} \\
w= & \left(X^{3 n+1}-Y^{3 n+1}\right) x-\left(X^{n} Y^{2 n+1}-X^{2 n+1} Y^{n}\right) y .
\end{aligned}
$$

Lemma 4.2. The vectors $(v, w) \in V_{3,5 n+1} \times V_{1,3 n+1}$ meet the conditions in Lemma 2.2

Proof. One calculates that $T(v, w)=0$ using the formulae in $\$ 2.1$. Conversely, suppose we have a vector $w^{\prime}=G_{+}(X, Y) x+G_{-}(X, Y) y$ in $V_{1,3 n+1}$ with $T\left(v, w^{\prime}\right)=0$. Then we have

$$
\begin{aligned}
T^{(3 n+1)}\left(X^{n} Y^{4 n+1}, G_{+}\right) & =b_{0} T^{(3 n+1)}\left(X^{2 n} Y^{3 n+1}, G_{-}\right), \\
T^{(3 n+1)}\left(X^{2 n} Y^{3 n+1}, G_{+}\right) & =b_{1} T^{(3 n+1)}\left(X^{4 n+1} Y^{n}, G_{-}\right), \\
T^{(3 n+1)}\left(X^{4 n+1} Y^{n}, G_{+}\right) & =b_{2} T^{(3 n+1)}\left(X^{3 n+1} Y^{2 n}, G_{-}\right)
\end{aligned}
$$

for suitable constants b_{j}. Expanding $G_{ \pm}=\sum_{i} \alpha_{i}^{ \pm} X^{3 n+1-i} Y^{i}$, we obtain

$$
\begin{aligned}
\alpha_{i}^{+}=c_{1 i} \alpha_{i+n}^{-}(0 \leq i \leq n), & \alpha_{i}^{-}=0(0 \leq i \leq n-1), \\
\alpha_{i}^{+}=c_{2 i} \alpha_{i+2 n+1}^{-}(0 \leq i \leq n), & \alpha_{i}^{+}=0(n+1 \leq i \leq 2 n), \\
\alpha_{i+n}^{+}=c_{3 i} \alpha_{i}^{-}(n+1 \leq i \leq 2 n+1), & \alpha_{i}^{-}=0(2 n+2 \leq i \leq 3 n+1),
\end{aligned}
$$

for some fixed constants c_{*}. This reduces to the relations

$$
\alpha_{0}^{+}=d_{1} \alpha_{3 n+1}^{+}=d_{2} \alpha_{n}^{-}=d_{3} \alpha_{2 n+1}^{-}
$$

where d_{j} are appropriate constants, and $\alpha_{i}^{ \pm}=0$ for other i. Hence the map $T(v, \cdot): V_{1,3 n+1} \rightarrow V_{2,2 n}$ has 1-dimensional kernel, and so is surjective. We also see that the map $T(\cdot, w): V_{3,5 n+1} \rightarrow V_{2,2 n}$ is surjective, noticing that

$$
\begin{gathered}
T\left(V_{5 n+1} y^{3}, w\right)=V_{2 n} y^{2}, \quad T\left(V_{5 n+1} x^{3}, w\right)=V_{2 n} x^{2} \\
T\left(V_{5 n+1} x y^{2},\left(X^{3 n+1}-Y^{3 n+1}\right) x\right)=V_{2 n} x y .
\end{gathered}
$$

Thus we can use the method of double bundle to see that via (4.6), $V_{3,5 n+1}$ becomes birational to an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle \mathcal{E} over $\mathbb{P} V_{1,3 n+1}$. As before, the elements $(\pm 1, \mp 1) \in \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act by multiplication by -1 on both \mathcal{E} (which is a subbundle of $V_{3,5 n+1} \times \mathbb{P} V_{1,3 n+1}$) and $O_{\mathbb{P} V_{1,3 n+1}}(1)$. Hence the bundle $\mathcal{E}^{\prime}=\mathcal{E} \otimes O_{\mathbb{P} V_{1,3 n+1}}(1)$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized. The group $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts almost freely on $\mathbb{P} V_{1,3 n+1}$. By the no-name lemma for \mathcal{E}^{\prime}, we obtain

$$
\begin{equation*}
\mathbb{P} V_{3,5 n+1} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{14 n+4} \times\left(\mathbb{P} V_{1,3 n+1} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{4.7}
\end{equation*}
$$

Therefore $\mathbb{P}_{3,5 n+1} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational by Corollary 3.2
4.3. The case $b \equiv 2$ (5). Let $n>0$ be an odd number. We use the bi-apolar covariant

$$
\begin{equation*}
T=T^{(3, n)}: V_{3,5 n+2} \times V_{3, n} \rightarrow V_{0,4 n+2} . \tag{4.8}
\end{equation*}
$$

Since $\operatorname{dim} V_{3, n}=4 n+4$ and $\operatorname{dim} V_{0,4 n+2}=4 n+3$, we obtain as in (2.10) a rational map

$$
\begin{equation*}
V_{3,5 n+2} \mapsto \mathbb{P} V_{3, n} . \tag{4.9}
\end{equation*}
$$

To see that this defines a double bundle, we take vectors in $V_{3,5 n+2}$ and $V_{3, n}$ by

$$
\begin{gathered}
v=X^{n} Y^{4 n+2} x^{3}+X^{2 n+1} Y^{3 n+1} x^{2} y+X^{3 n+1} Y^{2 n+1} x y^{2}+X^{4 n+2} Y^{n} y^{3}, \\
w=Y^{n} x^{2} y-X^{n} x y^{2} .
\end{gathered}
$$

Lemma 4.3. The vectors $(v, w) \in V_{3,5 n+2} \times V_{3, n}$ satisfy the conditions in Lemma 2.2

Proof. It is immediate to check that $T(v, w)=0$. The map $T(v, \cdot): V_{3, n} \rightarrow V_{0,4 n+2}$ is surjective because

$$
\begin{aligned}
T\left(v, V_{n} x^{3}\right) & =\mathbb{C}\left\langle X^{4 n+2}, \cdots, X^{3 n+2} Y^{n}\right\rangle, \\
T\left(v, V_{n} x^{2} y\right) & =\mathbb{C}\left\langle X^{3 n+1} Y^{n+1}, \cdots, X^{2 n+1} Y^{2 n+1}\right\rangle, \\
T\left(v, V_{n} x y^{2}\right) & =\mathbb{C}\left\langle X^{2 n+1} Y^{2 n+1}, \cdots, X^{n+1} Y^{3 n+1}\right\rangle, \\
T\left(v, V_{n} y^{3}\right) & =\mathbb{C}\left\langle X^{n} Y^{3 n+2}, \cdots, Y^{4 n+2}\right\rangle .
\end{aligned}
$$

On the other hand, we have $T\left(V_{5 n+2} x y^{2}, w\right)=V_{0,4 n+2}$ so that the map $T(\cdot, w)$: $V_{3,5 n+2} \rightarrow V_{0,4 n+2}$ is also surjective.

This lemma enables the application of the method of double bundle. Therefore the map (4.9) makes $V_{3,5 n+2}$ birationally an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle \mathcal{E} over $\mathbb{P} V_{3, n}$. The elements $(\pm 1, \mp 1) \in \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act on \mathcal{E} by multiplication by -1 . Since both 3 and n are odd, $(\pm 1, \mp 1)$ also act by -1 on $O_{\mathbb{P} V_{3, n}}(1)$. Thus the bundle $\mathcal{E}^{\prime}=\mathcal{E} \otimes O_{\mathbb{P} V_{3, n}}(1)$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized. When $n>1, \mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ acts on $\mathbb{P} V_{3, n}$ almost freely. Then by the no-name lemma we have

$$
\begin{equation*}
\mathbb{P} V_{3,5 n+2} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{16 n+8} \times\left(\mathbb{P} V_{3, n} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{4.10}
\end{equation*}
$$

By Corollary 3.2, we see that $\mathbb{P} V_{3,5 n+2} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational for $n>1$.
This argument does not work for the case $n=1$ because a general point of $\mathbb{P} V_{3,1}$ has the Klein 4 -group as its stabilizer. We treat this case in $\$ 4.6$
4.4. The case $b \equiv 3$ (5). Let $n>0$ be an even number. We consider the ($3, n$)-th bi-transvectant

$$
\begin{equation*}
T=T^{(3, n)}: V_{3,5 n+3} \times V_{3, n+1} \rightarrow V_{0,4 n+4} . \tag{4.11}
\end{equation*}
$$

Since $\operatorname{dim} V_{3, n+1}=4 n+8$ and $\operatorname{dim} V_{0,4 n+4}=4 n+5$, this induces a rational map as in (2.10),

$$
\begin{equation*}
V_{3,5 n+3} \rightarrow G\left(3, V_{3, n+1}\right) . \tag{4.12}
\end{equation*}
$$

In order to apply the method of double fibration, we take the following vectors of $V_{3,5 n+3}$ and $V_{3, n+1}$ according to the congruence of n modulo 5:
(1) When $n \neq 4 \bmod 5$, we set

$$
\begin{aligned}
v= & \binom{5 n+3}{n} X^{n} Y^{4 n+3} x^{3}+\binom{5 n+3}{2 n+1} X^{2 n+1} Y^{3 n+2} x^{2} y \\
& +\binom{5 n+3}{2 n+1} X^{3 n+2} Y^{2 n+1} x y^{2}+\binom{5 n+3}{n} X^{4 n+3} Y^{n} y^{3}, \\
w_{1}= & X^{n+1} y^{3}+Y^{n+1} x y^{2}, \\
w_{2}= & X^{n+1} x y^{2}+Y^{n+1} x^{2} y, \\
w_{3}= & X^{n+1} x^{2} y+Y^{n+1} x^{3} .
\end{aligned}
$$

(2) When $n \equiv 4 \bmod 5$, we denote $n=2 m$ (remember n is even) and set

$$
\begin{aligned}
v= & \left\{\frac{7 m+3}{m+1} \frac{5 m+2}{3 m+2}\binom{5 n+3}{m} X^{m} Y^{9 m+3}+X^{9 m+5} Y^{m-2}\right\} x^{3} \\
& +3 \frac{5 m+2}{3 m+2}\binom{5 n+3}{3 m+1} X^{3 m+1} Y^{7 m+2} x^{2} y+3\binom{5 n+3}{5 m+2} X^{5 m+2} Y^{5 m+1} x y^{2} \\
& +\frac{5 m+3}{3 m+1}\binom{5 n+3}{7 m+3} X^{7 m+3} Y^{3 m} y^{3},
\end{aligned}
$$

and use the same w_{i} as above.
Lemma 4.4. The vectors $\left(v, w_{1}, w_{2}, w_{3}\right) \in V_{3,5 n+3} \times\left(V_{3, n+1}\right)^{3}$ meet the conditions in Lemma 2.2

Proof. The linear independence of w_{1}, w_{2}, w_{3} is apparent. It is not difficult to check that $T\left(v, w_{i}\right)=0$ for every i, by using the formulae in $\mathbb{\$ 2 . 1}$. When $n \neq 4 \bmod 5$, we have no $0 \leq j \leq n+1$ with $j(5 n+5)=(i+1)(n+1)$ for $i=n, 2 n+1,3 n+2$, $4 n+3$. Hence by Lemma 2.1, for those i the bilinear map

$$
\begin{equation*}
T^{(n)}: \mathbb{C} X^{i} Y^{5 n+3-i} \times \mathbb{C} X^{n+1-j} Y^{j} \rightarrow \mathbb{C} X^{i-j+1} Y^{4 n+3-i+j} \tag{4.13}
\end{equation*}
$$

is non-degenerate for any j, as far as the indices are non-negative. It follows that

$$
\begin{aligned}
T\left(v, V_{n+1} x^{3}\right) & =\mathbb{C}\left\langle X^{4 n+4}, \cdots, X^{3 n+3} Y^{n+1}\right\rangle, \\
T\left(v, V_{n+1} x^{2} y\right) & =\mathbb{C}\left\langle X^{3 n+3} Y^{n+1}, \cdots, X^{2 n+2} Y^{2 n+2}\right\rangle, \\
T\left(v, V_{n+1} x y^{2}\right) & =\mathbb{C}\left\langle X^{2 n+2} Y^{2 n+2}, \cdots, X^{n+1} Y^{3 n+3}\right\rangle, \\
T\left(v, V_{n+1} y^{3}\right) & =\mathbb{C}\left\langle X^{n+1} Y^{3 n+3}, \cdots, Y^{4 n+4}\right\rangle,
\end{aligned}
$$

whence the map $T(v, \cdot): V_{3, n+1} \rightarrow V_{0,4 n+4}$ is surjective. We leave it to the reader to check similar surjectivity when $n \equiv 4$ (5). In that case, since $m \equiv 2$ (5), we have no j with $j(5 n+5)=(i+1)(n+1)$ for $i=m+k(n+1), 0 \leq k \leq 3$, and $i=9 m+5$. Hence for those i the map (4.13) is non-degenerate for any relevant j, again by Lemma 2.1 .

To see that

$$
T(\cdot, \vec{w})=\left(T\left(\cdot, w_{1}\right), T\left(\cdot, w_{2}\right), T\left(\cdot, w_{3}\right)\right): V_{3,5 n+3} \rightarrow V_{0,4 n+4}^{\oplus 3}
$$

is surjective (regardless of $[n] \in \mathbb{Z} / 5$), we note that the bilinear maps

$$
T^{(n)}\left(\cdot, X^{n+1}\right): \mathbb{C} X^{i} Y^{5 n+3-i} \rightarrow \mathbb{C} X^{i+1} Y^{4 n+3-i}
$$

$$
T^{(n)}\left(\cdot, Y^{n+1}\right): \mathbb{C} X^{i} Y^{5 n+3-i} \rightarrow \mathbb{C} X^{i-n} Y^{5 n+4-i}
$$

are non-degenerate whenever the indices are non-negative. It follows that

$$
\begin{gathered}
T\left(V_{5 n+3} x^{3}, \vec{w}\right)=\left(\left\langle X^{4 n+4}, \cdots, X Y^{4 n+3}\right\rangle, 0,0\right) \\
T\left(\left\langle X^{n} Y^{4 n+3} x^{2} y, X^{2 n+1} Y^{3 n+2} x y^{2}, X^{3 n+2} Y^{2 n+1} y^{3}\right\rangle, \vec{w}\right) \supset\left(\mathbb{C} Y^{4 n+4}, 0,0\right),
\end{gathered}
$$

so that $\left(V_{0,4 n+4}, 0,0\right) \subset V_{0,4 n+4}^{\oplus 3}$ is contained in the image of $T(\cdot, \vec{w})$. Similarly, we see that $\left(0,0, V_{0,4 n+4}\right) \subset V_{0,4 n+4}^{\oplus 3}$ is contained in the image too. Finally, since $T\left(\cdot, w_{2}\right)$ maps the space $V_{5 n+3} x^{2} y \oplus V_{5 n+3} x y^{2}$ onto $V_{0,4 n+4}$, we find using the above results that $\left(0, V_{0,4 n+4}, 0\right)$ is also contained in the image.

Thus, by the method of double bundle for (4.12), $V_{3,5 n+3}$ is birationally an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle \mathcal{E} over $G\left(3, V_{3, n+1}\right)$. The elements $(\pm 1, \mp 1) \in$ $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act on \mathcal{E} by multiplication by -1 . Let \mathcal{F} be the universal sub bundle over $G\left(3, V_{3, n+1}\right)$. On $\operatorname{det} \mathcal{F}$ the elements $(\pm 1, \mp 1)$ act also by -1 because both 3 and $n+1$ are odd and \mathcal{F} has odd rank. Therefore $\mathcal{E}^{\prime}=\mathcal{E} \otimes \operatorname{det} \mathcal{F}$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}-$ linearized. By the no-name lemma for \mathcal{E}^{\prime}, we then see that

$$
\mathbb{P} V_{3,5 n+3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P} \mathcal{E}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{8 n} \times\left(G\left(3, V_{3, n+1}\right) / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)
$$

By Proposition 3.3, $\mathbb{P} V_{3,5 n+3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational.
4.5. The case $b \equiv 4$ (5). Let $n>0$ be an odd number. We use the $(1,3 n+3)$-th bi-transvectant

$$
\begin{equation*}
T=T^{(1,3 n+3)}: V_{3,5 n+4} \times V_{1,3 n+4} \rightarrow V_{2,2 n+2} \tag{4.14}
\end{equation*}
$$

Since $\operatorname{dim} V_{1,3 n+4}=6 n+10$ and $\operatorname{dim} V_{2,2 n+2}=6 n+9$, we obtain a rational map

$$
\begin{equation*}
V_{3,5 n+4} \rightarrow \mathbb{P} V_{1,3 n+4} \tag{4.15}
\end{equation*}
$$

as in (2.10). In order to check that this defines a double bundle, we take the following vectors of $V_{3,5 n+4}$ and $V_{1,3 n+4}$:

$$
\begin{aligned}
v= & \frac{3 n+4}{n+2} \frac{3 n+4}{n+1}\binom{5 n+4}{2 n+1} X^{3 n+3} Y^{2 n+1} x^{3}+3 \frac{3 n+4}{n+1}\binom{5 n+4}{n} X^{4 n+4} Y^{n} x^{2} y \\
& -3\binom{5 n+4}{2 n+1} X^{2 n+1} Y^{3 n+3} x y^{2}-\frac{n+2}{3 n+4}\binom{5 n+4}{n} X^{n} Y^{4 n+4} y^{3}, \\
w= & \left(X^{3 n+4}+Y^{3 n+4}\right) x+\left(X^{2 n+3} Y^{n+1}+X^{n+1} Y^{2 n+3}\right) y .
\end{aligned}
$$

Lemma 4.5. The vectors $(v, w) \in V_{3,5 n+4} \times V_{1,3 n+4}$ meet the conditions in Lemma 2.2

Proof. We leave it to the reader to check that $T(v, w)=0$. To show that the map $T(v, \cdot): V_{1,3 n+4} \rightarrow V_{2,2 n+2}$ is surjective, we first note that $5 n+6$ and $3 n+4$ are coprime by the Euclidean algorithm. By Lemma 2.1, the bilinear map

$$
T^{(3 n+3)}: \mathbb{C} X^{i} Y^{5 n+4-i} \times \mathbb{C} X^{3 n+4-j} Y^{j} \rightarrow \mathbb{C} X^{i-j+1} Y^{2 n+1-i+j}
$$

is non-degenerate whenever the indices are non-negative. Now suppose a vector $w^{\prime}=G_{+}(X, Y) x+G_{-}(X, Y) y$ in $V_{1,3 n+4}$ satisfies $T\left(v, w^{\prime}\right)=0$. This is rewritten as

$$
\begin{aligned}
T^{(3 n+3)}\left(X^{3 n+3} Y^{2 n+1}, G_{-}\right) & =b_{0} T^{(3 n+3)}\left(X^{4 n+4} Y^{n}, G_{+}\right), \\
T^{(3 n+3)}\left(X^{4 n+4} Y^{n}, G_{-}\right) & =b_{1} T^{(3 n+3)}\left(X^{2 n+1} Y^{3 n+3}, G_{+}\right), \\
T^{(3 n+3)}\left(X^{2 n+1} Y^{3 n+3}, G_{-}\right) & =b_{2} T^{(3 n+3)}\left(X^{n} Y^{4 n+4}, G_{+}\right),
\end{aligned}
$$

for some constants b_{j}. Expanding $G_{ \pm}(X, Y)=\sum_{j=0}^{3 n+4} \alpha_{j}^{ \pm} X^{3 n+4-j} Y^{j}$, we obtain the relation

$$
\begin{array}{rlll}
\alpha_{j+n+1}^{+}=c_{1 j} \alpha_{j}^{-} & (n+2 \leq j \leq 2 n+3), & & \alpha_{j}^{-}=0 \\
\alpha_{j}^{+}=c_{2 j} \alpha_{j+2 n+3}^{-} & (0 \leq j \leq n+4 \leq j \leq 3 n+4), \\
\alpha_{j}^{+}=c_{3 j} \alpha_{j+n+1}^{-} & (0 \leq j \leq n+1), & & \alpha_{j}^{+}=0 \\
\alpha_{j}^{-} & =0 & (0 \leq j \leq n \leq j \leq 2 n+2),
\end{array}
$$

where c_{*} are suitable non-zero constants. This is reduced to the relations

$$
\alpha_{0}^{+}=d_{1} \alpha_{n+1}^{-}=d_{2} \alpha_{2 n+3}^{-}=d_{3} \alpha_{3 n+4}^{+}
$$

for some constants d_{j}, and $\alpha_{i}^{ \pm}=0$ for other i. Therefore the map $T(v, \cdot): V_{1,3 n+4} \rightarrow$ $V_{2,2 n+2}$ has 1-dimensional kernel.

On the other hand, the surjectivity of the map $T(\cdot, w): V_{3,5 n+4} \rightarrow V_{2,2 n+2}$ follows by noticing that

$$
\begin{gathered}
T\left(V_{5 n+4} x^{3}, w\right)=V_{2 n+2} x^{2}, \quad T\left(V_{5 n+4} y^{3}, w\right)=V_{2 n+2} y^{2}, \\
T\left(V_{5 n+4} x y^{2},\left(X^{3 n+4}+Y^{3 n+4}\right) x\right)=V_{2 n+2} x y .
\end{gathered}
$$

This lemma assures that, via (4.15), $V_{3,5 n+4}$ becomes birationally an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}-$ linearized vector bundle \mathcal{E} over $\mathbb{P} V_{1,3 n+4}$. Since n is odd, the elements $(\pm 1, \mp 1) \in$ $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ act by multiplication by -1 on both \mathcal{E} and $O_{\mathbb{P} V_{1,3 n+4}}(1)$. Thus $\mathcal{E}^{\prime}=$ $\mathcal{E} \otimes \mathcal{O}_{P_{1,3 n+4}}(1)$ is $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$-linearized. Using the no-name lemma for \mathcal{E}^{\prime}, we have

$$
\mathbb{P} V_{3,5 n+4} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{\prime} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{14 n+10} \times\left(\mathbb{P} V_{1,3 n+4} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)
$$

Then $\mathbb{P} V_{3,5 n+4} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational by Corollary 3.2
4.6. The case $b=7$. We treat $V_{3,7}$ which is excluded from $\$ 4.3$ We use the (2, 3)-th bi-transvectant

$$
\begin{equation*}
T=T^{(2,3)}: V_{3,7} \times V_{3,3} \rightarrow V_{2,4}, \tag{4.16}
\end{equation*}
$$

which defines a rational map

$$
\begin{equation*}
V_{3,7} \rightarrow \mathbb{P} V_{3,3} \tag{4.17}
\end{equation*}
$$

as in (2.10). We choose the following vectors of $V_{3,7}$ and $V_{3,3}$:

$$
\begin{aligned}
& v=\binom{7}{3} X^{3} Y^{4} x^{3}-9 Y^{7} x^{2} y+\binom{7}{1} X^{6} Y x y^{2}+\binom{7}{3} X^{4} Y^{3} y^{3}, \\
& w=Y^{3} x^{3}+X^{3} x y^{2}+\left(X Y^{2}+Y^{3}\right) y^{3} .
\end{aligned}
$$

Lemma 4.6. The vectors $(v, w) \in V_{3,7} \times V_{3,3}$ satisfy the conditions in Lemma 2.2.

Proof. We leave it to the reader to check that $T(v, w)=0$ and that w spans the kernel of the map $T(v, \cdot): V_{3,3} \rightarrow V_{2,4}$ (cf. Proofs 4.2 and 4.5). We shall show that $T(\cdot, w): V_{3,7} \rightarrow V_{2,4}$ is surjective. First note that the bilinear map

$$
T^{(2)}: \mathbb{C} x^{i} y^{3-i} \times \mathbb{C} x^{3-j} y^{j} \rightarrow \mathbb{C} x^{i-j+1} y^{j-i+1}
$$

is non-degenerate whenever the indices are non-negative, for 3 and 5 are coprime (Lemma[2.1). Then we have

$$
T\left(V_{7} y^{3}, w\right)=T\left(V_{7} y^{3}, Y^{3} x^{3}\right)=V_{4} x y .
$$

Since $T^{(3)}\left(V_{7}, X^{3}\right)=V_{4}$, we have $T\left(V_{7} x^{3}, w\right) \subset V_{4} x^{2} \oplus V_{4} x y$ with surjective projection $T\left(V_{7} x^{3}, w\right) \rightarrow V_{4} x^{2}$. Therefore $V_{4} x^{2}$ is also contained in the image of $T(\cdot, w)$. Finally, since $T\left(V_{7} x y^{2}, X^{3} x y^{2}\right)=V_{4} y^{2}$, the space $V_{4} y^{2}$ is contained in the image too.

Thus we may apply the double bundle method to see that (4.17) makes $V_{3,7}$ birational to an $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-linearized vector bundle \mathcal{E} over $\mathbb{P} V_{3,3}$. As before, after twisting \mathcal{E} by $O_{\mathbb{P} V_{3,3}}(1)$, we use the no-name lemma to see that

$$
\begin{equation*}
\mathbb{P} V_{3,7} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P} \mathcal{E} / \mathrm{SL}_{2} \times \mathrm{SL}_{2} \sim \mathbb{P}^{16} \times\left(\mathbb{P}_{3,3} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right) \tag{4.18}
\end{equation*}
$$

Then $\mathbb{P} V_{3,7} / \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ is rational by Corollary 3.2.

References

[1] Arbarello, E.; Cornalba, M. Footnotes to a paper of Beniamino Segre. Math. Ann. 256 (1981), no. 3, 341-362.
[2] Bogomolov, F. A.; Katsylo, P. I. Rationality of some quotient varieties. Mat. Sb. (N.S.) 126(168) (1985), 584-589.
[3] Böhning, C.; Graf von Bothmer, H.-C.; Casnati, G. Birational properties of some moduli spaces related to tetragonal curves of genus 7 . arXiv:1105.0310, to appear in Int. Math. Res. Notices.
[4] Castorena, A.; Ciliberto, C. On a theorem of Castelnuovo and applications to moduli. Kyoto J. Math. 51 (2011), no. 3, 633-645.
[5] Katsylo, P. I. Rationality of the moduli spaces of hyperelliptic curves. Izv. Akad. Nauk SSSR. 48 (1984), 705-710.
[6] Katsylo, P. I. Rationality of fields of invariants of reducible representations of SL_{2}. Mosc. Univ. Math. Bull. 39 (1984) 80-83.
[7] Ma, S. The rationality of the moduli spaces of trigonal curves of odd genus. arXiv:1012.0983 to appear in J. Reine. Angew. Math.
[8] Popov, V.L.; Vinberg, E.B. Invariant theory. in: Algebraic Geometry, IV, in: Encyclopaedia Math. Sci., vol. 55, Springer, 1994, 123-284.
[9] Shepherd-Barron, N. I. The rationality of certain spaces associated to trigonal curves. Algebraic geometry, Bowdoin, 1985, 165-171, Proc. Symp. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, 1987.
[10] Shepherd-Barron, N. I. Rationality of moduli spaces via invariant theory. Topological methods in algebraic transformation groups (New Brunswick, 1988), 153-164, Progr. Math., 80, Birkhäuser, 1989.

[^0]: 2000 Mathematics Subject Classification. 14H10, 14H45, 14L30, 14E08.
 Key words and phrases. trigonal curve, rationality, $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$, bi-transvectant.
 Supported by Grant-in-Aid for Scientific Research (S), No 22224001.

