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THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL
CURVES

SHOUHEI MA

Abstract. The moduli spaces of trigonal curves are proven to be rational when
the genus is divisible by 4.

1. Introduction

A smooth projective curve is calledtrigonal if it carries a freeg1
3. When the

curve has genus≥ 5, such a pencil is unique if it exists. The object of our studyis
the moduli spaceTg of trigonal curves of genusg ≥ 5. This space has been proven
to be rational wheng ≡ 2 (4) by Shepherd-Barron [9], and wheng is odd in [7]. In
the present article we prove thatTg is rational in the left caseg ≡ 0 (4), completing
the following.

Theorem . The moduli spaceTg of trigonal curves of genusg is rational for every
g ≥ 5.

This can be seen as an analogue of the rationality of the moduli spaces of hyper-
elliptic curves due to Katsylo and Bogomolov [5], [2].

Note thatTg is regarded as a sublocus of the moduli spaceMg of genusg curves.
Wheng is large enough, it seems thatTg has maximal dimension among the known
rational subvarieties ofMg. It would be interesting whether the tetragonal (and
pentagonal) locus is rational as well. It is unirational by Arbarello-Cornalba [1],
but at present known to be rational only in genus 7 ([3]). In another direction,
Castorena and Ciliberto [4] shows that forg ≥ 23, Tg has larger dimension than
any other locus inMg obtained from a linear system on a surface.

We approach our problem from invariant theory for SL2 × SL2. Let Va,b =

H0(OP1×P1(a, b)) be the space of bi-forms of bidegree (a, b) on P1 × P1, which
is an irreducible representation of SL2 × SL2. It is classically known that a general
trigonal curveC of genusg = 4N is canonically embedded inP1 × P1 as a smooth
curve of bidegree (3, 2N + 1). This is based on the fact that the canonical model
of C lies on a unique rational normal scroll which is isomorphic to P1 × P1. As a
consequence, we have a natural birational equivalence

(1.1) T4N ∼ PV3,2N+1/SL2 × SL2.

Hence the problem is restated as follows.
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Theorem 1.1. The quotientPV3,b/SL2 × SL2 is rational for every odd b≥ 5.

To prove this, we adopt the traditional and computational method of double
bundle ([2], [10]) as follows. By examining the Clebsch-Gordan formula for
SL2 × SL2, we take a suitable SL2 × SL2-bilinear mapping (bi-transvectant)

(1.2) T : V3,b × Va′,b′ → Va′′,b′′

such that dimVa′,b′ > dimVa′′,b′′ . Puttingc = dimVa′,b′ − dimVa′′,b′′ , this induces
the rational map to the Grassmannian

(1.3) V3,bd G(c,Va′,b′), v 7→ Ker(T(v, ·)).

We shall find a bi-transvectant for which (1.3) is well-defined and dominant.
In that case, (1.3) makesV3,b birationally an SL2 × SL2-linearized vector bun-
dle overG(c,Va′,b′). Utilizing this bundle structure and taking care of−1 scalar
action, we reduce the rationality ofPV3,b/SL2 × SL2 to a stable rationality of
G(c,Va′,b′)/SL2 × SL2, which in turn can be shown in a more or less standard way.

The point for this proof is to choose the bi-transvectantT carefully so that (i)
a′, b′, c are odd (to care−1 scalar action) and that (ii)c is small (forV3,b to have
larger dimension thanG(c,Va′,b′)). For that, we will provideT according to the
congruence ofb modulo 5, based on some easy calculation in elementary number
theory. Then the bulk of proof is devoted to the check of non-degeneracy of (1.3),
which is facilitated by keepingc small but is still rather laborious.

The rest of the article is as follows. In§2.1 we recall bi-transvectants. We ex-
plain the method of double bundle in§2.2. In§3 we prepare some stable rationality
results in advance, to which the rationality ofPV3,b/SL2 × SL2 will be eventually
reduced. Then we prove Theorem 1.1 in§4.

We work over the complex numbers. The GrassmannianG(a,V) parametrizes
a-dimensional linear subspaces of the vector spaceV. We shall use the notation
([x, y], [X,Y]) for the bi-homogeneous coordinate ofP1×P1. Thus elements ofVa,b

will be expressed as

(1.4)
∑

i

Fi(x, y)Gi(X,Y),

whereFi , Gi are binary forms of degreea, b respectively.

2. Bi-transvectant

2.1. Bi-transvectant. Let Vd denote the SL2-representationH0(OP1(d)). Let e ≤
d. According to the Clebsch-Gordan decomposition

(2.1) Vd ⊗ Ve =

e
⊕

r=0

Vd+e−2r ,

there exists a unique (up to constant) SL2-bilinear mapping

(2.2) T(r) : Vd × Ve→ Vd+e−2r ,
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which is called ther-th transvectant. For two binary formsF(X,Y) ∈ Vd and
G(X,Y) ∈ Ve, we have the well-known explicit formula (cf. [8])

(2.3) T(r)(F,G) =
(d − r)!

d!
(e− r)!

e!

r
∑

i=0

(−1)i
(

r
i

)

∂rF

∂Xr−i∂Yi

∂rG

∂Xi∂Yr−i
.

We will need this formula whenr = eandr = e− 1.
Thee-th transvectantT(e) : Vd × Ve → Vd−e is especially called theapolar co-

variant. By (2.3),T(e)(F,G) is calculated by applying the differential polynomial
(d!)−1(d − e)!G(−∂Y, ∂X) to F(X,Y). In particular, we have

T(e)(XiYd−i ,Xe− jY j) =















(−1)e− j
(

d
i

)−1(d−e
i− j

)

Xi− jY(d−e)−(i− j) , j ≤ i, e− j ≤ d − i,
0, otherwise.

For the (e− 1)-th transvectantT(e−1) : Vd × Ve→ Vd−e+2, we have

T(e−1)(·,Xe− jY j) = (−1)e− j 1
e

(d − e+ 1)!
d!

{

jY∂ j−1
X ∂

e− j
Y − (e− j)X∂ j

X∂
e− j−1
Y

}

,

where∂−1
X = ∂

−1
Y = 0 by convention. Therefore

T(e−1)(XiYd−i ,Xe− jY j) =

{

AXi− j+1Y(d−i)−(e− j)+1, j ≤ i + 1, e− j ≤ d − i + 1,
0, otherwise,

where

A = (−1)e− j
(

d
i

)−1(d − e+ 2
i − j + 1

)

j(d + 2)− (i + 1)e
e(d − e+ 2)

.

We stress in particular that

Lemma 2.1. Let0 ≤ j ≤ i + 1 and0 ≤ e− j ≤ d − i + 1. The bilinear map

(2.4) T(e−1) : CXiYd−i × CXe− jY j → CXi− j+1Y(d−e+2)−(i− j+1)

is non-degenerate if and only if j(d + 2) , (i + 1)e. This is always the case when
d + 2 is coprime to e.

Now we consider SL2 × SL2-representations. The spaceVa,b = H0(OP1×P1(a, b))
is the tensor representationVa ⊠ Vb. Substituting (2.1) into

(2.5) Va,b ⊗ Va′,b′ = (Va ⊗ Va′) ⊠ (Vb ⊗ Vb′),

we obtain the Clebsch-Gordan decomposition for SL2 × SL2,

(2.6) Va,b ⊗ Va′,b′ =

⊕

r,s

Va+a′−2r,b+b′−2s,

where 0≤ r ≤ min{a, a′} and 0≤ s ≤ min{b, b′}. To each irreducible summand
Va+a′−2r,b+b′−2s is associated the (r, s)-th bi-transvectant

(2.7) T(r,s) : Va,b × Va′,b′ → Va+a′−2r,b+b′−2s.

This SL2 × SL2-bilinear mapping is calculated from the above transvectants by

(2.8) T(r,s)(F ⊠G, F′ ⊠G′) = T(r)(F, F′) ⊠ T(s)(G,G′),

whereF ∈ Va, G ∈ Vb, F′ ∈ Va′ , andG′ ∈ Vb′ .
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2.2. The method of double bundle. In §4, we will use the method of double
bundle ([2]) and its generalization ([10]). We here give some account in the present
situation. Suppose we have a bi-transvectant

(2.9) T = T(r,s) : Va,b × Va′,b′ → Va′′,b′′

such thatc = dimVa′,b′ − dimVa′′,b′′ is positive and that dimVa,b > c · dimVa′′,b′′ .
Then we consider the SL2 × SL2-equivariant rational map

(2.10) ϕ : Va,bd G(c,Va′,b′), v 7→ Ker(T(v, ·)).

We assume (hope) that

(♣) ϕ is well-defined and dominant.

If this holds, thenVa,b becomes birational to the unique componentE of the inci-
dence

(2.11) X = {(v,P) ∈ Va,b ×G(c,Va′,b′), T(v,P) ≡ 0}

that dominatesG(c,Va′,b′). Indeed, the first projectionπ : X → Va,b is isomor-
phic over the domainU of regularity of ϕ, and then the dominance ofϕ im-
plies thatπ−1(U) is contained inE. SinceE is (generically) a sub vector bundle
of Va,b × G(c,Va′,b′) preserved under the SL2 × SL2-action, it is an SL2 × SL2-
linearized vector bundle overG(c,Va′,b′). In this situation one might try to apply
the no-name lemma toE ∼ Va,b, taking care of the scalar action of (±1,∓1) ∈
SL2 × SL2.

The non-degeneracy requirement (♣) may be checked as follows.

Lemma 2.2 (cf. [2]). The condition(♣) is satisfied if and only if there exists
(v,w1, · · · ,wc) ∈ Va,b × (Va′,b′)c such that

(i) w1, · · · ,wc ∈ Va′,b′ are linearly independent,
(ii) T (v,wi) = 0 for every wi,
(iii) the map T(v, ·) : Va′,b′ → Va′′,b′′ is surjective, and
(iv) the map(T(·,w1), · · · ,T(·,wc)) : Va,b→ V⊕c

a′′,b′′ is surjective.

Proof. Let P ∈ G(c,Va′,b′) be the span ofw1, · · · ,wc. The conditions (ii) and (iii)
mean thatv is contained in the domainU of regularity ofϕ with ϕ(v) = P, whence
U , ∅. Then (iv) implies that the fiber of the morphismϕ : U → G(c,Va′,b′) overP
has the expected dimension dimVa,b − dimG(c,Va′,b′). Henceϕ(U) has dimension
≥ dimG(c,Va′,b′), and soϕ is dominant. �

3. Some stable rationality

We setG = SL2 × SL2/(−1,−1). Whena, b > 0 are odd, the element (−1,−1)
of SL2 × SL2 acts onVa,b trivially so thatG acts onVa,b. This linearG-action is
almost free if PGL2 × PGL2 acts onPVa,b almost freely, that is, general bidegree
(a, b) curves onP1 × P1 have no non-trivial stabilizer.

Lemma 3.1. The group G acts on V⊕3
1,1 almost freely with the quotient

V⊕3
1,1/SL2 × SL2 rational.
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Proof. The first assertion follows from the almost freeness of the PGL2 × PGL2-
action on (PV1,1)3. For the second assertion, we first note that

(3.1) V⊕3
1,1/SL2 × SL2 ∼ (V⊕3

1,1/GL2 ×GL2) × C×.

The group GL2 ×GL2 acts onV1,1 almost transitively with the stabilizer of a gen-
eral point isomorphic to GL2 (identify V1,1 with Hom(V1,V1)). Hence, applying
the slice method to the first projectionV⊕3

1,1→ V1,1, we obtain

(3.2) V⊕3
1,1/GL2 ×GL2 ∼ V⊕2

1,1/GL2,

where GL2 acts onV⊕2
1,1 linearly in the right hand side. Then the quotientV⊕2

1,1/GL2

is rational by the result of Katsylo [6]. �

A variety X is calledstably rational of level Nif X × PN is rational. In§4,
the proof of Theorem 1.1 will be finally reduced to the following stable rationality
results.

Corollary 3.2. Let n > 0 be an odd number. ThenPV1,n/SL2 × SL2 and
PV3,n/SL2 × SL2 are stably rational of level13.

Proof. We treat the case ofV1,n. For dimensional reason we may assumen > 3.
Then the groupG acts onV1,n almost freely. Hence we may apply the no-name
lemma to both projectionsV⊕3

1,1 ⊕ V1,n→ V1,n andV⊕3
1,1 ⊕ V1,n→ V⊕3

1,1 to see that

(3.3) (V1,n/SL2 × SL2) × C12 ∼ (V⊕3
1,1/SL2 × SL2) × C2n+2.

By Lemma 3.1,V1,n/SL2 × SL2 is stably rational of level 12. SinceV1,n/SL2 × SL2

is birational toC× × (PV1,n/SL2 × SL2), our assertion is proved. The case ofV3,n

is similar. �

Proposition 3.3. When n> 1 is odd, G(3,V3,n)/SL2 × SL2 is stably rational of
level2.

Proof. Let F → G(3,V3,n) be the universal sub vector bundle of rank 3, on which
SL2 × SL2 acts equivariantly. The elements (±1,∓1) ∈ SL2 × SL2 act onF by
multiplication by−1. SinceF has odd rank, they act on the line bundle detF also
by−1. Hence the bundleF ′ = F ⊗detF is PGL2 × PGL2-linearized. Note thatPF
is canonically identified withPF ′. Since PGL2 × PGL2 acts onG(3,V3,n) almost
freely, we can apply the no-name lemma toF ′ to see that

(3.4) PF /SL2 × SL2 ∼ PF
′/SL2 × SL2 ∼ P

2 × (G(3,V3,n)/SL2 × SL2).

Thus it suffices to show thatPF /SL2 × SL2 is rational.
RegardingPF as an incidence inG(3,V3,n) × PV3,n, we have second projection

PF → PV3,n. Its fiber overCl ∈ PV3,n is the sub Grassmannian inG(3,V3,n)
of 3-planes containingCl, and hence identified withG(2,V3,n/Cl). Therefore, if
G → PV3,n is the universal quotient bundle of rank dimV3,n−1, thenPF is identified
with the relative GrassmannianG(2,G). The elements (±1,∓1) ∈ SL2 × SL2 act
onG by multiplication by−1, and also onOPV3,n(1) by−1. Thus the bundleG′ =
G⊗OPV3,n(1) is PGL2 × PGL2-linearized, andG(2,G) is canonically isomorphic to
G(2,G′). Since PGL2 × PGL2 acts onPV3,n almost freely, we can use the no-name
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lemma to trivialize the PGL2 × PGL2-bundleG′ locally in the Zariski topology.
Hence we have

(3.5) G(2,G′)/SL2 × SL2 ∼ G(2,C4n+3) × (PV3,n/SL2 × SL2).

Now our assertion follows from Corollary 3.2. �

We also treatG(3,V3,1).

Proposition 3.4. The quotient G(3,V3,1)/SL2 × SL2 is stably rational of level5.

Proof. As before, letF be the universal sub bundle overG(3,V3,1). Using the
no-name lemma for the PGL2 × PGL2-linearized bundleF ⊕2 ⊗ detF , we obtain

(3.6) P(F ⊕2)/SL2 × SL2 ∼ P
5 × (G(3,V3,1)/SL2 × SL2).

On the other hand, we have a natural SL2 × SL2-equivariant morphism

(3.7) P(F ⊕2)→ P(V⊕2
3,1), (P,C(v1, v2)) 7→ C(v1, v2),

wherev1, v2 ∈ V3,1 are vectors contained in the 3-planeP. This is birationally the
projectivization of a quotient bundleG of V3,1 × P(V⊕2

3,1). Applying the no-name
lemma to the PGL2 × PGL2-linearized bundleG ⊗ O

P(V⊕2
3,1)(1), we have

PG/SL2 × SL2 ∼ P
5 × (P(V⊕2

3,1)/SL2 × SL2).

Thus it suffices to prove thatP(V⊕2
3,1)/SL2 × SL2 is stably rational of level 5.

Consider the representationW = V1,1 ⊕ V⊕2
3,1. We apply the no-name lemma to

both projectionsPWd P(V⊕2
3,1) andPWd P(V1,1 ⊕ V3,1) to see that

(3.8) C
4 × (P(V⊕2

3,1)/SL2 × SL2) ∼ C8 × (P(V1,1 ⊕ V3,1)/SL2 × SL2).

Using the slice method for the projectionV1,1 ⊕ V3,1→ V1,1, we then have

(3.9) (V1,1 ⊕ V3,1)/GL2 ×GL2 ∼ V3,1/GL2.

Finally, V3,1/GL2 is rational by Katsylo [6]. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the method of double bundle as
explained in§2.2. We provide the bi-transvectants according to the congruence
of b modulo 5, based on dimensional calculation for the representations involved.
The exceptional caseb = 7 requires a separate treatment.

4.1. The case b ≡ 0 (5). Let n > 0 be an odd number. We consider the bi-apolar
covariant

(4.1) T = T(3,n) : V3,5n × V3,n→ V0,4n.

Since dimV3,n = 4n+ 4 and dimV0,4n = 4n+ 1, we obtain a rational map

(4.2) V3,5nd G(3,V3,n)
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as in (2.10). We take vectorsv ∈ V3,5n, ~w = (w1,w2,w3) ∈ (V3,n)3 by

v =

(

5n
n

)

XnY4nx3
+ 3

(

5n
2n

)

X2nY3nx2y+ 3

(

5n
2n

)

X3nY2nxy2
+

(

5n
n

)

X4nYny3,

w1 = Ynx3 − Xnx2y,

w2 = Ynx2y− Xnxy2,

w3 = Ynxy2 − Xny3.

Lemma 4.1. The vectors(v, ~w) ∈ V3,5n × (V3,n)3 satisfy the conditions in Lemma
2.2.

Proof. The three vectorsw1,w2,w3 ∈ V3,n are apparently linearly indepen-
dent. ThatT(v,wi) = 0 is checked by using the formulae in§2.1. The map
T(v, ·) : V3,n→ V0,4n is surjective because

T(v,Vnx3) = C〈X4n, · · · ,X3nYn〉, T(v,Vnx2y) = C〈X3nYn, · · · ,X2nY2n〉,

T(v,Vnxy2) = C〈X2nY2n, · · · ,XnY3n〉, T(v,Vny3) = C〈XnY3n, · · · ,Y4n〉.

To see the surjectivity ofT(·, ~w) : V3,5n→ V⊕3
0,4n, we note that

T(V5nx3 ⊕ V5ny3, ~w) = (V0,4n, 0,V0,4n) ⊂ V⊕3
0,4n.

SinceT(V5nx2y,w2) = V0,4n, then (0,V0,4n, 0) ⊂ V⊕3
0,4n is also contained in the image

of T(·, ~w). �

By this lemma, we may apply the double bundle method so that via (4.2),V3,5n

becomes birationally an SL2 × SL2-linearized vector bundleE over G(3,V3,n).
Note thatE is a subbundle ofV3,5n × G(3,V3,n). Since both 3 and 5n are odd,
the elements (±1,∓1) ∈ SL2 × SL2 act onE by multiplication by−1. On the other
hand, (±1,∓1) also act by−1 on the universal sub bundleF overG(3,V3,n). Since
F has odd rank 3, then the bundleE′ = E ⊗ detF is PGL2 × PGL2-linearized. We
thus have

(4.3) PV3,5n/SL2 × SL2 ∼ PE/SL2 × SL2 ∼ PE
′/SL2 × SL2.

The group PGL2 × PGL2 acts onG(3,V3,n) almost freely. Therefore we can use
the no-name lemma forE′ to obtain

(4.4) PV3,5n/SL2 × SL2 ∼ P
8n × (G(3,V3,n)/SL2 × SL2).

Comparing this with Proposition 3.3, we see thatPV3,5n/SL2 × SL2 is rational for
n > 1. Whenn = 1, PV3,5/SL2 × SL2 is rational by Proposition 3.4.

4.2. The case b ≡ 1 (5). Let n > 0 be an even number. We consider the bi-apolar
covariant

(4.5) T = T(1,3n+1) : V3,5n+1 × V1,3n+1→ V2,2n.

Since dimV1,3n+1 = 6n+ 4 and dimV2,2n = 6n+ 3, this defines a rational map

(4.6) V3,5n+1d PV1,3n+1



8

as in (2.10). In order to show that this determines a double bundle, we take the
following vectors ofV3,5n+1 andV1,3n+1:

v =

(

5n+ 1
2n

)

X3n+1Y2nx3
+ 3

(

5n+ 1
n

)

X4n+1Ynx2y

+3

(

5n+ 1
2n

)

X2nY3n+1xy2
+

(

5n+ 1
n

)

XnY4n+1y3,

w = (X3n+1 − Y3n+1)x− (XnY2n+1 − X2n+1Yn)y.

Lemma 4.2. The vectors(v,w) ∈ V3,5n+1 × V1,3n+1 meet the conditions in Lemma
2.2.

Proof. One calculates thatT(v,w) = 0 using the formulae in§2.1. Conversely,
suppose we have a vectorw′ = G+(X,Y)x+G−(X,Y)y in V1,3n+1 with T(v,w′) = 0.
Then we have

T(3n+1)(XnY4n+1,G+) = b0T(3n+1)(X2nY3n+1,G−),

T(3n+1)(X2nY3n+1,G+) = b1T(3n+1)(X4n+1Yn,G−),

T(3n+1)(X4n+1Yn,G+) = b2T(3n+1)(X3n+1Y2n,G−).

for suitable constantsb j . ExpandingG± =
∑

i α
±
i X3n+1−iYi, we obtain

α+i = c1iα
−
i+n (0 ≤ i ≤ n), α−i = 0 (0≤ i ≤ n− 1),

α+i = c2iα
−
i+2n+1 (0 ≤ i ≤ n), α+i = 0 (n+ 1 ≤ i ≤ 2n),

α+i+n = c3iα
−
i (n+ 1 ≤ i ≤ 2n+ 1), α−i = 0 (2n+ 2 ≤ i ≤ 3n+ 1),

for some fixed constantsc∗. This reduces to the relations

α+0 = d1α
+

3n+1 = d2α
−
n = d3α

−
2n+1

where d j are appropriate constants, andα±i = 0 for other i. Hence the map
T(v, ·) : V1,3n+1 → V2,2n has 1-dimensional kernel, and so is surjective. We also
see that the mapT(·,w) : V3,5n+1→ V2,2n is surjective, noticing that

T(V5n+1y3,w) = V2ny2, T(V5n+1x3,w) = V2nx2,

T(V5n+1xy2, (X3n+1 − Y3n+1)x) = V2nxy.

�

Thus we can use the method of double bundle to see that via (4.6), V3,5n+1 be-
comes birational to an SL2 × SL2-linearized vector bundleE over PV1,3n+1. As
before, the elements (±1,∓1) ∈ SL2 × SL2 act by multiplication by−1 on both
E (which is a subbundle ofV3,5n+1 × PV1,3n+1) andOPV1,3n+1(1). Hence the bundle
E′ = E ⊗ OPV1,3n+1(1) is PGL2 × PGL2-linearized. The group PGL2 × PGL2 acts
almost freely onPV1,3n+1. By the no-name lemma forE′, we obtain

(4.7) PV3,5n+1/SL2 × SL2 ∼ PE
′/SL2 × SL2 ∼ P

14n+4 × (PV1,3n+1/SL2 × SL2).

ThereforePV3,5n+1/SL2 × SL2 is rational by Corollary 3.2.
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4.3. The case b ≡ 2 (5). Let n > 0 be an odd number. We use the bi-apolar
covariant

(4.8) T = T(3,n) : V3,5n+2 × V3,n→ V0,4n+2.

Since dimV3,n = 4n+ 4 and dimV0,4n+2 = 4n+ 3, we obtain as in (2.10) a rational
map

(4.9) V3,5n+2d PV3,n.

To see that this defines a double bundle, we take vectors inV3,5n+2 andV3,n by

v = XnY4n+2x3
+ X2n+1Y3n+1x2y+ X3n+1Y2n+1xy2

+ X4n+2Yny3,

w = Ynx2y− Xnxy2.

Lemma 4.3. The vectors(v,w) ∈ V3,5n+2 × V3,n satisfy the conditions in Lemma
2.2.

Proof. It is immediate to check thatT(v,w) = 0. The mapT(v, ·) : V3,n → V0,4n+2

is surjective because

T(v,Vnx3) = C〈X4n+2, · · · ,X3n+2Yn〉,

T(v,Vnx2y) = C〈X3n+1Yn+1, · · · ,X2n+1Y2n+1〉,

T(v,Vnxy2) = C〈X2n+1Y2n+1, · · · ,Xn+1Y3n+1〉,

T(v,Vny3) = C〈XnY3n+2, · · · ,Y4n+2〉.

On the other hand, we haveT(V5n+2xy2,w) = V0,4n+2 so that the mapT(·,w) :
V3,5n+2→ V0,4n+2 is also surjective. �

This lemma enables the application of the method of double bundle. Therefore
the map (4.9) makesV3,5n+2 birationally an SL2 × SL2-linearized vector bundleE
overPV3,n. The elements (±1,∓1) ∈ SL2 × SL2 act onE by multiplication by−1.
Since both 3 andn are odd, (±1,∓1) also act by−1 onOPV3,n(1). Thus the bundle
E′ = E⊗OPV3,n(1) is PGL2 × PGL2-linearized. Whenn > 1, PGL2 × PGL2 acts on
PV3,n almost freely. Then by the no-name lemma we have

(4.10) PV3,5n+2/SL2 × SL2 ∼ PE
′/SL2 × SL2 ∼ P

16n+8 × (PV3,n/SL2 × SL2).

By Corollary 3.2, we see thatPV3,5n+2/SL2 × SL2 is rational forn > 1.
This argument does not work for the casen = 1 because a general point ofPV3,1

has the Klein 4-group as its stabilizer. We treat this case in§4.6.

4.4. The case b ≡ 3 (5). Let n > 0 be an even number. We consider the (3, n)-th
bi-transvectant

(4.11) T = T(3,n) : V3,5n+3 × V3,n+1→ V0,4n+4.

Since dimV3,n+1 = 4n+ 8 and dimV0,4n+4 = 4n + 5, this induces a rational map as
in (2.10),

(4.12) V3,5n+3d G(3,V3,n+1).

In order to apply the method of double fibration, we take the following vectors of
V3,5n+3 andV3,n+1 according to the congruence ofn modulo 5:
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(1) Whenn . 4 mod 5, we set

v =

(

5n+ 3
n

)

XnY4n+3x3
+

(

5n+ 3
2n+ 1

)

X2n+1Y3n+2x2y

+

(

5n+ 3
2n+ 1

)

X3n+2Y2n+1xy2
+

(

5n+ 3
n

)

X4n+3Yny3,

w1 = Xn+1y3
+ Yn+1xy2,

w2 = Xn+1xy2
+ Yn+1x2y,

w3 = Xn+1x2y+ Yn+1x3.

(2) Whenn ≡ 4 mod 5, we denoten = 2m (remembern is even) and set

v =

{

7m+ 3
m+ 1

5m+ 2
3m+ 2

(

5n+ 3
m

)

XmY9m+3
+ X9m+5Ym−2

}

x3

+3
5m+ 2
3m+ 2

(

5n+ 3
3m+ 1

)

X3m+1Y7m+2x2y+ 3

(

5n+ 3
5m+ 2

)

X5m+2Y5m+1xy2

+
5m+ 3
3m+ 1

(

5n+ 3
7m+ 3

)

X7m+3Y3my3,

and use the samewi as above.

Lemma 4.4. The vectors(v,w1,w2,w3) ∈ V3,5n+3 × (V3,n+1)3 meet the conditions
in Lemma 2.2.

Proof. The linear independence ofw1,w2,w3 is apparent. It is not difficult to check
thatT(v,wi ) = 0 for everyi, by using the formulae in§2.1. Whenn . 4 mod 5,
we have no 0≤ j ≤ n+ 1 with j(5n+ 5) = (i + 1)(n+ 1) for i = n, 2n+ 1, 3n+ 2,
4n+ 3. Hence by Lemma 2.1, for thosei the bilinear map

(4.13) T(n) : CXiY5n+3−i × CXn+1− jY j → CXi− j+1Y4n+3−i+ j

is non-degenerate for anyj, as far as the indices are non-negative. It follows that

T(v,Vn+1x3) = C〈X4n+4, · · · ,X3n+3Yn+1〉,

T(v,Vn+1x2y) = C〈X3n+3Yn+1, · · · ,X2n+2Y2n+2〉,

T(v,Vn+1xy2) = C〈X2n+2Y2n+2, · · · ,Xn+1Y3n+3〉,

T(v,Vn+1y3) = C〈Xn+1Y3n+3, · · · ,Y4n+4〉,

whence the mapT(v, ·) : V3,n+1 → V0,4n+4 is surjective. We leave it to the reader
to check similar surjectivity whenn ≡ 4 (5). In that case, sincem ≡ 2 (5), we
have no j with j(5n + 5) = (i + 1)(n + 1) for i = m+ k(n + 1), 0 ≤ k ≤ 3, and
i = 9m+ 5. Hence for thosei the map (4.13) is non-degenerate for any relevantj,
again by Lemma 2.1.

To see that

T(·, ~w) = (T(·,w1),T(·,w2),T(·,w3)) : V3,5n+3→ V⊕3
0,4n+4

is surjective (regardless of [n] ∈ Z/5), we note that the bilinear maps

T(n)(·,Xn+1) : CXiY5n+3−i → CXi+1Y4n+3−i
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T(n)(·,Yn+1) : CXiY5n+3−i → CXi−nY5n+4−i

are non-degenerate whenever the indices are non-negative.It follows that

T(V5n+3x3, ~w) = (〈X4n+4, · · · ,XY4n+3〉, 0, 0),

T(〈XnY4n+3x2y,X2n+1Y3n+2xy2,X3n+2Y2n+1y3〉, ~w) ⊃ (CY4n+4, 0, 0),

so that (V0,4n+4, 0, 0) ⊂ V⊕3
0,4n+4 is contained in the image ofT(·, ~w). Similarly,

we see that (0, 0,V0,4n+4) ⊂ V⊕3
0,4n+4 is contained in the image too. Finally, since

T(·,w2) maps the spaceV5n+3x2y⊕ V5n+3xy2 ontoV0,4n+4, we find using the above
results that (0,V0,4n+4, 0) is also contained in the image. �

Thus, by the method of double bundle for (4.12),V3,5n+3 is birationally an
SL2 × SL2-linearized vector bundleE overG(3,V3,n+1). The elements (±1,∓1) ∈
SL2 × SL2 act onE by multiplication by−1. LetF be the universal sub bundle
overG(3,V3,n+1). On detF the elements (±1,∓1) act also by−1 because both 3
andn+ 1 are odd andF has odd rank. ThereforeE′ = E ⊗ detF is PGL2 × PGL2-
linearized. By the no-name lemma forE′, we then see that

PV3,5n+3/SL2 × SL2 ∼ PE
′/SL2 × SL2 ∼ P

8n × (G(3,V3,n+1)/SL2 × SL2).

By Proposition 3.3,PV3,5n+3/SL2 × SL2 is rational.

4.5. The case b ≡ 4 (5). Let n > 0 be an odd number. We use the (1, 3n + 3)-th
bi-transvectant

(4.14) T = T(1,3n+3) : V3,5n+4 × V1,3n+4→ V2,2n+2.

Since dimV1,3n+4 = 6n+ 10 and dimV2,2n+2 = 6n+ 9, we obtain a rational map

(4.15) V3,5n+4d PV1,3n+4

as in (2.10). In order to check that this defines a double bundle, we take the fol-
lowing vectors ofV3,5n+4 andV1,3n+4:

v =
3n+ 4
n+ 2

3n+ 4
n+ 1

(

5n+ 4
2n+ 1

)

X3n+3Y2n+1x3
+ 3

3n+ 4
n+ 1

(

5n+ 4
n

)

X4n+4Ynx2y

−3

(

5n+ 4
2n+ 1

)

X2n+1Y3n+3xy2 −
n+ 2
3n+ 4

(

5n+ 4
n

)

XnY4n+4y3,

w = (X3n+4
+ Y3n+4)x+ (X2n+3Yn+1

+ Xn+1Y2n+3)y.

Lemma 4.5. The vectors(v,w) ∈ V3,5n+4 × V1,3n+4 meet the conditions in Lemma
2.2.

Proof. We leave it to the reader to check thatT(v,w) = 0. To show that the map
T(v, ·) : V1,3n+4 → V2,2n+2 is surjective, we first note that 5n + 6 and 3n + 4 are
coprime by the Euclidean algorithm. By Lemma 2.1, the bilinear map

T(3n+3) : CXiY5n+4−i × CX3n+4− jY j → CXi− j+1Y2n+1−i+ j
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is non-degenerate whenever the indices are non-negative. Now suppose a vector
w′ = G+(X,Y)x+G−(X,Y)y in V1,3n+4 satisfiesT(v,w′) = 0. This is rewritten as

T(3n+3)(X3n+3Y2n+1,G−) = b0T(3n+3)(X4n+4Yn,G+),

T(3n+3)(X4n+4Yn,G−) = b1T(3n+3)(X2n+1Y3n+3,G+),

T(3n+3)(X2n+1Y3n+3,G−) = b2T(3n+3)(XnY4n+4,G+),

for some constantsb j . ExpandingG±(X,Y) =
∑3n+4

j=0 α
±
j X3n+4− jY j , we obtain the

relation

α+j+n+1 = c1 jα
−
j (n+ 2 ≤ j ≤ 2n+ 3), α−j = 0 (2n+ 4 ≤ j ≤ 3n+ 4),

α+j = c2 jα
−
j+2n+3 (0 ≤ j ≤ n+ 1), α+j = 0 (n+ 2 ≤ j ≤ 2n+ 2),

α+j = c3 jα
−
j+n+1 (0 ≤ j ≤ n+ 1), α−j = 0 (0≤ j ≤ n),

wherec∗ are suitable non-zero constants. This is reduced to the relations

α+0 = d1α
−
n+1 = d2α

−
2n+3 = d3α

+

3n+4

for some constantsd j , andα±i = 0 for otheri. Therefore the mapT(v, ·) : V1,3n+4→

V2,2n+2 has 1-dimensional kernel.
On the other hand, the surjectivity of the mapT(·,w) : V3,5n+4→ V2,2n+2 follows

by noticing that

T(V5n+4x3,w) = V2n+2x2, T(V5n+4y3,w) = V2n+2y2,

T(V5n+4xy2, (X3n+4
+ Y3n+4)x) = V2n+2xy.

�

This lemma assures that, via (4.15),V3,5n+4 becomes birationally an SL2 × SL2-
linearized vector bundleE overPV1,3n+4. Sincen is odd, the elements (±1,∓1) ∈
SL2 × SL2 act by multiplication by−1 on bothE andOPV1,3n+4(1). ThusE′ =
E ⊗ OPV1,3n+4(1) is PGL2 × PGL2-linearized. Using the no-name lemma forE′, we
have

PV3,5n+4/SL2 × SL2 ∼ PE
′/SL2 × SL2 ∼ P

14n+10× (PV1,3n+4/SL2 × SL2).

ThenPV3,5n+4/SL2 × SL2 is rational by Corollary 3.2.

4.6. The case b = 7. We treatV3,7 which is excluded from§4.3. We use the
(2, 3)-th bi-transvectant

(4.16) T = T(2,3) : V3,7 × V3,3→ V2,4,

which defines a rational map

(4.17) V3,7d PV3,3

as in (2.10). We choose the following vectors ofV3,7 andV3,3:

v =

(

7
3

)

X3Y4x3 − 9Y7x2y+

(

7
1

)

X6Yxy2 +

(

7
3

)

X4Y3y3,

w = Y3x3
+ X3xy2

+ (XY2
+ Y3)y3.

Lemma 4.6. The vectors(v,w) ∈ V3,7 × V3,3 satisfy the conditions in Lemma 2.2.
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Proof. We leave it to the reader to check thatT(v,w) = 0 and thatw spans the
kernel of the mapT(v, ·) : V3,3→ V2,4 (cf. Proofs 4.2 and 4.5). We shall show that
T(·,w) : V3,7→ V2,4 is surjective. First note that the bilinear map

T(2) : Cxiy3−i × Cx3− jy j → Cxi− j+1y j−i+1

is non-degenerate whenever the indices are non-negative, for 3 and 5 are coprime
(Lemma 2.1). Then we have

T(V7y3,w) = T(V7y3,Y3x3) = V4xy.

SinceT(3)(V7,X3) = V4, we haveT(V7x3,w) ⊂ V4x2⊕V4xywith surjective projec-
tion T(V7x3,w) → V4x2. ThereforeV4x2 is also contained in the image ofT(·,w).
Finally, sinceT(V7xy2,X3xy2) = V4y2, the spaceV4y2 is contained in the image
too. �

Thus we may apply the double bundle method to see that (4.17) makesV3,7

birational to an SL2 × SL2-linearized vector bundleE overPV3,3. As before, after
twistingE byOPV3,3(1), we use the no-name lemma to see that

(4.18) PV3,7/SL2 × SL2 ∼ PE/SL2 × SL2 ∼ P
16× (PV3,3/SL2 × SL2).

ThenPV3,7/SL2 × SL2 is rational by Corollary 3.2.
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