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A NOTE ON FREIMAN MODELS IN HEISENBERG GROUPS

NORBERT HEGYVÁRI AND FRANÇOIS HENNECART

Abstract. Green and Ruzsa recently proved that for any s ≥ 2, any small squaring set

A in a (multiplicative) abelian group, i.e. |A · A| < K|A|, has a Freiman s-model: it

means that there exists a group G and a Freiman s-isomorphism from A into G such that

|G| < f(s,K)|A|.
In an unpublished note, Green proved that such a result does not necessarily hold in non

abelian groups if s ≥ 64. The aim of this paper is improve Green’s result by showing that

it remains true under the weaker assumption s ≥ 6.

1. Introduction

We will use the notation |X| for the cardinality of any set or group X . If X and Y are

subsets of a given (multiplicative) group, the product X · Y or simply XY denotes the set

{xy | x ∈ X, y ∈ Y }. For X = Y we write XY = X2. The set X−1 is formed by all the

inverse elements x−1, x ∈ X .

Let s ≥ 2 be an integer and A ⊂ H and B ⊂ G be subsets of arbitrary (multiplicative)

groups. A map π : A → B is said to be a Freiman s-homomorphism if for any 2s-tuple

(a1, . . . , as, b1, . . . , bs) of elements of A and any signs ǫi = ±1, i = 1, . . . , s, we have

aǫ11 . . . aǫss = bǫ11 . . . bǫss =⇒ π(a1)
ǫ1 . . . π(as)

ǫs = π(b1)
ǫ1 . . . π(bs)

ǫs.

Observe that in the case of abelian groups, we may set, without loss of generality, all the

signs to +1. If moreover π is bijective and π−1 is also a Freiman s-homomorphism, then π is

called a Freiman s-isomorphism from A into G. In this case, A and B are said to be Freiman

s-isomorphic.

Green and Ruzsa proved in [2] that a structural result holds for small squaring sets in

an abelian (multiplicative) group. The key argument in their proof is Proposition 1.2 of [2]

asserting that any small squaring finite set A in an abelian group has a good Freiman model,

that is a relatively small finite group G and a Freiman s-isomorphism from A into G. More

precisely, they showed the following effective result:
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Let s ≥ 2 and K > 1. There exists a constant f(s,K) = (10sK)10K
2

such that A is a

subset of an abelian group H satisfying the small squaring property |A · A| < K|A|, then
there exists an abelian group G such that |G| < f(s,K)|A| and A is Freiman s-isomorphic

to a subset of G.

It is not difficult to see that this result cannot be literally extended to nonabelian groups

by considering a set A such that |A · A|/|A| is small and |A · A · A|/|A| is large (see [6,

page 94] for such an example). However it is known (by combining [4, section 1.11] and [6,

Proposition 2.40]) that if |A ·A|/|A| ≤ K then for any n-tuple of signs ǫ1, . . . , ǫn ∈ {−1, 1},
we have |Xǫ1 ·Xǫ2 · · ·Xǫn|/|X| ≤ KO(n) for some large subset X of A satisfying |X| ≥ |A|/2.
Despite this fact, the existenceness of a good Freiman s-model for some large subset of an

arbitrary set A0 satisfying the small squaring property |A0 · A0| < 2|A0| is not guaranteed.
Indeed in his unpublished note [3], Green gave an example of such a set A0 with arbitrarily

large cardinality and the following property: let s ≥ 64 and δ = 1/23; then for any A ⊂ A0

with |A| ≥ |A0|1−δ and any finite group G such that there is a Freiman s-isomorphism from

A into G, we have |G| ≥ |A|1+δ. There is no doubt from his proof that the admissible range

for s could be somewhat improved (s ≥ 32 is seemingly the best range that can be read from

his proof).

Our aim is to improve Green’s result by showing:

Theorem 1. Let n be any positive integer and ε be any positive real number. Then there

exists a finite (nonabelian) group H and a subset A0 in H with the following properties:

i) |A0| > n and |A0 · A0| < 2|A0|;
ii) For any A ⊂ A0 with |A| ≥ |A0|43/44 and for any finite group G such that there exists

a Freiman 6-isomorphism from A onto G, we have |G| ≥ |A|33/32−ε.

Our proof in Section 4 is partially based on Green’s approach but also includes new mate-

rials. It exploits arguments coming from group theory and Fourier analysis with additional

tools, e.g. a recent incidence theorem due to Vinh [7]. It also needs some additional combi-

natorial arguments.

In Section 3, we include for comparison the proof of a weaker statement that does not use

the new materials, but which optimizes, in some sense, Green’s ideas.
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Let p be a prime number and F the fields with p elements. We denote by H the Heisenberg

linear group over F consisting of the upper triangular matrices

[x, y, z] =











1 x z

0 1 y

0 0 1











, x, y, z ∈ F.

We recall the product rule in H :

[x, y, z] · [x′, y′, z′] = [x+ x′, y + y′, xy′ + z + z′].

As shown in [3], this group provides an example of a nonabelian group in which there exists

some subset A0 with small squaring property, namely |A2
0| < 2|A0|, and not having a good

Freiman model. That is there is no relatively big isomorphic image of A0 by a Freiman s-

isomorphism with a given s in any group G. We will also use the Heisenberg group in order

to derive our results.

The proof of Theorem 1 goes in the following manner. We will show that: firstly there

exists a non trivial p-subgroup in the subgroup generated by π(A) in G; secondly any element

in π−1(G) is the product of at most 6 elements from A or A−1. The rest of the proof is based

on some group-theoretical properties which are mainly taken from [3].

As indicated in [3], there is no hope to obtain an optimal result by this approach, namely

a similar result with s0 = 2.

2. Some properties of finite nilpotent groups and of the Heisenberg group H

For any group G, we denote by 1G the identity element of G. Thus [0, 0, 0] = 1H .

We will use the following partially classical properties:

1. H is a two-step nilpotent group (or nilpotent of class two). Indeed, the commutator

of a1 = [x1, y1, z1] ∈ H and a2 = [x2, y2, z2] ∈ H denoted by [a1; a2] is equal to

[a1; a2] = a1a2a
−1
1 a−1

2 = [0, 0, x1y2 − x2y1].

For any a3 = [x3, y3, z3] ∈ H , we obtain

[[a1; a2]; a3] = [0, 0, 0] = 1H ,

for the double commutator. Hence the result.

2. Any finite nilpotent group is the direct product of its Sylow subgroups (see 6.4.14 of

[5]).
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3. Any finite p-group of order p or p2 is abelian (see 6.3.5 of [5]).

4. Assume that A ⊂ H and π is a Freiman s-homomorphism from A into G with s ≥ 5.

We denote by 〈π(A)〉 the subgroup generated by π(A). Then 〈π(A)〉 is a two-step

nilpotent group. Indeed, for any a, b, c ∈ A, one has

aba−1b−1c = caba−1b−1

since H is a nilpotent group of class two. Hence

π(a)π(b)π(a)−1π(b)−1π(c) = π(c)π(a)π(b)π(a)−1π(b)−1

since π is a Freiman s-homomorphism with s ≥ 5. It thus follows that double com-

mutators satisfy [[a1; b1]; c1] = 1G for any a1, b1, c1 ∈ π(A). In [3], the author observed

from a direct argument that it remains true for any a1, b1, c1 ∈ 〈π(A)〉: since 〈π(A)〉
is finite, the result will follow from the next lemma (cf. [3]).

Lemma 2. Let Γ be any group and X a maximal subset of Γ such that

(1) [[a; b]; c] = 1Γ, for any a, b, c ∈ X.

Then X in closed under multiplication.

For the the sake of completeness we include the proof which is in the same way as

in [3].

Proof. By (1) and the following identity

(2) [xy; z] = [x; [y; z]] · [y; z] · [x; z], x, y, z ∈ Γ,

we obtain for any a, b, c, d ∈ X , [[ab; c]; d] = [[b; c] · [a; c]; d]. Applying again (2) with

x = [b; c], y = [a; c] and z = c, yields in view of (1),

(3) [[ab; c]; d] = 1Γ, for any a, b, c, d ∈ X .

By a further application of (2) with x = a, y = b and z = [ab; c], we get by (3)

[ab; [ab; c]] = 1Γ for any a, b, c ∈ X . By the maximal property of X , we obtain ab ∈ X

for any a, b ∈ X . �
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3. Approach of the proof with a slightly weaker result

Before proving our main result, we explain the principle of the approach by showing the

following weaker result in which only Freiman s-isomorphisms with s ≥ 7 are considered.

Theorem 3. Let n be a positive integer and θ be a real number such that

11

12
≤ θ ≤ 1

and let

ϕθ =
12θ − 9

2
.

Then there exists a finite group H and a subset A0 in H satisfying the following properties:

i) |A0| > n and |A0 · A0| < 2|A0|;
ii) For any A ⊂ A0 with |A| ≥ |A0|θ and for any finite group G such that there exists a

Freiman 7-isomorphism from A onto G, we have |G| ≥ |A|ϕθ .

For θ = 13/14, it yields the following corollary which can be compared to Theorem 1:

Corollary 4. Let n be any positive integer. Then there exists a finite group H and a subset

A0 in H satisfying the following properties:

i) |A0| > n and |A0 · A0| < 2|A0|;
ii) For any A ⊂ A0 with |A| ≥ |A0|13/14 and for any finite group G such that there exists

a Freiman 7-isomorphism from A onto G, we have |G| ≥ |A|15/14.

Let α ∈ (0, 1) and A0 be the subset of H

(4) A0 := {[x, y, z] | (x, y, z) ∈ [0, pα)× F× F}.

For p large enough, we plainly have

|A0 · A0| = 2|A0| − p2,

thus A0 is a small squaring subset of H .

Let θ be such that 0 < θ ≤ 1, on which an additional assumption will be given later. Let

A be any subset of A0 whose cardinality satisfies

(5) |A| ≥ |A0|θ.
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By an averaging argument, there exists x0, y0, z0, z
′
0, u, v ∈ F and X, Y, Z ⊂ F such that

[X, y0, z0] ∪ [x0, Y, z
′
0] ∪ [u, v, Z] ⊂ A(6)

|X| ≥ |A|
p2

, |Y | ≥ |A|
p1+α

, |Z| ≥ |A|
p1+α

.(7)

Observe that |X||Y ||Z|2 ≥ p3 if

(8) |A| ≥ p(8+3α)/4,

which holds true if we fix α such that

(9) θ =
8 + 3α

8 + 4α
,

that is

(10) α =
8(1− θ)

4θ − 3
,

assuming that the following condition on θ holds:

θ ≥ 11

12
.

Let a = [x, y0, z0], b = [x0, y, z
′
0]. These are elements of A. Moreover the commutator of a

and b is

aba−1b−1 = [0, 0, xy − x0y0].

Let c = [u, v, z] and d = [u, v, z′] in [u, v, Z] ⊂ A. We thus have

aba−1b−1cd−1 = [0, 0, xy + z − z′ − x0y0].

For any element t in F, let N(t) be the number of representations of t under the form

t = xy + z − z′ − x0y0, x ∈ X, y ∈ Y, z, z′ ∈ Z.

One has

N(t) =
1

p

p−1
∑

h=0

∑

x∈X
y∈Y

z,z′∈Z

e

(

h(xy − x0y0 + z − z′ − t)

p

)

,

where e(α) is the usual notation for exp(2iπα). We get

N(t) ≥ |X||Y ||Z|2
p

− 1

p

p−1
∑

h=1

|S(h)||T (h)|2,

where

S(h) =
∑

(x,y)∈X×Y

e

(

hxy

p

)

, T (h) =
∑

z∈Z

e

(

hz

p

)

.
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By Vinogradov’s inequality

|S(h)| ≤
√

p|X||Y | (if p ∤ h)

and Parseval’s identity

1

p

p
∑

h=1

|T (h)|2 = |Z|,

we deduce the lower bound

N(t) >
|X||Y ||Z|2

p
−

√

p|X||Y ||Z|.

Hence by (10), N(t) is positive. We thus deduce

[0, 0,F] ⊂ B := A2A−2AA−1.

Let G be any finite group and π any Freiman s-isomorphism from A into G. Our goal is

to show that |G| is big compared to |A|. We thus may assume that G = 〈π(A)〉.
We assume in the sequel that s ≥ 7. We start from the property that is proven just above:

π([0, 0,F]) ⊂ π(B).

For any z ∈ F, we let

gz = π([0, 0, z]).

If h = π([u, v, w]) ∈ π(A), then for s ≥ 7 we have

(11) π([−u,−v, uv − w + z]) = π([u, v, w]−1[0, 0, z]) = h−1gz = gzh
−1.

We now show that for some i 6= j,

gλ(i−j) = g(λ−1)(i−j)gi−j, 0 < λ ≤ p.

Since [u, v, Z] ⊂ A and |Z| > 1 by (7) and (8), A contains at least two distinct elements

[u, v, i] and [u, v, j]. We denote hk = π([u, v, k]) for k = i, j. Since π is a Freiman s-

isomorphism from A into G and s ≥ 7, we get h−1
j hi = gi−j and by a similar calculation as

in (11)

g(λ+1)(i−j)h
−1
i = gλ(i−j)h

−1
j ,

hence

g(λ+1)(i−j) = gλ(i−j)+jh
−1
j hi = gλ(i−j)gi−j.

We deduce by induction

gλ(i−j) = gλi−j , for any λ ≥ 1.
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Thus the order of gi−j in G is either 0 or p. Since s ≥ 2, we have hi 6= hj hence gi−j =

h−1
j hi 6= 1G. This shows that gi−j is of order p in G. We then deduce that p divides the

order of G.

Let Gp be the Sylow p-subgroup of G. Since s ≥ 5 and H is a two-step nilpotent group, G

is also a two-step nilpotent group by Property 4 of Section 2. Then by Property 2 of Section

2, G can be written as the direct product G = Gp ×K. The projection σ of G onto Gp is a

homomorphism thus π̃ = σ ◦ π is a Freiman s-homomorphism. Since for z 6= 0, hz has order

p in G, σ(hz) has also order p in Gp.

Let a1 = [x1, y1, z1] and a2 = [x2, y2, z2] be any elements in A. We have a1a2a
−1
1 a−1

2 =

[0, 0, x1y2 − x2y1]. If Gp were abelian we would obtain by using s ≥ 4

1G = π̃(a1)π̃(a2)π̃(a1)
−1π̃(a2)

−1 = π̃(a1a2a
−1
1 a−1

2 ) = π̃([0, 0, x1y2 − x2y1]) = σ(gx1y2−x2y1),

hence x1y2 − x2y1 = 0. We would conclude that |A| ≤ p2, a contradiction by the fact that

|A| ≥ |A0|θ ≥ p(2+α)θ > p2 by (9).

Consequently by Property 3 given in Section 2, Gp is not abelian and |Gp| ≥ p3. Finally

|G| ≥ p3 = |A0|3/(2+α) ≥ |A|(12θ−9)/2.

The proof of Theorem 3 finishes by choosing the prime p large enough in order to have

|A0| > n.

4. Proof of the main result Theorem 1

Again, A0 denotes the set

A0 = {[x, y, z] : 0 ≤ x < pα, y, z ∈ F},

and A any subset of A0 such that |A| ≥ |A0|θ. The parameters α ∈ (0, 1) and θ ∈ (0, 1) will

be specified below. Again, we have |A0| ≥ p2+α thus

(12) |A| ≥ p(2+α)θ.

We recall that there exist x0, y0, z0, z
′
0, u, v ∈ F and X, Y, Z ⊂ F such that :

[X, y0, z0] ∪ [x0, Y, z
′
0] ∪ [u, v, Z] ⊂ A

|X| ≥ |A|
p2

, |Y | ≥ |A|
p1+α

, |Z| ≥ |A|
p1+α

.(13)
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For (x, y, z) ∈ X × Y × Z, one has

[x, y0, z0][x0, y, z
′
0][x, y0, z0]

−1[x0, y, z
′
0]
−1[u, v, z] = [u, v, xy + z − x0y0].

Our first goal is to show that [u, v, t] is in A2A−2A except for t belonging to a small subset

E of exceptions.

First step: For any t in F, let r(t) be the number of triples (x, y, z) ∈ X ×Y ×Z such that

t = xy + z − x0y0.

One cannot prove that r(t) > 0 for any t. Nevertheless, we will show that except for a small

part of elements t, this property holds. Let C be the set of those elements of t for which

r(t) > 0. Then by the Cauchy-Schwarz inequality

(14) |C| ≥ (|X||Y ||Z|)2
∑

t r(t)
2

.

Furthermore
∑

t r(t)
2 coincides with the number of solutions of

xy + z = x′y′ + z′, x, x′ ∈ X, y, y′ ∈ Y, z, z′ ∈ Z.

If we fix x = x1, x
′ = x′

1 and z′ = z′1, it gives the equation of an hyperplan Dx1,x′

1
,z′

1
in F3 :

x1y − x′
1y

′ + z − z′1 = 0.

All these hyperplanes are different and there are |X|2|Z| such hyperplanes. The possible

number of points (y, y′, z) ∈ Y × Y × Z is |Y |2|Z|.
In [7], L.A. Vinh established a Szemeredi-Trotter type result by obtaining an incidence

inequality for points and hyperplanes in Fd. It is connected to the Expander Mixing Lemma

(see Corollary 9.2.5 in [1]). We have:

Lemma 5 (L.A. Vinh [7]). Let d ≥ 2. Let P be a set of points in Fd and H be a set of

hyperplanes in Fd. Then

|{(P,D) ∈ P ×H : P ∈ D}| ≤ |P||H|
p

+ (1 + o(1))p(d−1)/2(|P||H|)1/2.

By this result with d = 3, we get for any large p

∑

t

r(t)2 ≤ (|X||Y ||Z|)2
p

+ 2p|X||Y ||Z|,

which yields by (14)

|C| ≥ p− 2p3

|X||Y ||Z| .
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Thus the set E of exceptions t ∈ F with r(t) = 0 has cardinality

(15) |E| ≤ 2p3

|X||Y ||Z| .

Second step: We fix z1 any element in Z and let Z1 = Zr{z1}. For any z ∈ Z1, we denote

m(z) = max{m ≤ p : z1 + j(z − z1) /∈ E, 2 ≤ j ≤ m}

if the maximum exists and we let m(z) = p otherwise. Let

(16) T =

[ |Z1|
2|E|

]

If we denote by Z ′
1 the set of the elements z ∈ Z1 with m(z) ≤ T , then

|Z ′
1| =

∑

m≤T

|{z ∈ Z1 : m(z) = m}| ≤
∑

m≤T

|E| ≤ |Z1|
2

,

since m = m(z) implies z1 + (m+ 1)(z − z1) ∈ E. It follows that m(z) > T for at least one

half of the elements z in Z1. We denote by Z̃1 the set of those elements z. We have

(17) |Z̃1| ≥
|A|

2p1+α
.

Lemma 6. Assume that 23/24 < θ ≤ 1 and let γ be a positive real number such that

(18) γ <
2(2 + α)θ − (3 + 2α)

3
.

If |E| < pγ, then there exists an integer t with 1 ≤ t ≤ T and two distinct elements z, z′ ∈ Z̃1

such that

(19) z′ − z /∈ E − E and z′ = z1 + t(z − z1)

Proof. For 1 ≤ t ≤ T , we denote by s(t) the number of pairs z, z′ of elements of Z̃1 with the

required property. It is sufficient to show that

T
∑

t=1

s(t) > 0.

This sum can be rewritten as

T
∑

t=1

1

p

∑

0≤|h|≤p/2

∑

z,z′∈−z1+Z̃1

z′−z /∈E−E

e

(

h(z−1z′ − t)

p

)

.

The contribution related to h = 0 is plainly bigger than

T

p
(|Z̃1|2 − |Z̃1||E − E|),
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thus

T
∑

t=1

s(t) ≥ T

p
(|Z̃1|2 − |Z̃1||E − E|)− 1

p

∑

0<|h|<p/2

∣

∣

∣

T
∑

t=1

e

(−th

p

)

∣

∣

∣

∣

∣

∣

∑

z,z′∈−z1+Z̃1

z′−z /∈E−E

e

(

hz−1z′

p

)

∣

∣

∣
.

By extending the summation over z and z′, we obtain for any h 6= 0

∣

∣

∣

∑

z,z′∈−z1+Z̃1

z′−z /∈E−E

e

(

hz−1z′

p

)

∣

∣

∣
≤

∣

∣

∣

∑

z,z′∈−z1+Z̃1

e

(

hz−1z′

p

)

∣

∣

∣
+ |Z̃1||E −E|,

which is less than or equals to

(
√
p+ |E − E|)|Z̃1|

by using Vinogradov’s inequality for the estimation of the sum over z and z′. Hence by the

bounds
∣

∣

∣

T
∑

t=1

e

(−ht

p

)

∣

∣

∣
≤ p

2|h| for 0 < |h| < p/2,

and
(p−1)/2
∑

h=1

1

h
≤ ln p,

we get
T
∑

t=1

s(t) ≥ T

p
(|Z̃1|2 − |Z̃1||E − E|)− (

√
p+ |E − E|)|Z̃1| ln p.

From the trivial bound |E − E| ≤ |E|2 and by (16) and (17), this sum is positive whenever

|E| ≤ pγ for p is large enough, where γ is any positive number such that

(20) γ < min

(

(2 + α)θ − (1 + α)

2
;
4(2 + α)θ − (7 + 4α)

2
;
2(2 + α)θ − (3 + 2α)

3

)

.

The second argument in this minimum is less than or equal to the first since θ ≤ 1 and the

third is less than the second since θ > 23/24. Thus condition (20) reduces to (18), and the

lemma follows. �

By (13) and (15), we deduce from the lemma that the condition

7 + 2α− 3(2 + α)θ <
2(2 + α)θ − (3 + 2α)

3
,

is sufficient in order to ensure that system (19) has at least one solution, assuming p is large

enough. This condition reduces to

θ >
24 + 8α

22 + 11α
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or equivalently

(21) α > α0(θ) :=
24− 22θ

11θ − 8
.

Since α < 1, we must choose θ such that θ > 32
33
. Fixing

(22) α = α0(θ) + ε,

this yields

(23) p3 ≥ |A|3/(2+α) ≥ |A|3(11θ−8)/8−ε,

for any p ≥ p0(ǫ). For θ = 43/44, it will give the desired exponents in Theorem 1.

Third step: We have at our disposal z1, z ∈ Z and t ∈ F such that

(24) z1 + j(z − z1) /∈ E, j = 2, . . . , t, and z1 + t(z − z1) ∈ Z.

Let π : A → G, where G is a finite group, be a Freiman 6-isomorphism. As in the proof

of Theorem 3, we will show that p divides |G| and that the p-Sylow subgroup of G cannot

be abelian. It will ensure the bound |G| ≥ p3 and the theorem will follow by (23).

Let

(25) h = π([0, 0, z − z1]) = π([u, v, z1])
−1π([u, v, z]).

Let us show that for any j such that j(z − z1) + z1 /∈ E, we have π([0, 0, j(z − z1)]) = hj .

If 1 ≤ j ≤ t, we proceed by induction: for j = 1, the property is plainly true. Let

2 ≤ j ≤ t. We have

π([u, v, j(z − z1) + z1][u, v, z]
−1) = π([u, v, (j − 1)(z − z1) + z1][u, v, z1]

−1).

By (24) and by definition of E, both elements [u, v, (j−1)(z−z1)+z1] and [u, v, j(z−z1)+z1]

belong to A2A−2A. Moreover [u, v, z], [u, v, z1] ∈ A hence, by the fact that π is a Freiman

6-homomorphism, we get

π([u, v, j(z − z1) + z1])π([u, v, z])
−1 = π([u, v, (j − 1)(z − z1) + z1])π([u, v, z1])

−1.

Thus, by (25)

π([u, v, j(z − z1) + z1]) = π([u, v, (j − 1)(z − z1) + z1])h.

By multiplying on the left by π([u, v, z1])
−1 and using again that π is a Freiman 6-homomorphism,

we get

π([0, 0, j(z − z1)]) = π([0, 0, (j − 1)(z − z1)])h = hj
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by the induction hypothesis.

For larger j, we again induct: let j > t be such that j(z− z1) + z1 /∈ E. Then at least one

of the two elements (j−1)(z−z1)+z1 or (j− t)(z−z1)+z1 is not in E since z′−z /∈ E−E.

If (j − 1)(z − z1) + z1 /∈ E we argue by induction as above. If (j − t)(z − z1) + z1 /∈ E we

slightly modify the argument: since

π([u, v, j(z − z1) + z1][u, v, t(z − z1) + z1]
−1) = π([u, v, (j − t)(z − z1) + z1][u, v, z1]

−1)

and π a Freiman 6-isomorphism, we get

π([u, v, j(z − z1) + z1]) = π([u, v, (j − t)(z − z1) + z1])π([u, v, z1])
−1π([u, v, t(z − z1) + z1])

= π([u, v, (j − t)(z − z1) + z1])h
t,

and finally by induction

π([0, 0, j(z − z1)]) = π([u, v, z1])
−1π([u, v, (j − t)(z − z1) + z1])h

t = hj−tht = hj .

Since z1 /∈ E, we obtain hp = 1 in G, thus either h = 1 or h has order p. But z 6= z1 hence

[0, 0, z − z1] = [u, v, z][u, v, z1]
−1 6= 1H , hence h 6= 1G since π is a Freiman 6-isomorphism.

We deduce that G admits an element of order p, thus the p-Sylow subgroup Gp of G is not

trivial. By considering the canonical homomorphism σ : G → Gp, π̃ = σ ◦ π is a Freiman

6-homomorphim of A onto Gp. Hence for any a = [x, y, z] and b = [x′, y′, z′] in A

[π̃(a); π̃(b)] = π̃([a; b]) = π̃([0, 0, xy′ − x′y])

which must be equal to 1G if Gp is assumed to be abelian. It would mean that (x, y) belongs

to a single line for any [x, y, z] ∈ A, giving |A| ≤ p2 a contradiction to

ln |A|
ln p

≥ θ(2 + α) > θ(2 + α0(θ)) =
8θ

11θ − 8
> 2,

obtained by (12), (21) and (22).
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http://www.dpmms.cam.ac.uk/~bjg23/notes.html
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