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A NOTE ON FREIMAN MODELS IN HEISENBERG GROUPS
NORBERT HEGYVARI AND FRANCOIS HENNECART

ABSTRACT. Green and Ruzsa recently proved that for any s > 2, any small squaring set
A in a (multiplicative) abelian group, i.e. |4 - A| < K|A|, has a Freiman s-model: it
means that there exists a group G and a Freiman s-isomorphism from A into G such that
Gl < f(s, K)|AL

In an unpublished note, Green proved that such a result does not necessarily hold in non
abelian groups if s > 64. The aim of this paper is improve Green’s result by showing that

it remains true under the weaker assumption s > 6.

1. Introduction

We will use the notation | X| for the cardinality of any set or group X. If X and Y are
subsets of a given (multiplicative) group, the product X - Y or simply XY denotes the set
{zy | v € X,y € Y}. For X =Y we write XY = X?. The set X! is formed by all the
inverse elements v~ %, x € X.

Let s > 2 be an integer and A C H and B C G be subsets of arbitrary (multiplicative)
groups. A map m : A — B is said to be a Freiman s-homomorphism if for any 2s-tuple

(a1,...,a4,b1,...,bs) of elements of A and any signs ¢; = +1,7=1,...,s, we have
ait...af =01 .. b = 7w(a)? .. .w(as)® = 7m(by)? ... w(bs).

Observe that in the case of abelian groups, we may set, without loss of generality, all the
signs to +1. If moreover 7 is bijective and 7! is also a Freiman s-homomorphism, then 7 is
called a Freiman s-isomorphism from A into G. In this case, A and B are said to be Freiman
s-isomorphic.

Green and Ruzsa proved in [2] that a structural result holds for small squaring sets in
an abelian (multiplicative) group. The key argument in their proof is Proposition 1.2 of [2]
asserting that any small squaring finite set A in an abelian group has a good Freiman model,
that is a relatively small finite group G and a Freiman s-isomorphism from A into G. More
precisely, they showed the following effective result:
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Let s > 2 and K > 1. There exists a constant f(s, K) = (10sK)'°%* such that A is a
subset of an abelian group H satisfying the small squaring property |A - A| < K|A|, then
there exists an abelian group G such that |G| < f(s, K)|A| and A is Freiman s-isomorphic
to a subset of G.

It is not difficult to see that this result cannot be literally extended to nonabelian groups
by considering a set A such that |A - A|/|A| is small and |A - A - A|/|A]| is large (see [6],
page 94] for such an example). However it is known (by combining [4 section 1.11] and [6],
Proposition 2.40]) that if |A - A|/|A| < K then for any n-tuple of signs €1, ..., ¢, € {—1,1},
we have | X - X ... X|/|X| < K™ for some large subset X of A satisfying |X| > |A|/2.
Despite this fact, the existenceness of a good Freiman s-model for some large subset of an
arbitrary set Ay satisfying the small squaring property |Ag - Ag| < 2|Ap| is not guaranteed.
Indeed in his unpublished note [3], Green gave an example of such a set Ay with arbitrarily
large cardinality and the following property: let s > 64 and § = 1/23; then for any A C Ay
with |A| > |Ap|'~? and any finite group G such that there is a Freiman s-isomorphism from
Ainto G, we have |G| > |A|**°. There is no doubt from his proof that the admissible range
for s could be somewhat improved (s > 32 is seemingly the best range that can be read from
his proof).

Our aim is to improve Green’s result by showing:

Theorem 1. Let n be any positive integer and € be any positive real number. Then there

exists a finite (nonabelian) group H and a subset Ay in H with the following properties:

1) |A0‘ > n and |A0 . Ao‘ < Q‘Ao‘,
ii) For any A C Ay with |A| > |Ao|**/** and for any finite group G such that there exists

a Freiman 6-isomorphism from A onto G, we have |G| > | A|33/32—¢,

Our proof in Section [4]is partially based on Green’s approach but also includes new mate-
rials. It exploits arguments coming from group theory and Fourier analysis with additional
tools, e.g. a recent incidence theorem due to Vinh [7]. It also needs some additional combi-
natorial arguments.

In Section Bl we include for comparison the proof of a weaker statement that does not use

the new materials, but which optimizes, in some sense, Green’s ideas.
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Let p be a prime number and F the fields with p elements. We denote by H the Heisenberg

linear group over [F consisting of the upper triangular matrices

1 z =z
[z,y,2] =10 1 yl, =y zelF.
0 0 1

We recall the product rule in H:
[,y 2] [y, ] =[e+ 2 y+y g + 2+ 2]

As shown in [3], this group provides an example of a nonabelian group in which there exists
some subset Ay with small squaring property, namely |A3| < 2|Ag|, and not having a good
Freiman model. That is there is no relatively big isomorphic image of Ay by a Freiman s-
isomorphism with a given s in any group GG. We will also use the Heisenberg group in order
to derive our results.

The proof of Theorem [I] goes in the following manner. We will show that: firstly there
exists a non trivial p-subgroup in the subgroup generated by 7(A) in G; secondly any element
in 771(@) is the product of at most 6 elements from A or A~*. The rest of the proof is based
on some group-theoretical properties which are mainly taken from [3].

As indicated in [3], there is no hope to obtain an optimal result by this approach, namely

a similar result with sy = 2.

2. Some properties of finite nilpotent groups and of the Heisenberg group H

For any group G, we denote by 1 the identity element of G. Thus [0,0,0] = 1.

We will use the following partially classical properties:

1. H is a two-step nilpotent group (or nilpotent of class two). Indeed, the commutator

of a; = [x1,91, 21) € H and ag = [x2, ya, 22] € H denoted by [a;; as] is equal to
[a1; as] = arasai ay = (0,0, 212 — za1].
For any a3 = [z3,ys, 23] € H, we obtain
[la1; as]; as] = [0,0,0] = 15,

for the double commutator. Hence the result.

2. Any finite nilpotent group is the direct product of its Sylow subgroups (see 6.4.14 of

[51)-
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3. Any finite p-group of order p or p? is abelian (see 6.3.5 of [5]).
4. Assume that A C H and 7 is a Freiman s-homomorphism from A into G with s > 5.
We denote by (m(A)) the subgroup generated by m(A). Then (7w (A)) is a two-step

nilpotent group. Indeed, for any a,b,c € A, one has
aba"'bc = caba" b
since H is a nilpotent group of class two. Hence
m(a)r(b)m(a) 7 (b)) tn(c) = n(c)n(a)m(b)m(a) 7 (b)

since 7 is a Freiman s-homomorphism with s > 5. It thus follows that double com-
mutators satisfy [[a1;b1]; ¢1] = 1 for any a1, by, ¢; € w(A). In [3], the author observed
from a direct argument that it remains true for any aq, by, ¢; € (w(A)): since (7(A))

is finite, the result will follow from the next lemma (cf. [3]).

Lemma 2. Let I' be any group and X a mazximal subset of I' such that
[[a;0];¢] = 1p,  for any a,b,c € X.

Then X in closed under multiplication.

For the the sake of completeness we include the proof which is in the same way as

in [3].
Proof. By ([Il) and the following identity
[zy; 2] = [z [y; 2)] - [y; 2] - [25 2], z,y,2 €T,

we obtain for any a,b,¢,d € X, [[ab; c];d] = [[b; ] - [a; ¢]; d]. Applying again (2)) with

x = [b;c|, y =[a;c] and z = ¢, yields in view of (),
[[ab; c];d] = 1r, for any a,b,c,d € X.

By a further application of ([2) with x = a, y = b and z = [ab; |, we get by (3]
[ab; [ab; c]] = 1r for any a,b, ¢ € X. By the maximal property of X, we obtain ab € X
for any a,b € X. O
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3. Approach of the proof with a slightly weaker result
Before proving our main result, we explain the principle of the approach by showing the

following weaker result in which only Freiman s-isomorphisms with s > 7 are considered.

Theorem 3. Let n be a positive integer and 6 be a real number such that

11
—<0<1
T
and let
_129—9
Yo = 5 .

Then there exists a finite group H and a subset Ay in H satisfying the following properties:

1) |A()| >n and |A0 . A0| < 2|A0|,
ii) For any A C Ay with |A| > |Ao|? and for any finite group G such that there exists a

Freiman 7-isomorphism from A onto G, we have |G| > |A|¥.
For § = 13/14, it yields the following corollary which can be compared to Theorem [T}

Corollary 4. Let n be any positive integer. Then there exists a finite group H and a subset

Ag in H satisfying the following properties:

1) |A()| >n and |A0 . A0| < 2|A0|,

ii) For any A C Ay with |A| > |Ao|**/'* and for any finite group G such that there exists

a Freiman T-isomorphism from A onto G, we have |G| > | A|**/*.

Let o € (0,1) and Ay be the subset of H
(4) Ao == A{[z,y, 2] | (z,9,2) € [0,p") X F x F}.
For p large enough, we plainly have
Ao - Ao| = 2| Ao| — p?,

thus Ay is a small squaring subset of H.
Let 6 be such that 0 < 8 < 1, on which an additional assumption will be given later. Let

A be any subset of Ay whose cardinality satisfies

(5) Al > |Ao|”.
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By an averaging argument, there exists xo, Yo, 20, 2(, 4, v € F and X,Y, Z C F such that

(6) (X, Yo, 20) U [0, Y, 25] U [u,v, Z] C A
14l 1AL |A]
(7) ‘X| > p2 Y ‘Y‘ — 1+a ‘ ‘ — W

Observe that |X||Y]|Z]* > p? if
(8) |A| > p(8+3a)/4’

which holds true if we fix o such that

8+ 3«
9 0=
©) 8 +4a’
that is
_s1-0)
(10) a= -
assuming that the following condition on € holds:
o> 11
12

Let a = [z, yo, 20], b = [z0,y, 25]. These are elements of A. Moreover the commutator of a
and b is

aba"'b~t =[0,0, 1y — 2oyo].
Let ¢ = [u,v, 2] and d = [u, v, 2] in [u,v, Z] C A. We thus have
aba 'bted™! = 10,0, 2y + 2 — 2’ — Toy0).
For any element ¢ in IF, let N(¢) be the number of representations of ¢ under the form
t=ay+z2—2 —x0m0, x€X, yevyY, zzeZ

One has

:li Z 6(h(a:y—:c0y0+z—z’—t))
p Y

p h=0 zeX
yey
2,2/ €Z

where e(«) is the usual notation for exp(2ira). We get
1
\X||YHZ\2 5N
N(t) = Z [SWIT (R

where

Sthy= > e(@) T(h):Z%%).

(z,y)eX XY p
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By Vinogradov’s inequality

IS < VplIX[IY] (fpth)

and Parseval’s identity
p

1

=N T = 12|,
L

we deduce the lower bound

|X||Y||Z|2
N(t) > — VX1
Hence by ([I0), N(t) is positive. We thus deduce
[0,0,F] C B:= A?A72AA7 "

Let G be any finite group and 7 any Freiman s-isomorphism from A into G. Our goal is
to show that |G| is big compared to |A|. We thus may assume that G = (7(A)).

We assume in the sequel that s > 7. We start from the property that is proven just above:
7([0,0,F]) C 7(B).
For any z € I, we let

g. = 7([0,0, z]).
If h =m(u,v,w]) € (A), then for s > 7 we have
(11) m([—u, —v,uv — w + 2]) = 7([u,v,w]710,0,2]) = h'g, = g.h ™.
We now show that for some i # 7,
IAG-) = Jo-1)i-)Fi—j» 0 <A <P
Since [u,v,Z] C A and |Z] > 1 by (@) and (§), A contains at least two distinct elements
[u,v,i] and [u,v,j]. We denote hy = 7([u,v,k]) for k& = 7,7. Since 7 is a Freiman s-
isomorphism from A into G and s > 7, we get hj_lhi = g;—; and by a similar calculation as
in (II)
gorn-phi " = grni-nhy
hence
IO+1)(i—j) = g)\(i—j)-l-jhj_lhi = Gx(i—j)Ji—j-
We deduce by induction
Ir(i—j) = 92\—]‘7 for any A\ > 1.
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Thus the order of g;_; in G is either 0 or p. Since s > 2, we have h; # h; hence g,_; =
hj_lhi # 1g. This shows that g;_; is of order p in G. We then deduce that p divides the
order of G.

Let G, be the Sylow p-subgroup of G. Since s > 5 and H is a two-step nilpotent group, G
is also a two-step nilpotent group by Property 4 of Section 2l Then by Property 2 of Section
2 G can be written as the direct product G = GG, x K. The projection o of G onto G, is a
homomorphism thus 7 = ¢ o 7 is a Freiman s-homomorphism. Since for z # 0, h, has order
pin G, o(h,) has also order p in G,,.

Let a; = [z1,91,21] and ay = [22, s, 22] be any elements in A. We have ajaza;'a;’ =

0,0, z1y2 — z2y1]. If G, were abelian we would obtain by using s > 4

lg = 7(a1)7(a2)7(a1) " 7 (az) ™" = #(arazay'az") = 7([0,0, 21y2 — T2v1]) = 0(Goryo—sops )

hence z1y» — x2y; = 0. We would conclude that |A| < p?, a contradiction by the fact that
|A] > [Ao]? > p®F)? > p? by (@).

Consequently by Property 3 given in Section 2, G, is not abelian and |G,| > p*. Finally
|G| > p3 _ |A0|3/(2+a) > |A|(129_9)/2.

The proof of Theorem [3 finishes by choosing the prime p large enough in order to have

|A0| >n.
4. Proof of the main result Theorem (I
Again, Ay denotes the set
Ay =A{[z,y,2] : 0 <z <p, y,z€F},

and A any subset of Ay such that |A| > |Ag|?. The parameters o € (0,1) and 6 € (0,1) will
be specified below. Again, we have |Ag| > p** thus

(12) 1A > p+a.
We recall that there exist o, yo, 20, 2, u,v € F and X, Y, Z C I such that :
(X, yo, 20] U [0, Y, 20) U [u,v, Z] C A

|A| Al Al
(13) ‘X|ZF’ Y] sza, | \pr-
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For (z,y,2) € X XY X Z, one has

[if, Yo, Zo] [:)so,y, 26] [957?/0, Zo]_1[950>y> Z(l)]_l[% v, Z] = [%U, Y+ 2 — $0y0]~

Our first goal is to show that [u, v,t] is in A2A72A except for ¢ belonging to a small subset
E of exceptions.

First step: For any ¢ in IF, let (¢) be the number of triples (z,y,2) € X x Y x Z such that
t=uzy+ 2 — ToYo.

One cannot prove that r(t) > 0 for any ¢. Nevertheless, we will show that except for a small
part of elements ¢, this property holds. Let C' be the set of those elements of ¢ for which
r(t) > 0. Then by the Cauchy-Schwarz inequality

X||Y1]|Z])?
" o> XIIZ)°

27 (t)

Furthermore Y, 7(¢)? coincides with the number of solutions of
xy+z=2y+7, videX yyey, zeZ
If we fix ¥ = 2z, 2’ = ] and 2’ = 2], it gives the equation of an hyperplan D,, . .. in F3 -
1y — 2y +z— 2z =0.

All these hyperplanes are different and there are |X|?|Z| such hyperplanes. The possible
number of points (y,y,2) €Y x Y x Z is [Y|*|Z].

In [7], L.A. Vinh established a Szemeredi-Trotter type result by obtaining an incidence
inequality for points and hyperplanes in F¢. It is connected to the Expander Mixing Lemma

(see Corollary 9.2.5 in [I]). We have:

Lemma 5 (L.A. Vinh [7]). Let d > 2. Let P be a set of points in F¢ and H be a set of
hyperplanes in F¢. Then

{(P,D)ePxH : PeD}| < |P|p|H| + (14 o(1))p=V2(|P||1H )2,

By this result with d = 3, we get for any large p

XY Z)?
S (t)? < mexnwm,

t

which yields by (I4])

2p3

ICl 2 p = v
(X11Y]|2]
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Thus the set E of exceptions t € F with r(¢) = 0 has cardinality

2p3

(15) E| < v
(X1Y1Z]

Second step: We fix z; any element in Z and let Z; = Z ~\{z}. For any z € Z;, we denote
m(z) =max{m <p:z+jz—2)¢FE, 2<j<m}

if the maximum exists and we let m(z) = p otherwise. Let

If we denote by Z; the set of the elements z € Z; with m(z) < T, then

Z
Z=Y ez mm) =m)| < 3 (8] < 2,
m<T m<T
since m = m(z) implies z; + (m + 1)(z — z1) € E. It follows that m(z) > T for at least one
half of the elements z in Z;. We denote by 7, the set of those elements z. We have
|A]
2p1+a '

(17) 2] >

Lemma 6. Assume that 23/24 < 0 <1 and let v be a positive real number such that

(18) 7<2(2+0z)93—(3+2a).

If|E| < p7, then there exists an integer t with 1 <t < T and two distinct elements z, 2 € Z,
such that

(19) Y —z¢ E—FE and 2 =2z+1t(z—2)

Proof. For 1 <t < T, we denote by s(t) the number of pairs z, 2’ of elements of 7, with the

required property. It is sufficient to show that

i s(t) > 0.

t=1
This sum can be rewritten as
T
1 h(z712 —t
IO SEND S C== |
t=1 " 0<|h|<p/2 2,2/ e—21+ 7
2/ —2¢ E—F

The contribution related to h = 0 is plainly bigger than

T . .
E(IZJ2 —|Zi||E - E),
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thus
T . 1 hz=12
S s> Lzt - 1alE-Ey -1 ¥ \Z ( )H > ( )\-
t=1 p p0<\h|<p/2 t=1 2,2/ €—21+ 71 p
Z/—2¢ E—FE

By extending the summation over z and z’, we obtain for any A # 0

Y (B () |- n

2,7 €—21+21 2,2 €—21+21
z'—2¢ E—F

which is less than or equals to
(Vp+|E — E|)|Z)]

by using Vinogradov’s inequality for the estimation of the sum over z and z’. Hence by the

bounds
T
‘Ze( )‘_m for 0 < |h| < p/2,
and
(p—1)/2
1 <In
h — p?
h=1

we get

!

Y s() =~ (12 = |Z||E — E|) = (VP + |E — E|)| Zi| Inp.

t=1
From the trivial bound |E — E| < |E|? and by (I6) and (I7), this sum is positive whenever

%I’ﬂ

|E| < p? for p is large enough, where 7 is any positive number such that

2+a)f—(1+a) 42+ a)f — (T+4a) 2(2+a)f — (3 +20a)
2 ! 2 ! 3 )

(20) ~ < min <

The second argument in this minimum is less than or equal to the first since < 1 and the
third is less than the second since 6 > 23/24. Thus condition (20) reduces to (I8), and the

lemma follows. U

By (I3) and ([I3]), we deduce from the lemma that the condition

2(2+ )b — (34 2«)
3 ;

T+2a—-32+a)<

is sufficient in order to ensure that system (I9) has at least one solution, assuming p is large

enough. This condition reduces to
24 + 8«

0> ——
22+ 1la
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or equivalently

24 — 220

(21) a > ap(f) = 108"

Since a < 1, we must choose 6 such that 6 > % Fixing

(22) a=ay(8) +e,

this yields

(23) P8 > | AP/ ) > | 430116-8)/8—¢

for any p > pg(€). For 6 = 43/44, it will give the desired exponents in Theorem [l
Third step: We have at our disposal 21,2 € Z and t € F such that

(24) n+jlz—2)¢FE, j=2,...,t, and 2z +t(z—2z) € Z.

Let m : A — (G, where G is a finite group, be a Freiman 6-isomorphism. As in the proof
of Theorem [3, we will show that p divides |G| and that the p-Sylow subgroup of G cannot
be abelian. It will ensure the bound |G| > p? and the theorem will follow by (23).

Let

(25) h=7([0,0,2 — z]) = 7([u, v, 1)) ‘7 ([u, v, 2]).

Let us show that for any j such that j(z — 21) + 21 ¢ E, we have 7([0,0, j(z — 21)]) = I7.
If 1 < j < t, we proceed by induction: for j = 1, the property is plainly true. Let
2 < j <t. We have

m([u,v,5(z — 21) + 21w, v, 2] ™) = 7([u, v, (j — 1)(z — 21) + 1] [u, v, 21] 7).

By (24) and by definition of E, both elements [u, v, (j —1)(z—21)+21] and [u, v, j(z—21)+ 2]
belong to A2A~2A. Moreover [u,v, 2], [u,v, z;] € A hence, by the fact that 7 is a Freiman

6-homomorphism, we get
([, v, (2 — 21) + 2w ([, v, 2) 7 = 7([w, v, G — 1)(z — 21) + 21w ([u, v, 1))
Thus, by (25)
([, v, 5(z — 21) + 1)) = 7([w, v, (G — 1)(z = 21) + 1))

By multiplying on the left by 7([u, v, 21]) 7! and using again that 7 is a Freiman 6-homomorphism,
we get

([0,0,j(z = z1)]) = 7([0,0, (j — 1)(z — z1))h = ¥’
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by the induction hypothesis.
For larger j, we again induct: let j > ¢ be such that j(z — z1) + 21 ¢ E. Then at least one
of the two elements (7 —1)(z —21) 421 or (j—t)(z —21)+ 21 is not in F since 2/ —z ¢ E—E.
If (j—1)(z—21)+ 21 ¢ E we argue by induction as above. If (j —t)(z — 21) + 21 ¢ E we
slightly modify the argument: since

7([u,v,j(z — 21) + z1][u, v, t(z — 21) + 21]7Y) = 7([w, v, (5 — t) (2 — 21) + z1][u, v, 21] 1)
and 7 a Freiman 6-isomorphism, we get
m([u,v,5(z — 21) + 21]) = 7([u, v, (j — t)(z — 21) + z1))7([u, v, 21]) "7 ([u, v, t(z — 21) + 21])
= m([w, v, (j = t)(z — 21) + 2],
and finally by induction
7([0,0,5(z — 21)]) = 7 ([u, v, 1)) 7 ([u, v, (j — t)(2 — 21) + z1))h' = B ~'RE = B,

Since z; ¢ E, we obtain h? = 1 in G, thus either h = 1 or h has order p. But z # z; hence
0,0,2 — z1] = [u,v, 2][u,v, 217" # 1g, hence h # 1 since 7 is a Freiman 6-isomorphism.
We deduce that G admits an element of order p, thus the p-Sylow subgroup G, of G is not
trivial. By considering the canonical homomorphism ¢ : G — G, ™ = 0 o 7 is a Freiman

6-homomorphim of A onto G,. Hence for any a = [z,y, 2] and b= [2/,y/, 2] in A

[7(a); ®(b)] = 7([a; b]) = 7([0, 0, 2y — 2'y])

which must be equal to 15 if G, is assumed to be abelian. It would mean that (z,y) belongs
to a single line for any [z,y, 2] € A, giving |A| < p? a contradiction to

In | A 86
> =
Hol 202+ 0) > 02+ an(6) = 1

obtained by (I2)), (2I) and (22)).

> 2,
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