A NOTE ON FREIMAN MODELS IN HEISENBERG GROUPS

NORBERT HEGYVÁRI AND FRANÇOIS HENNECART

ABSTRACT. Green and Ruzsa recently proved that for any $s \ge 2$, any small squaring set A in a (multiplicative) abelian group, i.e. $|A \cdot A| < K|A|$, has a Freiman s-model: it means that there exists a group G and a Freiman s-isomorphism from A into G such that |G| < f(s, K)|A|.

In an unpublished note, Green proved that such a result does not necessarily hold in non abelian groups if $s \ge 64$. The aim of this paper is improve Green's result by showing that it remains true under the weaker assumption $s \ge 6$.

1. Introduction

We will use the notation |X| for the cardinality of any set or group X. If X and Y are subsets of a given (multiplicative) group, the product $X \cdot Y$ or simply XY denotes the set $\{xy \mid x \in X, y \in Y\}$. For X = Y we write $XY = X^2$. The set X^{-1} is formed by all the inverse elements $x^{-1}, x \in X$.

Let $s \ge 2$ be an integer and $A \subset H$ and $B \subset G$ be subsets of arbitrary (multiplicative) groups. A map $\pi : A \to B$ is said to be a Freiman s-homomorphism if for any 2s-tuple $(a_1, \ldots, a_s, b_1, \ldots, b_s)$ of elements of A and any signs $\epsilon_i = \pm 1, i = 1, \ldots, s$, we have

$$a_1^{\epsilon_1} \dots a_s^{\epsilon_s} = b_1^{\epsilon_1} \dots b_s^{\epsilon_s} \Longrightarrow \pi(a_1)^{\epsilon_1} \dots \pi(a_s)^{\epsilon_s} = \pi(b_1)^{\epsilon_1} \dots \pi(b_s)^{\epsilon_s}.$$

Observe that in the case of abelian groups, we may set, without loss of generality, all the signs to +1. If moreover π is bijective and π^{-1} is also a Freiman *s*-homomorphism, then π is called a Freiman *s*-isomorphism from *A* into *G*. In this case, *A* and B are said to be Freiman *s*-isomorphic.

Green and Ruzsa proved in [2] that a structural result holds for small squaring sets in an abelian (multiplicative) group. The key argument in their proof is Proposition 1.2 of [2] asserting that any small squaring finite set A in an abelian group has a good Freiman model, that is a relatively small finite group G and a Freiman *s*-isomorphism from A into G. More precisely, they showed the following effective result:

Date: July 3, 2012.

Research is partially supported by OTKA grants K 67676, K 81658 and Balaton Program Project.

Let $s \ge 2$ and K > 1. There exists a constant $f(s, K) = (10sK)^{10K^2}$ such that A is a subset of an abelian group H satisfying the small squaring property $|A \cdot A| < K|A|$, then there exists an abelian group G such that |G| < f(s, K)|A| and A is Freiman s-isomorphic to a subset of G.

It is not difficult to see that this result cannot be literally extended to nonabelian groups by considering a set A such that $|A \cdot A|/|A|$ is small and $|A \cdot A \cdot A|/|A|$ is large (see [6, page 94] for such an example). However it is known (by combining [4, section 1.11] and [6, Proposition 2.40]) that if $|A \cdot A|/|A| \leq K$ then for any n-tuple of signs $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$, we have $|X^{\epsilon_1} \cdot X^{\epsilon_2} \cdots X^{\epsilon_n}|/|X| \leq K^{O(n)}$ for some large subset X of A satisfying $|X| \geq |A|/2$. Despite this fact, the existenceness of a good Freiman s-model for some large subset of an arbitrary set A_0 satisfying the small squaring property $|A_0 \cdot A_0| < 2|A_0|$ is not guaranteed. Indeed in his unpublished note [3], Green gave an example of such a set A_0 with arbitrarily large cardinality and the following property: let $s \geq 64$ and $\delta = 1/23$; then for any $A \subset A_0$ with $|A| \geq |A_0|^{1-\delta}$ and any finite group G such that there is a Freiman s-isomorphism from A into G, we have $|G| \geq |A|^{1+\delta}$. There is no doubt from his proof that the admissible range for s could be somewhat improved ($s \geq 32$ is seemingly the best range that can be read from his proof).

Our aim is to improve Green's result by showing:

Theorem 1. Let n be any positive integer and ε be any positive real number. Then there exists a finite (nonabelian) group H and a subset A_0 in H with the following properties:

- i) $|A_0| > n$ and $|A_0 \cdot A_0| < 2|A_0|$;
- ii) For any $A \subset A_0$ with $|A| \ge |A_0|^{43/44}$ and for any finite group G such that there exists a Freiman 6-isomorphism from A onto G, we have $|G| \ge |A|^{33/32-\varepsilon}$.

Our proof in Section 4 is partially based on Green's approach but also includes new materials. It exploits arguments coming from group theory and Fourier analysis with additional tools, e.g. a recent incidence theorem due to Vinh [7]. It also needs some additional combinatorial arguments.

In Section 3, we include for comparison the proof of a weaker statement that does not use the new materials, but which optimizes, in some sense, Green's ideas. Let p be a prime number and \mathbb{F} the fields with p elements. We denote by H the Heisenberg linear group over \mathbb{F} consisting of the upper triangular matrices

$$[x, y, z] = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \quad x, y, z \in \mathbb{F}.$$

We recall the product rule in H:

$$[x, y, z] \cdot [x', y', z'] = [x + x', y + y', xy' + z + z'].$$

As shown in [3], this group provides an example of a nonabelian group in which there exists some subset A_0 with small squaring property, namely $|A_0^2| < 2|A_0|$, and not having a good Freiman model. That is there is no relatively big isomorphic image of A_0 by a Freiman sisomorphism with a given s in any group G. We will also use the Heisenberg group in order to derive our results.

The proof of Theorem 1 goes in the following manner. We will show that: firstly there exists a non trivial *p*-subgroup in the subgroup generated by $\pi(A)$ in *G*; secondly any element in $\pi^{-1}(G)$ is the product of at most 6 elements from *A* or A^{-1} . The rest of the proof is based on some group-theoretical properties which are mainly taken from [3].

As indicated in [3], there is no hope to obtain an optimal result by this approach, namely a similar result with $s_0 = 2$.

2. Some properties of finite nilpotent groups and of the Heisenberg group H

For any group G, we denote by 1_G the identity element of G. Thus $[0, 0, 0] = 1_H$. We will use the following partially classical properties:

1. *H* is a two-step nilpotent group (or nilpotent of class two). Indeed, the commutator of $a_1 = [x_1, y_1, z_1] \in H$ and $a_2 = [x_2, y_2, z_2] \in H$ denoted by $[a_1; a_2]$ is equal to

$$[a_1; a_2] = a_1 a_2 a_1^{-1} a_2^{-1} = [0, 0, x_1 y_2 - x_2 y_1].$$

For any $a_3 = [x_3, y_3, z_3] \in H$, we obtain

$$[[a_1; a_2]; a_3] = [0, 0, 0] = 1_{H_1}$$

for the double commutator. Hence the result.

Any finite nilpotent group is the direct product of its Sylow subgroups (see 6.4.14 of [5]).

- **3.** Any finite *p*-group of order *p* or p^2 is abelian (see 6.3.5 of [5]).
- 4. Assume that A ⊂ H and π is a Freiman s-homomorphism from A into G with s ≥ 5. We denote by ⟨π(A)⟩ the subgroup generated by π(A). Then ⟨π(A)⟩ is a two-step nilpotent group. Indeed, for any a, b, c ∈ A, one has

$$aba^{-1}b^{-1}c = caba^{-1}b^{-1}$$

since H is a nilpotent group of class two. Hence

$$\pi(a)\pi(b)\pi(a)^{-1}\pi(b)^{-1}\pi(c) = \pi(c)\pi(a)\pi(b)\pi(a)^{-1}\pi(b)^{-1}$$

since π is a Freiman s-homomorphism with $s \geq 5$. It thus follows that double commutators satisfy $[[a_1; b_1]; c_1] = 1_G$ for any $a_1, b_1, c_1 \in \pi(A)$. In [3], the author observed from a direct argument that it remains true for any $a_1, b_1, c_1 \in \langle \pi(A) \rangle$: since $\langle \pi(A) \rangle$ is finite, the result will follow from the next lemma (cf. [3]).

Lemma 2. Let Γ be any group and X a maximal subset of Γ such that

(1)
$$[[a;b];c] = 1_{\Gamma}, \quad for \ any \ a, b, c \in X.$$

Then X in closed under multiplication.

For the sake of completeness we include the proof which is in the same way as in [3].

Proof. By (1) and the following identity

(2)
$$[xy;z] = [x;[y;z]] \cdot [y;z] \cdot [x;z], \quad x,y,z \in \Gamma,$$

we obtain for any $a, b, c, d \in X$, $[[ab; c]; d] = [[b; c] \cdot [a; c]; d]$. Applying again (2) with x = [b; c], y = [a; c] and z = c, yields in view of (1),

(3)
$$[[ab; c]; d] = 1_{\Gamma}, \text{ for any } a, b, c, d \in X.$$

By a further application of (2) with x = a, y = b and z = [ab; c], we get by (3) $[ab; [ab; c]] = 1_{\Gamma}$ for any $a, b, c \in X$. By the maximal property of X, we obtain $ab \in X$ for any $a, b \in X$.

3. Approach of the proof with a slightly weaker result

Before proving our main result, we explain the principle of the approach by showing the following weaker result in which only Freiman s-isomorphisms with $s \ge 7$ are considered.

Theorem 3. Let n be a positive integer and θ be a real number such that

$$\frac{11}{12} \le \theta \le 1$$

and let

$$\varphi_{\theta} = \frac{12\theta - 9}{2}.$$

Then there exists a finite group H and a subset A_0 in H satisfying the following properties:

- i) $|A_0| > n$ and $|A_0 \cdot A_0| < 2|A_0|$;
- ii) For any $A \subset A_0$ with $|A| \ge |A_0|^{\theta}$ and for any finite group G such that there exists a Freiman 7-isomorphism from A onto G, we have $|G| \ge |A|^{\varphi_{\theta}}$.

For $\theta = 13/14$, it yields the following corollary which can be compared to Theorem 1:

Corollary 4. Let n be any positive integer. Then there exists a finite group H and a subset A_0 in H satisfying the following properties:

- i) $|A_0| > n$ and $|A_0 \cdot A_0| < 2|A_0|$;
- ii) For any $A \subset A_0$ with $|A| \ge |A_0|^{13/14}$ and for any finite group G such that there exists a Freiman 7-isomorphism from A onto G, we have $|G| \ge |A|^{15/14}$.

Let $\alpha \in (0, 1)$ and A_0 be the subset of H

(4)
$$A_0 := \{ [x, y, z] \mid (x, y, z) \in [0, p^{\alpha}) \times \mathbb{F} \times \mathbb{F} \}$$

For p large enough, we plainly have

$$|A_0 \cdot A_0| = 2|A_0| - p^2,$$

thus A_0 is a small squaring subset of H.

Let θ be such that $0 < \theta \leq 1$, on which an additional assumption will be given later. Let A be any subset of A_0 whose cardinality satisfies

$$(5) |A| \ge |A_0|^{\theta}$$

By an averaging argument, there exists $x_0, y_0, z_0, z'_0, u, v \in \mathbb{F}$ and $X, Y, Z \subset \mathbb{F}$ such that

(6)
$$[X, y_0, z_0] \cup [x_0, Y, z'_0] \cup [u, v, Z] \subset A$$

(7)
$$|X| \ge \frac{|A|}{p^2}, \quad |Y| \ge \frac{|A|}{p^{1+\alpha}}, \quad |Z| \ge \frac{|A|}{p^{1+\alpha}}.$$

Observe that $|X||Y||Z|^2 \ge p^3$ if

(8)
$$|A| \ge p^{(8+3\alpha)/4},$$

which holds true if we fix α such that

(9)
$$\theta = \frac{8+3\alpha}{8+4\alpha},$$

that is

(10)
$$\alpha = \frac{8(1-\theta)}{4\theta - 3},$$

assuming that the following condition on θ holds:

$$\theta \ge \frac{11}{12}.$$

Let $a = [x, y_0, z_0], b = [x_0, y, z'_0]$. These are elements of A. Moreover the commutator of a and b is

$$aba^{-1}b^{-1} = [0, 0, xy - x_0y_0].$$

Let c = [u, v, z] and d = [u, v, z'] in $[u, v, Z] \subset A$. We thus have

$$aba^{-1}b^{-1}cd^{-1} = [0, 0, xy + z - z' - x_0y_0].$$

For any element t in \mathbb{F} , let N(t) be the number of representations of t under the form

$$t = xy + z - z' - x_0 y_0, \quad x \in X, \quad y \in Y, \quad z, z' \in Z.$$

One has

$$N(t) = \frac{1}{p} \sum_{h=0}^{p-1} \sum_{\substack{x \in X \\ y \in Y \\ z, z' \in Z}} e\left(\frac{h(xy - x_0y_0 + z - z' - t)}{p}\right),$$

where $e(\alpha)$ is the usual notation for $\exp(2i\pi\alpha)$. We get

$$N(t) \ge \frac{|X||Y||Z|^2}{p} - \frac{1}{p} \sum_{h=1}^{p-1} |S(h)||T(h)|^2,$$

where

$$S(h) = \sum_{(x,y)\in X\times Y} e\left(\frac{hxy}{p}\right), \quad T(h) = \sum_{z\in Z} e\left(\frac{hz}{p}\right).$$

By Vinogradov's inequality

$$|S(h)| \le \sqrt{p|X||Y|} \quad (\text{if } p \nmid h)$$

and Parseval's identity

$$\frac{1}{p}\sum_{h=1}^{p}|T(h)|^{2} = |Z|,$$

we deduce the lower bound

$$N(t) > \frac{|X||Y||Z|^2}{p} - \sqrt{p|X||Y|}|Z|.$$

Hence by (10), N(t) is positive. We thus deduce

$$[0,0,\mathbb{F}] \subset B := A^2 A^{-2} A A^{-1}.$$

Let G be any finite group and π any Freiman s-isomorphism from A into G. Our goal is to show that |G| is big compared to |A|. We thus may assume that $G = \langle \pi(A) \rangle$.

We assume in the sequel that $s \ge 7$. We start from the property that is proven just above:

$$\pi([0,0,\mathbb{F}]) \subset \pi(B).$$

For any $z \in \mathbb{F}$, we let

$$g_z = \pi([0,0,z]).$$

If $h = \pi([u, v, w]) \in \pi(A)$, then for $s \ge 7$ we have

(11)
$$\pi([-u, -v, uv - w + z]) = \pi([u, v, w]^{-1}[0, 0, z]) = h^{-1}g_z = g_z h^{-1}.$$

We now show that for some $i \neq j$,

$$g_{\lambda(i-j)} = g_{(\lambda-1)(i-j)}g_{i-j}, \quad 0 < \lambda \le p.$$

Since $[u, v, Z] \subset A$ and |Z| > 1 by (7) and (8), A contains at least two distinct elements [u, v, i] and [u, v, j]. We denote $h_k = \pi([u, v, k])$ for k = i, j. Since π is a Freiman *s*-isomorphism from A into G and $s \ge 7$, we get $h_j^{-1}h_i = g_{i-j}$ and by a similar calculation as in (11)

$$g_{(\lambda+1)(i-j)}h_i^{-1} = g_{\lambda(i-j)}h_j^{-1},$$

hence

$$g_{(\lambda+1)(i-j)} = g_{\lambda(i-j)+j} h_j^{-1} h_i = g_{\lambda(i-j)} g_{i-j}.$$

We deduce by induction

$$g_{\lambda(i-j)} = g_{i-j}^{\lambda}, \text{ for any } \lambda \ge 1$$

Thus the order of g_{i-j} in G is either 0 or p. Since $s \ge 2$, we have $h_i \ne h_j$ hence $g_{i-j} = h_j^{-1}h_i \ne 1_G$. This shows that g_{i-j} is of order p in G. We then deduce that p divides the order of G.

Let G_p be the Sylow *p*-subgroup of *G*. Since $s \ge 5$ and *H* is a two-step nilpotent group, *G* is also a two-step nilpotent group by Property 4 of Section 2. Then by Property 2 of Section 2, *G* can be written as the direct product $G = G_p \times K$. The projection σ of *G* onto G_p is a homomorphism thus $\tilde{\pi} = \sigma \circ \pi$ is a Freiman *s*-homomorphism. Since for $z \ne 0$, h_z has order *p* in *G*, $\sigma(h_z)$ has also order *p* in G_p .

Let $a_1 = [x_1, y_1, z_1]$ and $a_2 = [x_2, y_2, z_2]$ be any elements in A. We have $a_1 a_2 a_1^{-1} a_2^{-1} = [0, 0, x_1 y_2 - x_2 y_1]$. If G_p were abelian we would obtain by using $s \ge 4$

$$1_G = \tilde{\pi}(a_1)\tilde{\pi}(a_2)\tilde{\pi}(a_1)^{-1}\tilde{\pi}(a_2)^{-1} = \tilde{\pi}(a_1a_2a_1^{-1}a_2^{-1}) = \tilde{\pi}([0, 0, x_1y_2 - x_2y_1]) = \sigma(g_{x_1y_2 - x_2y_1}),$$

hence $x_1y_2 - x_2y_1 = 0$. We would conclude that $|A| \le p^2$, a contradiction by the fact that $|A| \ge |A_0|^{\theta} \ge p^{(2+\alpha)\theta} > p^2$ by (9).

Consequently by Property 3 given in Section 2, G_p is not abelian and $|G_p| \ge p^3$. Finally

$$|G| \ge p^3 = |A_0|^{3/(2+\alpha)} \ge |A|^{(12\theta-9)/2}.$$

The proof of Theorem 3 finishes by choosing the prime p large enough in order to have $|A_0| > n$.

4. Proof of the main result Theorem 1

Again, A_0 denotes the set

$$A_0 = \{ [x, y, z] : 0 \le x < p^{\alpha}, \ y, z \in \mathbb{F} \},\$$

and A any subset of A_0 such that $|A| \ge |A_0|^{\theta}$. The parameters $\alpha \in (0, 1)$ and $\theta \in (0, 1)$ will be specified below. Again, we have $|A_0| \ge p^{2+\alpha}$ thus

$$(12) |A| \ge p^{(2+\alpha)\theta}.$$

We recall that there exist $x_0, y_0, z_0, z_0', u, v \in \mathbb{F}$ and $X, Y, Z \subset \mathbb{F}$ such that :

(13)
$$[X, y_0, z_0] \cup [x_0, Y, z'_0] \cup [u, v, Z] \subset A$$
$$|X| \ge \frac{|A|}{p^2}, \quad |Y| \ge \frac{|A|}{p^{1+\alpha}}, \quad |Z| \ge \frac{|A|}{p^{1+\alpha}}.$$

For $(x, y, z) \in X \times Y \times Z$, one has

$$[x, y_0, z_0][x_0, y, z'_0][x, y_0, z_0]^{-1}[x_0, y, z'_0]^{-1}[u, v, z] = [u, v, xy + z - x_0y_0].$$

Our first goal is to show that [u, v, t] is in $A^2 A^{-2} A$ except for t belonging to a small subset E of exceptions.

First step: For any t in \mathbb{F} , let r(t) be the number of triples $(x, y, z) \in X \times Y \times Z$ such that

$$t = xy + z - x_0 y_0.$$

One cannot prove that r(t) > 0 for any t. Nevertheless, we will show that except for a small part of elements t, this property holds. Let C be the set of those elements of t for which r(t) > 0. Then by the Cauchy-Schwarz inequality

(14)
$$|C| \ge \frac{(|X||Y||Z|)^2}{\sum_t r(t)^2}.$$

Furthermore $\sum_{t} r(t)^2$ coincides with the number of solutions of

$$xy + z = x'y' + z', \quad x, x' \in X, \ y, y' \in Y, \ z, z' \in Z.$$

If we fix $x = x_1$, $x' = x'_1$ and $z' = z'_1$, it gives the equation of an hyperplan D_{x_1,x'_1,z'_1} in \mathbb{F}^3 :

$$x_1y - x_1'y' + z - z_1' = 0.$$

All these hyperplanes are different and there are $|X|^2|Z|$ such hyperplanes. The possible number of points $(y, y', z) \in Y \times Y \times Z$ is $|Y|^2|Z|$.

In [7], L.A. Vinh established a Szemeredi-Trotter type result by obtaining an incidence inequality for points and hyperplanes in \mathbb{F}^d . It is connected to the Expander Mixing Lemma (see Corollary 9.2.5 in [1]). We have:

Lemma 5 (L.A. Vinh [7]). Let $d \geq 2$. Let \mathcal{P} be a set of points in \mathbb{F}^d and \mathcal{H} be a set of hyperplanes in \mathbb{F}^d . Then

$$|\{(P,D) \in \mathcal{P} \times \mathcal{H} : P \in D\}| \le \frac{|\mathcal{P}||\mathcal{H}|}{p} + (1+o(1))p^{(d-1)/2}(|\mathcal{P}||\mathcal{H}|)^{1/2}.$$

By this result with d = 3, we get for any large p

$$\sum_{t} r(t)^{2} \leq \frac{(|X||Y||Z|)^{2}}{p} + 2p|X||Y||Z|,$$

which yields by (14)

$$|C| \ge p - \frac{2p^3}{|X||Y||Z|}.$$

Thus the set E of exceptions $t \in \mathbb{F}$ with r(t) = 0 has cardinality

(15)
$$|E| \le \frac{2p^3}{|X||Y||Z|}$$

Second step: We fix z_1 any element in Z and let $Z_1 = Z \setminus \{z_1\}$. For any $z \in Z_1$, we denote

$$m(z) = \max\{m \le p : z_1 + j(z - z_1) \notin E, 2 \le j \le m\}$$

if the maximum exists and we let m(z) = p otherwise. Let

(16)
$$T = \begin{bmatrix} |Z_1| \\ 2|E| \end{bmatrix}$$

If we denote by Z'_1 the set of the elements $z \in Z_1$ with $m(z) \leq T$, then

$$|Z'_1| = \sum_{m \le T} |\{z \in Z_1 : m(z) = m\}| \le \sum_{m \le T} |E| \le \frac{|Z_1|}{2},$$

since m = m(z) implies $z_1 + (m+1)(z-z_1) \in E$. It follows that m(z) > T for at least one half of the elements z in Z_1 . We denote by \tilde{Z}_1 the set of those elements z. We have

(17)
$$|\tilde{Z}_1| \ge \frac{|A|}{2p^{1+\alpha}}$$

Lemma 6. Assume that $23/24 < \theta \leq 1$ and let γ be a positive real number such that

(18)
$$\gamma < \frac{2(2+\alpha)\theta - (3+2\alpha)}{3}$$

If $|E| < p^{\gamma}$, then there exists an integer t with $1 \le t \le T$ and two distinct elements $z, z' \in \tilde{Z}_1$ such that

(19)
$$z' - z \notin E - E \quad and \quad z' = z_1 + t(z - z_1)$$

Proof. For $1 \le t \le T$, we denote by s(t) the number of pairs z, z' of elements of \tilde{Z}_1 with the required property. It is sufficient to show that

$$\sum_{t=1}^{T} s(t) > 0.$$

This sum can be rewritten as

$$\sum_{t=1}^{T} \frac{1}{p} \sum_{\substack{0 \le |h| \le p/2}} \sum_{\substack{z, z' \in -z_1 + \tilde{Z}_1 \\ z' - z \notin E - E}} e\left(\frac{h(z^{-1}z' - t)}{p}\right).$$

The contribution related to h = 0 is plainly bigger than

$$\frac{T}{p}(|\tilde{Z}_1|^2 - |\tilde{Z}_1||E - E|),$$

thus

$$\sum_{t=1}^{T} s(t) \ge \frac{T}{p} (|\tilde{Z}_{1}|^{2} - |\tilde{Z}_{1}||E - E|) - \frac{1}{p} \sum_{0 < |h| < p/2} \Big| \sum_{t=1}^{T} e\left(\frac{-th}{p}\right) \Big| \Big| \sum_{\substack{z, z' \in -z_{1} + \tilde{Z}_{1} \\ z' - z \notin E - E}} e\left(\frac{hz^{-1}z'}{p}\right) \Big|.$$

By extending the summation over z and z', we obtain for any $h \neq 0$

$$\Big|\sum_{\substack{z,z'\in -z_1+\tilde{Z}_1\\z'-z\notin E-E}} e\left(\frac{hz^{-1}z'}{p}\right)\Big| \le \Big|\sum_{\substack{z,z'\in -z_1+\tilde{Z}_1}} e\left(\frac{hz^{-1}z'}{p}\right)\Big| + |\tilde{Z}_1||E-E|,$$

which is less than or equals to

$$(\sqrt{p} + |E - E|)|\tilde{Z}_1|$$

by using Vinogradov's inequality for the estimation of the sum over z and z'. Hence by the bounds

$$\left|\sum_{t=1}^{T} e\left(\frac{-ht}{p}\right)\right| \le \frac{p}{2|h|} \quad \text{for } 0 < |h| < p/2,$$

and

$$\sum_{h=1}^{(p-1)/2} \frac{1}{h} \le \ln p$$

we get

$$\sum_{t=1}^{T} s(t) \ge \frac{T}{p} (|\tilde{Z}_1|^2 - |\tilde{Z}_1||E - E|) - (\sqrt{p} + |E - E|)|\tilde{Z}_1|\ln p$$

From the trivial bound $|E - E| \le |E|^2$ and by (16) and (17), this sum is positive whenever $|E| \le p^{\gamma}$ for p is large enough, where γ is any positive number such that

(20)
$$\gamma < \min\left(\frac{(2+\alpha)\theta - (1+\alpha)}{2}; \frac{4(2+\alpha)\theta - (7+4\alpha)}{2}; \frac{2(2+\alpha)\theta - (3+2\alpha)}{3}\right).$$

The second argument in this minimum is less than or equal to the first since $\theta \leq 1$ and the third is less than the second since $\theta > 23/24$. Thus condition (20) reduces to (18), and the lemma follows.

By (13) and (15), we deduce from the lemma that the condition

$$7 + 2\alpha - 3(2+\alpha)\theta < \frac{2(2+\alpha)\theta - (3+2\alpha)}{3},$$

is sufficient in order to ensure that system (19) has at least one solution, assuming p is large enough. This condition reduces to

$$\theta > \frac{24 + 8\alpha}{22 + 11\alpha}$$

or equivalently

(21)
$$\alpha > \alpha_0(\theta) := \frac{24 - 22\theta}{11\theta - 8}$$

Since $\alpha < 1$, we must choose θ such that $\theta > \frac{32}{33}$. Fixing

(22)
$$\alpha = \alpha_0(\theta) + \varepsilon,$$

this yields

(23)
$$p^3 \ge |A|^{3/(2+\alpha)} \ge |A|^{3(11\theta-8)/8-\varepsilon},$$

for any $p \ge p_0(\epsilon)$. For $\theta = 43/44$, it will give the desired exponents in Theorem 1. **Third step:** We have at our disposal $z_1, z \in Z$ and $t \in \mathbb{F}$ such that

(24)
$$z_1 + j(z - z_1) \notin E, \quad j = 2, \dots, t, \text{ and } z_1 + t(z - z_1) \in Z.$$

Let $\pi : A \to G$, where G is a finite group, be a Freiman 6-isomorphism. As in the proof of Theorem 3, we will show that p divides |G| and that the p-Sylow subgroup of G cannot be abelian. It will ensure the bound $|G| \ge p^3$ and the theorem will follow by (23).

Let

(25)
$$h = \pi([0, 0, z - z_1]) = \pi([u, v, z_1])^{-1} \pi([u, v, z])$$

Let us show that for any j such that $j(z - z_1) + z_1 \notin E$, we have $\pi([0, 0, j(z - z_1)]) = h^j$.

If $1 \leq j \leq t$, we proceed by induction: for j = 1, the property is plainly true. Let $2 \leq j \leq t$. We have

$$\pi([u, v, j(z - z_1) + z_1][u, v, z]^{-1}) = \pi([u, v, (j - 1)(z - z_1) + z_1][u, v, z_1]^{-1}).$$

By (24) and by definition of E, both elements $[u, v, (j-1)(z-z_1)+z_1]$ and $[u, v, j(z-z_1)+z_1]$ belong to $A^2A^{-2}A$. Moreover $[u, v, z], [u, v, z_1] \in A$ hence, by the fact that π is a Freiman 6-homomorphism, we get

$$\pi([u, v, j(z - z_1) + z_1])\pi([u, v, z])^{-1} = \pi([u, v, (j - 1)(z - z_1) + z_1])\pi([u, v, z_1])^{-1}.$$

Thus, by (25)

$$\pi([u, v, j(z - z_1) + z_1]) = \pi([u, v, (j - 1)(z - z_1) + z_1])h$$

By multiplying on the left by $\pi([u, v, z_1])^{-1}$ and using again that π is a Freiman 6-homomorphism, we get

$$\pi([0,0,j(z-z_1)]) = \pi([0,0,(j-1)(z-z_1)])h = h^j$$

by the induction hypothesis.

For larger j, we again induct: let j > t be such that $j(z - z_1) + z_1 \notin E$. Then at least one of the two elements $(j-1)(z-z_1) + z_1$ or $(j-t)(z-z_1) + z_1$ is not in E since $z' - z \notin E - E$. If $(j-1)(z-z_1) + z_1 \notin E$ we argue by induction as above. If $(j-t)(z-z_1) + z_1 \notin E$ we

slightly modify the argument: since

$$\pi([u, v, j(z - z_1) + z_1][u, v, t(z - z_1) + z_1]^{-1}) = \pi([u, v, (j - t)(z - z_1) + z_1][u, v, z_1]^{-1})$$

and π a Freiman 6-isomorphism, we get

$$\pi([u, v, j(z - z_1) + z_1]) = \pi([u, v, (j - t)(z - z_1) + z_1])\pi([u, v, z_1])^{-1}\pi([u, v, t(z - z_1) + z_1])$$
$$= \pi([u, v, (j - t)(z - z_1) + z_1])h^t,$$

and finally by induction

$$\pi([0,0,j(z-z_1)]) = \pi([u,v,z_1])^{-1}\pi([u,v,(j-t)(z-z_1)+z_1])h^t = h^{j-t}h^t = h^j.$$

Since $z_1 \notin E$, we obtain $h^p = 1$ in G, thus either h = 1 or h has order p. But $z \neq z_1$ hence $[0, 0, z - z_1] = [u, v, z][u, v, z_1]^{-1} \neq 1_H$, hence $h \neq 1_G$ since π is a Freiman 6-isomorphism. We deduce that G admits an element of order p, thus the p-Sylow subgroup G_p of G is not trivial. By considering the canonical homomorphism $\sigma : G \to G_p, \ \pi = \sigma \circ \pi$ is a Freiman 6-homomorphim of A onto G_p . Hence for any a = [x, y, z] and b = [x', y', z'] in A

$$[\tilde{\pi}(a); \tilde{\pi}(b)] = \tilde{\pi}([a; b]) = \tilde{\pi}([0, 0, xy' - x'y])$$

which must be equal to 1_G if G_p is assumed to be abelian. It would mean that (x, y) belongs to a single line for any $[x, y, z] \in A$, giving $|A| \le p^2$ a contradiction to

$$\frac{\ln|A|}{\ln p} \ge \theta(2+\alpha) > \theta(2+\alpha_0(\theta)) = \frac{8\theta}{11\theta - 8} > 2$$

obtained by (12), (21) and (22).

References

- [1] Alon, N.; Spencer J.; The probabilistic method, 2nd edition. Wiley Interscience, 2000.
- [2] Green, B.; Ruzsa, I. Z.; Freiman's theorem in an arbitrary abelian group. J. Lond. Math. Soc. (2) 75 (2007), no. 1, 163–175.
- [3] Green, B.; A note on Freiman models (2008). Unpublished note available on http://www.dpmms.cam.ac.uk/~bjg23/notes.html
- [4] Ruzsa, I. Z.; Sumsets and structure. Combinatorial number theory and additive group theory, 87–210, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009.

- [5] Scott, W. R.; Group theory. Second edition. Dover Publications, Inc., New York, 1987. xiv+479 pp.
- [6] Tao, T.; Vu V. H.; Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006. xviii+512 pp.
- [7] Vinh L.A., Szemerédi-Trotter type theorem and sum-product estimate in finite fields, *European J. Com*bin. 32 (2011), no. 8, 1177–1181.

Norbert Hegyvári, ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary

E-mail address: hegyvari@elte.hu

François Hennecart, PRES Université de Lyon, Université Jean-Monnet, LAMUSE, 23 rue Michelon, 42023 Saint-Étienne, France

E-mail address: francois.hennecart@univ-st-etienne.fr