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MAXIMAL FUNCTIONS FOR MULTIPLIERS ON COMPACT

MANIFOLDS

Abstract. Let P be a self-adjoint positive elliptic (-pseudo) differential operator

on a compact manifold M without boundary. For a function m ∈ L∞[0,∞)

satisfying a Hörmander-Mikhlin type condition, Seeger and Sogge [11] proved that

the multiplier theorem ‖m(P )f‖Lp(M) ≤ Cp‖f‖Lp(M) holds. In this paper, we

prove that ‖ sup1≤i≤N |mi(P )f |‖Lp ≤ Cp(log(N+1))1/2‖f‖Lp holds when {mi}
N
i=1

uniformly satisfy the condition. This result is sharp when M is n dimensional

torus.

1. introduction

Suppose a function m ∈ L∞(Rn) satisfies the Hörmander-Mikhlin condition

sup
λ∈R+

‖φ(ξ)m(λξ)‖Lα
2
≤ A, α >

n

2
(1.1)

with a nonzero function φ ∈ C∞
c supported on [1

2
, 2]. Then the muliplier operator

m(D)f(x) := F−1(m(ξ)f̂(ξ))(x) is well-known. That is,

‖m(D)f‖Lp ≤ Ck‖f‖Lp, 1 < p <∞.

[A more history] There are many variations related to this result. Let us introduce

one of them here. We consider N mulipliers m1, . . . , mN satisyfing uniformly condi-

tion (1.1) and we seek to find the minimal growth of a function A(N) as N goes to

infinity which gives the bound

‖ sup
1≤i≤N

|mi(D)f |‖p ≤ A(N)‖f‖p (1.2)

for all f ∈ S and N ∈ N. In [5], Christ et al. found an example which shows

that A(N) ≥ c
√

log(N + 1) and they proved that A(N) = O(log(N + 1)) using an

extrapolation argument. In a subsequent paper [8] Grafakos et al. obtained the

sharp result A(N) = O(log(N + 1)1/2).

In this paper, we consider the same problem on compact manifolds. On the setting

of compact manifolds, Seeger and Sogge [11] obatined a multiplier theorem which is

the analogue of the Hormander-Mikhlin multiplier theorem on Euclidean space.

Let M be a compact boundaryless manifold of dimension n ≥ 2. We consider a

first order elliptic pseudo-differential operator P . We assume that P is positive and
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self-adjoint with respect to a C∞ density dx onM . It imply that L2(M) = L2(M, dx)

can be decomposed as

L2(M) =
∞∑

j=1

Ej

with the eigenspaces Ej corresponding to eigenvalues λj . Here we assume that {λj}

is arranged as 0 < λ1 ≤ λ2 ≤ · · · . Let ej be the projection onto the eigenspace Ej .

Then,

f =
∞∑

j=1

ej(f), ∀f ∈ L2(M)

where the summation converges in L2.

For a bounded function m defined on [0,∞), the operator m(P ) is defined by

m(P )f =
∞∑

j=1

m(λj)ej(f). (1.3)

The operator m(P ) is always bounded on L2(M) from the identity ‖f‖2L2(M) =∑
‖ej(f)‖

2
L2(M).

But, we need some smoothness condition on the function m to have that m(P ) is

bounded on Lp(M) with p 6= 2.

Suppose that β ∈ C∞
0 ((1/2, 2)) satisfies

∑∞
−∞ β(2js) = 1, s > 0. Under the as-

sumption

sup
λ>0

λ−1

∫ ∞

−∞

|λαDα
s (β(s/λ)m(s))|2ds <∞, 0 ≤ α ≤ s (1.4)

with s > n
2
, the main theorem in [11] is that

‖m(P )f‖Lp(M) ≤ Cp‖f‖p, 1 < p <∞.

The main theorem in this paper is the following:

Theorem 1.1. Suppose 1 < r ≤ 2(n+1)
n+3

and m1, · · · , mN uniformly satisfy the con-

dition (1.4) with s > n
r
. Then,

‖ sup
1≥i≥N

|mi(P )f |‖Lp(M) ≤ Cp(log(N + 1))1/2‖f‖p

holds with r < p <∞.

This paper is organized as follows. In section 2, we shall study the properties of

kernels of mulitpliers on compact manifolds. Aslo, the remainder terms will be esti-

mated. Then, in section 3, we shall estimate the interaction between homogeneous

martingales and the main kernels. Then, we shall prove the main theorem in section

4.
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2. Kernels of multipliers on Compact manifolds

In this section, we shall study the properties of kernels corresponding to the

multipliers on compact manifolds. Firstly, we shall recall fundamental materials in

[12] and we shall exploit more porperties which will be useful later.

Let M be a compact manifold and P be a first-order selfadjoint positive elliptic

operators onM . Let Ej : L
2 → L2 be the projection maps onto the one-dimensional

eigenspace εj with eigenvalu λj . Then, by the spectral theorem, we have

P =

∞∑

j=1

λjEj .

If we let {ej(x)} the orthonormal basis adapted to the spectral decomposition, we

have

Ejf(x) = ej(x)

∫

M

f(y)ej(y)dy

From (1.3), the kernel of m(P ) is equal to

∑

j

m(λj)ej(x)ej(y).

On the other hand, we mainly study the kernels from the following formula

m(P ) =

∫ ∞

−∞

eitP m̂(t)fdt

and the following theorem:

Theorem 2.1 ([12, Theorem]). Let M be a compact C∞ manifold and let P ∈

ψ1
cl(M) be elliptic and self-adjoint with respect to a positive C∞ density dx. Then

there is an ǫ > 0 such that when |t| < ǫ,

eitP = Q(t) + R(t)

where the remainder has kernel R(t, x, y) ∈ C∞([−ǫ, ǫ] ×M ×M) and the kernel

Q(t, x, y) is supported in a small neighborhood of the diagonal in M ×M . Further-

more, suppose that local coordinate are chosen in a patch Ω ⊂ M so that dx agrees

with Lebesque measure in the corresponding open subset Ω̃ ⊂ Rn; then, if ω ⊂ Ω is

relatively compact, Q(t, x, y) takes the following form when (t, x, y) ∈ [−ǫ, ǫ]×M×ω.

Q(t, x, y) = (2π)−n
∫
ei[φ(x,y,ξ)+tp(y,ξ)]q(t, x, y, ξ)dξ.
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We find the eigenfunction v corresponding to the first eigenvalue λ1, that is Pv1 =

λ1v1. We may assume that v is positive. Then,
∫

M

ej(x)v(x)dx = 0 , j = 2, 3, · · · . (2.1)

From (2.1), it will be useful to use v(x)dx for our choice of the density of the manifold

M .

Now we decompose our mutipliers dyadically. For this we find two function φ0 ∈

C∞
0 [0, 1) and φ ∈ C∞

0 (1/4, 1) such that
∑∞

j=0 φ
3
j (s) = 1 for all s ≥ 0 where we let

φj(s) = φ(s/2j) for j ≥ 1. Then

m(P )f =

∞∑

j=1

φj(P )(m(P )φj(P ))φj(P )f.

We let mj(s) = m(s)φj(s). Then

mj(P ) =

∫
eitP m̂j(t)dt. (2.2)

We fix a function ρ ∈ S(R) satisfying ρ(t) = 1, |t| ≤ ǫ
2
and ρ(t) = 0, |t| > ǫ. Then

we split the integral (2.2) as

mj(P ) =

∫
eitP m̂j(t)ρ(t)dt+

∫
eitP m̂j(t)(1− ρ(t))dt

=: m̃j(P ) + rj(P ).

Proposition 2.2. For 1 ≤ p ≤ 2(n+1)
n+3

,

‖

∞∑

j=1

φj(P )rj(P )φj(P )f‖L∞ . ‖f‖p if s >
n

p
.

Proof. It suffices to show that

‖φj(P )rj(P )φj(P )f‖L∞ . 2j(
n
p
−s)‖f‖p.

We have

‖φj(P )rj(P )φj(P )f‖
2
L∞ . λ

n−1
2 ‖φj(P )rj(P )φj(P )f‖

2
L2

. λn−1λ2n(
1
p
− 1

2
)−1

∞∑

k=0

sup
τ∈[k,k+1)

|τλ(τ)|
2‖f‖2Lp

. λ
2n
p
−1λ−2s+1‖f‖2Lp = λ

2n
p
−2s‖f‖2Lp.

The second inequality comes form Theorem 5.1.1 in [12]. The last ineqaulity is due

to (5.3.4) in [12].

�
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Lemma 2.3. For 1 < p ≤ 2(n+1)
n+3

and m satisfying the condition (1.4), we have

‖rj(P )f‖L∞ ≤ Cλ
n
p
−s‖f‖p

Proof. It follows from the same argument as above with observing that (m̂j(·)(1 −

ρ(·)))∨(τ) = O(((|τ |+ 2j)−N) for any N ∈ N if τ /∈ [2j−2, 2j+2]. �

And we have∫
eitP m̂j(t)ρ(t)dt =

∫
(Q(t) +R(t))m̂j(t)ρ(t)dt.

Observe that ∫
R(t)ρ(t)m̂j(t)dt =

∫
R̂(·)ρ(·)(t)m(t)φ(

t

2j
)dt.

From the support of φ( ·
2j
) and the fact that m ∈ L∞(R) we induce that

∫
R(t, x, y)ρ(t)m̂j(t)dt = ON(2

−jN) for all N ∈ N. (2.3)

So we may only consider
∫
Q(t)m̂j(t)ρ(t)dt. And it was proved in [12] that

Lemma 2.4. Let K̃j(x, y) be the kernel of
∫
Q(t)m̂j(t)ρ(t)dt. Then we have K̃j(x, y) =

2njKj(2
jx, 2jy) where Kj satisfying∫

|Dα
yKj(x, y)|

2(1 + |x− y|)2sdx ≤ C, 0 ≤ |α| ≤ 1.

However, we need to bound higher-order integral of Kj for later use. To obtain

this, we find a C∞ function ζ supported on (1
8
, 2) such that ζ = 1 on (1

4
, 1). Then

we have ζφ = φ and also ζjφj = φj. From this, we have

mj(P ) = mj(P )ζj(P )

= m̃j(P ) ◦ ζj(P ) + rj(P ) ◦ ζj(P ).

We can treat rj(P )ζj(P by the same way for rj(P ). for the first term,

m̃j(P ) ◦ ζj(P ) =

∫
Q(t)m̂j(t)ρ(t)dt ◦ ζj(P ) +O(2−jN)ζj(P ).

Here, we only need to concern the first term. From Lemma (2.3), we have

ζj(P ) =

∫
Q(s) · ζ̂j(s)ρ(s)ds+O(2−jN).

So the remainder term causes no problem and we may only concern the operator
∫
Q(t)m̃j(t)ρ(t)dt ◦

∫
Q(s)ζ̂j(s)ρ(s)ds (2.4)

We notice that above two operators are both local operators, that is, their kernels

have their supports on near the digonal set in M ×M . Therefore, the kernel of the

operator (2.4) has also support near the diagonal. We let L̃j(x, y) be the kernel of
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∫
Q(s)ζ̂j(s)ρ(s)ds. Then, by Lemma (2.4), we may let L̃j(x, y) = 2jnLj(2

jx, 2jy)

with Lj satisfying
∫

|Dα
yKj(x, y)|

2(1 + |x− y|)2Ndx ≤ CN , 0 ≤ |α ≤ 1

for any N ∈ N. We let H̃j be the kernel of the operator (2.4). Then we have

H̃j(x, z) =

∫
K̃j(x, y)L̃j(y, z)dy. (2.5)

Lemma 2.5. We have H̃j(x, z) = 2jnHj(2
jx, 2jz) with Hj satisfying

∫
|Hj(x, z)|

q(1 + |x− z|)sqdz ≤ C

for each q ≥ 2. And
∫
Hj(x, z)dz = ON(2

−jN)

for any N ∈ N.

Proof. We write (2.5) as

2jnHj(2
jx, 2jz) =

∫
2jnKj(2

jx, 2jy)2jnLj(2
jy, 2jz)dy

=

∫
2jnKj(2

jx, y)Lj(y, 2
jz)dy.

So,

Hj(x, z) =

∫
Kj(x, y)Lj(y, z)dy.

Using this, we have

(1 + |x− z|)s|Hj(x, y)| = (1 + |x− z|)s
∫
Kj(x, y)Lj(y, z)dy

≤

∫
Kj(x, y)(1 + |x− y|)s · L(y, z)(1 + |y − z|)sdy

≤ (

∫
|Kj(x, y)|

2(1 + |x− y|)2sdy)1/2 · (

∫
|Lj(y, z)|

2(1 + |y − z|)2sdy)1/2

On the one hand,

|

∫
Kj(x, z)dz| = |

∫
[

∫
K1
j (x, y)dx]K

2
j (y, z)dy|

≤

∫
O(2−Nj)|K2

j (y, z)|dy

= O(2−Nj).

�
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Therefore, we have

m̃j(P ) ◦ ζj(P ) = H̃j(x, z) +ON(2
−jN)

and

mj(P ) = H̃j(x, z) +ON(2
−jN) + rj(P ) ◦ ζj(P ).

As a corollay, we obtain the following.

Corollary 2.6. We just let φj(x, y) be the kernel of φj(P ) and we split φj(x, y) =

φ̃j(x, y) +Rj(x, y) as above. Then,
∫

|φ̃j(x, y)|2
jn(1 + 2j |x− y|)Ndy ≤ C,

∫
φ̃j(x, y)dy = O(2−Nj)

and |Rj(x, y)| = O(2−Nj).

We now state another corollary comes from the same proof of Lemma 2.5 in [2].

Corollary 2.7.

|H̃j ∗ f(x)| .Mrf(x) · ‖mj‖Lα
2
,

We have

m(P )f =

∞∑

j=1

mj(P )φj(P )f =

∞∑

j=1

(φ̃j(P ) +O(2−jN))mj(P )φj(P )f

and
∞∑

j=1

φ̃j(P )mj(P )φj(P )f =
∞∑

j=1

φ̃j(P )(H̃j(x, z) +ON(2
−jN) + rj(P ) ◦ ζj(P )) ◦ φj(P )f

=

∞∑

j=1

φ̃j(P )H̃j(x, z)φj(P )f +

∞∑

j=1

φ̃j(P )(ON(2
−jN) + rj(P ) ◦ ζj(P ))φj(P )f

The second term can be treated by Proposition 2.2. And we split φj(P ) as φj(P )f =

(φ̃j(P ) + R̃j(P ))f . Then

∞∑

j=1

H̃j(x, z)φj(P )f =

∞∑

j=1

H̃j(x, z)φ̃j(P )f +

∞∑

j=1

H̃j(x, z)O(2
−Nj)f.

Since the second term is trivially bounded,we only need to consider

m̃(P )f =

∞∑

j=1

φ̃j(P )H̃j(x, z)φ̃j(P )f.
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Now we modify the kernel φ̃j(x, y) to φ̄j so that we have
∫
φ̄j(x, t)dx = 0 for all y.

This fact will be used in the proof of Lemma 3.3. Since
∫
φ̃j(x, y)dx = O(2−Nj) we

can modify it to φ̄j so that
∫
φ̄j(x, y)dx = 0 and φmj = φ̃j − φ̄j satisfy

∫
|φmj (x, y)|2

jn(1 + 2j|x− y|)Ndy = O(2−N0j)

with sufficiently large N0 >> 1. Then, the summation with the operators with the

kernels φmj causes no problem. So we may only deal with

m̄(P )f =

∞∑

j=1

φ̄j(P )H̃j(x, z)φ̃j(P )f.

We let φ̄j(x, y) = 2jnφ′
j(2

jx, 2jy).

3. Martingales on homogeneous space

We introduce the following things on homogeneous space in [4] which may be

regarded as dyadic cubes on Euclidean space. Open set Qk
α will role as dyadic cubes

of sidelengths 2−k (or more precisely, δk) with the two conventions : 1. For each k,

the index α will run over some unspecified index set dependent on k. 2. For two

sets with Qk+1
α ⊂ Qk

β , we say that Qk
β is a parent of Qk+1

α , and Qk+1
α a child of Qk

β.

Theorem 3.1 (Theorem 14, [4]). Let X be a space of homogenous type. Then

there exists a family of subset Qk
α ⊂ X, defined for all integers k, and constants

δ, ǫ > 0, C <∞ such that

• µ(X \ ∪αQ
k
α) = 0 ∀k

• for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩Q

k
α = Ø

• each Qk
α has exactly one parent for all k ≥ 1

• each Qk
α has at least one child

• if Qk+1
α ⊂ Qk

β then µ(Qk+1
α ) ≥ ǫµ(Qk

β)

• for each (α, k) there exists xα,k ∈ X such that B(xα,k, δ
k) ⊂ Qk

α ⊂ B(xα,k, Cδ
k).

Moreover,

µ{y ∈ Qk
α : ρ(y,X \Qk

α) ≤ tδk} ≤ Ctǫµ(Qk
α) for 0 < t ≤ 1, for all α, k. (3.1)

Expectation operators are defined by

Ekf(x) = µ(Qk
α)

−1

∫

Qk
α

fdµ for x ∈ Qk
α
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and by Dkf(x) = Ek+1f(x)−Ekf(x). Then, many results on the dyadic martingales

on Euclidean space still hold in the setting of homogeneous space with the above

expectations operators. We define the square function for the martingale as

S(f) = (
∑

k≥0

|Dkf(x)|
2)1/2

We state a homogeneous space version of a lemma in [1] which was used in [GH].

There is a constant cd > 0 so that for all λ > 0, 0 < ǫ < 1
2
, the following inequality

holds.

meas({x : sup
k≥0

|Ekg(x)− E0g(x)| > 2λ, S(g) < ǫλ})

≤ Cexp(−
Cd
ǫ2

)meas({x : sup
k≥0

|Ekg(x)| > λ});

see [[1]. Corollary 3.1]. Now we choose a bump function ψ ∈ C∞
0 which is supported

on [1
4
, 4] and equal to 1 on [1

2
, 2]. Let ψj(ξ) = ψ(2−jξ). Then mj(ξ) = ψ2

j (ξ)mj(ξ)

holds and we have

m̄j(P ) = φ̃j(P )mj(P )φ̃j(P ).

So m̄j(P )f = φ̄j ∗ (mj(P )(φ̃j(P )f)) and

Dk(m̄(P )f) = Dk(
∑

j∈Z

m̄j(P )f) (3.2)

=
∑

j∈Z

Dk(φ̄j ∗ (m̄j(P )φ̃j(P )f)). (3.3)

We introduce

Gr(f) = (
∑

k∈Z

(M(|φ̃kf |
r))2/r)1/2

Fefferman-Stein [6] inequality is

‖Gr(f)‖p ≤ Cp,r‖f‖p, 1 < r < 2, r < p <∞.

In (3.2), some cancellation between the martingale operators Dk and the convolution

operators with the kernel kψj
exists when the difference between their scales δk and

2−j is larger than some constant. This leads to

Proposition 3.2. Tf = m̄(P )f and 1 < r ≤ ∞. Then, for x ∈ G, S(Tf)(x) ≤

Ar‖m‖Lα
2
Gr(f)(x).

We need the following lemma which explains the cancellation property.

Lemma 3.3. |Ek(φ̄jf)(x) ≤ 2(−(log δ)k−j)/q′Mqf(x) if j > (− log δ)k + 10.

|Bk(φ̄jf)(x)| ≤ 2((log δ)k+j)/q
′

Mqf(x) if j < (− log δ)k − 10.
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Proof. Find Qk
α such that x ∈ Qk

α.

Ek(φ̄jf)(x) =
1

µ(Qk
α)

∫

Qk
α

(φ̄jf)(y)dy

=
1

µ(Qk
α)

∫

Qk
α

[

∫

G

2njφ′
j(2

jy, 2jz)f(z)dz]dy

=
1

µ(Qk
α)

∫

G

[

∫

Qk
α

2njφ′
j(2

jy, 2jz)dy]f(z)dz.

We now divide f according to its domain. We let

• B = {y : dist (y, ∂Qk
α) ≤ 2−[(− log δ)k+m/2]}

• A1 = Qk
α ∩B

c

• A2 = (Qk
α)
c ∩ Bc.

We divide f as f = fA1 + fA2 + fB = fχA1 + fχA2 + fχB. We note that fB can

be treated in the same way given in [8]. So we may only consider for fA and fB.

Firstly, for fA1,

φ̄jfA1f(y) =

∫
2njφ′

j(2
jy, 2jz)χA1(z)f(z)dz

and

Ek(φ̄jfA1(x)) =
1

µ(Qk
α)

∫

G

[

∫

Qk
α

2njφ′
j(2

jy, 2jz)dy]χA1(z)f(z)dz

|

∫

Qk
α

2njφ′
j(2

jy, 2jz)dy| = |

∫

(Qk
α)

c

2njφ′
j(2

jy, 2jz)dy|

≤

∫

(Qk
α)

c

2nj|φ′
j(2

jy, 2jz)|dy

≤

∫

|z|≤2−[(− log δ)k+m/2]

2nj |φ′
j(2

nz)|dz

=

∫

|z|≥2m
|φ′
j(z)|dz ≤ 2−mc

So

|Ek(φ̄jf(x))| ≤
1

µ(Qk
α)

∫

G

2−mc1A1(z)f(z)dz

≤ 2−mcMf(x)

We now consider fA2 .

Ek(φ̄jf(x)) =
1

µ(Qk
α)

∫

G

[

∫

Qk
α

2njφ′
j(2

jy, 2jz)dy]1A2(z)f(z)dz
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We have
∫

Qk
α

2njφ′
j(2

jy, 2jz)dy =
1

µ(Qk
α)

∫

Qk
α

[

∫

G

2njφ′
j(2

jy, 2jz)1A2(z)f(z)dz]dy

Observe |y − z| ≤ 2−[(− log δ)k+m/2] and from Lemma 6.36 in [7],

|

∫

G

2njφ′
j(2

jy, 2jz)1A2f(z)dz| ≤Mf(y) · 2−mα/2.

So

Ek(φ̄jfK2(x)) ≤
1

µ(Qk
α)

∫

Qk
α

Mf(y)dy2−mα/2

. Mf(x) · 2−mα/2.

We now prove the second statement.

Ek(φ̄jf)(x)− Ek+1(φ̄jf)(x) =
1

µ(Qk+1
α )

∫

Qk+1
α

(φ̄jf)(y)dy −
1

µ(Qk
α)

∫

Qk
α

(φ̄jf)(y)dy

=

∫

G

f(z)[
1

µ(Qk+1
α )

∫

Qk+1
α

2njφ′
j(2

jy, 2jz)dy −
1

µ(Qk
α)

∫

Qk
α

2njφ′
j(2

jy, 2jz)

1

µ(Qk+1
α )

∫
Qk+1

α
2njφ′

j(2
jy, 2jz)− 2njφ′

j(2
jy, 2jz)dy

= 1
µ(Qα)

∫
Qk+1

α
2njφ′

j(2
j(x− y), 2j(x− z))− 2njφ′

j(2
jx, 2jz)dy

= 1

µ(Qk+1
α )

∫
Qk+1

α
[
∫ 1

0
2nj d

dt
φ′
j(2

jt · (y − x), 2jt · (x− z))dy

= 1

µ(Qk+1
α )

∫
Qk+1

α
[
∫ 1

0
2nj2j(y − x) · ∇φ′

j(2
jt · (y − x).2jt · (x− z))dy

≤ 1

µ(Qk+1
α )

∫
Qk+1

α
[
∫ 1

0
2nj2j · δk|∇φ′

j(2
nx, 2nz)|dy

≤ 2nj2jδk(1 + 2j|x− z|)−N , x ∈ Qk
α.

So

|Dk(φ̃jf)(x)| .

∫

G

f(z)2nj2jδk(1 + 2j |y − z|)−Ndz

Observe that |x− z| − cδk ≤ |x− z| − c|x− y| ≤ c|y − z|. Thus

2j(|x− z|)− c2jδk ≤ 2j|y − z|

Thus

1

2
+ 2j|x− z| ≤ 2j|y − z|

�
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proof of Proposition 3.2.

|Bk(Tf)| = |
∑

j∈Z

Bk(φ̄jH̃j(x, z)φ̃j(P )f)|

≤
∑

j∈Z

2−|k| log δ|−j|M r(φ̃jf)

|Bk(Tf)|
2 ≤ (

∑

j∈Z

2−|k| log δ|−j|)
∑

j∈Z

2−||k log δ|−j|(Mr(φ̃jf))
2

So

S(Tf)(x) = (
∞∑

k=1

|Bk(Tf)|
2)1/2 . (

∑

n∈Z

|Mq(φ̃jf)|
2)1/2

�

4. proof of main theorem

We need to bound

‖ sup
1≤i≤N

|Tif |‖p = (p4p
∫ ∞

0

λp−1meas({x : sup
i

|Tif(x)| > 4λ})dλ)1/p

by some constant time of
√

log(N + 1)‖f‖p. By propostion 3.2 we have the pointwise

bound

S(Tif) ≤ ArBGr(f). (4.1)

We bound the level set as

{x : sup
1≤i≤N

|Tif(x)| > 4λ} ⊂ Eλ,1 ∪ Eλ,2 ∪ Eλ,3,

where with

ǫN := (
cd

10 log(N + 1)
)1/2

and

Eλ,1 = {x : sup
1≤i≤N

|Tif(x)− E−NTif(x)| > 2λ,Gr(f)(x) ≤
εNλ

ArB
},

Eλ,2 = {x : Gr(f)(x) >
εNλ

ArB
},

Eλ,3 = {x : sup
1≤i≤N

|E0Tif(x) > 2λ}.

By (4.1),

Eλ,1 ⊂

N⋃

i=1

{x : |Tif(x)| > 2λ, S(Tif) ≤ εNλ}
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and we have

meas(Eλ,1) ≤

N∑

i=1

meas({x : |Tif(x)− E−NTif(x)| > 2λ, S(Tif) ≤ εNλ})

≤
N∑

i=1

C exp(−
cd
ε2N

)meas({x : sup
k

|Ek(Tif)| > λ}).

Therefore

(p

∫ ∞

0

λp−1meas(Eλ,1)dλ)
1/p

. (
∑N

i=1 exp(−
cd
ε2N

)‖ supk |Ek(Tif)‖
p
p)

1/p

. (
∑N

i=1 exp(−
cd
ε2N

)‖Tif‖
p
p)

1/p

. B(N exp(− cd
ε2N

))1/p‖f‖p . B‖f‖p

uniformly in N . By a change of variables,

(p

∫ ∞

0

λp−1meas(Eλ,2)dλ)
1/p =

ArB

εN
‖Gr(f)‖p

. B
√

log(N + 1)‖f‖p.

Finally, from the Fefferman-Stein inequality

meas(Eλ,3) ≤

N∑

i=1

meas({x : |E−NTif(x)| > 2λ})

and thus

(p

∫ ∞

0

λp−1meas(Eλ,3)dλ)
1/p = 2‖ sup

i=1,...,N
|E−N(Tif)|‖p

. sup
i=1,··· ,N

‖Tif‖p

. ‖f‖p.

Above three inequalities conclude the proof.
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