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PRIMES OF THE FORM a2 + qb2

EUGEN J. IONASCU AND JEFF PATTERSON

Abstract. In this paper we bring into attention an old subject in number theory. Fermat showed
that a prime can be written as a sum of two squares if and only if it is a multiple of four plus one
and the decomposition is unique. We are going to look into similar writings of primes as a sum of
a square and a multiple of another square. We use elementary methods to show characterizations
for similar representations.

1. INTRODUCTION

In [4], David Cox begins his book on the subject at hand with a very detailed introduction in the

history of this subject and we definitely encourage the interested reader to consult his book. The

methods employed are elementary at the beginning (mostly Chapter I) but quickly he dives into

more advance mathematics such as Hilbert class filed theory, genus theory for field discriminants,

elliptic functions and modular functions.

We arrived at this subject by studding the problem of finding all equilateral triangles in space

with integer coordinates (see [3], [5], [7], and [8]). It turns out that such equilateral triangles exist

only in planes Pa,b,c,f := {(x, y, z) ∈ R
3 : ax+ by+ cz = f, f ∈ Z} where a, b, and c are in such way

(1) a2 + b2 + c2 = 3d2

for some integer d and side-lengths of the triangles are of the form d
√

2(m2 −mn+ n2) for some

integers m and n. This leads to investigations of primes of the first three forms in the next theorem

and also to representations of numbers by quadratic forms, such as 3d2 − a2 or 3d2 − 2b2, which

are not positive definite forms. It is natural to ask whether or not the next prime forms in the

Theorem 1.1 aren’t related to similar parameterizations for regular simplices in Z
n. In [14], Isaac

Schoenberg gives a characterization of those n’s for which such a simplex exists in Z
n. Let us give

the restatement of Schoenberg’s result which appeared in [11]: all n such that n+ 1 is a sum of 1,

2, 4 or 8 squares.

Also, we were wondering if elementary methods cannot be used to show more of the earlier

results and how far can one go with that approach. We are just going to jump right to the point

and give some of these facts. Some of them are classical and some were discovered by applying
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these methods or by experimental investigations. Although we are not providing a proof here, we

belived the statements in (xi) and (xix) in the next theorem, are new.

THEOREM 1.1. For an odd prime p we have p = a2 + qb2 for some integers a, b if and only if

(i) (Fermat) (q = 1) p ≡ 1 (mod 4);

(ii) (Fermat) (q = 2) p ≡ 1 or 3 (mod 8);

(iii) (Fermat) (q = 3) p = 3 or p ≡ 1 (mod 6);

(iv) (q = 4) p ≡ 1 (mod 4);

(v) (Lagrange) (q = 5) p = 5 or p ≡ 1 or 32 (mod 20);

(vi) (q = 6) p ≡ 1 or 7 (mod 24);

(vii) (q = 7) p = 7 or p ≡ j2 (mod 14) for some j ∈ {1, 3, 5};

(viii) (q = 8) p ≡ 1 (mod 8);

(ix) (q = 9) p ≡ j2 (mod 36) for some j ∈ {1, 5, 7, 9};

(x) (q = 10) p ≡ j (mod 40) for some j ∈ {1, 9, 11, 19};

(xi) (q = 11) (p > 11) p ≡ j2 (mod 22) for some j ∈ {1, 3, 5, 7, 9} and the equation

(x3 − 3x)2 + 11(x2 − 1)2 ≡ 0 (mod p) has a solution;

(xii) (q = 12) p ≡ j (mod 48) for some j ∈ {1, 13, 25, 37};

(xiii) (q = 13) p ≡ j2 (mod 52) for some j ∈ {1, 3, 5, 7, 9, 11};

(xiv) (Euler’s conjecture) (q = 14) the equations

x2 ≡ −14 and (x2 + 1)2 ≡ 8 (mod p) have solutions;

(xv) (q = 15) p ≡ j (mod 60) for some j ∈ {1, 19, 31, 49};

(xvi) (q = 16) p ≡ 1 (mod 8);

(xvii) (q = 27) p ≡ 1 (mod 3) and the equation x3 ≡ 2 (mod p) has a solution;

(xviii) (q = 31) the equation

(x3 − 10x)2 + 31(x2 − 1)2 ≡ 0 (mod p) has a solution;

(xix) (q = 32) p ≡ 1 (mod 8) and the equation

(x2 − 1)2 ≡ −1 (mod p) has a solution;

(xx) (Euler’s conjecture) (q = 64) p ≡ 1 (mod 4) and the equation x4 ≡ 2 (mod p) has a solution.

As interesting corollaries of these equivalent statements we see that if one prime p has some

representation it must have some other type of representation(s). Let us introduce a notation for

these classes of primes:

Pq := {p odd prime|p = a2 + qb2 for some a, b ∈ N}.
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So we have P1 = P4, P8 = P16 (Gauss, see [15]), P1 ⊂ P5, P10 ⊂ P2, ..... In the same spirit,

we must bring to reader’s attention, that in the case q = 32 there exists a characterization due to

Barrucand and Cohn [1], which can be written with our notation as

P32 = {p | p ≡ 1 (mod 8), there exists x such that x8 ≡ −4 (mod p)}.

We observe that our statement in part (xix) of Theorem 1.1 implies this characterization because

x8 + 4 = (x4 − 2x2 + 2)(x4 + 2x2 + 2) and clearly (x2 − 1)2 + 1 = x4 − 2x2 + 2. Also, another

classical fact now is the interesting result is the Kaplansky’s Theorem ([9]):

THEOREM 1.2. A prime of the form 16n+ 9 is in P32 \ P64 or in P64 \ P32. For a prime p of

the form 16n + 1 we have p ∈ P32 ∩ P64 or p 6∈ P64 ∪ P32.

For further developments similar to Kaplansky’s result we refer to [2]. One can show that the

representations in Theorem 1.1 are unique (see Problem 3.23 in [4]). The uniqueness is understood

in the sense that changes of sign, or rearrangements of x and y in case q = 1, are considered the

same writing. It is clear that the Quadratic Reciprocity and higher order reciprocity results are

useful ingredients here, and this is the only more sophisticated fact we will use here, but considered

still part of elementary number theory.

THEOREM 1.3. [Gauss] For every p and q odd prime numbers we have

(2)

(

p

q

)(

q

p

)

= (−1)
p−1
2

q−1
2 .

with notation
(

·

p

)

, defined for every odd prime p and every a coprime with p known as the Legendre

symbol:

(3)

(

a

p

)

=











1 if the equation x2 ≡ a (mod p) has a solution,

−1 if the equation x2 ≡ a (mod p) has no solution

2. Case (vii)

We are going to use some elementary ideas to show part (vii). We think this method can be used

to prove all the statements except (xi), (xiv), and (xvii)-(xx). We learned about this technique

from [12] and [13].

Necessity: If p = x2 + 7y2 then p ≡ x2 (mod 7). Clearly we may assume p > 7. Therefore, x may

be assumed to be different of zero. Then the residues of p (mod 7) are 1, 2, or 4. Let us suppose

that p ≡ r (mod 14) with r ∈ {0, 1, 2, ..., 13}. Because p is prime, r must be an odd number, not
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a multiple of 7 and which equals 1, 2 or 4 (mod 7). This leads to only three such residues, i.e.

r ∈ {1, 9, 11}, which are covered by the odd squares j2, j ∈ {1, 3, 5}.

Sufficiency: We may assume that p > 2. Let us use the hypothesis to show that the equation

x2 = −7 has a solution. Let p be a prime of the form 14k + r, r ∈ {1, 9, 11}, k ∈ N ∪ {0}. By the

Theorem 1.3, we have (7
p
)(p

7
) = (−1)

3(p−1)
2 . Since (−1

p
) = (−1)

p−1
2 , then

(
−7

p
) = (−1)

p−1
2 (

7

p
) = (−1)

p−1
2

+
3(p−1)

2 (
p

7
) = (

r′

7
), where p = 7(2k′) + r′, r′ ∈ {0, 1, .., 6}.

This shows that if r′ ∈ {1, 2, 4} we have a solution x0 for the equation x2 ≡ −7 (mod p).

Let us now apply the Pigeonhole Principle: we let m ∈ N be in such a way that m2 < p <

(m+ 1)2. We consider the function g : {0, 1, 2, ...,m} × {0, 1, 2, ...,m} → {0, 1, 2, ...., p − 1} defined

by g(u, v) ≡ u + vx0 (mod p). Since (m + 1)2 > p, we must have two distinct pairs (a′′, b′′)

and (a′, b′) such that g(a′′, b′′) = g(a′, b′). Then a′′ − a′ ≡ (b′ − b′′)x0 (mod p). Then, if we let

a = a′′ − a′, and b = b′ − b′′ we get that 0 < q := a2 + 7b2 ≡ b2(x20 + 7) ≡ 0 (mod p). But,

q = a2 + 7b2 ≤ m2 + 7m2 = 8m2 < 8p. It follows that q ∈ {p, 2p, 3p, 4p, 5p, 6p, 7p}. We need to

eliminate the cases q ∈ {2p, 3p, 4p, 5p, 6p, 7p}. If q = 7p then 7p = a2 + 7b2 which implies that a is

a multiple of 7, or a = 7a′, which gives p = b2 + 7a′2 as wanted.

If q = 3p, then q = 3(14k′+ r) = 7ℓ+s where s ∈ {3, 5, 6}. But this is impossible because q ≡ a2

(mod 7). The same argument works if q = 6p, because r′ ∈ {1, 2, 4} if and only if 6r′ ∈ {3, 5, 6}

(mod 7). Similarly, the case p = 5p is no difference.

If q = 2p or a2 + 7b2 = 2p implies that a and b cannot be both odd, since in this case a2 + 7b2

is a multiple of 8 and 2p is not. Therefore a and b must be both even, but that shows that 2p is a

multiple of 4. Again this is not the case.

Finally, if q = 4p then the argument above works the same way but in the end we just simplify

by a 4.

3. Cases q ∈ {11, 17, 19}

Let us observe that the characterizations in Theorem 1.1 for the cases when one needs another

polynomial of degree bigger than 2, are not easily checked for big primes p. Next we use still similar

elementary methods to show the following result which seems to be the best what one can hope

for in terms of a characterization in which certain quadratic forms of the form a2 = qb2 cannot be

separated by simply the quadratic residues of odd numbers modulo 4q.

THEOREM 3.1. (i) A prime p > 17 is of the form a2+17b2 or 2p = a2+17b2, for some a, b ∈ N

if and only if p ≡ (2j + 1)2 (mod 68) for some j = 0, ..., 7.
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(ii) The representation of a prime as in part (a) is exclusive, i.e. a prime p cannot be of the

form a2 + 17b2 and at the same time 2p = x2 + 17y2, for some x, y ∈ N.

PROOF (i) “ ⇒ ” If the prime p can be written p = a2 + 17b2 then p ≡ a2 (mod 17) with

a not divisible by 17. We observe that a and b cannot be both odd or both even. Then p ≡ 1

(mod 4). If p = 68k + r with r ∈ {0, 1, 2, ..., 67} then r ≡ 1 (mod 4), not a multiple of 17 and

a quadratic residue modulo 17, i.e. r = 17ℓ + r′ with r′ ∈ {1, 2, 4, 8, 9, 13, 15, 16}. This gives

r ∈ {1, 9, 13, 21, 25, 33, 49, 53}. One can check that these residues are covered in a one-to-one way

by the odd squares j2, j ∈ {1, 3, 5, 7, 9, 11, 13, 15}.

If 2p = a2 + 17b2 then 2p ≡ a2 (mod 17) with a not divisible by 17. In this case a and b must

be both odd and then 2p = a2 + 17b2 ≡ 2 (mod 8). This implies, as before, that p ≡ 1 (mod 4). If

p = 68k + r with r ∈ {0, 1, 2, ..., 67} then r ≡ 1 (mod 4), not divisible by 17 and 2r is a quadratic

residue modulo 17. Interestingly enough, we still have r ∈ {1, 9, 13, 21, 25, 33, 49, 53}.

“ ⇐ ” We have p ≡ j2 (mod 17) and so ( p
17
) = 1. By the Theorem 1.3, we have (17

p
)( p

17
) =

(−1)8
(p−1)

2 = 1 which implies (17
p
) = 1.

Since (−1
p
) = (−1)

p−1
2 , we get that (−17

p
) = (−1)

p−1
2 . If p = 68k+j2 with j ∈ {1, 3, 5, 7, 9, 11, 13, 15},

we see that (−17

p
) = 1. Therefore x2 ≡ −17 (mod p) has a solution x0. As in the case q = 7, if

we use the same idea of the Pi Pigeonhole Principle we obtain that q = a2 + 17b2 < 18p for some

a, b ∈ Z and q ≡ 0 (mod p). Hence q = ℓp with ℓ ∈ {1, 2, ..., 17}. We may assume that gcd(a, b) = 1,

otherwise we can simplify the equality q = ℓp by gcd(a, b) which cannot be p. Clearly if ℓ = 1,

ℓ = 2 or ℓ = 17 we are done. Since q ≡ 0, 1 or 2 (mod 4) and p ≡ 1 (mod 4) we cannot have

ℓ ∈ {3, 7, 11, 15}. If ℓ ∈ {4, 8, 12, 16}, ℓ = 4ℓ′, we can simplify the equality by a 4 and reduce this

case to ℓ′ ∈ {1, 2, 3, 4}. Each one of these situations leads to either the conclusion of our claim or

it can be excluded as before or reduced again by a 4.

(Case ℓ = 5 or ℓ = 10) Hence q = ℓp = a2 + 17b2 ≡ a2 + 2b2 ≡ 0 (mod 5). If b is not a multiple

of 5 then this implies x2 ≡ −2 (mod 5) which is not true. Hence b must be a multiple of 5 and

then so must be a. Then the equality ℓp = a2 + 17b2 implies that ℓp is a multiple of 25 which is

not possible.

(Case ℓ = 6 or ℓ = 14) In this case we must have a and b odd and then q = 2(4s+1) = ℓp which

is not possible.

(Case ℓ = 13) In this case 4q = (2a)2 +17(2b)2 = 2p(32 +17(1)2). We will use Euler’s argument

([4], Lemma 1.4, p. 10) here. If we calculate M = (2b)2[32 +17(1)2]− 4q = [3(2b)− 2a][3(2b)+ 2a],

we see that 2(13) divides M and so it divides either 3(2b) − 2a or 3(2b) + 2a. Without loss of

generality we may assume that 2(13) divides 3(2b) − 2a. Hence, we can write 3(2b) − 2a = 2(13)d

for some d ∈ Z. Next, we calculate
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2a+ 17d = 3(2b) − 2(13)d + 17d = 3(2b)− 9d,

which implies that 2a + 17d = 3e for some e ∈ Z. Also, from the above equality we get that

2b = e+ 3d. Then

2p(26) = 4q = (2a)2 + 17(2b)2 = (3e− 17d)2 + 17(e + 3d)2 = 26(e2 + 17d2) ⇒

2p = e2 + 17d2.

(Case ℓ = 9) We have 4q = (2a)2 + 17(2b)2 = 2p(12 + 17(1)2). We calculate M = (2b)2[12 +

17(1)2] − 4q = (2b − 2a)(2b + 2a), we see that 2(9) divides M and so it divides either 2b − 2a or

2b + 2a. We need to look into two possibilities now. First 2(9) divides one of the factors 2b − 2a

or 2b + 2a, or 2(3) divides each one of them. In the second situation we can see that 3 divides

4a = 2b + 2a − (2b − 2a) and so 3 must divide b too. This last possibility is excluded by the

assumption that gcd(a, b) = 1. Without loss of generality we may assume that 2(9) divides 2b−2a.

Hence, we can write 2b − 2a = 2(9)d for some d ∈ Z. We set, 2a = e − 17d and observe that

2b = 2a+ 18d = e− 17d + 18d = e+ d. Then

2p(18) = 4q = (2a)2 + 17(2b)2 = (e− 17d)2 + 17(e + d)2 = 18(e2 + 17d2) ⇒

2p = e2 + 17d2.

(ii) To show this claim, we may use Euler’s argument as above.

For primes q which are multiples of four minus one, the patterns suggest that we have to change

the modulo but also there are more trickier changes. Let us look at the cases q = 11 and q = 19.

In case q = 11, we have seen that the quadratic form a2 + 11b2 in Theorem 1.1 can be separated

by a polynomial from the other possible forms of representing primes which are quadratic residues

of odd numbers modulo 22.

THEOREM 3.2. (i) A prime p > 11 is of the form a2+11b2 or 3p = a2+11b2, for some a, b ∈ N

if and only if p ≡ (2j + 1)2 (mod 22) for some j = 0, ..., 4.

(ii) A prime p > 19 satisfies 4p = a2 + 19b2, for some a, b ∈ N if and only if p ≡ (2j + 1)2 (mod

38) for some j = 0, ..., 8.

(iii) The representations of a prime as in part (i) are exclusive, i.e. a prime p cannot be in both

representations.

We leave these proofs for the reader.
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