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Seifert fibered surgery on Montesinos knots

Ying-Qing Wu

Abstract

Exceptional Dehn surgeries on arborescent knots have been classi-
fied except for Seifert fibered surgeries on Montesinos knots of length
3. There are infinitely many of them as it is known that 4n + 6 and
4n + 7 surgeries on a (−2, 3, 2n + 1) pretzel knot are Seifert fibered.
It will be shown that there are only finitely many others. A list of 20
surgeries will be given and proved to be Seifert fibered. We conjecture
that this is a complete list.

1 Introduction

A Dehn surgery on a hyperbolic knot is exceptional if it is reducible, toroidal,
or Seifert fibered. By Perelman’s work, all other surgeries are hyperbolic.
For knots in S3, by exceptional surgery we shall always mean nontrivial
exceptional surgery.

Given an arborescent knot, we would like to know exactly which surg-
eries are exceptional. We divide arborescent knots into three types. An
arborescent knot is of type I if it has no Conway sphere, so it is either a
2-bridge knot or a Montesinos knot of length 3. A type II knot has a Conway
sphere cutting it into two tangles, each of which is the sum of two nontrivial
rational tangles, with one of them of slope 1/2. All others are of type III.
In [Wu1] it was shown that all nontrivial surgeries on type III arborescent
knots are Haken and hyperbolic, and all nontrivial surgeries on type II knots
are laminar. In [Wu2] it was further shown that there are exactly three type
II knots admitting exceptional surgery, each of which admits exactly one
exceptional surgery, producing a toroidal manifold. For type I knots, Brit-
tenham and the author determined exceptional surgeries on 2-bridge knots
[BW], toroidal surgeries on Montesinos knots have been classified in [Wu3],
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and it is known that there is no reducible surgery on hyperbolic arborescent
knots [Wu1].

It remains to determine small Seifert fibered surgeries on hyperbolic
Montesinos knots of length 3, which is also the set of all Seifert fibered
surgeries because by Ichihara and Jong [IJ1] the only toroidal Seifert fibered
surgery on Montesinos knots is the 0 surgery on the trefoil knot and hence
there is no large Seifert fibered surgery on hyperbolic Montesinos knots. For
the special case of finite surgeries on Montesinos knots, the classification has
been done by Ichihara and Jong [IJ2]. See also [FIKMS].

In general, let K = K(p1/q1, p2/q2, p3/q3) be a hyperbolic Montesinos
knot of length 3, and assume that it admits a nontrivial Seifert fibered
surgery K(r). Using immersed surfaces, it was shown in [Wu4] that we must
have 1

q1−1
+ 1

q2−1
+ 1

q3−1
≤ 1, hence up to relabeling we have |q1| = 2, or

|q1| = |q2| = 3, or (|q1|, |q2|, |q3|) = (3, 4, 5). In [Wu5] we studies persistently
laminar branched surfaces in knot complements, and obtained restrictions on
the |pi|. More explicitly, if K above is a pretzel knot K(1/q1, 1/q2, 1/q3, n)
then either (i) n = 0, or (ii) n = −1 and qi > 0, and if K is not a pretzel
knot then it is either (iii) K(2/3, 1/3, 2/5), or (iv) K(1/2, 1/3, 2/(2a+ 1))
with a ∈ {3, 4, 5, 6}, or (v) K(1/2, 2/5, 1/q) for some odd q ≥ 3.

There are still infinitely many knots among the above, for example it
includes all (2, q2, q3) pretzel knots. In [Wu6] we studies exceptional surgeries
on tubed Montesinos knots. These are the knots in solid tori obtained by
tubing Montesinos tangles in some specific ways. By embedding the solid tori
into S3, we see that these knots are closely related to Montesinos knots in S3.
With this method it was shown that there are indeed infinitely many Seifert
fibered surgeries on Montesinos knot of length 3, that is, each (−2, 3, 2n+1)
pretzel knot in S3 admits at least two Seifert fibered surgeries, of slopes
4n+ 6 and 4n+ 7, respectively. On the other hand, using the classification
theorem in [Wu6], we will show that there are only finitely many other Seifert
fibered surgeries on these knots. See Theorem 2.3 below.

A few other surgeries on Montesinos knots are known to be Seifert
fibered. There is that well known (−2, 3, 7) pretzel knot, on which 17, 18 and
19 surgeries are Seifert fibered [FS]. Hyun-Jong Song showed that surgery on
(−3, 3, 3) with slope 1 is Seifert fibered, and Mattman, Miyazaki and Motegi
[MMM] showed that surgery on (−3, 3, 5) of slope 1 is also Seifert fibered.
More examples will be given in Table 3.1 below. We conjecture that this is
a complete list.
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2 A finiteness theorem

Consider the knots Kn = K(−1/2, 1/3, 1/2n+1). By [Wu6, Corollary 2.3],
Kn(rn) is small Seifert fibered for rn = 6+4n and 7+4n, except that K2(15)
is reducible. If K ′ is the mirror image of K, then an orientation revers-
ing homeomorphism of S3 induces an orientation reversing homeomorphism
from K(r) to K ′(−r). We consider (K, r) and (K ′,−r) as equivalent. The-
orem 2.3 below shows that there are only finitely many other small Seifert
fibered surgeries on length 3 Montesinos knots.

More generally, consider a two component link L = K ′ ∪ K ′′ with K ′′

a trivial component. Let V be the solid torus S3 − IntN(K ′′) , and let
(V,K ′, r) be the manifold obtained by r surgery on K ′ in V . Denote by Km

the knot obtained from K ′ by m right-hand full twists on K ′′.

Lemma 2.1 Suppose L = K ′ ∪ K ′′ is a two component hyperbolic link in
S3 with K ′′ a trivial loop. Then there is a finite collection C of (m, rn),
where rn is a slope on ∂N(K ′), such that if Km(rn) is non-hyperbolic, then
either (i) Km is non-hyperbolic, or (ii) (V,K ′, rn) is nonhyperbolic, or (iii)
(m, rn) ∈ C.

Proof. This is well known and follows immediately from the 2π-theorem
of Gromov and Thurston. By the 2π-theorem there is a finite set Ci of
slopes on each cusp Ti of S

3− IntN(L), such that if ri 6∈ Ci for i = 1, 2 then
L(r1, r2) is hyperbolic. Let Ĉ be the collection of all slopes (r1, r2) such that
L(r1, r2) is non-hyperbolic, and let C ′

i be the set of slopes r on Ti such that
r filling on Ti is non-hyperbolic. If for some r1 there are infinitely many r2
such that (r1, r2) ∈ Ĉ then r1 ∈ C ′

1
. Similarly if there are infinitely many r1

with (r1, r2) ∈ C then r2 ∈ Ĉ ′

2
. Thus if we denote by Ĉi = {(r1, r2) | ri ∈ C ′

i}
then C = Ĉ − Ĉ1 ∪ Ĉ2 is finite. Restricting the above to the set of slopes
with r1 of type 1/m gives the required result. �

The following result was conjectured by Gordon and proved by Lackenby
and Meyerhoff [LM]. It will be referred to as the 8-Theorem below.

The 8-Theorem (Lackenby-Meyerhoff) If M is a hyperbolic manifold
and r1, r2 are two exceptional slopes on a torus component of ∂M , then
∆(r1, r2) ≤ 8.

Consider the links L = K ′ ∪ K ′′ in Figure 2.1 below, where K ′′ is the
trivial knot, and K ′ is a in the solid torus V = S3 − IntN(K ′′) obtained
by adding two strings to a Montesinos tangle T (p1/q1, p2/q2), as shown in
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Figure 2.1(a)-(b). These are called tubed Montesinos knots in [Wu6]. Denote
by K0(p1/q1, p2/q2) the knot in Figure 2.1(a), and by K1(p1/q1, p2/q2) the
one in Figure 2.1(b). We always assume that K ′ is a knot in V , so q1, q2 are
not both even. Denote by (V,K ′, r) the manifold obtained by r surgery on
K ′ in V . A knot in V is considered to be equivalent to its mirror image in
the lemma below.

(a)

1
q 

1
p 

2
q 

2
p 

(b)

1
q 

1
p 

2
q 

2
p 

Figure 2.1

Lemma 2.2 Suppose qi ≥ 2, r is a nontrivial slope, and (V,K ′, r) is non-
hyperbolic. Then (K ′, r) is equivalent to one of the following pairs. The
surgery is small Seifert fibered for r = 7 in (2), and toroidal otherwise.

(1) K = Ka(1/q1, 1/q2), |qi| ≥ 2, a = 0, 1, and r is the pretzel slope.
(2) K = K1(−1/2, 1/3), r = 6, 7, 8.

Proof. Exceptional surgeries for all tubed Montesinos knots in solid torus
have been classified in [Wu6, Theorem 5.5]. This lemma is the above theorem
applied to the case that K ′ is a tubed Montesinos knot of length 2 in V .
�

Theorem 2.3 Besides the 4n+6 and 4n+7 surgeries on the (−2, 3, 2n+1)
pretzel knots, there are only finitely many small Seifert fibered surgeries on
hyperbolic Montesinos knots K of length 3. Moreover, K is equivalent to
one of the following.

(1) (q1, q2, q3) pretzel knot, |q1| ≤ |q2| ≤ |q3| ≤ 17, and either |q1| = 2 or
|q1| = |q2| = 3.

(2) (3, 3, 2n, −1) pretzel knot, 2 ≤ n ≤ 8.
(3) K(−1/2, 2/5, 1/(2n + 1)) for some n > 0.
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(4) Ten individual knots: (3, ±4, ±5) pretzel knots, (3, 4, 5, −1) pretzel
knot, K(−2/3, 1/3, 2/5), and K(−1/2, 1/3, 2/(2a + 1)) for a = 3, 4, 5, 6.

Proof. By [Wu5], if K is a hyperbolic Montesinos knot of length 3 and
K(r) is atoroidal and Seifert fibered, then K is one of the following knots.

(a) K = (q1, q2, q3) pretzel knot, and either |q1| = 2, or |q1| = |q2| = 3,
or (|q1|, |q2|, |q3|) = (3, 4, 5);

(b) K = (q1, q2, q3,−1) pretzel knot with qi ≥ 3, and either q1 = q2 = 3
or (q1, q2, q3) = (3, 4, 5);

(c) K = K(−2/3, 1/3, 2/5);
(d) K = K(1/2, 1/3, 2/(2a + 1)) and a ∈ {3, 4, 5, 6};
(e) K = K(−1/2, 2/5, 1/q) for some q ≥ 3 odd.

Besides the 10 individual knots listed in (5), there are several infinite
families of knots among the above. We divide these into four cases as follows.

Case 1. K is a (q1, q2, q3) pretzel knot with 2 = |q1| ≤ |q2| ≤ |q3|.

Up to equivalence we may assume q1 = −2. Let L = K1∪K2 be the link
in Figure 2.1(b), where p1/q1 = −1/2, p2/q2 = 1/q2, and K1 denotes the
trivial circle in the figure. Denote by L(r1, r2) the manifold obtained from
L by ri surgery on Ki. By Kirby Calculus, we see that L(1/n, r2) = K(r),
where K = K(−1/2, 1/q2, 1/(1 − 2n)), and r = r2 − 4n. On the other
hand, if we denote by V the exterior of K1, and put M = (V,K2, r2), then
L(r1, r2) = M(r1), the manifold obtained by Dehn filling along slope r1 on
∂M .

By Lemma 2.2, if M is non-hyperbolic then q2 = 3 and r2 = 6, 7, 8, in
which case K(r) is a 6−4n, 7−4n or 8−4n surgery on K(−1/2, 1/3, 1/(1−
2n)). The first two are Seifert fibered and have been excluded in the state-
ment, while the last one is the pretzel slope, in which case K(r) is toroidal
[Wu3] and hence cannot be Seifert fibered [IJ1]. Thus we may assume that
M = (V,K2, r2) is hyperbolic. It is easy to see that M(1/0) is the r2
surgery on the (2, 5) torus knot and hence is nonhyperbolic. Therefore by
the 8-Theorem we see that if M(1/n) is non-hyperbolic then |n| ≤ 8, hence
|q3| = |1− 2n| ≤ 17.

Case 2. K is a (q1, q2, q3) pretzel knot with 3 = |q1| = |q2| ≤ |q3|.

Similar to the above, we have L = K1 ∪K2 as in Figure 2.1(a) or 2.1(b),
according to whether q3 = 2n or 2n + 1. In this case |q1| = |q2| = 3,
so K2 = K0(±3, 3) or K1(±3, 3). By Lemma 2.2, the only exceptional
surgery on K2 in V is the surgery along the pretzel slope, corresponding
to the toroidal surgery along the pretzel slope of K [Wu3]. For all other
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nontrivial slopes r, M = (V,K2, r) is hyperbolic. Note that when q3 = 2n,
M(1/0) is the r-surgery on the connected sum of two trefoil knot and hence
is nonhyperbolic, therefore as above, we see that if |n| > 8 then r surgery
on K is hyperbolic. When q3 = 2n+1 is old and q1 = q2 = 3, the knot with
n = −1 is the trefoil knot, so the above argument applies and we conclude
that |n − (−1)| ≤ 8 if K admits a nontrivial small Seifert fibered surgery.
Thus |q3| = |2n + 1| ≤ 17.

Now consider the case that K is the (−3, 3, 2n+1) pretzel knot. In this
case we need to use a recent result of Boyer, Gordon and Zhang. Since K
has a Seifert surface of genus 1, by [BGZ, Theorem 1.5] K(p/q) is hyperbolic
unless |p| ≤ 3. By [Wu5, Theorem 6.6] we know that the knot complement
has a persistently laminar branched surface with two meridional cusps, hence
if q 6= 1 then the lamination is genuine in K(p/q), so by [Br] K(p/q) cannot
be Seifert fibered. K is the twist knot 61 when n = 0, and its mirror image
when n = −1, one of which has small Seifert surgery slopes 1, 2, 3 and the
other −1,−2,−3. It now follows by the same argument as above that for
p/q = ±1,±2,±3, the surgery K(p/q) is hyperbolic unless |q3| ≤ 17.

Case 3. K is a (3, 3,−1, q3) pretzel knot with q3 ≥ 3.

Since K is a knot, q3 must be even, say q3 = 2n, so we have n ≥ 2.
As above, let L = K1 ∪ K2, where K1 is trivial and K2 is a tubed knot
K0(1/3,−2/3) in the solid torus V = S3 − IntN(K1). Now r surgery on
K is equivalent to r − 4n surgery on K2 followed by 1/n Dehn filling on
∂V , with respect to the standard meridian-longitude coordinate of K1. By
Lemma 2.2 there is no exceptional surgery on K2 in V , hence (V,K2, r−4n)
is hyperbolic. Also note that when n = 0 the knot K is the connected sum
of two trefoils, hence all surgeries are non-hyperbolic. It follows that K(r)
is hyperbolic unless n ≤ 8.

Case 4. K = K(−1/2, 2/5, 1/(2n + 1) for some n ≥ 1.

Let L = K1 ∪ K2, where K1 is trivial and K2 = K1(−1/2, 2/5) in
V = S3 − IntN(K1). K(r) is the same as r − 4n surgery on K2 followed
by 1/n filling on ∂V . By Lemma 2.2 we see that (V,K2, r) is always hyper-
bolic for any nontrivial r, hence by Lemma 2.1 there are only finitely many
exceptional surgeries on the set of hyperbolic knots K as above. �

We note that the argument above does not provide a bound for n for
the knots of type K(−1/2, 2/5, 1/(2n + 1)), although by the theorem such
bound does exist. However, using computer assistant proof it seems likely
that n ≤ 9. See the discussion about Snappex after Conjecture 4.1.
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3 Seifert fibered surgeries

Gordon conjectured that a Seifert fibered surgery on a hyperbolic knot is
an integral surgery. The following lemma shown that this is true for most
Montesinos knots of length 3.

Lemma 3.1 Suppose K is a hyperbolic Montesinos knot of length 3 such
that K(r) is small Seifert fibered and r is a nontrivial non-integral slope.
Then K is equivalent to either (i) a (−2, p2, p3) pretzel knot with 3 ≤ p2 ≤
p3 ≤ 17, or (ii) a (3, 3,−1, 2n) knot with 2 ≤ n ≤ 8, or (iii) the (3, 4, 5,−1)
pretzel knot.

Proof. By the proof of [Wu6, Theorem 6.6] K has a persistently laminar
branched surface with two meridional cusps unless it is a pretzel knot of
type (p1, p2, p3,−1) with pi > 1. Such branched surface becomes genuinely
laminar after nonintegral surgery because the component containing the
Dehn filling solid torus is a solid torus with cusps intersecting a meridian
disk at least 4 times, hence by [Br] the surgered manifold cannot be a small
Seifert fibered manifold. The result follows by comparing this with the list
of knots in Theorem 2.3. �

The lemma can be used in searching for Seifert fibered surgeries. We may
now use Snappy [CDW] to check surgeries on the list of knots in Theorem
2.3. K(r) is likely to be Seifert fibered if the program gives nearly zero
volume. Since most of those knots in the list are strongly invertible, one
can then try to use the Montesinos trick to show that the manifold is indeed
Seifert fibered. The following table gives the list of Seifert fibered surgeries
on hyperbolic Montesinos knots of length 3, where M(r1, r2, r3) denotes the
closed 3-manifold which is the double branched cover of S3 with branch set
a Montesinos link K(r1, r2, r3). It is well known that all such M(r1, r2, r3)
are small Seifert fibered.
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K r K(r)

(1) K(−1/2, 1/3, 1/2n + 1) r = 4n+ 6 M(1/2, −1/4, 2/2n − 5)
r = 4n+ 7 M(−1/3, 3/5, 1/(n − 2))

(2) K(−1/2, 1/3, 1/7) r = 17 M(−1/2, 1/3, −2/5)
(3) K(−1/2, 1/3, 2/5) r = 3 M(−2/15, 1/2, −1/3)

r = 4 M(−2/7, 1/2, −1/6)
r = 5 M(3/5, −1/3, −1/5)

(4) K(−1/2, 1/5, 2/5) r = 7 M(3/4, −2/5, −1/4)
r = 8 M(−1/5, 1/2, −2/9)

(5) K(−1/2, 1/7, 2/5) r = 11 M(−1/4, −2/7, 2/3)
(6) K(−1/2, 1/3, 2/7) r = −1 M(−3/4, 1/3, 3/8)

r = 0 M(1/5, 3/10, −1/2)
r = 1 M(1/2, −2/3, 3/19)

(7) K(−1/2, 1/3, 2/9) r = 2 M(−3/8, −3/2, −1/4)
r = 3 M(8/11,−1/2,−1/5)
r = 4 M(−3/20,−1/2, 2/3)

(8) K(−1/2, 1/3, 2/11) r = −2 M(2/7, 2/5, −2/3)
r = −1 M(2/9, 2/7,−1/2)

(9) K(−1/3, 1/3, 1/4) r = 1 M(−1/2, 1/5, 2/7)
(10) K(−1/3, 1/3, 1/6) r = 1 M(−1/2, 1/3, 2/13)
(11) K(−1/3, 1/3, 1/3) r = 1 M(1/2,−1/5,−2/7)
(12) K(−1/3, 1/3, 1/5) r = 1 M(−1/3,−1/4, 3/5)
(13) K(−2/3, 1/3, 2/5) r = −5 M(2/5, 2/5, −3/4)

Table 3.1 Seifert fibered surgeries

Theorem 3.2 For each knot K and slope r in the table, r surgery on K
produces a Seifert fibered manifold K(r) as shown in the table.

Proof. (1) is given in [Wu6, Theorem 5.5]. (2) is well known, see for
example [CGLS]. Most of the others can be proved using the Montesinos
trick.

Consider a strongly invertible knot K in S3 with axis X intersecting K
twice. π-rotation along X gives a quotient map ρ : (S3,X,K) → (S̄, X̄, K̄),
where S̄ is a 3-sphere, X̄ a trivial circle, and K̄ an arc with its two endpoints
on X̄ . For example, whenK is the knotK(−1/2, 1/3, 2/5) in Figure 3.1(1),
the pair X̄ and K̄ are shown in Figure 3.1(2). The quotient of N(K) is a
3-ball N̄ in S̄, drawn as a thick arc in Figure 3.1(3). Shrinking N̄ to a

8



round ball gives Figure 3.1(4). Put α = X̄ ∩ N̄ . We may consider (N̄ , α)
as a rational tangle of slope ∞, and set up coordinates so that a longitude
on ∂N(K) projects to a curve of slope 0 on ∂N̄ , which is considered as a
pillow case with the four points X ∩ ∂N̄ as cone point, so every essential
simple closed curve on ∂N̄ has a slope; see [HT]. The Montesinos trick [Mon]
says that K(r) can be obtained by replacing (N̄ , α) with a rational tangle of
slope −r to obtain a link L[−r] in S̄, then taking the double branched cover
of S̄ along L[−r]. More generally, if N̄ is deformed so that α is the ∞ tangle
and the longitude projects to a curve of slope r0 on ∂N̄ then a curve of slope
r on ∂N(K) projects to a curve of slope r0 − r on ∂N̄ , hence K(r) is the
double branched cover of S̄ along L[r0−r]. Thus if L[r0−r] is a Montesinos
link K(a, b, c) then K(r) is the Seifert fibered manifold M(a, b, c).

Continue with the example above. We can simplify Figure 3.1(4) to
that of Figure 3.1(5). To determine the framing, consider the bounded
checkboard surface F for the diagram in Figure 3.1(1). It is easy to check
that ∂F has slope 6 on ∂N(K). The quotient of F is a disk F̄ which
deforms to a disk in Figure 3.1(3) whose intersection with ∂N̄ is an arc
of slope 0. In other words, the longitude of N(K) projects to a curve of
slope r0 on ∂N(K) such that a curve of slope r = 6 projects to a curve
of slope r0 − r = 0, hence r0 = 6. Thus K(3) is the double branched
cover of L[r0 − 3] = L[3], shown in Figure 3.1(6). It can be deformed to
that in Figure 3.1(7) and then further to Figure 3.1(8), which is a Mon-
tesinos knot K(−2/15, 1/2, −1/3). Hence K(3) = M(−2/15, 1/2, −1/3).
Similarly, K(4) is the double branched cover of L[r0 − 4] = L[2] shown in
Figure 3.1(9), which is isotopic to K(−2/7, 1/2, −1/6) in Figure 3.1(10),
and K(5) is the double branched cover of L[1] in Figure 1(11), isotopic to
K(3/5, −1/3, −1/5) in Figure 3.1(12). This completes the proof for the
three Seifert fibered surgeries on K(−1/2, 1/3, 2/5).

The proofs for cases (4)–(10) are similar. Surgeries onK(−1/2, 1/5, 2/5)
and K(−1/2, 1/5, 2/7) are given in Figure 3.2, K(−1/2, 1/3, 2/7) in Fig-
ure 3.3, K(−1/2, 1/3, 2/9) in Figure 3.4, K(−1/2, 1/3, 2/11) in Figure
3.5, and K(−1/3, 1/3, 1/4) and K(−1/3, 1/3, 1/6) in Figure 3.6.

For case (13), the knot can be written as K = K(1/3,−3/5, 1/3) and
can be drawn as in Figure 3.7(1). This is also a strongly invertible knot,
only that the axis is not the one passing through all 3 tangles as in examples
above. The quotients X̄ and N̄ are shown in Figure 3.7(2), which is isotopic
to that in Figure 3.7(3). Using a symmetric spanning surface as above,
one can check that the longitude projects to a curve of slope −6 on ∂N̄ ,
hence K(−5) is the double branched cover of L[−1] in Figure 3.7(4), which
is isotopic to the Montesinos knot K(2/5, 2/5,−3/4) in Figure 3.7(5). The
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proof for the case (11) is similar and is shown in Figures 3.7(6)–(9).
The (−3, 3, 5) pretzel knot in case (12) does not seem to be strongly

invertible and hence cannot be proved using the method above. Fortu-
nately this has been done by Mattman, Miyazaki and Motegi. Figure 3.7
in [MMM] shows that 1 surgery on the (−3, 3, 5) pretzel knot yields the
manifold M(−1/3,−1/4, 3/5). �
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(1)

(5)(4) (6)

(7) (8) (9)

(10) (11)

(2) (3)

(12)

Figure 3.1
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(1)

(5)(4) (6)

(2) (3)

(7) (8) (9)

Figure 3.2
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(1) (2) (3)

(4) (5) (6)

(7) (8)

Figure 3.3
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.4
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(1) (2) (3)

(4) (5)

Figure 3.5
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(1)

(5)(4)

(2) (3)

Figure 3.6
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(1)

(5) (6)(4)

(8) (9)(7)

(2) (3)

Figure 3.7

4 A conjecture and some computer assistant ap-

proach

Using Snappea or Snappy, one can test the knots in Theorem 2.3 to find
the set of slopes along which Dehn surgeries produce manifolds with near
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zero volume. Snappy volume represents the Gromov norm of the manifold,
hence if the surgery is Seifert fibered then the volume should be zero. We
have following conjecture.

Conjecture 4.1 A nontrivial Dehn surgery on a hyperbolic Montesinos
knot of length 3 is Seifert fibered if and only if it is equivalent to one of
those in table 3.1.

A computer program Snappex has been written, which combines Snap
of Oliver Goodman [Gm] with a template written by Harriet Moser [Mos2].
See [Wu7]. Snap uses the Snappea core of Jeff Weeks [We] and the high
precision package Para to calculate hyperbolic structure for 3-manifolds,
while the Moser Script uses the Snap output as its input and then attempt to
verify the hyperbolicity of the manifold rigorously. This is based on [Mos1],
in which Moser showed that there is a genuine hyperbolic structure for the
manifold in a neighborhood of the Snap solution if the latter satisfies certain
conditions. Given a knot K, one can use Snap to find a hyperbolic structure,
use Moser Script to verify it, then use Snap output to find all slopes of length
at most 2π, and then use Moser Script to check whether each of these is a
hyperbolic surgery. Snappex makes this procedure automatic. Thus given
a knot K, Snappex will give a list of slopes which contains all possible
exceptional slopes. Assuming the accuracy of the programs involved and
the correctness of compilers, Snappex rigorously proves that Dehn surgery
on K along any slope not in the above list must be hyperbolic.

A similar procedure is carried out by Snappex for links of 2 components.
Using this and some theoretical arguments one can show that n ≤ 9 for the
knots in Theorem 2.3(3). Consider the link L = K ′ ∪K ′′ in Figure 2.1 with
p1/q1 = −1/2 and p2/q2 = 2/5. Then the knot in Theorem 2.3(3), which we
denote by Kn for any given n, is obtained from L by −1/n surgery on K ′′

Using Kirby Calculus [Ro] it can be shown that s surgery on K is equivalent
to (s − 4n,−1/n) surgery on L. Running Snappex on this link gives the
candidate list C, and one can check to see that if (r1, r2) ∈ C then either
r2 = 1/n with n ≤ 4, or r1 ∈ {−2,−1, 0, 1, 1/0}. We need to show that if
L(r,−1/n) is small Seifert fibered for r = −2,−1, 0, 1 then n ≤ 9.

Consider the case r = 1. By Lemma 2.2, the manifold L(r, ∅) is hy-
perbolic for all r 6= 1/0; in particular, M = L(1, ∅) is hyperbolic. Note
that −1 surgery on the second component of L yields the knot K1 =
K(−1/2, 2/5, 1/3), which by Theorem 2.3 has Seifert fibered surgeries of
slopes s = 3, 4, 5. By the above, we have that L(−1,−1/1) = K1(3) is non-
hyperbolic, hence by the 8-Theorem L(−1,−1/n) = Kn(3) is hyperbolic for
n > 9. Similarly for r = 0,−1.
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The above does not work for r = −2. Fortunately s = r + 4n is the
boundary of a non-orientable checkboard spanning surface F with χ(F ) =
−2. Cutting along F produces a handlebody M of genus 3. Considering
∂N(F ) ∩M as horizontal surface and ∂M ∩ ∂N(K) as vertical surface, we
obtain a cusped manifold. It can be shown that the horizontal surface is
incompressible (at least for n > 2) and extends to an incompressible surface
in the surgered manifold Kn(s), and M is not an I-bundle. It follows from
[Br] that Kn(s) cannot be small Seifert fibered.

Back to Conjecture 4.1. We now have a list of a few hundred knots to
check. Snappex has a command to find a candidate list of exceptional slopes
for all these knots. There are several hundred surgeries that remains on this
list, which need to be verified using some other methods. A few non-integral
slopes can be excluded using Lemma 3.1. All but a couple of the remaining
slopes are integral slopes, which are shown to be “apparently hyperbolic”
by Casson’s Geo program [Ca], which provides strong supporting evidence
for the conjecture.

References

[BGZ] S. Boyer, C. Gordon and X. Zhang, Dehn filling of knot manifolds con-
taining essential once-punctured tori, preprint, arXiv:1109.5151.

[Br] M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology
32 (1993), 61–85.

[BW] M. Brittenham and Y-Q. Wu, The classification of exceptional Dehn
surgeries on 2-bridge knots, Comm. Anal. Geom. 9 (2001), 97–113.

[Ca] A. Casson Geo, http://www.math.uiuc.edu/∼nmd/computop/.

[CDW] M. Culler, N. Dunfield and J. Weeks, SnapPy, a computer
program for studying the geometry and topology of 3-manifolds,
http://snappy.computop.org.

[CGLS] M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots,
Annals Math. 125 (1987), 237–300

[FS] R. Fintushel and R. Stern, Constructing lens spaces by surgery on knots,
Math. Z. 175 (1980), 33–51.

[FIKMS] D. Futer, M. Ishikawa, Y. Kabaya, T. Mattman and K. Shimokawa,
Finite surgeries on three-tangle pretzel knots, Algebr. Geom. Topol. 9
(2009), 743–771.

19

http://arxiv.org/abs/1109.5151
http://www.math.uiuc.edu/~nmd/computop/
http://snappy.computop.org


[Gm] O. Goodman, Snap, http://www.ms.unimelb.edu.au/∼snap/.

[HT] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot
complements, Invent. Math. 79 (1985), 225–246.

[IJ1] K. Ichihara and I. Jong, Toroidal Seifert fibered surgeries on Montesinos
knots, Comm. Anal. Geom. 18 (2010), 579–600.

[IJ2] K. Ichihara, I. Jong, Cyclic and finite surgeries on Montesinos knots,
Alg. Geom. Topol. 9 (2009), 731–742.

[LM] M. Lackenby and R. Meyerhoff, The maximal number of exceptional
Dehn surgeries, Preprint.

[MMM] T. Mattman, K. Miyazaki and K. Motegi, Seifert-fibered surgeries which
do not arise from primitive/Seifert-fibered constructions, Trans. Amer.
Math. Soc. 358 (2005), 4045-4055.

[Mon] J. Montesinos, Surgery on links and double branched coverings of S3,
Ann. Math. Studies 84 (1975), 227–260.

[Mos1] H. Moser, Proving a manifold to be hyperbolic once it has been approxi-
mated to be so, Alg. Geom. Topol. 9 (2009), 103-133.

[Mos2] ——,Moser Script, http://www.math.columbia.edu/∼moser/template.txt.

[Ro] D. Rolfsen, Knots and Links, Publish or Perish, 1990.

[We] J. Weeks, SnapPea, http://www.geometrygames.org/SnapPea/index.html.

[Wu1] Y-Q. Wu, Dehn surgery on arborescent knots, J. Diff. Geom. 42 (1996),
171–197.

[Wu2] ——, Exceptional Dehn surgery on large arborescent knots, Pac. J. Math.
252 (2011), 219–243.

[Wu3] ——, The classification of toroidal Dehn surgeries on Montesinos knots,
Comm. Anal. Geom. 19 (2011), 305-345.

[Wu4] ——, Immersed surfaces and Seifert fibered surgery on Montesinos knots,
Trans. Amer. Math. Soc. (to appear).

[wu5] ——, Persistently laminar branched surfaces, Comm. Anal. Geom. (to
appear).

[Wu6] ——, Dehn surgery on knots of wrapping number 2, preprint.

[Wu7] ——, Snappex, http://www.math.uiowa.edu/∼wu/snappex/snappex.html.

Department of Mathematics, University of Iowa, Iowa City, IA 52242
Email: wu@math.uiowa.edu

20

http://www.ms.unimelb.edu.au/~snap/
http://www.math.columbia.edu/~moser/template.txt
http://www.geometrygames.org/SnapPea/index.html
http://www.math.uiowa.edu/~wu/snappex/snappex.html

	1 Introduction
	2 A finiteness theorem
	3 Seifert fibered surgeries
	4 A conjecture and some computer assistant approach

