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SHARP VANISHING THRESHOLDS FOR COHOMOLOGY OF

RANDOM FLAG COMPLEXES

MATTHEW KAHLE

Abstract. We exhibit a sharp threshold for vanishing of rational cohomology
in random flag complexes, providing a generalization of the Erdős–Rényi the-
orem. As a corollary, almost all d-dimensional flag complexes have nontrivial
(rational, reduced) homology only in middle degree ⌊d/2⌋.

1. Introduction

1.1. Overview. The edge-independent random graph G(n, p) is a fundamental ex-
ample in probability and combinatorics. Here n is the number of vertices, and p is
the probability of each edge appearing. The notation G ∈ G(n, p) means that G is
a graph chosen according to the distribution G(n, p).

Erdős and Rényi showed in 1959 that p = logn/n is the threshold for the property
of connectedness [9].

Theorem 1.1 (Erdős – Rényi). Let ǫ > 0 be fixed, and G ∈ G(n, p).

(1) If

p ≥ (1 + ǫ) logn

n
,

then

P[G is connected] → 1,

(2) and if

p ≤ (1− ǫ) logn

n
,

then

P[G is connected] → 0,

as n → ∞.

(The Erdős–Rényi Theorem is actually slightly sharper than this — see for ex-
ample Chapter 7 of [6].)

Our main result is a generalization of Theorem 1.1 to higher-dimensional random
simplicial complexes.

A flag simplicial complex or simply flag complex is a simplicial complex which
is maximal with respect to its underlying graph. This is also sometimes called
a clique complex since the faces of the simplicial complex correspond to complete
subgraphs of the graph. For a graph H , let X(H) denote the associated flag com-
plex. Throughout the article we blur the distinction between an abstract simplicial
complex ∆ and its geometric realization |∆|.

Our main object of study is the flag complex of an edge-independent random
graph, which we denote by X ∈ X(n, p). Taking the geometric realization of X
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puts a measure on a wide range of topologies — indeed, every simplicial complex is
homeomorphic to a flag complex, e.g. by barycentric subdivision. The following is
a rough statement of our main result, which provides a generalization of Theorem
1.1, the analogous k = 0 case.

Theorem 1.2. Let k ≥ 1 and ǫ > 0 be fixed, and X ∈ X(n, p).

(1) If

p ≥
(
(k/2 + 1 + ǫ) logn

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 1,

(2) and if

n−1/k+ǫ ≤ p ≤
(
(k/2 + 1− ǫ) logn

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 0,

as n → ∞.

By universal coefficients for homology and cohomology, Hk(X,Q) is isomorphic
to Hk(X,Q), so these results may be interpreted for rational homology instead.

One complication is that for k ≥ 1 the vanishing of Hk(X,Q) is not a monotone
property. Non-monotonicity was already observed in [17], where a number of facts
were proved about the expected topology of X ∈ X(n, p). In particular, a range
for p = p(n) was given in which Hk(X,Q) is nontrivial with high probability. We
use “with high probability” or “w.h.p.” throughout the article to mean that the
probability approaches 1 as n → ∞.

Together with earlier results [17], one corollary is the following. For fixed d, if p
is in the right regime then the flag complex is d-dimensional with high probability.

Roughly speaking, if d ≥ 1 is fixed, and

n−2/d ≪ p ≪ n−2/(d+1),

then with high probability

(1) X ∈ X(n, p) is d-dimensional, and
(2) H̃i(X,Q) = 0 unless i = ⌊d/2⌋.

(Here we are using “≪” loosely to mean “much less than,” omitting factors which
are only logarithmic in n — a precise statement is given in the next section.)

So according to this measure, almost all d-dimensional flag complexes have all
their (rational, reduced) homology in middle degree.

This corollary may be viewed as given a measure-theoretic explanation of the
fact that so many simplicial complexes and posets arising in combinatorics have
homology concentrated in a small number of degrees. Indeed, many complexes are
known to be homotopy equivalent to a wedge of spheres of equal dimension, and at
the moment we can not rule out the possibility that almost all d-dimensional flag
complexes are homotopy equivalent to a wedge of ⌊d/2⌋-spheres, at least for d ≥ 6.
We discuss this question in more detail in Section 7.
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2. Statement of results

A word on notation: Throughout, we use Bachmann–Landau and related
notations. This includes the standard big-O and little-o, as well as big-Ω, little-ω
notations. The function f = Ω(g) if and only if g = O(f), and f = ω(g) if and only
g = o(f). Asymptotics in this article are always as the number of vertices n → ∞.
In particular ω(1) is any function that tends to ∞ as n → ∞.

The following is our main result. (Note that is a stronger version of Theorem
1.2.)

Theorem 2.1. Let X ∈ X(n, p). For every k ≥ 1 there exists a constant Ck > 0
depending only on k, such that the following holds.

(1) If

p ≥
(
(k/2 + 1) logn+ Ck

√
log n log logn

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 1,

(2) and if

ω
(
n−1/k

)
≤ p ≤

(
(k/2 + 1) logn+ (k/2) log logn− ω(1)

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 0,

as n → ∞.

So for all k ≥ 0 there is an interval of p for which Hk(X,Q) is nontrivial w.h.p.
— for k = 0 this interval is only bounded above, and for k ≥ 1 it is bounded above
and below. The exponent in the lower bound of Part (2) of Theorem 2.1 is best
possible by Theorem 3.6 in [17].

As a corollary, as long as p = O(n−ǫ) for an arbitrary fixed ǫ > 0, X ∈ X(n, p)
w.h.p. has at most two nontrivial homology groups and in many cases only has
one.

The proof of Theorem 2.1 is based on earlier work in cohomology of buildings by
Garland [12], and by Ballman and Świątkowski [4]. See also work of Żuk [23] and
Hoffman, Kahle, and Paquette [15] on random groups, where a similar method was
earlier applied in probabilistic settings.

Together with earlier results on random flag complexes, and applying universal
coefficients for homology and cohomology, one corollary is that many d-dimensional
random flag complexes have all their (rational, reduced) homology in middle degree.

Corollary 2.2. Let d ≥ 1 and ǫ > 0 be fixed. If

(
(d/4 + 1) logn+ (d/4 + ǫ)

√
logn log logn

n

)2/d

≤ p ≤ o
(
n−2/(d+1)−ǫ

)
,

then w.h.p. X ∈ X(n, p) is d-dimensional, and

H̃i(X,Q) = 0 unless i = ⌊d/2⌋.
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In Section 3 we prove lemmas for maximal k-cliques in random graphs which
will be used in later sections. In Section 4 we prove Part (1) of Theorem 2.1, and
in Section 5 we prove Part (2). In Section 6 we prove Corollary 2.2, and in Section
7 we close with comments and conjectures.

3. Preliminary calculations for maximal (k + 1)-cliques

Let Nk+1 denote the number of maximal (k+1)-cliques, i.e. (k+1)-cliques which
are not contained in any (k + 2)-cliques. It is useful to think of Nk+1 as a sum of(

n
k+1

)
indicator random variables, as follows. For i ∈

(
[n]
k+1

)
let Ai be the event that

the vertex set corresponding to i spans a maximal (k+ 1)-clique, and let Yi be the
indicator random variable for the event Ai. Then

Nk+1 =
∑

i∈( [n]
k+1)

Yi.

Since the probability that i spans a (k + 1)-clique is p(
k+1
2 ), and the probability

of the independent event that the vertices in i have no common neighbor is (1 −
pk+1)n−k−1, we have

E[Yi] = p(
k+1
2 )(1− pk+1)n−k−1.

By linearity of expectation we have

E[Nk+1] =

(
n

k + 1

)
p(

k+1
2 )(1− pk+1)n−k−1.

So roughly speaking, if p ≈ n−α with 2/k < α < 1/(k + 1) then E[Nk+1] → ∞.
For a more refined estimate at the upper end of this interval, set

p =

(
(k/2 + 1) logn+ (k/2) log logn+ c

n

)1/(k+1)

,

where c ∈ R is constant, and in this case we have

E[Nk+1] =
∑

i∈( [n]
k+1)

E[Yi]

=

(
n

k + 1

)
p(

k+1
2 )(1− pk+1)n−k−1

≈ nk+1

(k + 1)!
p(

k+1
2 )e−pk+1n

=
nk+1

(k + 1)!

(
(k/2 + 1 + o(1)) log n

n

)k/2

n−(k/2+1)(log n)−k/2e−c,

and then

(1) E[Nk+1] →
(k/2 + 1)k/2

(k + 1)!
e−c,

as n → ∞.
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3.1. Zero expectation. Letting c → ∞ in Equation (1) gives that E[Nk+1] → 0.
By Markov’s inequality, we conclude the following.

Lemma 3.1. Let G ∈ G(n, p), and Nk+1 count the number of maximal (k + 1)-
cliques in G. If

p ≥
(
(k/2 + 1) logn+ (k/2) log logn+ ω(1)

n

)1/(k+1)

,

then Nk+1 = 0 w.h.p.

3.2. Infinite expectation. Now set

ω
(
n−2/k

)
≤ p ≤

(
(k/2 + 1) logn+ (k/2) log logn− ω(1)

n

)1/(k+1)

.

In this case we have that E[Nk+1] → ∞. By Chebyshev’s inequality, if we also have
Var[Nk+1] = o

(
E[Nk+1]

2
)
, then

P[Nk+1 > 0] → 1.

(See for example, Chapter 4 of [2].)
So once we bound the variance we have the following.

Lemma 3.2. Let 0 < ǫ < 1
k(k+1) be fixed, and G ∈ G(n, p). If

n−1/k+ǫ ≤ p ≤
(
(k/2 + 1) logn+ (k/2) log logn− ω(1)

n

)1/(k+1)

,

then Nk+1 > 0 w.h.p

As above, write Nk+1 as a sum of indicator random variables.

Nk+1 =
∑

i∈( [n]
k+1)

Yi.

Then

Var[Nk+1] ≤ E[Nk+1] +
∑

i,j∈( [n]
k+1)

Cov[Yi, Yj ]

where the covariance is

Cov[Yi, Yj ] = E[YiYj ]− E[Yi]E[Yj ]

= P[Ai and Aj ]− P[Ai]P[Aj ],

since Yi are indicator random variables.
Let I = Ii,j = |i∩j| be the number of vertices in the intersection of subsets i and

j. It is convenient to divide into cases depending on the cardinality of 0 ≤ I < k+1.

(1) case: I = 0. Given two disjoint subsets, i, j ∈
(

[n]
k+1

)
,

P[Ai and Aj ] = p2(
k+1
2 )(1− 2pk+1 + p2k+2)n−2k−2

(
1−O

(
pk
))

,
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and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1 − pk+1)n−k−1

)2

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−k−1
,

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−2k−2 (
1− 2pk+1 + p2k+2

)k+1
,

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−2k−2
(
1−O

(
p(k+1)2

))
,

so

P[Ai and Aj ]− P[Ai]P[Aj ] = p2(
k+1
2 )(1 − 2pk+1 + p2k+2)n−2k−2O

(
pk
)
.

The number of vertex-disjoint pairs i, j is O
(
n2k+2

)
so the total contri-

bution S0 to the variance of all the terms when I = 0 is

S0 = O
(
n2k+2p2(

k+1
2 )(1− 2pk+1 + p2k+2)n−k−1pk

)

Compare this to

E[Nk+1]
2 =

(
n

k + 1

)2

p2(
k+1
2 )(1− pk+1)2(n−k−1).

Clearly

S0/E[Nk+1]
2 = O

(
pk
)
,

and since p → 0 by assumption, we have that

S0 = o
(
E[Nk+1]

2
)
,

as desired.

(2) case: I = 1. This case is similar. If I = 1 then

P[Ai and Aj ] = p2(
k+1
2 )(1− 2pk+1 + p2k+1)n−2k−1(1−O(pk)),

and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1− pk+1)n−k−1

)2

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−k−1
,

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−2k−1 (
1− 2pk+1 + p2k+2

)k

= p2(
k+1
2 ) (1− 2pk+1 + p2k+2

)n−2k−1
(
1−O

(
pk(k+1)

))

So

P[Ai and Aj ]− P[Ai]P[Aj ] = p2(
k+1
2 )(1 − 2pk+1 + p2k+2)n−2k−1O

(
pk
)
.
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There are O
(
n2k+1

)
such pairs of events, so

S1 = O
(
n2k+1p2(

k+1
2 )(1− 2pk+1 + p2k+2)n−2k−1pk

)
.

Compare this to

E[Nk+1]
2 =

(
n

k + 1

)2

p2(
k+1
2 )(1− pk+1)2(n−k−1).

Now
S1/E[Nk+1]

2 = O
(
n−1pk

)
= o(1),

since n → ∞ and p → 0. So we have that

S1 = o
(
E[Nk+1]

2
)
,

as desired.

(3) case: 2 ≤ I ≤ k.
In this case,

P[Ai and Aj ] = p2(
k+1
2 )−(I2)(1− 2pk+1 + p2k+2−I)n−2k−2+I(1−O(pk)),

and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1− pk+1)n−k−1

)2

= p2(
k+1
2 )(1− 2pk+1 + p2k+2)n−k−1.

Comparing, we have

P[Ai]P[Aj ]

P[Ai and Aj ]
≤ p(

I

2)
(
1 +

p2k+2 − p2k+2−I

1− 2pk+1 + p2k+2−I

)n

(1 + o(1))

≤ p(
I

2),

and since p → 0 and I ≥ 2 by assumption,

P[Ai]P[Aj ]

P[Ai and Aj ]
→ 0.

So

P[Ai and Aj ]− P[Ai]P[Aj ] = (1− o(1))P[Ai and Aj ],

and now we bound the covariance

Cov[Yi, Yj ]

by bounding the probability P[Ai and Aj ].
For every 2 ≤ I < k + 1, there are O

(
n2k+2−I

)
pairs of events i, j with

vertex intersection of cardinality I.
So the total contribution to variance from such pairs is at most

SI = O
(
n2k+2−Ip2(

k+1
2 )−(I2)(1 − 2pk+1 + p2k+2−I)n−2k−2+I

)
.
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Compare this to

E[Nk+1]
2 =

(
n

k + 1

)2

p2(
k+1
2 )(1− pk+1)2(n−k−1).

We have

SI/E[Nk+1]
2 = O

(
n−Ip−(

I

2)
)
.

Clearly

nIp(
I

2) =
(
np(I−1)/2

)I

→ ∞,

as n → ∞, since I ≤ k and p = ω(n−1/(k+1)). Hence

SI = o
(
E[Nk+1]

2
)
,

for 2 ≤ I ≤ k.

3.3. Finite expectation. Using the “method of moments” the following can be
shown. (See for example Section 6.1 of [16].)

Lemma 3.3. If

p =

(
(k/2 + 1) logn+ (k/2) log logn+ c

n

)1/(k+1)

,

where c ∈ R is constant, then the number of maximal (k + 1)-cliques Nk+1 ap-

proaches a Poisson distribution

Nk+1 → Pois(µ)

with mean

µ =
(k/2 + 1)k/2

(k + 1)!
e−c.

Since we do not use this Lemma anywhere, we state it without proof. However
we record the combinatorial observation, for the sake of completeness, and also to
give justification for a topological conjecture in Section 7.

4. Vanishing cohomology

In this section we aim to prove Part (1) of Theorem 2.1, so we assume that

p ≥
(
(k/2 + 1) logn+ Ck

√
log n log logn

n

)1/(k+1)

,

where Ck is a constant depending only on k, to be chosen later.

For a finite graph H , let C0(H) denote the vector space of 0-forms on H , i.e.
the vector space of functions f : V (H) → R. If all the vertex degrees are positive
then the averaging operator A on C0(H) is defined by

Af(x) =
1

deg x

∑

y∼x

f(y),
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where the sum is over all vertices y which are adjacent to vertex x. The identity
operator on C0(H) is denoted by I. Then the normalized graph Laplacian L = L(H)
is a linear operator on C0(H) defined by L = I −A.

The eigenvalues of L satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ N ≤ 2, where N = |V (G)| is
the number of vertices of H . Moreover, the multiplicity of the zero eigenvalue is
equal to the number of connected components of H . In the case that H is connected
then the smallest positive eigenvalue λ2[H ] is sometimes called the spectral gap of
H .

A simplicial complex ∆ is said to be pure D-dimensional if every face of ∆ is
contained in a D-dimensional face. A special case of Theorem 2.1 in [4] is the
following.

Theorem 4.1 (Ballman–Świątkowski). Let ∆ be a pure D-dimensional finite sim-

plicial complex such that for every (D−2)-dimensional face σ, the link lk∆(σ) is con-

nected and has spectral gap is at least λ2[lk∆(σ)] > 1−1/D. Then HD−1(∆,Q) = 0.

For a simplicial complex ∆, the cohomology group HD−1(∆,Q) only depends
on the D-skeleton of ∆. For us, D = k + 1. So to use Theorem 4.1 to show that
Hk(X,Q) = 0 we will show that given the hypothesis that edge probability p is
large enough, with high probability

(1) the (k + 1)-skeleton of X ∈ X(n, p) is pure dimensional, and
(2) for every (k − 1)-dimensional face σ ∈ X , the link lk∆(σ) is connected and

has spectral gap λ2[lk∆(σ)] > 1− 1/k.

4.1. Pure-dimensional. Let p be as above. We wish to check that w.h.p. the
(k + 1)-skeleton of X ∈ X(n, p) is w.h.p. pure (k + 1)-dimensional; in other words,
that every face is contained in a (k + 1)-face.

Every k-face is contained in a (k+1)-face, as follows. A k-face not contained in
a (k + 1)-face would correspond to a maximal (k + 1)-clique. But by Lemma 3.1,
for p in this regime the probability that there are any such cliques is tending to
zero as n → ∞.

The argument that for 0 ≤ i < k w.h.p. every i-dimensional face is contained in
an (i+ 1)-dimensional face is identical.

4.2. Connectedness and spectral gap. Finally we have to check that w.h.p. the
link of every (k − 1)-dimensional face in the (k + 1)-skeleton is connected and has
sufficiently large spectral gap. We require the following recent result for spectral
gaps of Erdős–Rényi random graphs from [15].

Theorem 4.2. Let G ∈ G(n, p) be an Erdős-Rényi random graph. Let L denote

the normalized Laplacian of G, and let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L.
For every fixed α ≥ 0, there is a constant C̃α depending only on α, so that if

p ≥ (α + 1) logn+ C̃α

√
logn log logn

n

then G is connected and

λ2(G) > 1− o(1),

with probability 1− o(n−α).

To apply Theorem 4.1, we need to show that the link of every (k−1)-dimensional
face has spectral gap larger than 1− 1/k w.h.p. By standard concentration results,
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the number of (k−1)-dimensional faces is tightly concentrated around
(
n
k

)
p(

k

2). The
link of every (k− 1)-face has approximately (n− k)pk vertices. Since k is fixed and
n → ∞, we will set N = npk and will treat every link of a (k− 1)-dimensional face
as a G(N, p).

With foresight into the following calculation, we set

α = k(k + 3)/2.

We want to check first that

(2) p ≥ (α+ 1) logN + C̃α

√
logN log logN

N
.

Since α+ 1 = (k + 1)(k/2 + 1) and N ≈ npk, this is equivalent to checking that

(3) npk+1 ≥ (k + 1)(k/2 + 1)[logn+ k log p] + C̃α

√
log n (log logn+O(1))

We ignore the O(1) term for now.
We consider n fixed and set

f(p) = npk+1 − (k + 1)(k/2 + 1)[logn+ k log p] + C̃α

√
logn (log logn+O(1)) .

Then
f ′(p) = (k + 1)npk − (k + 1)(k/2 + 1)kp−1.

Solving for f ′(p) = 0 reveals only one critical point of the function f , at

p =

(
k(k/2 + 1)

n

)1/(k+1)

.

Since
lim
p→0

f(p) = ∞,

lim
p→∞

f(p) = ∞,

and f is smooth on its domain p ∈ (0,∞), we conclude that this critical point must
be a global minimum. In particular f(p) is increasing on the interval

p ∈
[(

k(k/2 + 1)

n

)1/(k+1)

, 1

]
.

So for sufficiently large n, to check that

p ≥ (α + 1) logN + C̃α

√
logN log logN

N

for

p ≥
(
(k/2 + 1) logn+ Ck

√
log n log logn

n

)1/(k+1)

,

it suffices to check it for

(4) p =

(
(k/2 + 1) logn+ Ck

√
log n log logn

n

)1/(k+1)

.

Then

log p =
1

k + 1
(log logn− logn) +O(1).(5)
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Substitute the expressions for p and log p from (4) and (5) into (3) and subtract
(k/2 + 1) logn from both sides to obtain

Ck

√
logn log logn ≥

(
k(k/2 + 1) + C̃α

)√
logn (log logn+O(1)) ,

so as long as

Ck > k(k/2 + 1) + C̃α

we have satisfied (2). Since α = k(k + 3)/2 and Cα only depends on α, Ck only
depends on k.

By Theorem 4.2 we have that G ∈ G(N, p) has spectral gap λ2[G] > 1−1/k with
probability 1− o (N−α). The link of every (k − 1)-dimensional face in the (k + 1)-
skeleton of X ∈ X(n, p) is precisely such a random graph. (Here N is a random
variable rather than a number, but we are treating it as a number for simplicity
since it is tightly concentrated around its expectation.)

There are w.h.p. approximately
(
n
k

)
p(

k

2) such (k−1)-dimensional faces. So apply-
ing a union bound, the probability Pf that the link of at least one (k−1)-dimensional
face fails to have spectral gap λ2 > 1− 1/k is bounded above by

Pf ≤
(
n

k

)
p(

k

2)N−α

=

(
n

k

)
p(

k

2)(npk)−k(k+3)/2

≤
(
nk−k(k+3)/2p(

k

2)−k2(k+3)/2
)

= n−k(k+1)/2p−k(k+1)2/2

=
(
npk+1

)−k(k+1)/2
,

and since npk+1 → ∞ by assumption, we have Pf → 0 as n → ∞, as desired.

5. Non-vanishing cohomology

We prove Part (2) of Theorem 2.1. In particular we show that if C2 < k/2 and
ǫ > 0 are fixed and

ω
(
n−1/k+ǫ

)
≤ p ≤

(
(k/2 + 1) logn+ (k/2) log logn− ω(1)

n

)1/(k+1)

,

then w.h.p. Hk(X,Q) 6= 0). The strategy is to show that in this regime there
exist isolated k-faces which generate nontrivial cohomology classes — this is the
higher-dimensional analogue of “isolated vertices” being the main obstruction to
connectivity of the random graph G(n, p); see for example Chapter 7 of [6].

First we show that if p is in the given regime, then w.h.p. there exist k-dimensional
faces σ ∈ X which are not contained in any (k+1)-dimensional faces — such faces
generate cocycles in Hk (i.e. by considering the characteristic function of σ in
Ck(X)). Then we show that if p is sufficiently large, then no k-dimensional face
can be a coboundary. Putting these facts together, we find an interval of p for
which there is at least one k-dimensional face which represents a nontrivial class in
Hk(X,Q).
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For context, we note that two other approaches to showing that Hk 6= 0 for nearly
the same regime of p = p(n) are given in [17]. Both of these earlier approaches
(finding embedded spheres which represent nontrivial classes, and a dimension ar-
gument) give the best possible exponents for the endpoints of the interval, but the
approach here gives a more refined (and basically tight) estimate for the upper end
of the interval of nontrivial homology. Since the upper end is our emphasis, we
assume for convenience that p = ω

(
n−1/k+ǫ

)
— Theorem 3.8 in [17] extends this

lower end of the nontrivial interval all the way to p = ω
(
n−1/k

)
.

5.1. Cocycles. Lemma 3.2 gives that for p in this regime, w.h.p. there are maximal
(k+1)-cliques in G ∈ G(n, p). But these represent isolated k-faces σ in X ∈ X(n, p),
and for such a σ the characteristic function of σ is a cocycle. The main point is to
show that these are nontrivial — i.e. that they are not coboundaries.

5.2. Non-coboundaries. We have showed above that for p in the proper regime,
there w.h.p. exist k-dimensional faces which are not contained in any (k + 1)-
dimensional face. Any such face generates a class in the vector space Ck(X) of
k-cocycles. Now we will show that in the same regime of p, w.h.p. no k-dimensional
face represents a k-coboundary. Hence Hk(X,Q) 6= 0.

Suppose that a k-dimensional face σ ∈ X represents a k-coboundary, i.e. σ = dφ
for some (k − 1)-cochain φ. Then φ represents a nontrivial class in Hk−1(X − σ).
(This notation means X with the open face σ deleted). We claim that this extremely
unlikely.

Lemma 5.1. Fix k ≥ 1 and 0 < ǫ ≤ 1/k, and let X ∈ X(n, p). If p ≥ n−1/k+ǫ

then w.h.p. Hk−1(X,Q) = 0, and the same holds for X−σ for every k-dimensional

face σ.

Proof. The claim that Hk−1(X,Q) = 0 is implied by Part (1) of Theorem 2.1 (with
the index shifted by 1), proved in Section 4, so our focus is on the second part of
the claim, that Hk−1(X − σ,Q) = 0 for every k-dimensional face σ.

We apply Theorem 4.1 again. Since the proof here is so similar to what is in
Section 4 we omit some details, and focus on what is new in this argument.

We may restrict our attention to the k-skeleton of X . Let σ be an arbitrary
k-dimensional face of X .

Consider the link lkX−σ(τ) of an arbitrary (k − 2)-dimensional face τ of X − σ.
Since we are restricting to the k-skeleton, this is a graph. This graph is either equal
to lkX(τ) exactly or to lkτ(X) with a single edge deleted. Recall from Section 4
that lkX(∆) is an Erdős-Rényi random graph G(N, p), where N = (n− k+1)pk−1.

We have control on the spectral gap of lkX(τ) by Theorem 4.2. From this we can
control the spectral gap of lkX−σ(τ) by applying the Wielandt–Hoffman theorem.

Theorem 5.2 (Wielandt–Hoffman). Let A and B be normal matrices. Let their

eigenvalues ai and bi be ordered such that
∑

i |ai− bi|2 is minimized. Then we have
∑

i

|ai − bi|2 ≤ ‖A−B‖,

where ‖ · ‖ denotes the Frobenius matrix norm.

Here we have normalized Laplacians A = lkX(τ) and B = lkX−σ(τ) — since
these matrices are symmetric, they are normal, and Theorem 5.2 applies. All
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eigenvalues of A and B are real, and putting them in increasing order minimizes
the sum

∑
i |ai − bi|2 .

We have

‖A− B‖ =

√∑

i

∑

j

|aij − bij |2.

In a normalized graph Laplacian,

aij =
1√

deg(vi) deg(vj)
,

if vi is adjacent to vj , and aij = 0 otherwise.
The link of a (k − 2)-face is a random graph conditioned on the vertices in

the link, so standard results give that the degree of every vertex is exponentially
concentrated around its mean ≈ npk ≥ nkǫ (see Chapter 3 in[6]) and there are only
polynomially many such vertices summed over all links. So w.h.p. every vertex
in every link has degree (1 + o(1))npk ≥ nkǫ. Then Theorem 5.2 gives that the
Frobenius matrix norm of the normalized Laplacian can not shift by more than
O
(
n−kǫ

)
= o(1) when an edge is deleted. Hence no single eigenvalue can shift by

more than this.
Since we already have λ2[lkX(τ)] > 1− o(1) for every τ by Section 4.2, this gives

that λ2[lkX−σ(τ)] > 1 − o(1) for every τ and σ as well. Applying Theorem 4.1
again, we have that Hk−1(X − σ,Q) = 0 for every k-dimensional face σ.

�

6. d-dimensional flag complexes for fixed d

Now we prove Corollary 2.2. We wish to show that if d ≥ 1 and
(
(1 + d/4) logn+ ω(

√
log n log logn)

n

)2/d

≤ p ≤ o
(
n−2/(d+1)−ǫ

)
,

then w.h.p. X ∈ X(n, p) is d-dimensional, and

H̃i(X,Q) = 0 unless i = ⌊d/2⌋.
If

p ≤ o
(
n−2/(d+1)−ǫ

)
,

then w.h.p. H̃i(X,Q) = 0 for i > ⌊d/2⌋ by Theorem 3.6 in [17]. (This may even be
true if

p ≤ o
(
n−2/(d+1)

)
;

see for example a similar situation in [20].)
If

p ≥
(
(1 + d/4) logn+ ω(

√
logn log logn)

n

)2/d

then w.h.p. H̃i(X,Q) = 0 for i < ⌊d/2⌋ by the proof of part (1) of Theorem 2.1 in
Section 4.

That
H̃⌊d/2⌋(X,Q) 6= 0

for p in this regime follows from Theorem 3.8 in [17] — for some results on the
limiting distribution of β⌊d/2⌋, see [18].
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7. Comments

Besides the Erdős–Rényi Theorem, our main result here can be compared to ear-
lier results of Linial and Meshulam [21] and of Meshulam and Wallach [22]. These
earlier also exhibit sharp thresholds for cohomology to pass from non-vanishing to
vanishing. The techniques in all these papers involve some kind of “expansion,”
whether combinatorial (i.e. Z/2-coefficients) or spectral (i.e. Q-coefficients). De-
Marco, Hamm, and Kahn have parallel results to those here for cohomology of
random flag complexes with Z/2-coefficients, in the case k = 1 [8].

We use the word “sharp” in the title in the sense of Friedgut and Kalai [11],
meaning that the phase transition happens in a narrow window. More precisely,
we say for a monotone graph property P that f is a sharp threshold for P if there
exists a function g = o(f) such that G ∈ G(n, p) has property P with probability
→ 1 if p ≥ f + g and has P with probability → 0 if p ≤ f − g.

As commented before, the homological properties that we study here are not
monotone. Nevertheless, a small modification of the above definition makes sense
of our claim that non-vanishing of Hk(X,Q) has a sharp upper threshold.

It is conceivable that Theorem 2.1 could be sharpened to the following.

Conjecture 7.1. Let k ≥ 1 be fixed. For X ∈ X(n, p),

(1) if

p ≥
(
(k/2 + 1) logn+ (k/2) log logn+ ω(1)

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 1,

(2) and if

ω
(
n−1/k

)
≤ p ≤

(
(k/2 + 1) logn+ (k/2) log logn− ω(1)

n

)1/(k+1)

,

then

P[Hk(X,Q) = 0] → 0,

as n → ∞.

Indeed, the following seems plausible.

Conjecture 7.2. If

p =

(
(k/2 + 1) logn+ (k/2) log logn+ c

n

)1/(k+1)

,

where c ∈ R is constant, then the dimension of kth cohomology βk approaches a

Poisson distribution

βk → Pois(µ)

with mean

µ =
(k/2 + 1)k/2

(k + 1)!
e−c.

In particular,

P[Hk(X,Q) = 0] → exp

[
− (k/2 + 1)k/2

(k + 1)!
e−c

]
,

as n → ∞.
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Conjecture 7.2 should be compared with Lemma 3.3. The conjecture is that in
this regime, characteristic functions on isolated k-faces generate cohomology with
high probability. For some closely related work on limit theorems, see [18].

Many complexes in topological combinatorics are known to be homotopy equiv-
alent to wedges of spheres [10, 5], and many others are known to have homology
concentrated in a relatively small number of degrees [7]. The results here may be
viewed as a measure-theoretic explanation of this seemingly ubiquitous phenome-
non.

One attractive feature of the random flag complex model is that it puts a measure
on a wide range of topologies — every simplicial complex is homeomorphic to a flag
complex, i.e. by barycentric subdivision. If one could show that integral homology
was torsion free w.h.p., then one would have the following.

Conjecture 7.3. Let d ≥ 6 and

(
(1 + d/4) logn+ ω(log logn)

n

)2/d

≤ p ≤ o
(
n−2/(d+1)

)
.

Then w.h.p. X ∈ X(n, p) is homotopy equivalent to a wedge of ⌊d/2⌋-dimensional

spheres.

(The fact that torsion-free homology would imply this homotopy equivalence
follows from “uniqueness of Moore spaces” – e.g. see example 4.34 in [14].)

Conjecture 7.3 should be compared with Corollary 2.2. The reason for the d ≥ 6
is that this is sufficient to make π1(X) vanish with high probability, for example
by Theorem 3.4 of [17], and there is reason to believe that this condition is also
necessary [3].

My guess is that Conjecture 7.3 is close to the truth, but it is worth noting that
certain types random complexes are known to have very large torsion groups on
average [19].

This work can also be viewed in the context of higher-dimensional expanders;
see for example the recent work of Gromov [13].

Acknowledgements

I thank Noga Alon, Eric Babson, Chris Hoffman, Roy Meshulam, Elliot Paquette,
and Uli Wagner for helpful conversations. I learned of applications of Garland’s
method in topological combinatorics from [1], where a global analogue of Theorem
4.1 is developed.

I also thank the Institute for Advanced Study in Princeton, where some of this
work was completed, and NSA grant # H98230-10-1-0227, for partial support.

References

[1] R. Aharoni, E. Berger, and R. Meshulam. Eigenvalues and homology of flag complexes and
vector representations of graphs. Geometric and functional analysis, 15(3):555–566, 2005.

[2] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition,
2008. With an appendix on the life and work of Paul Erdős.

[3] Eric Babson, Christopher Hoffman, and Matthew Kahle. The fundamental group of random
2-complexes. J. Amer. Math. Soc., 24(1):1–28, 2011.

[4] W. Ballmann and J. Świ
‘
atkowski. On L2-cohomology and property (T) for automorphism

groups of polyhedral cell complexes. Geom. Funct. Anal., 7(4):615–645, 1997.



16 MATTHEW KAHLE

[5] A. Björner. Topological methods. In Handbook of combinatorics, Vol. 1, 2, pages 1819–1872.
Elsevier, Amsterdam, 1995.

[6] Béla Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, second edition, 2001.

[7] S. Bouc. Homologie de certains ensembles de 2-sous-groupes des groupes symétriques. Journal
of Algebra, 150(1):158–186, 1992.

[8] B. DeMarco and J. Kahn. Mantel’s theorem for random graphs. Arxiv preprint
arXiv:1206.1016, 2012.

[9] P. Erdős and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290–297, 1959.
[10] Robin Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c,

35, 2002.
[11] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Proc.

Amer. Math. Soc., 124(10):2993–3002, 1996.
[12] Howard Garland. p-adic curvature and the cohomology of discrete subgroups of p-adic groups.

Ann. of Math. (2), 97:375–423, 1973.
[13] M. Gromov. Singularities, expanders and topology of maps. part 2: From combinatorics

to topology via algebraic isoperimetry. Geometric And Functional Analysis, 20(2):416–526,
2010.

[14] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[15] Christopher Hoffman, Matthew Kahle, and Elliott Paquette. A sharp threshold for Kazhdan’s

Property (t). arXiv:1201.0425, submitted, 2012.
[16] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience

Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.
[17] Matthew Kahle. Topology of random clique complexes. Discrete Math., 309(6):1658–1671,

2009.
[18] Matthew Kahle and Elizabeth Meckes. Limit theorems for Betti numbers of random simplicial

complexes. arXiv:1009.4130, to appear in Homology, Homotopy and Applications, 2012.
[19] G. Kalai. Enumeration of Q-acyclic simplicial complexes. Israel Journal of Mathematics,

45(4):337–351, 1983.
[20] D.N. Kozlov. The threshold function for vanishing of the top homology group of random

d-complexes. 138(12):4517–4527, 2010.
[21] Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Com-

binatorica, 26(4):475–487, 2006.
[22] R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes.

Random Structures Algorithms, 34(3):408–417, 2009.
[23] A. Żuk. Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal.,

13(3):643–670, 2003.

E-mail address: Matthew Kahle <mkahle@math.ias.edu>

School of Mathematics, Institute for Advanced Study, Princeton NJ, 08540


	1. Introduction
	1.1. Overview

	2. Statement of results
	3. Preliminary calculations for maximal (k+1)-cliques
	3.1. Zero expectation
	3.2. Infinite expectation
	3.3. Finite expectation

	4. Vanishing cohomology
	4.1. Pure-dimensional
	4.2. Connectedness and spectral gap

	5. Non-vanishing cohomology
	5.1. Cocycles
	5.2. Non-coboundaries

	6. d-dimensional flag complexes for fixed d
	7. Comments
	Acknowledgements
	References

