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ON THE DISTRIBUTION OF CRITICAL POINTS OF A
POLYNOMIAL

SNEHA DEY SUBRAMANIAN

ABSTRACT. This paper proves that if points Z;, Zs, ... are chosen independently
and identically using some measure p from the unit circle in the complex plane,
with p,(2) = (2 — Z1)(z — Z2)...(z — Z,,), then the empirical distribution of the
critical points of p,, converges weakly to u.

1. INTRODUCTION

Across many fields of mathematics, one of the fundamental questions about a func-
tion is the location of its zeros. Perhaps the most famous example is the Riemann
Hypothesis. Beyond that, entire fields such as algebraic geometry and the emergent
study of stable functions have locations of zeros as their focus.

The relation between the zeros of a function and the zeros of its derivative (the
critical points) is interesting and not always obvious. In the case where all zeros are
real, Rolle’s theorem tells us that the zeros of the derivative interlace the zeros of
the function itself. In the case of complex polynomials the analogous result is the
Gauss-Lucas theorem which states that the zeros of the derivative of f must lie in the
convex hull of the zeros of f and gives a representation of the zeros of f’ as convex
combinations of the zeros of f. A corollary of this is that differentiating preserves
stability. Differentiation is also known never to increase the number of non-real zeros
of a polynomial.

Two famous conjectures in this area are the conjectures of Sendov and Smale.
The former, made by Blagovest Sendov during the 1950’s, states that if the roots
21, 29, ..., zn of a polynomial all lie inside the closed unit disc, then for each root of
the polynomial, the closed unit disc centered at the root must contain at least one
critical point. The latter, made by Steve Smale, states that if f is a polynomial of
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degree n with at least one root 0 and f’(0) # 0, then,

NG
mm{|§||f'<o>\ )= 0} =K

where K = 1 or “—. Sendov’s conjecture has been proven for the case when
21, 29, ..., zp all lie on the unit circle, whereas Smale’s conjecture has been proven
for when f has all its roots, save 0, on the unit circle. The most general forms
of these conjectures are still unsolved. More information on these conjectures and
proofs of some of the special cases can be found in [RS02].

A probabilistic study on the roots of derivatives of polynomials was done by Pe-
mantle and Rivin in [PR12]. Let f be a polynomial with n roots that are chosen
independently and uniformly from a measure p on the complex plane. They con-
jectured that the empirical distribution of the roots of f’ converges weakly to u as
n — oo. They prove this in the special case when p has finite 1-energy, namely when

1 satisfies
1

This condition cannot hold, however, when g is supported on any set of dimension
1 or less. The aim of the present paper is to extend their result to the case of any
measure supported on the unit circle.

2. NOTATIONS AND BACKGROUND

Say, Z1,Zs, ... is a sequence of points chosen i.i.d. with respect to some distri-
bution g on the unit circle. Write, Z, = exp(2mify), so that {6x} is a collection of
IID random variables whose common law is supported on [0, 1], which we denote by v.

Let
pn(2) = (2 — 21)(2 — Z3)...(2 — Zy),
(n)

and !, y{™, ...,y be the roots of p/,(z).

For k > 1, let ¢, = E(Z*%), where Z ~ pu. We know, by the Strong Law of Large
Numbers,

Zy+Z5+ .2k as,
n

Ci.
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Denote by Z(f) the empirical distribution of the roots of a random polynomial f.
That is, if f has roots Xy, Xo, ..., X, then Z(f) = =+ > ey 0x;-

We shall write D for the open unit disc, and C for the unit circle.

In their paper, [PR12], the authors conjectured that, for any distribution u on the
closed unit disc, Z(p),) converges weakly to u. That paper also proves the following
proposition.

Proposition 2.1. Let u be the uniform measure on C. Then Z(pl,) converges to C
in probability, that is, P(Z(S) > €) — 0) for any € > 0 and any closed set S C D,
disjoint from C. 0

In this note, we shall generalize this to prove that

Lemma 2.2. For any distribution u on C, Z(pl,) converges to C in probability. In
fact, if p is not uniform on C, the convergence is almost everywhere.

The above leads us to prove our main result, which is a special case of the afore-
mentioned conjecture in [PRI12]:

Theorem 2.3. For any distribution p on C, Z(p.,) converges weakly to p on C.

The proof, as shall be seen in forthcoming sections, can be divided in to two parts,
the latter following a pattern similar to the proof of Weyl’s equidistribution criterion
(see, for example [Ch68]). The former requires the following theorem proved in
[CNO6] regarding a companion matrix of the critical points.

Proposition. If z1,25,....,2, € C, and y1,¥s, ..., Yn—1 are the critical points of the
polynomial p,(2) = (2 — 21)(2 — 29)...(z — 2,), then, the matriz

(1) D(I—£>+Z—"J

has Y1, Y2, ..., Yn—1 as its eigenvalues, where D = diag(zy, 22, ..., 2n_1), I is the identity
matriz of order n — 1 and J is the (n — 1) X (n — 1) matriz of all entries 1. O

3. PROOFS OF LEMMA AND THEOREM [2.3]
We first begin by proving a small lemma.

Lemma 3.1. Let p be a distribution on the unit circle C with ¢, = E(Z*), where
Z ~ . Then ¢, =0 for all k > 1 if and only if p s uniform on C.
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Proof. Clearly if p is uniform on C then ¢, = 0 for all & > 1. Now say p is not
uniform on the circle but we still have ¢, = 0 for all £ > 1. Then the law v is not
uniform on [0, 1]. Now, if Z;, Z,, ... are points on C, chosen i.i.d. using p, and if we
write Z; = exp(2mif;),j = 1,2, ..., then 6y, 0, ... are points in [0, 1] that are i.i.d. v.

As mentioned earlier, by the Strong Law of Large Numbers, for all £ > 1,

k4 Zk 4+ 7k
1 2 n —>O,

n

and so by Weyl’s criterion, for any 0 < a < b <1,

Zj:l 1{93'6[“717]} a5y
n

b—a.

But 14, cfap)}, 7 = 1,2, ... are i.i.d. random variables taking values 0 or 1 with expec-
tation v([a, b]). So by Strong Law of Large Numbers,

2= Hoselatl) o,
n

v(|a, b]).

Since, v is not uniform on [0, 1] we have arrived at a contradiction. Therefore, there
must exist at least one non-zero c. ]

We proceed to use this fact for the proof of Lemma

Proof of Lemma[Z.2. Assume p is not the uniform distribution on the circle (as the
uniform case has been taken care of in [PR12]). Then, as mentioned above, there is
at least one non-zero c;. Thus the power series function f(z) = > p k12" exists
at every point z € D, is analytic there (since |¢x| < 1,Vk), and so has only finitely
many zeros inside any r-ball, where r < 1.

Define

' (2 Il 1
Vale) = 555(2) T 2 2=Z;

V,, has n — 1 zeros, which are exactly the zeros of p/,(z), and n poles, which are
exactly the zeros of p,(z). Thus V,(z) is analytic inside D. We shall show that as
n — oo, V,, converges inside the disc to —f, uniformly over compact sets. To see
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this, note that for z € D,

n 2

1 —1/7; 1.1 z 2z
Vi, (2) == S Rt B — 1+ =+ =+ ..
) njgl—z/Zj n;ZJ< tzte " )

J J
n o (o.]
1
__t Fhtl k _ _ Gh 1k
E:E: j = E: no 2
n
j=1 k=0 k=0

Zb+Zk+. + 2k
n

where, we write a**1 for the kth power sum average . As stated earlier,

a’fL 2% ¢ for all k > 1.
Let 0 <r < 1. Given any 6 > 0,dK > 1 such that
o0 k
i r )
> orh= < -
= 1—r 4
Corresponding to the chosen K, there exists an N > 1 such that,

o(1—r)
2 Y
Vn > N and Vk = 1,2, ..., K — 1. Therefore, ¥n > N and all z € B,(0),

lal — cx| <

K-1 -
Va(2) + f(2) <) lal — el + D Jak — e
k=0

- k=K+1
< 0(1—r)
- 2

which proves uniform convergence of V,, to —f over compact sets.

)
-(1+r+r2+...+rK‘1)+2-Z<5,

Hurwitz’s theorem (see, for example, [Co78]) says that, if g, is a sequence of ana-
lytic functions that converges uniformly on compact subsets of an open set GG in the
complex plane to an analytic function g, then, for any closed disc D contained in G,
if ¢ has no zeros on the boundary of D, there shall exist a natural number N for
which g, and g have the same number of zeros in the interior of D, for all n > N.

Using Hurwitz’s theorem, given any 0 < r < 1, there exists an M > 1 for which
V, and f have the same number of zeros inside B, (0) for all n > M. That is, p/, and
f shall have the same number of zeros inside B,.(0) for all n > M. But, as discussed
above, f has only finitely many zeros inside B,.(0). Thus Z(p!,) converges to the unit
circle almost surely. 0
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Our main result, Theorem 2.3], will be a consequence of the following proposition
together with Lemma 3.3 below.

Proposition 3.2. Given any sequence of points z1, za, ... with |z,| < M for all n,
k k k
and 2525y 0 s = oo, Yk > 1, the critical points y\™,yS", .y, of

pn(2) = (2 — 21)(2 — 22)...(z2 — 2z,,) also satisfy

()% 4+ () o+ ()
n—1

— ¢k as n — 00,

Vk > 1.

Proof. Note that, it is easy to see that this theorem holds true for £ = 1, because
the average of the critical points is exactly equal to the average of the roots (by
comparing the coefficients of 2"~! in p,(z) with 2”72 of p/,(z)). To prove the result
for general k, we use a result of [CN06], mentioned as a proposition in Section 2, to see
that for k& > 2, (y\"™)F, (), ..., (3™, are the eigenvalues of [D (I —1J)+ =],
and so,

n n n 1 Zn k
WY 4 S 4+ () =T lD <[ _ gJ) 4 ;J} ,

Note that the expansion of [D (I — £J) 4 22J]* is the sum of all terms such as

o o (B0 o) o (50) o) (50) T G

where the exponents [, ls, ..., l3; are non-zero integers, with l3;_o + l3;_1 + 13, = 1
for all j = 1,2, .., k. Clearly the number of such terms is 3*, which does not depend
on n, and so, if we find that the trace of the matrix in the expression (2) converges
asm — 00 t0 ay, 4,,.15,, then the trace of [D (I — %J)+%J]k converges to Yy, iy, .. lsy-
Henceforth, we fix [y, [y, ...I3;,. Now, note that J™ = (n — 1)~ 1J™"1 for any m > 1,
and

Zf Zf .. fo 2‘11 Z‘II e 2‘11
p p p q q q
<9 <9 %) Z9 <9 29
(DPJ)(D1J) = . . .
p p p q q q
Pn—1 “n—1 Ap—1 “pn—1 “n—1 Zp—1

for any p,q > 1.
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The above tells us that there exists p, q, So, 51, S2, ..., Sg—1 > 0 such that, term (2))
is of the form

(3)

s n—1 S1 n—1 52 nel t_ Sk—1
e (n— 1) " <z ) | (z ) <z o ) o
n n n n

where the numbers p, ¢, So, 51, ..., Sk—1 are determined solely by the [;’s (and so, are
independent of n). For instance,

p=Ily+ 15+ ..+ l3_1, and
qg=ls+1ls+ ...+ l3.

Also, M can only be one of the following terms: D¥ or DTmJ or %sz for some

m, my, mg > 0, which are fixed, < k, and dependent only on the [;’s (this fact, and
also the scalar coefficient in (3]), can be checked by simply using induction on k).
Furthermore, the scalar coefficient in (3)) is always O(1).

Observe that, if M = D*, then the scalar coefficient of M is equal to 1 (since there

is only one D* term in the expansion of [D (I — 1.J) + 22.J]%) and % — Ck.

On the other hand, if M = 24 then

n

(W)™ + ()™ 4 ()™
n

Tr(M) = = o(n),

and if M = —DZIJDmQ,

Tr(M)="Tr (Dm1+m2£)
n

(n) m1+mo + (n) m1+mo + ...+ (n) m1+mo
_ (y1 ") (y2 ) (Yn—1) = o(n).
n

Thus,

Tr [D(I - L))+ 271"
n

— ¢ as N — 0.

U

We require now a simple lemma about the convergence of weighted averages with
some suitable conditions on the weights.

Lemma 3.3. Let {z,1}>°._; be a double sequence of real numbers or real-valued
random variables, for which, T, € (0,1) for all n and for all k. Also, let {b,.} be
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a double sequence of complex-valued random variables, with |b,| < M for all n and
for all k. Then, if

T1n + Ton + ...+ Tnn
n
in probability, almost surely, or pointwise,

— 0,

xlnbln + x2nb2n + ...+ Innbnn
n
respectively in probability, almost surely, or pointwise.

Proof. We have,

xlnbln + I2nb2n + ...+ xnnbnn
n

— 0,

n

S M <l’1n —l—l’gn + ... +£L’nn) 7
n

which gives us the result. O

We now have all the tools required to prove our main result, namely Theorem [2.3]

Proof of Theorem[2.3. Say we write,
y](_”) — ™ exp(27ri¢§.")),j =1,2,...,n—1.

J
The proof will consist of three major segments. Our first task is to prove that
1 n—1
S,

n—14%
J=1

In fact, unless p is uniform on the circle, we will show that

n—1

1 n a.s.
> )L

=1

Next, we shall use the above information and Lemma to show that

exp(2kmiel™) + exp(2kmigpl™) + ... + exp(2kmiol™,) P,
n—1

C.

(Again, the convergence is almost sure, unless y is uniform on C.)

Finally, using arguments analogous to those in the proof of Weyl’s equidistribution
criterion, we shall arrive at our final result.
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Assume, initially, that g is not the uniform law on C. For the first task as noted
above, observe that, by Lemma 2.2] given any ¢ > 0,

n—1
1 a..
n—1 Z - Lpmen-eny — 1
J:

Now, for any fixed positive integer k, (1 — E)kl{r(”)eu—e g < (r](-"))k <1, and so
J bl

n—1 n—1
1 1
BTN o o
(4) (1 6) n—1 — 1{7«](,")6[1—671}} < n—1 P (TJ ) <L

Clearly then, a simple squeeze theorem argument gives us

n—1

(5) ST

n—14%
J=1

Now, from Proposition [3.2] for any positive integer k,

W)+ W)+ o+ W) as,
n—1
(r™) exp(2kmio™) + (rS)F exp(2kmigs) + ... + (rT))F exp(2kmiot™,) o

- — Cp.
n—1

Ck,

Then, applying Lemma B.3 with {z,,, =1 — rﬁlm)}, we get

exp(2kmio\™) + exp(2kmidl”) + ... + exp(2kmid™,) as.
(6) n—1 — Ck.

Now, for the final stage of our proof,
cr, = E(Z%), where, Z ~ pu.
= ¢, = E(exp(2kmi©)) = E(cos(2k70)) + iE(sin(2k70)), where, © ~ v.
So, (@) gives,

cos(2k7r¢§n)) + cos(2k7r¢§n)) + ...+ cos(2k7r¢£:21) LN E(cos(2kw0)),

n

sin(2kﬁ¢§")) + Sin(2kﬂ¢;n)) +..t sin(2k7r¢,(f_)1) 2% B(sin(2k70)).

n
Then, for any trigonometric polynomial,

q(x) =ag+ Z(aj cos(2mjx) + bjsin(2wjx)),a;,b; € R,j =1,2, ...,
j=1
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we have,

(7)

Let f be a continuous real-valued function on [0, 1] and fix € > 0. Stone-Weierstrass
theorem ([St48]) states that for any compact Hausdorff space X, and any subalgebra
S of the space C'(X,R) (continuous functions from X to R) that separates points and
contains at least one non-zero function, S will be dense in C'(X,R) with respect to
uniform norm. In particular, this means that trigonometric polynomials are dense
in the space of continuous functions on [0, 1] with the uniform norm. Hence, there
exists a trigonometric polynomial ¢ such that |f — ¢| < €. So

S0 (@) B < YA X alel)
n—1 (n)
| ZE) ey + [B(0(©) - B(©)
o i @) — a(@”)]
n—1 ¢ (n)
+ Zj:lff% ! _B(4(0))| + Ela(e) - (©)].

The first and third terms on the right hand side are each < € while the second term
goes to 0 almost surely, by (). Hence for any f continuous on [0, 1],

S (68

n

(8) — E(f(9)),

and this holds for complex-valued continuous functions as well (which is easily seen
by comparing the real and imaginary parts). Thus, the joint empirical distribution

of gbg."), j=1,2,...,n—1, converges weakly to v, which means that the joint empirical

distribution of exp(27ri¢§-")),j =1,2,...,n — 1, converges weakly to u. This, along
with Lemma 2.2] gives us the desired result for x4 not uniform on C.
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Now suppose p is the uniform law on the unit circle. Then, by (@), for any § > 0,

n—1 n-l
P <1— n—lz(rj ) 26) <P <1—(1—€) 'n_lzll{r;")e[l—s,l]} 29
‘]:

n—1
1 §—14+(1—e)k
=P (1 B Zl Loen-emy = o )
‘]:

7j=1
We may choose € in such a way that 1 — (1 — €)* < §/2, and so, the right hand
side of the above inequality goes to 0. Thus, for any positive integer k,

n—1

1
S,

n—1

J=1

Note that the above is a slightly weaker version of (), since the convergence is
now in probability, and not almost sure.

For the rest of the proof, observe that we can follow the same arguments as in the
non-uniform case, except that the almost sure convergence in each of the statements
will be replaced by convergence in probability. Thus, we shall arrive at

n—1 (n)
R )]

for any continuous function f : [0,1] — C. Then, as before, the joint empirical
distribution of qbg-"), j=1,2,...,n — 1, converges weakly to v (which is the uniform

law on [0, 1]), and so, the joint empirical distribution of exp(27ri¢§-n)),j =1,2,...,n—1,
converges weakly to uniform on C. Lemma then gives us the desired result. [
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