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A DUALITY BETWEEN NON-ARCHIMEDEAN UNIFORM

SPACES AND SUBDIRECT POWERS OF FULL CLONES

JOSEPH VAN NAME

Abstract. A uniform space is said to be non-Archimedean if it is generated
by equivalence relations. If λ is a cardinal, then a non-Archimedean uniform
space (X,U) is λ-totally bounded if each equivalence relation in U partitions X
into less than λ blocks. If A is an infinite set, then let Ω(A) be the algebra with
universe A and where each a ∈ A is a fundamental constant and every finitary
function is a fundamental operation. We shall give a duality between complete
non-Archimedean |A|+-totally bounded uniform spaces and subdirect powers
of Ω(A). We shall apply this duality to characterize the algebras dual to
supercomplete non-Archimedean uniform spaces.

1. Non-Archimedean Uniform Space Duality

In this paper, we shall assume basic facts about uniform spaces and universal
algebra. The reader is referred to [2] or [3] for information about uniform spaces
and to [1] for universal algebra. We shall use the entourage definition of uniform
spaces, and we shall assume all complete uniform spaces are separated. If A is an
algebra, then we shall write V (A) for the variety generated by A.

In [4], Marshall Stone constructed a duality between compact totally discon-
nected spaces and Boolean algebras. This result revolutionized the theory of
Boolean algebras since it gives a way to represent Boolean algebras as topologi-
cal spaces. We shall give an analogous result for uniform spaces.

A uniform space (X,U) is said to be non-Archimedean if U is generated by
equivalence relations. We say that a non-Archimedean uniform space (X,U) is λ-
totally bounded if whenever E ∈ U is an equivalence relation, then E partitions X
into less than λ blocks. Clearly, if (X,U) is λ-totally bounded, then each subspace
of X is λ-totally bounded as well.

For this paper, let A be a fixed infinite set. For each a ∈ A, let â be a constant

symbol. For each f : An → A, let f̂ be an n-ary function symbol. Let F = {â|a ∈

A} ∪
⋃

n{f̂ |f : A
n → A}. Let Ω(A) be the algebra of type F and with universe

A where âΩ(A) = a for a ∈ A and where f̂Ω(A) = f for f : An → A. Therefore
every n-ary function on A is given by a function symbol, so we can regard Ω(A)
as the full clone of A. We shall now give a duality between subdirect powers of
Ω(A) and complete non-Archimedean |A|+-totally bounded uniform spaces. With
this duality, every complete non-Archimedean uniform space can be represented
algebraically simply by letting |A| be at least as large as every uniform partition.

The algebra Ω(A) and the variety V (Ω(A)) generated by Ω(A) have applications
to mathematics besides uniform space duality. For instance, the variety V (Ω(A))
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is related to the ultrapower construction and reduced power construction. In fact,
one can construct ultrapowers and reduced powers from elements of the variety
V (Ω(A)). Also, the first order theory Th(Ω(A)) of Ω(A) is appealing since it is
generated by the identities in Ω(A) and a single sentence. In other words, there is
a φ ∈ Th(Ω(A)) such that for each θ ∈ Th(Ω(A)), there are identities I1, . . . , In ∈
Th(Ω(A)) such that (φ ∧ I1 ∧ · · · ∧ In)→ θ.

The algebra Ω(A) serves as an infinite analogue of the two element Boolean
algebra B since in B every function can be represented as a combination of the
Boolean operations ∧,∨,′. Therefore the variety V (Ω(A)) is analogous to the va-
riety of Boolean algebras. The category of compact totally disconnected spaces
is isomorphic to the category of complete non-Archimedean ℵ0-totally bounded
uniform spaces. Therefore it should be possible to reconstruct a duality between
compact totally disconnected spaces and the variety of Boolean algebras, but for
simplicity we shall only consider the variety V (Ω(A)) when A is infinite.

An algebra L ∈ V (Ω(A)) shall be called partitionable if there is an injective
homomorphism φ : L → Ω(A)I for some set I. Clearly, the products and subspaces
of partitionable algebras are partitionable. Furthermore, each partitionable algebra
is isomorphic to a subdirect product of Ω(A) since each a ∈ A is a constant in Ω(A).

Let Z(L) be the collection of all homomorphisms φ : L → Ω(A). In this paper,
the set A will always have the discrete uniformity. Now give AL the product
uniformity. Then the topology on A is the discrete topology and the topology on
AL is the product topology. Give Z(L) ⊆ AL the subspace uniformity. Then Z(L)
is a closed subspace of AL since every convergent net (φd)d∈D in Z(L) converges
to some φ ∈ Z(L). Thus, since Z(L) is a closed subspace of a complete uniform
space, Z(L) is complete.

Let ℓ1, . . . , ℓn ∈ L. Then let E♯ℓ1,...,ℓn be the equivalence relation AL where for

r, s ∈ AL we have (r, s) ∈ E♯ℓ1,...,ℓn if and only if r(ℓ1) = s(ℓ1), . . . , r(ℓn) = s(ℓn).

Then the equivalence relations E♯ℓ1,...,ℓn generate the uniformity on AL. Take note

that each E♯ℓ1,...,ℓn partitions AL into |A|n = |A| blocks, so the uniform space AL is

|A|+-totally bounded. Let Eℓ1,...,ℓn be the restriction of E♯ℓ1,...,ℓn to Z(L). Then the

equivalence relations Eℓ1,...,ℓn generate the uniformity on Z(L). In particular, Z(L)
is a |A|+-totally bounded non-Archimedean uniform space.

Let (X,U) be a uniform space. Then let BA(X,U) be the collection of all
uniformly continuous mappings from X to A. Clearly BA(X,U) is a subdirect
product of Ω(A), so BA(X,U) is a partitionable algebra.

If (X,U) is a uniform space, then for each x ∈ X , we have πx : BA(X,U)→ Ω(A)
be a homomorphism where πx is the projection mapping defined by πx(f) = f(x).
Therefore define a mapping C : (X,U) → Z(BA(X,U)) by C(x) = πx. In other
words, if x ∈ X , and f : (X,U) → A is uniformly continuous, then C(x)f = f(x).
If there is any confusion about the space (X,U), then we shall write C(X,U) for the
mapping C.

Now let L ∈ V (Ω(A)). If ℓ ∈ L, then let ℓ⋆ : Z(L) → A be the mapping
defined by ℓ⋆(φ) = φ(ℓ). We claim that ℓ⋆ is uniformly continous. Assume that
(φ, θ) ∈ Eℓ. Then φ(ℓ) = θ(ℓ), so ℓ⋆(φ) = ℓ⋆(θ), and hence (ℓ⋆(φ), ℓ⋆(θ)) ∈ E for
each equivalence relation E on A. Therefore ℓ⋆ is uniformly continuous, so ℓ⋆ ∈
BA(Z(L)). In light of the above discussion, we define a function ρ : L → BA(Z(L))
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by ρ(ℓ) = ℓ⋆. Therefore ρ(ℓ)(φ) = φ(ℓ) for φ ∈ Z(L), ℓ ∈ L. We will write ρL for
the mapping ρ to specify the domain of ρ in case there may be confusion.

Exercise 1.1. If f : An → A is injective (surjective), then f̂L : Ln → L is injective
(surjective) for each L ∈ V (Ω(A)).

Theorem 1.2. The equivalence relations Eℓ generate the uniformity on Z(L).

Proof. Assume that ℓ1, . . . , ℓn ∈ L. Let i : An → A be injective. Then îL is also
injective. Now let ℓ = îL(ℓ1, . . . , ℓn). Assume φ, θ ∈ Z(L) and (φ, θ) ∈ Eℓ. Then

φ(ℓ) = θ(ℓ), so φ(̂iL(ℓ1, . . . , ℓn)) = θ(̂iL(ℓ1, . . . , ℓn)). Therefore, i(φ(ℓ1), . . . , φ(ℓn)) =
i(θ(ℓ1), . . . , θ(ℓn)), so since i is injective, we have φ(ℓ1) = θ(ℓ1), . . . , φ(ℓn) = θ(ℓn),
thus (φ, θ) ∈ Eℓ1,...,ℓn . In other words, we have Eℓ ⊆ Eℓ1,...,ℓn . Therefore the equiv-
alence relations Eℓ generate the uniformity on Z(L). �

Theorem 1.3. 1. Let L ∈ V (Ω(A)). Then ρ : L → BA(Z(L)) is a surjective
homomorphism, and ρ is an isomorphism if and only if L is partitionable.

2. If (X,U) is a uniform space, then the mapping C : (X,U)→ Z(BA(X,U)) is
uniformly continuous and C′′(X) is dense in Z(BA(X,U)). If (X,U) is separated
and non-Archimedean, then C is injective. If (X,U) is separated non-Archimedean
and |A|+-totally bounded, then C is an embedding. If (X,U) is complete non-
Archimedean and |A|+-totally bounded, then C is an isomorphism.

Proof. 1. If ℓ ∈ L, then we have ρ(ℓ) = (ρ(ℓ)(φ))φ∈Z(L) = (φ(ℓ))φ∈Z(L). Therefore
ρ is a homomorphism since ρ is a homomorphism in each coordinate.

To prove surjectivity, assume that f : Z(L)→ A is uniformly continuous. Then
there is an ℓ ∈ L where if (φ, θ) ∈ Eℓ, then f(φ) = f(θ). In other words, if
φ(ℓ) = θ(ℓ), then f(φ) = f(θ). Therefore there is a function g : A → A where
f(φ) = g(φ(ℓ)) whenever φ ∈ Z(L). Furthermore, we have f(φ) = g(φ(ℓ)) =
φ(ĝL(ℓ)) = ρ(ĝL(ℓ))(φ) for each φ ∈ Z(L). Therefore ρ(ĝL(ℓ)) = f . Thus the
mapping ρ is surjective.

Now assume L is partitionable. Then for each pair of distinct ℓ1, ℓ2 ∈ L there is
a homomorphism φ : L → A with ρ(ℓ1)(φ) = φ(ℓ1) 6= φ(ℓ2) = ρ(ℓ2)(φ). Therefore
ρ(ℓ1) 6= ρ(ℓ2). We conclude that ρ is injective. Likewise, if we assume ρ is an
isomorphism, then since BA(Z(L)) is partitionable, we have L be partitionable as
well.

2. Since C : (X,U) → Z(BA(X,U)) ⊆ ABA(X,U), we have C be uniformly con-
tinuous if and only if C is uniformly continuous in every coordinate f ∈ BA(X,U).
However, we have C(x) = (C(x)(f))f∈BA(X,U) = (f(x))f∈BA(X,U), so C is uniformly
continuous.

We shall now show that C′′(X) is dense in Z(BA(X,U)). The uniformity on
Z(BA(X,U)) is generated by the equivalence relations Ef where f ∈ BA(X,U).
The blocks in the equivalence relation Ef are the nonempty sets of the form Uf,a =
{φ ∈ Z(BA(X,U))|φ(f) = a}. Therefore it suffices to show that C′′(X) intersects
each non-empty block Uf,a.

Now assume that Uf,a is non-empty. Then there is a φ ∈ Z(BA(X,U)) with
φ(f) = a. We claim that f(x) = a for some x ∈ X . Therefore, assume that
f(x) 6= a for all x ∈ X . Let i : A → A be a mapping where i(a) 6= a and i(b) = b

for b 6= a. Then we have f = i ◦ f = îBA(X,U)(f), so φ(f) = φ(̂iBA(X,U)(f)) =
i(φ(f)) 6= a. Thus, by contrapositive, if φ(f) = a, then f(x) = a for some x ∈ X .
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However, we have C(x)(f) = f(x) = a, so C(x) ∈ Uf,a. Therefore C′′(X) is dense
in Z(BA(X,U)).

Now assume that (X,U) is separated and non-Archimedean. Then we shall show
that C is injective. Assume that x, y ∈ X, x 6= y. Then since (X,U) is separated and
non-Archimedean, there is a uniformly continuous function f : X → A such that
f(x) 6= f(y). Therefore C(x)(f) = f(x) 6= f(y) = C(y)(f), and hence C(x) 6= C(y).
We conclude that C is injective.

Now assume that (X,U) is separated, non-Archimedean, and |A|+-totally bounded.
Then we shall show that C is an embedding. Assume that E ∈ U is an equivalence
relation. Then since (X,U) is |A|+-totally bounded, there is a function f : X → A
where f(x) = f(y) if and only if (x, y) ∈ E. Clearly f is uniformly continuous, so
f ∈ BA(X,U) and Ef is an equivalence relation on Z(BA(X,U)). Now assume that
x, y ∈ X . Then (x, y) ∈ E if and only if f(x) = f(y) if and only if C(x)(f) = C(y)(f)
if and only if (C(x), C(y)) ∈ Ef . Therefore C is an embedding.

If (X,U) is complete, non-Archimedean, and |A|+-totally bounded, then we have
C be an embedding, and Z(BA(X,U)) is the completion of C′′(X). However, if X
is complete, we have C′′(X) = Z(BA(X,U)). Therefore, in this case, C is a uniform
homeomorphism. �

Let L,M ∈ V (Ω(A)) and assume that φ : L →M is a homomorphism. Then let
Z(φ) : Z(M)→ Z(L) be the function defined by Z(φ)(θ) = θ◦φ for homomorphisms
θ :M→ A. One can easily show that the mappings Z(φ) are uniformly continuous
and Z is a functor from the variety V (Ω(A)) to the category of uniform spaces. Now
assume that (X,U), (Y,V) are uniform spaces and f : (X,U)→ (Y,V) is uniformly
continuous. Then define a mapping BA(f) : BA(Y,V)→ BA(X,U) by BA(f)(g) =
g◦f . Then each BA(f) is a homomorphism. Furthermore, BA gives a functor from
the category of uniform spaces to the variety V (Ω(A)).

Theorem 1.4. (1) Let f : (X,U) → (Y,V) be uniformly continuous. Then
Z(BA(f)) ◦ C(X,U) = C(Y,V) ◦ f .

(X,U)
f

−−−−→ (Y,V)




y

C





y

C

Z(BA(X,U))
Z(BA(f))
−−−−−−→ Z(BA(Y,V))

(2) Let φ : L →M be a homomorphism. Then we have BA(Z(φ))◦ρL = ρM◦φ.

L
φ

−−−−→ M




y

ρ





y

ρ

BA(Z(L))
BA(Z(φ))
−−−−−−→ BA(Z(M))

(3) The pair of functions Z(ρL) : Z(BA(Z(L))) → Z(L) and CZ(L) : Z(L) →
Z(BA(Z(L))) are inverses.

(4) The pair of functions BA(C(X,U)) : BA(Z(BA(X,U))) → BA(X,U) and
ρBA(X,U) : BA(X,U)→ BA(Z(BA(X,U))) are inverses.

Proof. (1) Let x ∈ X and let g ∈ BA(Y,V). Then we have

[(Z(BA(f)) ◦ C)(x)](g) = [Z(BA(f))(C(x))](g)
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= [C(x) ◦BA(f)]g = C(x)[BA(f)(g)]

= C(x)(g ◦ f) = g(f(x)) = C(f(x))(g).

Therefore C ◦ f = Z(BA(f)) ◦ C.
(2) This proof is analogous to part 1. Let ℓ ∈ L and let θ ∈ Z(M). Then we

have

[(BA(Z(φ)) ◦ ρ)(ℓ)](θ) = [BA(Z(φ))(ρ(ℓ))](θ)

= [ρ(ℓ) ◦ Z(φ)]θ = ρ(ℓ)(Z(φ)(θ))

= ρ(ℓ)(θ ◦ φ) = θ ◦ φ(ℓ) = θ(φ(ℓ)) = ρ(φ(ℓ))(θ).

Therefore ρ ◦ φ = BA(Z(φ)) ◦ ρ.
(3) The uniform space Z(L) is complete, so CZ(L) is a uniform homeomorphism.

It therefore suffices to show that Z(ρL)◦CZ(L) : Z(L)→ Z(L) is the identity
map. Therefore let φ : L → Ω(A) is a homomorphism and ℓ ∈ L. Then we
have

[Z(ρL) ◦ CZ(L)(φ)](ℓ) = [Z(ρL)(CZ(L)(φ))](ℓ)

= [CZ(L)(φ) ◦ ρL](ℓ) = CZ(L)(φ)(ρL(ℓ)) = ρL(ℓ)(φ) = φ(ℓ).

We therefore conclude that Z(ρL) ◦ CZ(L) is the identity map.
(4) This proof this analogous to 3. Since BA(X,U) is partitionable, we have

ρBA(X,U) be an isomorphism. We therefore need to show that BA(C(X,U))◦
ρBA(X,U) : BA(X,U)→ BA(X,U) is the identity map. Thus, assume that
f ∈ BA(X,U) and x ∈ X . Then

[BA(C(X,U)) ◦ ρBA(X,U)(f)](x) = [BA(C(X,U))(ρBA(X,U)(f))](x)

= (ρBA(X,U)(f) ◦ C(X,U))(x) = ρBA(X,U)(f)(C(X,U)(x))

= C(X,U)(x)(f) = f(x).

Therefore BA(C(X,U)) ◦ φBA(X,U) is the identity map.
�

2. A Characterization of non-Archimedean Supercomplete Spaces

A congruence θ on L is said to be partitionable if L/θ is partitionable. Let
PC(L) denote the collection of all partitional congruences of L. One can easily see
that PC(L) consists of all congruences of the form

⋂

θ∈R ker(θ) where R ⊆ Z(L).

Theorem 2.1. Let L ∈ V (Ω(A)). Let R ⊆ Z(L). Then let φ ∈ Z(L). Then φ ∈ R
if and only if

⋂

θ∈R ker(θ) ⊆ ker(φ).

Proof. → Assume φ ∈ R. Also assume ℓ,m ∈ L and (ℓ,m) ∈
⋂

θ∈R ker(θ). Then

θ(ℓ) = θ(m) for θ ∈ R. Since φ ∈ R, there is a θ ∈ R with (φ, θ) ∈ Eℓ,m, so φ(ℓ) =
θ(ℓ) = θ(m) = φ(m). Therefore (ℓ,m) ∈ ker(φ). We conclude that

⋂

θ∈R ker(θ) ⊆
ker(φ).
← Assume

⋂

θ∈R ker(θ) ⊆ ker(φ). Then let ℓ ∈ L and assume φ(ℓ) = a. Let b ∈ A
be an element with b 6= a. Let i : A → A be the map where i(a) = a and i(c) = b

for c 6= a. Then φ(̂iL(ℓ)) = i(φ(ℓ)) = i(a) = a 6= b = φ(b̂L), so (̂iL(ℓ), b̂L) 6∈ ker(φ),

hence (̂iL(ℓ), b̂L) 6∈ ker(θ) for some θ ∈ R. Therefore b = θ(b̂L) 6= θ(̂iL(ℓ)) = i(θ(ℓ)).
Thus θ(ℓ) = a = φ(ℓ). Therefore (φ, θ) ∈ Eℓ. Since ℓ ∈ L is arbitrary, we have
φ ∈ R. �



6 JOSEPH VAN NAME

We shall now give a Galois correspondence between closed sets in Z(L) and
partitionable congruences in L. Let f : P (L2) → P (Z(L)), g : P (Z(L)) → P (L2)
be the mappings where

f(R) = {φ ∈ Z(L)|(a, b) ∈ ker(φ) for all (a, b) ∈ R} = {φ ∈ Z(L)|R ⊆ ker(φ)}

and where

g(S) = {(a, b) ∈ L2|(a, b) ∈ ker(φ) for allφ ∈ S} =
⋂

φ∈S

ker(φ).

Let C = g ◦ f,D = f ◦ g. Then C and D are closure operators. In other words,
we have C(R) ⊆ C(C(R)), and if R ⊆ S, then C(R) ⊆ C(S) for R,S ⊆ L2. Let
C∗ = {R ⊆ L2|C(R) = R} = {C(R)|R ⊆ L2} and let D∗ = {S ⊆ Z(L)|D(S) =
D} = {D(S)|S ⊆ Z(L)}. Let f∗ : C∗ → D∗, g∗ : D∗ → C∗ be the restriction of the
functions f and g. Then the functions f∗ and g∗ are inverse functions.

Theorem 2.2. The mapping D is the topological closure operator induced by the
uniformity on Z(L).

Proof. Let R ⊆ Z(L). Then

D(R) = f ◦ g(R) = f(
⋂

θ∈R

ker(θ)) = {φ ∈ Z(L)|
⋂

θ∈R

ker(θ) ⊆ ker(φ)} = R.

�

If (X,U) is a uniform space, then let H(X) be the collection of all closed subsets
of X . Clearly D∗ = H(Z(L)) and C∗ = PC(L). Therefore we have f∗ : PC(L)→
H(Z(L)) and g∗ : H(Z(L))→ PC(L).

We shall now characterize the partitionable algebras L where S(L) is supercom-
plete. For each E ∈ U , let E be the binary relation on H(X) where (C,D) ∈ E if
and only if C ⊆ E[D] = {x ∈ X |(z, x) ∈ E for some z ∈ D} and D ⊆ E[C]. Then
the relations E generate a uniformity on H(X). Therefore H(X) is a uniform
space. With this uniformity, we shall call H(X) the hyperspace of X . A separated
uniform space X is said to be supercomplete if H(X) is complete.

Take note that if L is an algebra and ℓ ∈ L, then we have φ ∈ Eℓ[C] if and only
if there is some θ ∈ C with (θ, φ) ∈ Eℓ. In other words, φ ∈ Eℓ[C] if and only if
φ(ℓ) ∈ {θ(ℓ)|θ ∈ C}. Therefore (C,D) ∈ Eℓ if and only if {θ(ℓ)|θ ∈ C} = {φ(ℓ)|φ ∈
D}.

Exercise 2.3. Every finitely generated algebra L ∈ V (Ω(A)) is generated by a
single element.

A locally partitionable congruence is a congruence θ on L so that whenever
M ⊆ L is a finitely generated subalgebra, we have θ ∩ M2 be a partitionable
congruence.

Let LPC(L) denote the set of all locally partitionable congruences on L. LPC(L)
is closed under arbitrary intersection, so LPC(L) is a complete lattice. Let FS(L)
be the collection of all finitely generated subalgebras of L. We shall now give
LPC(L) a complete uniformity by representing LPC(L) as an inverse limit.

If M,N are finitely generated subalgebras of L and M ⊆ N , then define a
function EN ,M : PC(N ) → PC(M) by letting EN ,M(θ) = θ ∩ M2. One can
easily show that (PC(N ))N∈FS(L) is an inverse system of sets with transitional

mappings EN ,M. Let IL(L) be the inverse limit Lim
←− PC(N ). Give each PC(N ) the
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discrete uniformity and give Lim
←− PC(N ) the inverse limit uniformity. Let EN be the

equivalence relation on IL(L) where we have (θM)M∈FS(L), (ψM)M∈FS(L) ∈ EN if
and only if θN = ψN . Then the equivalence relations EN generate the uniformity
on IL(L).

Let Γ: LPC(L) → IL(L) be the mapping defined by letting Γ(θ) = (θ ∩
M2)M∈FS(L). Conversely, define a mapping ∆: IL(L) → LPC(L) be the map-
ping defined by ∆((θM)M∈FS(L)) =

⋃

M θM.

Exercise 2.4. The functions Γ and ∆ are inverses.

Now give LPC(L) the uniformity such that the maps Γ and ∆ are uniform
homeomorphisms. Now for each finitely generated subalgebraN ⊆ L, let FN be the
equivalence relation on LPC(L) where (θ, ψ) ∈ FN if and only if θ∩N 2 = ψ∩N 2.
Clearly (θ, ψ) ∈ FN if and only if (Γ(θ),Γ(ψ)) ∈ EN . Therefore the equivalence
relations FN generate the uniformity on LPC(L).

Exercise 2.5. Let (X,U) be a non-Archimedean uniform space. Let N ⊆ BA(X,U)
be a finitely generated subalgebra. Then there is a partition P such that if r : X → P
is the function where x ∈ r(x) for all x ∈ X, then N = {f ◦ r|f : P → A}.
Furthermore, if θ is a partitionable congruence on N , then there is an V ⊆ X
where if f, g ∈ N , then (f, g) ∈ θ if and only if f(x) = g(x) for all x ∈ V .

Theorem 2.6. Let L be partitionable. Then PC(L) is dense in LPC(L).

Proof. Since L is partitionable, we may assume that L = BA(X,U) for some
complete non-Archimedean |A|+-totally bounded uniform space (X,U). Let θ ∈
LPC(L) and assume that N ⊆ BA(X,U) is finitely generated. Then there is
a V ⊆ X where for f, g ∈ N , we have (f, g) ∈ θ if and only if f(x) = g(x)
for all x ∈ V . Now let V ♯ be the congruence in BA(X,U) where (f, g) ∈ V ♯ if
and only if f(x) = g(x) for x ∈ V . Then V ♯ is a partitionable congruence with
V ♯ ∩ N 2 = θ ∩ N 2. Therefore (V ♯, θ) ∈ FN . We conclude that PC(L) is dense in
LPC(L). �

Exercise 2.7. Assume ai ∈ A for i ∈ I and bj ∈ A for j ∈ J . Then {ai|i ∈
I} = {bj|j ∈ J} if and only if for each pair of functions f, g : A → A, we have
∀i ∈ I, f(ai) = g(ai)⇔ ∀j ∈ J, f(bj) = g(bj).

Theorem 2.8. The mappings f∗ : PC(L)→ H(Z(L)) and g∗ : H(Z(L))→ PC(L)
are uniform homeomorphisms.

Proof. We only need to show that g∗ is a uniform homeomorphism. Since Z(L) is
generated by equivalence relations Eℓ, the equivalence relations Eℓ generateH(Z(L)).
We have (C,D) ∈ Eℓ if and only if

{θ(ℓ)|θ ∈ C} = {θ(ℓ)|θ ∈ D}

if and only if for f, g : A→ A we have

∀φ ∈ C, f(φ(ℓ)) = g(φ(ℓ))↔ ∀φ ∈ D, f(φ(ℓ)) = g(φ(ℓ))

if and only if for each f, g : A→ A we have

∀φ ∈ C, φ(f̂L(ℓ))) = φ(ĝL(ℓ))↔ ∀φ ∈ D,φ(f̂L(ℓ))) = φ(ĝL(ℓ))

if and only if whenever f, g : A→ A we have

(f̂L(ℓ), ĝL(ℓ)) ∈
⋂

φ∈C

ker(φ)↔ (f̂L(ℓ), ĝL(ℓ)) ∈
⋂

φ∈D

ker(φ)
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if and only if

g∗(C) ∩ 〈ℓ〉2 =
⋂

φ∈C

ker(φ) ∩ 〈ℓ〉2 =
⋂

φ∈D

ker(φ) ∩ 〈ℓ〉2 = g∗(D) ∩ 〈ℓ〉2

if and only if (g∗(C), g∗(D)) ∈ F〈ℓ〉. Therefore g
∗ is a uniform homeomorphism. �

Theorem 2.9. Let L be a partitionable algebra. Then Z(L) is supercomplete if
and only if every locally partitionable congruence on L is partitionable.

Proof. However, since H(Z(L)) is uniformly homeomorphic to PC(L), we have
H(Z(L)) be complete if and only if PC(L) is complete. Since PC(L) is a dense
subspace of the complete space LPC(L), we have PC(L) be complete if and only if
PC(L) = LPC(L) if and only if each locally partitionable congruence on L is parti-
tionable. Therefore Z(L) is supercomplete if and only if every locally partitionable
congruence on L is partitionable. �

Exercise 2.10. A partitionable algebra L is finitely generated if and only if Z(L)
is discrete. A partitionable algebra L is countably generated if and only if Z(L) is
uniformizable by a metric.

We shall now prove a purely algebraic result using hyperspaces.

Corollary 2.11. If L is a countably generated partitionable algebra, then every
locally partitionable congruence is partitionable.

Proof. If L is a countably generated partitionable algebra, then Z(L) is uniformiz-
able by a metric. However, in [2][p. 30], it is shown that every complete metric
space is supercomplete. Therefore since Z(L) is supercomplete, every locally par-
titionable congruence is partitionable. �
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