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Abstract

It is well known [7, 29] that a real positive semispectral measure F

is commutative if and only if there exist a self-adjoint operator A and a

Markov kernel µ(·)(·) : σ(A) × B(R) → [0, 1] such that F (∆) = µ∆(A).

In quantum mechanics, it is usual to meet commutative semispectral

measures for which the functions µ∆ : σ(A) → [0, 1], ∆ ∈ B(R), are con-
tinuous (in which case µ(·)(·) is a strong Feller Markov kernel). An im-

portant example is the semispectral measure used in quantum mechanics

to represent the unsharp position observable. In the present work we

give a stronger characterization of commutative semispectral measures

and study general conditions for the continuity of µ∆ : σ(A) → [0, 1].

In particular,

• we show that F is commutative if and only if there exist a self-

adjoint operator A and a Markov kernel µ(·)(·) : Γ×B(R) → [0, 1],

Γ ⊂ σ(A), E(Γ) = 1, such that

F (∆) =

∫

Γ
µ∆(λ) dEλ,

and µ(∆) is continuous for each ∆ ∈ R where, R ⊂ B(R) is a ring

which generates the Borel σ-algebra of the reals B(R). Moreover,

µ(·)(·) is a Feller Markov kernel and separates the points of Γ.

∗e-mail rbeneduci@unical.it

1

http://arxiv.org/abs/1207.0086v1


• we prove that F admits a strong Feller Markov kernel µ(·)(·), if
and only if F is uniformly continuous. Finally, we prove that if F

is absolutely continuous with respect to a regular finite measure ν

then, it admits a strong Feller Markov kernel.

Keywords : Semispectral Measure, Markov Kernel, C∗-algebras, Quantum Me-

chanics.

1 Introduction

A real semispectral measure (or Positive operator Valued measure) is a map

F : B(R) → L+
s (H) from the Borel σ-algebra of the reals to the space of

positive self-adjoint operators on a Hilbert space H. If, F (∆) is a projec-

tion operator for each ∆ ∈ B(R), F is called spectral measure (or Projec-

tion Valued measure). Therefore, the set of spectral measures is a subset of

the set of semispectral measures. Moreover, spectral measures are in one-to-

one correspondence with self-adjoint operators (spectral theorem) [38] and are

used in standard quantum mechanics to represent quantum observables. It

was pointed out [1, 17, 18, 28, 37, 40] that semispectral measures are more

suitable than spectral measures in representing quantum observables. The

quantum observables described by semispectral measures are called general-

ized observables or unsharp observables and play a key role in quantum infor-

mation theory, quantum optics, quantum estimation theory [17, 25, 28, 41]. It

is then natural to ask what are the relationships between semispectral and

spectral measures. A clear answer can be given in the commutative case

[1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27, 29]. Indeed [7, 29], a real positive semispec-

tral measure F is commutative if and only if there exist a bounded self-adjoint

operator A and a Markov kernel µ(·)(·) : σ(A)× B(R) → [0, 1] such that

F (∆) =

∫

σ(A)

µ∆(λ) dEλ

where, E is the spectral measure corresponding to A. In other words, F is a

smearing of the spectral measure E corresponding to A.
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As an example we can consider the following unsharp position observable

Qf (∆) :=

∫

[0,1]

µ∆(x) dQx, ∆ ∈ B(R), (1)

µ∆(x) :=

∫

R

χ∆(x− y) f(y) dy, x ∈ [0, 1]

where, f is a positive, bounded, Borel function such that f(y) = 0, y /∈ [0, 1],∫
[0,1]

f(y)dy = 1, and Qx is the spectral measure corresponding to the position

operator

Q : L2([0, 1]) → L2([0, 1])

ψ(x) 7→ Qψ := xψ(x)

A possible interpretation [7] of equation (1) is that the outcomes of the mea-

surement of Qf are a randomization of the outcomes of the measurement of

Q. It is worth noticing that (see example 5 in section 5.1) the Markov kernel

µ∆(x) :=

∫

R

χ∆(x− y) f(y) dy, x ∈ [0, 1]

in equation (1) above is such that the function x 7→ µ∆(x) is continuous for

each ∆ ∈ B(R). That is quite common in important physical applications so

that it is natural to look for general conditions which assure the continuity of

λ 7→ µ∆.

The present work is devoted to the analysis of this problem. First, we

give a stronger characterization of commutative semispectral measures. In

particular, we show (see theorems 6 and 7) that a semispectral measure is

commutative if and only if there exist a spectral resolution E and a Markov

kernel µ(·)(·) : Γ× B(R) → [0, 1], Γ ⊂ σ(A), E(Γ) = 1, such that

F (∆) =

∫

Γ

µ∆(λ) dEλ (2)

and µ∆(·) is continuous for each ∆ ∈ R where, R ⊂ B(R) is a ring which

generates the Borel σ-algebra of the reals B(R). It turns out that µ(·)(·) : Γ×
B(R) → [0, 1] is a Feller Markov kernel [35, 39]. Therefore, F is commutative

if and only if there exists a Feller Markov kernel µ such that equation (2) is

satisfied.

We also prove that the family of functions {µ∆}∆∈B(R) separates the points of

σ(A) up to a null set (see theorems 5, 6 and 7).
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Then, we characterize the semispectral measures which admit a strong

Feller Markov kernel, i.e., a Markov kernel µ such that the function λ 7→ µ∆(λ)

is continuous for each ∆ ∈ B(R). In particular, we prove (see theorems 8 and

9) that a semispectral measure F admits a strong Feller Markov kernel if and

only if it is uniformly continuous. As an example, we develop the details for the

unsharp position observable defined in equation (1) above. Finally, we prove

(see section 5) that a semispectral measure F which is absolutely continuous

with respect to a regular finite measure ν is uniformly continuous (corollary

11). We give some examples of absolutely continuous semispectral measures

(see example 4) and analyze the unsharp position observable which is obtained

as the marginal of a phase space observable (see section 5.1).

2 Some preliminaries about Semispectral mea-

sures

In what follows, we denote by B(R) and B([0, 1]) the Borel σ-algebra of R and

[0,1] respectively, by 0 and 1 the null and the identity operators, by Ls(H)

the space of all bounded self-adjoint linear operators acting in a Hilbert space

H with scalar product 〈·, ·〉, by F(H) = L+
s (H) the subspace of all positive,

bounded self-adjoint operators on H, by E(H) ⊂ F(H) the subspace of all

projection operators on H. We use the symbols POVM and PVM to denote

semispectral measures and spectral measures respectively.

Definition 1. A Semispectral measure or Positive Operator Valued measure

(for short, POVM) is a map F : B(R) → F(H) such that:

F
( ∞⋃

n=1

∆n

)
=

∞∑

n=1

F (∆n).

where, {∆n} is a countable family of disjoint sets in B(R) and the series con-

verges in the weak operator topology. It is said to be normalized if

F (R) = 1

Definition 2. A POVM is said to be commutative if

[
F (∆1), F (∆2)

]
= 0, ∀∆1 ,∆2 ∈ B(R). (3)
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Definition 3. A POVM is said to be orthogonal if

F (∆1)F (∆2) = 0 if ∆1 ∩∆2 = ∅. (4)

Definition 4. A Spectral measure or Projection Valued measure (for short,

PVM) is an orthogonal, normalized POVM.

It is simple to see that for a PVM E, we have E(∆) = E(∆)2, for any ∆ ∈
B(R). Then, E(∆) is a projection operator for every ∆ ∈ B(R), and the PVM

is a map E : B(R) → E(H).

In quantum mechanics, non-orthogonal normalized POVM are also called gen-

eralised or unsharp observables and PVM standard or sharp observables.

In what follows, we shall always refer to real normalized POVM and we shall

use the term “measurable” for the Borel measurable functions. For any vector

x ∈ H the map

〈F (·)x, x〉 : B(R) → R, ∆ 7→ 〈F (∆)x, x〉,

is a Lebesgue-Stieltjes measure. There exists a one-to-one correspondence [5]

between POV measures F and POV functions Fλ := F ((−∞, λ]). In the

following we will use the symbol d〈Fλx, x〉 to mean integration with respect to

the measure 〈F (·)x, x〉. We shall say that a measurable function f : N ⊂ R →
f(N) ⊂ R is almost everywhere (a.e.) one-to-one with respect to a POVM

F if it is one-to-one on a subset N ′ ⊂ N such that N − N ′ is a null set with

respect to F . We shall say that a function f : R → R is bounded with respect

to a POVM F , if it is equal to a bounded function g a.e. with respect to F ,

that is, if f = g a.e. with respect to the measure 〈F (·)x, x〉, ∀x ∈ H. For

any real, bounded and measurable function f and for any POVM F , there is

a unique [15] bounded self-adjoint operator B ∈ Ls(H) such that

〈Bx, x〉 =
∫
f(λ)d〈Fλx, x〉, for each x ∈ H. (5)

If equation (5) is satisfied, we write B =
∫
f(λ)dFλ or B =

∫
f(λ)F (dλ)

equivalently.

Definition 5. The spectrum σ(F ) of a POVM F is the closed set

{
λ ∈ R : F

(
(λ− δ, λ+ δ)

)
6= 0, ∀δ > 0,

}
.
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By the spectral theorem [21, 38], there is a one-to-one correspondence between

PV measures E and self-adjoint operators B, the correspondence being given

by

B =

∫
λdEB

λ .

Notice that the spectrum of EB coincides with the spectrum of the correspond-

ing self-adjoint operator B. Moreover, in this case a functional calculus can

be developed. Indeed, if f : R → R is a measurable real-valued function, we

can define the self-adjoint operator [38]

f(B) =

∫
f(λ)dEB

λ

where, EB is the PVM corresponding to B. If f is bounded, then f(B) is

bounded [38].

In the following we do not distinguish between PVM and the corresponding

self-adjoint operators.

Let Λ be a subset of R and B(Λ) the corresponding Borel σ-algebra.

Definition 6. A real Markov kernel is a map µ : Λ×B(R) → [0, 1] such that,

1. µ∆(·) is a measurable function for each ∆ ∈ B(R),

2. µ(·)(λ) is a probability measure for each λ ∈ Λ.

Definition 7. Let ν be a measure on Λ. A map µ : Λ × B(R) → [0, 1] is a

weak Markov kernel with respect to ν if:

1. µ∆(·) is a measurable function for each ∆ ∈ B(R),

2. 0 ≤ µR(λ) ≤ 1, ν − a.e.,

3. µR(λ) = 1, µ∅(λ) = 0, ν − a.e.,

4. for any sequence {∆i}i∈N, ∆i ∩∆j = ∅,
∑

i

µ(∆i)(λ) = µ(∪i∆i)(λ), ν − a.e.

Definition 8. The map µ : Λ × B(R) → [0, 1] is a weak Markov kernel with

respect to a PVM E : B(Λ) → E(H) if it is a weak Markov kernel with respect

to each measure νx(·) := 〈E(·) x, x〉, x ∈ H.
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In the following, by a weak Markov kernel µ we mean a weak Markov kernel

with respect to a PVM E. Moreover the function λ 7→ µ∆(λ) will be denoted

indifferently by µ∆ or µ∆(·).

Definition 9. A POV measure F : B(R) → F(H) is said to be a smearing

of a POV measure E : B(Λ) → E(H) if there exists a weak Markov kernel

µ : Λ× B(R) → [0, 1] such that,

F (∆) =

∫

Λ

µ∆(λ)dEλ, ∆ ∈ B(R).

Example 1. In the standard formulation of quantum mechanics, the operator

Q : L2(R) → L2(R)

ψ(x) ∈ L2(R) 7→ Qψ := xψ(x)

is used to represent the position observable. A more realistic description of the

position observable of a quantum particle is given by a smearing of Q as, for

example, the optimal position semispectral measure

FQ(∆) =
1

l
√
2 π

∫ ∞

−∞

(∫

∆

e−
(x−y)2

2 l2 dy
)
dEQ

x =

∫ ∞

−∞

µ∆(x) dE
Q
x

where,

µ∆(x) =
1

l
√
2 π

∫

∆

e−
(x−y)2

2 l2 dy

defines a Markov kernel and EQ is the spectral measure corresponding to the

position operator Q.

In the following, the symbol µ is used to denote both Markov kernels and

weak Markov kernels. The symbols A and B are used to denote self-adjoint

operators.

Definition 10. Whenever F , A, and µ are such that F (∆) = µ∆(A), ∆ ∈
B(R), we say that (F,A, µ) is a von Neumann triplet.

The following theorem establishes a relationship between commutative semis-

pectral measures and spectral measures and gives a characterization of the

former. Other characterizations and an analysis of the relationships between

them can be found in Ref.s [1, 27, 4, 30].
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Theorem 1 ([7, 29]). A semispectral measure F is commutative if and only

if there exist a bounded self-adjoint operator A and a Markov kernel (weak

Markov kernel) µ such that (F,A, µ) is a von Neumann triplet.

Corollary 1. A semispectral measure F is commutative if and only if it is a

smearing of a PV measure E with bounded spectrum.

Definition 11. The von Neumann algebra generated by the semispectral mea-

sure F is the von Neumann algebra generated by the set {F (∆), ∆ ∈ B(R)}.

Definition 12. If A and F in theorem 1 generate the same von Neumann

algebra then A is named the sharp reconstruction of F .

Theorem 2. [7] The sharp reconstruction A is unique up to almost everywhere

bijections.

3 Characterization of Commutative Semispec-

tral Measures by means of Strong Markov

kernels

As we have seen in the last section, theorem 1 asserts that a semispectral

measure F is commutative if and only if there exist a bounded self-adjoint

operator A and a weak Markov kernel (Markov kernel) µ such that F (∆) =

µ∆(A). In the present section we study the continuity of the functions µ∆.

First, we restrict ourselves to semispectral measures on [0, 1] and then (see

the appendix A) we extend the results to semispectral measures on R. In

particular, we prove (see theorem 3 below) that, if F is commutative, there

exists a weak Markov kernel µ such that: a) (F,A, µ) is a von Neumann triplet,

b) µ(·)(λ), λ ∈ σ(A) is additive on a ring R(S) which generates the Borel σ-

algebra of [0, 1] and c) µ∆ is continuous for each ∆ ∈ R(S).
Then, we introduce the concept of strong Markov kernel, i.e., a weak

Markov kernel µ(·)(·) : Λ × B(R) → [0, 1] with respect to a PVM E : B(Λ) →
E(H) such that µ(·)(λ) is a probability measure for each λ ∈ Γ ⊂ Λ, E(Γ) = 1.

We prove (theorems 4 and 7) that in order to realize the smearing in corollary

1, one can use a strong Markov kernel µ such that µ∆ is continuous for each

∆ ∈ R, where R is a ring which generates the Borel σ-algebra of the reals. It
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is worth remarking that µ(·)(·) : Γ × B(R) → [0, 1] is a Feller Markov kernel.

Therefore, F is commutative if and only if there exists a bounded self-adjoint

operator A and a Feller Markov kernel µ such that

F (∆) =

∫

Γ

µ∆(λ) dEλ.

Moreover, the family of functions {µ∆}∆∈R separates the points in Γ (see

theorems 5 and 7).

In the following, the symbol S denotes the family of open intervals in [0, 1]

with rational end-points. The symbol R(S) denotes the ring generated by S.
Notice that S is countable and generates the Borel σ-algebra B([0, 1]).

Theorem 3. For any real commutative POVM F : B([0, 1]) → F(H) with

spectrum in [0, 1], there exists a bounded self-adjoint operator A with spectrum

σ(A) ⊂ [0, 1] and a weak Markov Kernel µ : σ(A) × B([0, 1]) → [0, 1], such

that:

1) µ∆(·) is continuous for each ∆ ∈ R(S),

2) µ(·)(λ) is additive on R(S),

3) F (∆) = µ∆(A), ∆ ∈ B([0, 1]).

Proof. Let AW (F ) be the von Neumann algebra generated by F and M :=

{F (∆), ∆ ∈ B([0, 1])}. First, we prove that AW (F ) coincides with the von

Neumann algebra generated by {F (∆)}∆∈R(S) where, R(S) ⊂ B([0, 1]) is the
ring generated by the family S of open intervals with rational end-points.

Notice that S is countable. Then, by theorem c, page 24, in Ref. [24], R(S)
is countable too.

Let G denote the family of open subsets of [0, 1]. Let us consider the set

O := {F (∆), ∆ ∈ G}. Since the POV measure F is regular, for each Borel set

∆, there exists a decreasing family of open sets Gi such that F (Gi) → F (∆)

strongly. Then, O is dense in M and the von Neumann algebra generated by

M coincides with the von Neumann algebra generated by O. Hence,

AW (F ) = AW (M) = AW (O). (6)

Now, let G1 denote the family of open intervals in [0, 1]. Let us consider the set

O1 = {F (∆), ∆ ∈ G1}. Each open set ∆ is the disjoint union of a countable

9



family of open intervals ∆i, i.e. ∆ = ∪∞
i=1∆i. Therefore,

F (∆) = F (∪∞
i=1∆i) =

∞∑

i=1

F (∆i)

= lim
n→∞

n∑

i=1

F (∆i) = lim
n→∞

F (∪n
i=1∆i).

Since the von Neumann algebra generated by O1 contains F (∪n
i=1∆i), it must

contain F (∆) = limn→∞ F (∪n
i=1∆i). Therefore,

AW (O1) = AW (O). (7)

Now, we prove that the von Neumann algebra AW (O2) generated by O2 =

{F (∆)}∆∈R(S) coincides with AW (O1).

For each open interval (a, b) there exists a disjoint family of sets {∆i}i∈N ⊂
R(S), ∆i ⊂ (a, b), i ∈ N, such that (a, b) = ∪∞

i=1∆i. Then,

F (a, b) = F (∪∞
i=1∆i) =

∞∑

i=1

F (∆i)

= lim
n→∞

n∑

i=1

F (∆i) = lim
n→∞

F (∪n
i=1∆i).

Since the von Neumann algebra generated by O2 contains F (∪n
i=1∆i) for each

n ∈ N, it must contain F (∆) = limn→∞ F (∪n
i=1∆i). Therefore, AW (O1) =

AW (O2) and, by equations (6) and (7),

AW (O2) = AW (O1) = AW (O) = AW (F ) (8)

which proves that AW (F ) coincides with the von Neumann algebra generated

by the set {F (∆)}∆∈R(S).

Now, we proceed to the proof of the existence of A. Let us consider the

set O2. Let {∆i}i∈N be an enumeration of the set R(S). Let E(i) denote the

spectral measure corresponding to F (∆i) ∈ O2. We have F (∆i) =
∫
x dE

(i)
x .

Therefore, for each i, k ∈ N there exists a division {∆(i,k)
j }j=1,...,mi,k

of [0, 1]

such that
∥∥

mi,k∑

j=1

x
(i,k)
j E(i)(∆

(i,k)
j )− F (∆i)

∥∥ ≤ 1

k
. (9)

By the spectral theorem [21] the von Neumann algebra AW (F ) contains all

the projection operators in the spectral resolution of F (∆), ∆ ∈ B([0, 1]).
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Therefore, the von Neumann algebra AW (D) generated by the set D :=

{E(i)(∆i,k
j ), j ≤ mi,k, i, k ∈ N} is contained in AW (F ) and then

AW (D) ⊂ AW (F ) = AW (O2). (10)

Moreover, the C∗-algebra AC(D) generated by D contains the C∗-algebra

AC(O2) generated by O2 (see equation (9)). Summing up the preceding ob-

servations, we have

AC(O2) ⊂ AC(D) ⊂ AW (F ).

By the double commutant theorem [31],

AW (F ) = [AC(O2)]
′′ ⊂ [AC(D)]′′ = AW (D)

so that (see equation 10),

AW (D) = AW (F ). (11)

By theorem 11, page 871 in Ref. [21], the spectrum Λ of AC(D) is homeo-

morphic to a closed subset of
∏∞

i=1{0, 1}. Let π : Λ → ∏∞

i=1{0, 1} denote the

homeomorphism between the two spaces.

Now, if we identify Λ with a closed subset of
∏∞

i=1{0, 1}, we can prove the

existence of a continuous function distinguishing the points of Λ. Indeed, let

π(λ) = x̄ := (x1, . . . , xn, . . . ) ∈
∏∞

i=1{0, 1}. The function

f(λ) =
∞∑

i=1

xi
3i

is continuous and injective and then it distinguishes the points of Λ. Moreover,

since Λ and [0, 1] are Hausdorff, the map f : Λ → f(Λ) is a homeomorphism.

By theorem 1, page 895, in Ref. [21], there exists a spectral measure Ẽ :

B(Λ) → F(H) such that the map

T : C(Λ) → B(H) (12)

g 7→ T (g) =

∫

Λ

g(λ)dẼλ

defines an isometric ∗-isomorphism between AC(D) and C(Λ).
The fact that f distinguishes the points of Λ, implies that the self-adjoint

operator

A =

∫

Λ

f(λ) dẼλ

11



is a generator of the von Neumann algebra AW (D) = AW (F ). Indeed, by

the Stone-Weierstrass theorem, C(Λ) is singly generated, in particular f is a

generator. Then, the isomorphism between AC(D) and C(Λ) assures that

AC(D) is singly generated and that A is a generator. Hence, AW (F ) =

AW (D) = [AC(D)]′′ is singly generated. In particular, A generates AW (F ),

i.e., AW (F ) = AW (A).

Now, we proceed to the proof of the existence of the weak Markov kernel

µ.

By (12), for each ∆ ∈ R(S), there exists a continuous function γ∆ ∈ C(Λ)
such that

F (∆) =

∫

Λ

γ∆(λ) dẼλ.

Now, we show that, for each ∆ ∈ R(S), there is a continuous function ν∆ :

σ(A) → [0, 1] from the spectrum of A to the interval [0, 1] such that ν∆(f(λ)) =

γ∆(λ), λ ∈ Λ, and F (∆) = ν∆(A).

To prove this, let us consider the function

ν∆(t) := (γ∆ ◦ f−1)(t), ∆ ∈ R(S).

It is continuous since it is the composition of continuous functions and,

ν∆(f(λ)) = γ∆(f
−1(f(λ))) = γ∆(λ).

Moreover,

ν∆(A) = F (∆), ∀∆ ∈ R(S).
Indeed, by the change of measure principle (page 894, ref. [21]),

F (∆) =

∫

Λ

γ∆(λ) dẼλ =

∫

Λ

γ∆(f
−1(f(λ))) dẼλ

=

∫

σ(A)

γ∆(f
−1(t)) dEt =

∫

σ(A)

ν∆(t) dEt = ν∆(A)

where σ(A) = f(Λ) is the spectrum of A and E is the spectral measure corre-

sponding to A defined by the relation E(∆) = Ẽ(f−1(∆)), ∆ ∈ B([0, 1]) (see
corollary 10, page 902, in Ref. [21]).

For each λ ∈ σ(A), the map ν(·)(λ) : R(S) → [0, 1] defines an additive set

function. Indeed, let ∆ ∈ R(S) be the disjoint union of the sets ∆1,∆2 ∈
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R(S). Then,
∫
ν(∆1∪∆2)(λ) dEλ = F (∆1 ∪∆2) = F (∆1) + F (∆1)

=

∫
ν∆1(λ) dEλ +

∫
ν∆2(λ) dEλ

=

∫ [
ν∆1(λ) + ν∆2(λ)

]
dEλ

so that, by the continuity of the functions ν(∆1)(λ) and ν(∆2)(λ), we get (see

theorem 1, page 895, in Ref. [21])

ν(∆1)(λ) + ν(∆2)(λ) = ν(∆1∪∆2)(λ), ∀λ ∈ σ(A).

Now, we extend ν to all the Borel σ-algebra of [0, 1].

Since A is the generator of AW (F ), for each ∆ ∈ B([0, 1]), there exists a Borel

function ω∆ such that.

F (∆) =

∫

σ(A)

ω∆(t) dEt =

∫

Λ

(ω∆ ◦ f)(λ) dẼλ

Then, we can consider the map µ : σ(A)× B([0, 1]) → [0, 1] defined as follows

µ∆(λ) =




ν∆(λ) if ∆ ∈ R(S)
ω∆(λ) if ∆ /∈ R(S).

Since µ coincides with ν on R(S) it is additive on R(S).
In order to prove that µ is a weak Markov kernel, let us consider a set ∆ ∈
B([0, 1]) which is the disjoint union of the sets {∆i}i∈N, ∆i ∈ B([0, 1]). Then,

∫
µ(∪∞

i=1∆i)(x) dEx =

∫
µ∆(x)dEx = F (∆) =

∞∑

i=1

F (∆i)

=

∞∑

i=1

∫
µ∆i

(x) dEx =

∫ ∞∑

i=1

µ∆i
(x) dEx

so that, by Corollary 9, page 900, in Ref. [21],

∞∑

i=1

µ∆i
(x) = µ∆(x), E − a.e,

which implies that µ : [0, 1] × B([0, 1]) → [0, 1] is a weak Markov kernel. In

particular (F,A, µ) is a von Neumann triplet.
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Notice that also the converse of theorem 3 is true. Indeed, F (∆) = µ∆(A),

∆ ∈ B[0, 1], implies that {F (∆)}∆∈B[0,1] is commutative.

Now, we show that theorem 3 can be strengthened. In order to do that we

need the following definition.

Definition 13. Let E : B(Λ) → E(H) be a PVM. The map µ(·)(·) : Λ×B(R) →
[0, 1] is a strong Markov kernel with respect to E if it is a weak Markov kernel

and there exists a set Γ ⊂ Λ, E(Γ) = 1, such that µ(·)(·) : Γ×B(R) → [0, 1] is

a Markov kernel with respect to E.

Theorem 4. A POV measure F : B([0, 1]) → F(H) is commutative if and only

if there exists a bounded self-adjoint operator A with spectrum σ(A) ⊂ [0, 1]

and a strong Markov kernel µ : σ(A)× B([0, 1]) → [0, 1] such that

1. (F,A, µ) is a von Neumann triplet,

2. µ∆ ∈ C(σ(A)), ∆ ∈ R(S),

3. µ is additive on R(S).

Proof. By theorem 3, F is commutative if and only if there is a self-adjoint

operator A and a weak Markov kernel ν : σ(A)× B([0, 1]) → [0, 1] such that

i. (F,A, ν) is a von Neumann triplet,

ii. ν∆ ∈ C(σ(A)), ∆ ∈ R(S),

iii. ν is additive on R(S).

By theorem 2 in Ref. [7], starting from ν : σ(A)×R(S) → [0, 1] it is possible

to define a Markov kernel ω : σ(A)× B([0, 1]) → [0, 1] such that (F,A, ω) is a

von Neumann triplet. Then, by item i. above, for each ∆ ∈ B([0, 1]),
∫
ν∆(λ) dEλ = F (∆) =

∫
ω∆(λ) dEλ

hence,

ω∆(λ) = ν∆(λ), E − a.e. (13)

Now, let {∆i}i∈N be an enumeration ofR(S). By equation (13), for each i ∈ N,

there is a set Ni, E(Ni) = 0, such that

ω∆i
(λ) = ν∆i

(λ), λ ∈ [0, 1]−Ni. (14)
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Then, for each i ∈ N,

ω∆i
(λ) = ν∆i

(λ), λ ∈ [0, 1]−N (15)

where,

N := ∪∞
i=1Ni, E(N) = 0.

Therefore, for almost all λ ∈ σ(A), ν(·)(λ) is σ-additive on R(S).
Now, we can define the map

µ(·)(λ) =




ν(·)(λ) λ ∈ N

ω(·)(λ) λ ∈ [0, 1]−N

If we put Γ = [0, 1]− N , we have that µ(·)(·) : Γ × B(R) → [0, 1] is a Markov

kernel. Therefore, µ(·)(·) : σ(A)× B(R) → [0, 1] is a strong Markov kernel.

Notice that, for each ∆ ∈ R(S) and λ ∈ σ(A),

µ∆(λ) = ν∆(λ)

so that, µ∆ is continuous for each ∆ ∈ R(S) and additive on R(S). We also

have,

µ∆(A) = ω∆(A) = F (∆), ∆ ∈ R(S).

It is worth analyzing whether the set functions {µ(·)(λ)}λ∈σ(A) are distinct

or, in other words, if the family of functions {µ∆}∆∈B(R) separates the points

of σ(A). The following theorem answers in the positive.

Theorem 5. Let (F,A, µ) be the von Neumann triplet whose existence was

proved in theorem 3. Then, there exists a set Γ ⊆ σ(A), EA(Γ) = 1, such that

the family of functions {µ∆(·)}∆∈B([0,1]) separates the points of Γ.

Proof. In the following we use the same notation that we used in the proof of

theorem 3. In particular, AW (F ) denotes the von Neumann algebra generated

by {F (∆)}∆∈B([0,1]), O2 := {F (∆)}∆∈R(S) and AC(O2) is the C∗-algebra gen-

erated by O2. We recall that the von Neumann algebra generated by AC(O2)

coincides with AW (F ) = AW (A) where, A is the generator of AW (F ) whose
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existence was proved in theorem 3. By the Gelfand-Naimark theorem [21, 36],

there is a * isomorphism φ between AC(O2) and the algebra of continuous

functions C(Λ2) where Λ2 is the spectrum of AC(O2). Moreover,

f ∈ C(Λ2) 7→ φ(f) =

∫

Λ2

f(λ) dẼλ

where, Ẽ is the spectral measure from the Borel σ algebra B(Λ2) to E(H) whose

existence is assured by theorem 1, page 895, in Ref. [21]. The Gelfand-Naimark

isomorphism φ can be extended to a homomorphism between the algebra of

the Borel functions on Λ2 and the von Neumann algebra AW (F ) = AW (A)

generated by AC(O2) (see Ref. [20], page 360, section 3). Therefore, there is

a Borel function h such that

A =

∫

Λ2

h(λ) dẼλ (16)

Let {∆i}i∈N denote an enumeration of the set R(S). Since AC(O2) is the

smallest uniform closed algebra containing {F (∆i)}i∈N, C(Λ2) is the smallest

uniform closed algebra of functions containing {ν∆i
:= φ−1(F (∆i))}i∈N. In

other words {ν∆i
}i∈N generates C(Λ2). The Stone-Weierstrass theorem [21]

assures that {ν∆i
}i∈N separates the points in Λ2.

On the other hand, the fact that (F,A, µ) is a von Neumann triplet, implies

that, for each ∆i ∈ R(S), there is a Borel function µ∆i
such that

∫

Λ2

ν∆i
(λ) dẼλ = F (∆i) = µ∆i

(A) =

∫

Λ2

µ∆i
(h(λ)) dẼλ.

Then, for each ∆i ∈ R(S), there is a set Mi ⊂ Λ2, Ẽ(Mi) = 1, such that

µ∆i
(h(λ)) = ν∆i

(λ), λ ∈Mi. (17)

Let M := ∩∞
i=1Mi. Then,

Ẽ(M) = lim
n→∞

Ẽ(∩n
i=1Mi) = lim

n→∞

n∏

i=1

Ẽ(Mi) = 1

and, for each i ∈ N,

(µ∆i
◦ h)(λ) = ν∆i

(λ), λ ∈M ⊆ Λ2. (18)
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Since {ν∆i
}i∈N separates the points in Λ2, it separates the points in M . Then,

equation (18) implies that {µ∆i
}i∈N separates the points in Γ := h(M). More-

over1,

EA(Γ) = EA(h(M)) = Ẽ[h−1(h(M))] = 1

where, EA is the spectral measure defined by the relation

EA(∆) = Ẽ(h−1(∆))

and such that,

A =

∫
x dEA

x

while, h−1(h(M)) is a Borel set containing M .

We have proved that the set of functions {µ∆i
}i∈N separates the points of Γ

and that EA(Γ) = 1. In other words,

µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′, λ, λ′ ∈ Γ.

As a consequence of theorem 4 and theorem 5, we have the following theorem

6.

Theorem 6. A POV measure F : B([0, 1]) → F(H) is commutative if and only

if there exist a bounded self-adjoint operator A with spectrum σ(A) ⊂ [0, 1], a

strong Markov kernel µ : σ(A) × B([0, 1]) → [0, 1] and a ring R(S) of subset

of [0, 1] such that

1. (F,A, µ) is a von Neumann triplet,

2. µ∆ ∈ C(σ(A)), ∆ ∈ R(S).

3. there is a set Γ ⊂ σ(A), EA(Γ) = 1, such that µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′,

λ, λ′ ∈ Γ (where, EA is the spectral measure corresponding to A).

1 Notice that h(M) is a Borel set. In orther to prove that, we first recall that Λ2 is a

Polish space (that is, a complete, separable, space [32]). Indeed, by theorem 11, page 871, in

Ref. [21], it is homeomorphic to a closed subspace of the Cartesian product
∏

∞

i=1
σ(F (∆i)),

where σ(F (∆i)) is a complete separable metric space, and by theorem 2, page 406, and

theorem 6, page 156, in Ref. [33], it is complete and separable. Moreover, h is measurable

and injective on M . Therefore, Soulsin’s theorem (see theorem 9 page 440 and Corollary 1

page 442 in Ref. [32]) assures that h(M) is a Borel set.
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4. R(S) generates B([0, 1]).

Theorem 6 can be generalized to the case of POVM with spectrum in R. See

the appendix A for the details.

Theorem 7. A POV measure F : B(R) → F(H) is commutative if and only

if there exist a bounded self-adjoint operator A with spectrum in σ(A) ⊂ [0, 1],

a strong Markov kernel µ : σ(A)× B(R) → [0, 1] and a ring R of subset of R

such that

1. (F,A, µ) is a von Neumann triplet,

2. µ∆ ∈ C(σ(A)), ∆ ∈ R.

3. there is a set Γ ⊂ σ(A), EA(Γ) = 1, such that µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′,

λ, λ′ ∈ Γ (where, EA is the spectral measure corresponding to A).

4. R generates B(R).

4 Characterization of Semi-spectral Measures

by means of Feller Markov Kernels

The following corollary is a consequence of theorem 7 and characterizes the

commutative semispectral measures by means of Feller Markov kernel.

Definition 14. A Feller Markov kernel is a Markov kernel µ(·)(·) : Λ×B(R) →
[0, 1] such that the function

G(λ) =

∫

Λ

f(t) dµt(λ), λ ∈ Λ

is continuous and bounded whenever f is continuous and bounded.

Corollary 2. A semispectral measure F : B(R) → F(H) is commutative if and

only if there exist a bounded self-adjoint operator A with spectrum σ(A) ⊂ [0, 1],

a set Γ ⊂ Λ, EA(Γ) = 1 and a Feller Markov kernel µ(·)(·) : Γ×B(R) → [0, 1]

such that
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1) F (∆) =
∫
Γ
µ∆(λ) dE

A
λ

2) µ separates the points of Γ.

Proof. Let F , A, and µ be as in theorem 7. By theorem 7, µ(·)(·) : Γ×B(R) →
[0, 1] is a Markov kernel. By theorem 6, it separates the points of Γ, i.e.,

µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′, λ, λ′ ∈ Γ. Therefore, Item 2 is proved. It remains to

prove that µ(·)(·) : Γ × B(R) → [0, 1] is a Feller Markov kernel. By theorem

7, µ∆ is continuous for each ∆ ∈ R. Notice that for each open set O ∈ B(R),
there is a countable family of sets ∆i ∈ R such that O = ∪∞

i=1∆i. Therefore,

by theorem 2.2 in Ref. [16],

lim
n→∞

∫
f(t)µt(λn) =

∫
f(t)µt(λ), f ∈ Cb(R)

whenever limn→∞ λn = λ and Cb(R) is the space of bounded, continuous func-

tions.

5 Characterization of Semi-spectral Measures

which admit strong Feller Markov Kernels

In the last section we proved that each commutative semispectral measure

admits a strong Markov kernel µ such that µ∆ is a continuous function for

each ∆ ∈ R(S) where, R(S) is a ring which generates the Borel σ-algebra

B([0, 1]).
In the present section we characterize the commutative semispectral measures

for which the Markov kernel µ, whose existence was proved in theorem 1, is such

that µ∆ is continuous for each ∆ ∈ B([0, 1]). Whenever such a Markov kernel

exists, we say that the semispectral measure admits a strong Feller Markov

kernel. In particular, we prove that a commutative semispectral measure F

admits a strong Feller Markov kernel if and only if F is uniformly continuous.

First, we restrict ourselves to semispectral measures with spectrum in [0, 1].

In the appendix A, we extend the results to the case of semispectral measures

with unbounded spectrum (see theorem A2).

Definition 15. Let F be a POVM. Let ∆ = ∪∞
i=1∆i, ∆i ∩ ∆j = ∅. If

limn→∞

∑n

i=1 F (∆i) = F (∆) in the uniform operator topology then we say

that F is uniformly continuous.
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Notice that the term uniformly continuous derives from the fact that the σ-

additivity of F in the uniform operator topology is equivalent to the continuity

in the uniform operator topology. Analogously, the σ-additivity of F in the

weak operator topology is equivalent to the continuity of F in the weak oper-

ator topology [15].

Definition 16. A Markov kernel µ(·)(·) : [0, 1] × B(R) → [0, 1] is said to be

strong Feller if µ∆ is a continuous function for each ∆ ∈ B(R).

Definition 17. We say that a commutative POVM admits a strong Feller

Markov kernel if there exists a strong Feller Markov kernel µ such that F (∆) =∫
µ∆(λ) dEλ, where E is the sharp reconstruction of F .

Theorem 8. A commutative POVM F : B([0, 1]) → F(H) admits a strong

Feller Markov kernel if and only if it is uniformly continuous.

In order to prove the theorem we need the following lemmata.

Lemma 1. Suppose F uniformly continuous. Suppose µ and A as in theorem

3. Then, for each λ ∈ σ(A), µ(·)(λ) is σ-additive on R(S).

Proof. Let ∆,∆i ∈ R(S), ∆i ∩∆j = ∅, ∪∞
i=1∆i = ∆. Then,

0 = u− lim
n→∞

(
F (∆)− F (∪n

i=1∆i)
)
= u− lim

n→∞

∫ (
µ∆(λ)−

n∑

i=1

µ∆i
(λ)

)
dEλ.

By the uniform continuity of F and theorem 1, page 895, in Ref. [21], it follows

that, ∀ǫ > 0, there exists a number n̄ ∈ N, such that n > n̄ implies,

‖µ∆(λ)−
n∑

i=1

µ∆i
(λ)‖∞ = ‖

∫ (
µ∆(λ)−

n∑

i=1

µ∆i
(λ)

)
dEλ‖ (19)

= ‖F (∆)− F (∪n
i=1∆i)‖ ≤ ǫ.

By equation (19),

|µ∆(λ)−
n∑

i=1

µ∆i
(λ)| ≤ ǫ, ∀λ ∈ [0, 1].
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Lemma 1 assures that µ is σ-additive on R(S). Therefore (see proposition 2

in Ref. [7]), the map µ : σ(A) ×R(S) → [0, 1] can be extended to a Markov

kernel µ̃ : σ(A)× B([0, 1]) → [0, 1] whose restriction to R(S) coincides with µ
and such that F (∆) = µ̃∆(A).

Lemma 2. Suppose F uniformly continuous. Suppose µ and A as in theorem

3. Let µ̃ be the extension of µ defined above. Then, for each open interval ∆,

the function µ̃∆ is continuous.

Proof. For each open interval, there exists an increasing family of sets ∆i ∈ S
such that ∆i ↑ ∆. Indeed, if ∆ = (a, b), the family of sets {(ai, bi) ∈ S}i∈N
such that ai > ai+1 ≥ a, limi→∞ ai = a, bi < bi+1, limi→∞ bi = b, is increasing

and ∪∞
i=1∆i = ∆. Then,
∫
µ̃∆(λ) dEλ = F (∆) = u− lim

i→∞
F (∆i) = u− lim

i→∞

∫
µ̃∆i

(λ) dEλ.

By the uniform continuity of F and theorem 1, page 895, in Ref. [21], it follows

that, ∀ǫ > 0, there exists a number n̄ ∈ N, such that n,m > n̄ implies,

‖µ̃∆n
(λ)− µ̃∆m

(λ)‖∞ = ‖
∫
[µ̃∆n

(λ)− µ̃∆m
(λ)] dEλ‖ (20)

= ‖F (∆n)− F (∆m)‖ ≤ ǫ.

By equation (20),

|µ̃∆n
(λ)− µ̃∆m

(λ)| ≤ ǫ, ∀λ ∈ σ(A). (21)

Since µ̃ is a Markov kernel,

lim
i→∞

µ̃∆i
(λ) = µ̃∆(λ), ∀λ ∈ σ(A).

Moreover, by equation (21), the convergence is uniform and this proves the

continuity of µ̃∆.

Lemma 3. Suppose F , µ̃ and A be as in lemma 2. Then, for each open set

∆, the function µ̃∆ is continuous.

Proof. Each open set ∆ is the disjoint union of a countable family of open

intervals, i.e., ∆ = ∪∞
i=1∆i, ∆i = (ai, bi). Let us define the set ∆̃n := ∪n

i=1∆i.

Therefore, ∆̃n ↑ ∆. Moreover, µ∆̃n
is continuous for each n ∈ N, and

u− lim
i→∞

F (∆̃n) = F (∆).
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Then, the same reasoning we used in the preceding lemma allows us to conclude

that the family of continuous functions µ∆̃n
converges uniformly to µ∆.

The following lemma states the continuity of µGδ
for each Gδ set [32].

Lemma 4. Suppose F , µ̃ and A be as in lemma 2. Then, for each Gδ set, the

function µ̃Gδ
is continuous.

Proof. For each Gδ set there exists [15] a family of open sets {Gi}i∈N, Gδ ⊂ Gi,

such that ∩∞
i=1Gi = Gδ. Then, by the uniform continuity of F ,

F (Gδ) = F (∩∞
i=1Gi) = u− lim

n→∞
F (∩n

i=1Gi) = u− lim
n→∞

F (G̃n)

where, G̃n := ∩n
i=1Gi and G̃n ↓ Gδ.

By theorem 1, page 895, in Ref. [21], it follows that, ∀ǫ > 0, there exists a

number n̄ ∈ N, such that n,m > n̄ implies,

‖µ
G̃n

(λ)− µ
G̃m

(λ)‖∞ = ‖
∫
(µ

G̃n
(λ)− µ

G̃m
(λ)) dEλ‖ ≤ ǫ. (22)

Since µ̃ is a Markov kernel, for each λ ∈ σ(A),

lim
i→∞

µ̃G̃i
(λ) = µ̃Gδ

(λ).

Moreover, by equation (22) the convergence is uniform and then µ̃Gδ
is con-

tinuous.

Now, we are ready to prove theorem 8.

Proof of theorem 8. In order to prove the first part of the theorem, we

use transfinite induction [32, 19]. Let G0 be the family of open sets in [0, 1],

ω1 the first uncountable ordinal and Gα, α < ω1 the Borel hierarchy (see

page 236 in Ref. [32]). In particular, G1 = Gδ, G2 = Gδσ, G3 = Gδσδ, . . . and

Gα = (∪β<αGβ)σ for each limit ordinal α. By means of the same reasoning that

we used in the proof of lemma 1, lemma 2, lemma 3 and lemma 4, one can prove

the continuity of µ̃∆ whenever ∆ is of the kind Gδ,σ, Gδσδ . . . . Analogously,

if µ̃∆ is continuous for each ∆ ∈ Gα then, µ̃∆ is continuous for each ∆ in

Gα+1. Indeed, each set in Gα+1 is either the countable union or the countable

intersection of sets in Gα and the reasoning in lemma 3 or lemma 4 can be
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used. If α is a limit ordinal and µ̃∆ is continuous for each ∆ ∈ Gβ, β < α,

then, µ̃∆ is continuous for each ∆ ∈ Gα = (∪β<αGβ)σ. Indeed, each set in

Gα is the countable union of sets in ∪β<αGβ and the reasoning in lemma 2

can be used. Therefore, by transfinite induction, µ̃∆ is continuous for each

∆ ∈ ∪α<ω1Gα = B([0, 1]) [32].
In order to prove the second part of the theorem we show that the existence

of a strong Feller Markov kernel implies the uniform continuity of F .

Suppose that there exists a strong Feller Markov kernel µ such that F (∆) =

µ∆(λ). Since µ is a Markov kernel it is σ-additive. Then,

lim
i→∞

(
µ∆(λ)−

n∑

i=1

µ∆i
(λ)

)
= 0, λ ∈ σ(A).

where, ∆,∆i ∈ B([0, 1]), ∪∞
i=1∆i = ∆.

By hypothesis,

µ∆(λ)−
n∑

i=1

µ∆i
(λ) ∈ C(σ(A)), ∀n ∈ N.

Then, by theorem B1 in appendix B,

u− lim
i→∞

(
µ∆(λ)−

n∑

i=1

µ∆i
(λ)

)
= 0.

By theorem 1, page 895, in Ref. [21], ‖F (∆)‖ = ‖µ∆‖∞, hence

lim
n→∞

‖F (∆)− F (∪n
i=1∆i)‖ = lim

n→∞
‖µ∆ −

n∑

i=1

µ∆‖∞ = 0.

which proves that F is uniformly continuous.

In the case of a semispectral measure with spectrum in R, we have the following

extension of theorem 8 (see theorem A2 in the appendix A).

Theorem 9. A commutative semispectral measure F : B(R) → F(H) is uni-

formly continuous if and only if it admits a strong Feller Markov kernel.

Example 2. Let us consider the following unsharp position observable

Qf (∆) :=

∫

[0,1]

µ∆(x) dQx, ∆ ∈ B(R), (23)

µ∆(x) :=

∫

R

χ∆(x− y) f(y) dy, x ∈ [0, 1]
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where, f is a bounded, continuous function such that f(y) = 0, y /∈ [0, 1] and

∫

[0,1]

f(y) dy = 1,

and Qx is the spectral measure corresponding to the position operator

Q : L2([0, 1]) → L2([0, 1])

ψ(x) 7→ (Qψ)(x) := xψ(x)

Notice that, for each ∆ ∈ B(R), µ∆ : [0, 1] → [0, 1] is continuous. Indeed,

by the uniform continuity of f , for each ǫ > 0, there is a δ > 0 such that

|x− x′| ≤ δ implies |f(x− y)− f(x′ − y)| ≤ ǫ, for each y. Therefore,

|µ∆(x)− µ∆(x
′)| =

∣∣∣
∫

R

χ∆(x− y) f(y) dy−
∫

R

χ∆(x
′ − y) f(y) dy

∣∣∣

=
∣∣∣
∫

∆

[f(x− y)− f(x′ − y)] dy
∣∣∣ ≤ ǫ

∫

∆∩[−1,1]

dy ≤ 2ǫ

By theorem 8 and the continuity of µ∆, ∆ ∈ B(R), Qf is uniformly continuous.

That can be proved as follows. Suppose ∆i ↓ ∆ and f(y) ≤ M , y ∈ R. Since,

for each x ∈ [0, 1],

µ∆i−∆(x) =

∫

∆i−∆

f(x− y) dy ≤M

∫

(∆i−∆)∩[−1,1]

dx

we have that, for each ψ ∈ H, |ψ|2 = 1,

〈ψ,Qf(∆i −∆)ψ〉 =
∫

[0,1]

µ∆i−∆(x) |ψ|2(x) dx ≤M

∫

(∆i−∆)∩[−1,1]

dx

which proves the uniform continuity of Qf .

In the case of uniformly continuous POV measures, we can prove a necessary

condition for the norm-1-property.

Definition 18 ([26]). A semispectral measure F has the norm-1-property if

‖F (∆)‖ = 1, for each ∆ ∈ B(R) such that F (∆) 6= 0.

Theorem 10. Let F be uniformly continuous. Then, F has the norm-1-

property only if ‖F ({λ})‖ 6= 0 for each λ ∈ σ(F ).
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Proof. We proceed by contradiction. Suppose that F has the norm-1 property

and that there exists λ ∈ σ(F ), such that ‖F ({λ})‖ = 0. Let (ai, bi) ⊂ B([0, 1])
be a sequence of open intervals such that, ai < λ < bi, (ai+1, bi+1) ⊂ (ai, bi),

limi→∞ ai = λ, limi→∞ bi = λ. Then, (ai, bi) ↓ {λ}. Moreover, by the uniform

continuity of F and the norm-1 property,

1 = lim
i→∞

‖F ((ai, bi))‖ = lim
i→∞

‖F ((ai, bi))− F ({λ})‖ = 0.

Example 3. Let Qf be as in example 2. Theorem 10 implies that Qf cannot

have the norm-1 property. Indeed, for each λ ∈ R,

Qf({λ})ψ = lim
i→∞

Qf([λ, λi))ψ = lim
i→∞

µ[λ,λi)(x)ψ(x) = 0, ∀ψ ∈ H

where, λ, λi ∈ R, λi → λ.

6 Absolutely continuous semispectral measures

In the present section, we prove that absolutely continuous commutative POV

measures admit a strong Feller Markov kernel. Then, we apply the result to

the case of the unsharp position observable.

Definition 19. [40, 41] A POV measure F : B(R) → F(H) is absolutely

continuous with respect to a measure ν : B(R) → [0, 1] if there exists a positive

number c such that ‖F (∆)‖ ≤ c ν(∆), for each ∆ ∈ B(R).

Theorem 11. Let F be absolutely continuous with respect to a finite measure

ν. Then, F is uniformly continuous.

Proof. Suppose ∆i ↑ ∆. We have

lim
n→∞

‖F (∆)− F (∆i)‖ = lim
n→∞

‖F (∆−∆i)‖

≤ c lim
n→∞

ν(∆−∆i) = 0.

which proves that F is uniformly continuous.
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Corollary 3. Let F be absolutely continuous with respect to a finite measure

ν. Then, F is commutative if and only if there exist a self-adjoint operator A

and a strong Feller Markov kernel µ : R× B(R) → [0, 1] such that:

F (∆) = µ∆(A), ∆ ∈ B(R) (24)

Proof. By theorem 11, F is uniformly continuous. Then, theorem 9 implies

the thesis.

Example 4. Let us consider the unsharp position operator defined as follows.

Qf (∆) :=

∫

[0,1]

µ∆(x) dQx, ∆ ∈ B(R), (25)

µ∆(x) :=

∫

R

χ∆(x− y) f(y) dy, x ∈ [0, 1]

where, f is a positive, bounded, Borel function such that f(x) = 0, x /∈ [0, 1],

∫

[0,1]

f(x)dx = 1,

and Qx is the spectral measure corresponding to the position operator

Q : L2([0, 1]) → L2([0, 1])

ψ(x) 7→ Qψ := xψ(x)

Qf is absolutely continuous with respect to the measure

ν(∆) =M

∫

∆∩[−1,1]

dx.

Indeed, for each ψ ∈ H, |ψ|2 = 1,

〈ψ,Qf(∆)ψ〉 =
∫

[0,1]

µ∆(x)ψ
2(x) dx ≤M

∫

∆∩[−1,1]

dx

where, the inequality

µ∆(x) =

∫

∆

f(x− y) dy ≤M

∫

∆∩[−1,1]

dx

has been used.

Therefore, by theorem 11, Qf (∆) is uniformly continuous.
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6.1 Unsharp Position Observable

In the present subsection, we study an important kind of absolutely continuous

POV measures, the unsharp position observables obtained as the marginals of

a covariant phase space observable.

In the following H = L2(R), Q and P denote position and momentum observ-

ables respectively and ∗ denotes convolution, i.e. (f ∗g)(x) =
∫
f(y)g(x−y)dy.

Let us consider the joint position-momentum POV measure [1, 17, 18, 23, 28,

37, 41, 42]

F (∆×∆′) =

∫

∆×∆′

Uq,p γ U
∗
q,p dq dp

where, Uq,p = e−iqP eipQ and γ = |f〉〈f |, f ∈ L2(R), ‖f‖2 = 1. The marginal

Qf (∆) := F (∆× R) =

∫ ∞

−∞

(1∆ ∗ |f |2)(x) dQx, ∆ ∈ B(R), (26)

is an unsharp position observable. Notice that the map µ∆(x) := 1∆ ∗ |f(x)|2
defines a Markov kernel.

Moreover, Qf is absolutely continuous with respect to the Lebesgue measure.

Indeed,

Qf (∆) = F (∆× R) =

∫

∆×R

Uq,p γ U
∗
q,p dq dp

=

∫

∆

dq

∫

R

Uq,p γ U
∗
q,p dp

=

∫

∆

Q̂(q) dq ≤
∫

∆

1 dq

where,

Q̂(q) =

∫

R

Uq,p γ U
∗
q,p dp.

Although Qf is absolutely continuous with respect to the Lebesgue measure on

R, it is not uniformly continuous. That does not contradict theorem 11 since

the Lebesgue measure on R is not finite. Anyway, Qf is uniformly continuous

on each Borel set ∆ with finite Lebesgue measure.

Now, we show that Qf is not in general uniformly continuous. We give the

details of the following particular case.

Example 5 (Optimal Phase Space Representation). If we choose

f 2(x) =
1

l
√
2 π

e(−
x2

2 l2
), l ∈ R− {0}.
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in (26), we get an optimal phase space representation of quantum mechanics

[37]. In this case,

Qf(∆) =

∫ ∞

−∞

(∫

∆

|f(x− y)|2) dy
)
dQx

=
1

l
√
2 π

∫ ∞

−∞

(∫

∆

e−
(x−y)2

2 l2 dy
)
dQx =

∫ ∞

−∞

µ∆(x) dQx

where,

µ∆(x) =
1

l
√
2 π

∫

∆

e−
(x−y)2

2 l2 dy (27)

defines a Markov kernel.

In order to prove that Qf is not uniformly continuous we consider the

family of sets ∆i = (−∞, ai), limi→∞ ai = −∞ such that ∆i ↓ ∅, and prove

that limi→∞ ‖Qf(∆i)‖ = 1. For each i ∈ N,

lim
x→−∞

µ∆i
(x) = lim

x→−∞

1

l
√
2 π

∫

∆i

e−
(x−y)2

2 l2 dy

= lim
x→−∞

1

l
√
2 π

∫

(−∞, ai−x)

e−
y2

2 l2 dy =
1

l
√
2 π

∫ ∞

−∞

e−
y2

2 l2 dy = 1.

Now, we prove that ‖F (∆i)‖ = 1, i ∈ N. Indeed, if

ψn = χ[−n,−n+1](x),

lim
n→∞

〈ψn, Q
f (∆i)ψn〉 = lim

n→∞

∫ ∞

−∞

µ∆i
(x)|ψn(x)|2 dx (28)

= lim
n→∞

∫

[−n,−n+1]

µ∆i
(x) dx = 1. (29)

Since, for each∆ ∈ B(R), ‖Qf (∆)‖ ≤ 1, equation (28) implies that ‖Qf (∆i)‖ =

1, for each i ∈ N. Hence, limi→∞ ‖Qf(∆i)‖ = 1 and Qf cannot be uniformly

continuous.

It is worth noticing that although Qf is not uniformly continuous, µ∆ is

continuous for each interval ∆ ∈ B(R). Indeed,

|µ∆(x)− µ∆(x
′)| = 1

l
√
2 π

∣∣∣
∫

∆

e−
(x−y)2

2 l2 dy −
∫

∆

e−
(x′−y)2

2 l2 dy
∣∣∣

=
1

l
√
2 π

∣∣∣
∫

∆x

e−
(y)2

2 l2 −
∫

∆x′

e−
(y)2

2 l2 dy
∣∣∣ ≤ 1

l
√
2 π

∣∣∣
∫

∆

e−
(y)2

2 l2 dy
∣∣∣
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where,

∆x = {z ∈ R | z = y − x, y ∈ ∆}, ∆x′ = {z ∈ R | z = y − x′, y ∈ ∆}

and,

∆ = (∆x −∆x′) ∪ (∆x′ −∆x).

Therefore, |x− x′| ≤ ǫ implies,

|µ∆(x)− µ∆(x
′)| ≤ 1

l
√
2 π

∣∣∣
∫

∆

e−
(y)2

2 l2 dy
∣∣∣ ≤ 1

l
√
2 π

∫

∆

dy =

√
2

l
√
π
ǫ.

Appendices

A Semispectral measures with spectrum in R

We show that the results proved in the preceding sections hold in the general

case of a POV measure with spectrum in R. It is sufficient to show that

theorems 3 and 8 hold for POV measures with unbounded spectrum.

In the following f will denote a continuous, one-to-one function from (0, 1) to

R. For example, f can be the function f(x) = tan(πx − π
2
). Anyway, the

results we are going to prove do not depend on the choice of f .

Definition 20. Given a POV measure F : B(R) → F(H), we introduce the

POV measure

F :B([0, 1]) → F(H)

∆ ∈B([0, 1]) 7→ F (∆) := F [f(∆ ∩ (0, 1))]

where, f : (0, 1) → R is a continuous one-to-one function.

Notice that the POV measure F has spectrum in [0, 1] and

F (∆) = F (f−1(∆)), ∆ ∈ B(R).

Theorem A1. For any real commutative POV measure F with spectrum in

R, there exist a bounded self-adjoint operator A with spectrum σ(A) ⊂ [0, 1],

a strong Markov Kernel µ : σ(A)× B(R) → [0, 1] and a ring R of subset of R

which generates B(R), such that:
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1) µ∆(·) is continuous for each ∆ ∈ R,

2) µ(·)(λ) is additive on R,

3) F (∆) = µ∆(A), ∆ ∈ B(R),

4) there is a set Γ ⊂ σ(A), EA(Γ) = 1, such that µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′,

λ, λ′ ∈ Γ.

Proof. Let F be as in definition 20. Since F has spectrum in [0, 1], theorem 6

applies. Therefore, there exists a bounded self-adjoint operator A with spec-

trum σ(A) ⊂ [0, 1], a strong Markov kernel µ(·)(·) : σ(A) × B([0, 1]) → [0, 1],

and a ring R(S) ⊂ B([0, 1]), such that

i) µ∆(·) is continuous for each ∆ ∈ R(S),

ii) µ(·)(λ) is additive on R(S),

iii) F (∆) = µ∆(A), ∆ ∈ B([0, 1]),

iv) there is a set Γ ⊂ σ(A), EA(Γ) = 1, such that µ(·)(λ) 6= µ(·)(λ
′), λ 6= λ′,

λ, λ′ ∈ Γ,

v) R(S) generates the Borel σ-algebra B([0, 1]).

Now, let us consider the map

µ(·)(·) : σ(A)× B(R) → [0, 1] (30)

(λ,∆) 7→ µ∆(λ) := µf−1(∆)(λ)

Since ∪∞
i=1f

−1(∆i) = f−1(∪∞
i=1∆i), ∆i ∩ ∆j = ∅, and µ is a strong Markov

kernel, the map µ must be a strong Markov kernel. Since µ is additive on

R(S), µ is additive on the ring R = {f(∆∩(0, 1)),∆ ∈ R(S)} which generates

(see page 63 in Ref. [34]) the Borel σ-algebra of the reals B(R). Moreover,

∫

σ(A)

µ∆(λ) dE
A
λ =

∫

σ(A)

µf−1(∆)(λ) dE
A
λ = F (f−1(∆)) = F (∆)

so that (F,A, µ) is a von Neumann triplet.

Since µ is continuous on R(S), all the functions µ∆(·), ∆ ∈ R, are continuous.

Item 4 comes directly from item iv) above.
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Now, we extend theorem 8 to the case of POVM with spectrum in R.

Theorem A2. A commutative semispectral measure F : B(R) → F(H) admits

a strong Feller Markov kernel if and only if it is uniformly continuous.

Proof. First, we prove that F is uniformly continuous if and only if F is uni-

formly continuous. Suppose F uniformly continuous and ∆,∆i ∈ B([0, 1]),
∆i ↓ ∆. We have,

lim
i→∞

‖F (∆i)− F (∆)‖ = lim
i→∞

‖F [f(∆i ∩ (0, 1)]− F [f(∆ ∩ (0, 1)]‖ = 0

Conversely, suppose F uniformly continuous and ∆,∆i ∈ B(R), ∆i ↓ ∆. We

have,

lim
i→∞

‖F (∆i)− F (∆)‖ = lim
i→∞

‖F [f−1(∆i)]− F [f−1(∆)]‖ = 0

Now, we can proceed with the proof of the theorem. Suppose F uniformly

continuous. Then, F is uniformly continuous and, by theorem 8, there exist

a bounded self-adjoint operator A and a strong Feller Markov kernel µ(·)(·) :
σ(A) × B([0, 1]) → F(H) such that, for each ∆ ∈ B([0, 1]), µ∆(A) = F (∆).

Let us consider the following Markov kernel,

µ(·)(·) : σ(A)× B(R) → [0, 1]

(λ,∆) 7→ µ∆(λ) := µf−1(∆)(λ)

We have
∫

σ(A)

µ∆(λ) dE
A
λ =

∫

σ(A)

µf−1(∆)(λ) dE
A
λ = F (f−1(∆)) = F (∆)

so that (F,A, µ) is a von Neumann triplet.

Moreover [34], B(R) = {f(∆ ∩ (0, 1)), ∆ ∈ B([0, 1])}. By definition, µB(·) =
µ∆∩(0,1)(·) for each Borel set B := f(∆ ∩ (0, 1)), ∆ ∈ B([0, 1]). Since, µ is

a strong Feller Markov kernel, the function µB(·) = µ∆∩(0,1)(·) is continuous.

Therefore, µ is a strong Feller Markov kernel.

Conversely, suppose that there exists a strong Feller Markov kernel µ(·)(·) :

σ(A)×B(R) → [0, 1] such that µ∆(A) = F (∆). Then, thanks to the bijectivity

of f , the map
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µ(·)(·) : σ(A)× B([0, 1]) → [0, 1]

(λ,∆) 7→ µ∆(λ) := µ[f(∆∩(0,1)](λ)

is a strong Feller Markov kernel. Indeed, for each λ ∈ σ(A),

µ∆(λ) = µ∪∞

i=1∆i
(λ) = µf [∪∞

i=1∆i∩(0,1)](λ)

= µ∪∞

i=1[f(∆i∩(0,1)](λ) =

∞∑

i=1

µf(∆i∩(0,1))(λ) =

∞∑

i=1

µ∆i
(λ).

where, ∆ = ∪∞
i=1∆i, ∆i ∩∆j = ∅. Moreover,

∫

σ(A)

µ∆(λ) dE
A
λ =

∫

σ(A)

µ[f(∆)∩(0,1)](λ) dE
A
λ = F [f(∆) ∩ (0, 1)) = F (∆).

Therefore, theorem 8 implies the uniform continuity of F and then the uniform

continuity of F .

B Sequences of continuous functions

The following theorem is due to Dini. We give a proof based on the use of

sequences.

Theorem B1. Let {fn(λ)}n∈N be a non increasing sequence of continuous

functions defined on a compact set B ⊂ [0, 1] with values in [0, 1] and such

that fn(λ) → 0 point-wise. Then, fn(λ) → 0 uniformly.

Proof. Since fn+1(λ) ≤ fn(λ) for each λ ∈ B, we have ‖fn+1‖∞ ≤ ‖fn‖∞. If

‖fn‖∞ → 0 clearly fn(λ) → 0 uniformly.

Then, suppose ‖fn‖∞ → a > 0. Since ‖fn+1‖∞ ≤ ‖fn‖∞, we have ‖fn‖∞ ≥ a,

for each n ∈ N.

Let λn be such that fn(λn) = ‖fn‖∞. Since {λn} is a bounded sequence of real

numbers, there exists a convergent subsequence {λnk
}k∈N. Let β be its limit,

i.e., β := limk→∞ λnk
. The compactness of B assures that β ∈ B. Moreover,

limk→∞ fnk
(λnk

) = a.

Let us consider the sequence of numbers fnk
(β). We prove that fnk

(β) ≥ a for

each k ∈ N. We proceed by contradiction. Suppose that there exists k̄ ∈ N
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such that fnk̄
(β) < a. Then, there exists a neighborhood I(β) of β such that

fnk̄
(λ) < a for each λ ∈ I(β). Moreover, since λnk

→ β, there exists l ∈ N

such that k > l implies λnk
∈ I(β). Take k > max{k̄, l}. Then, λnk

∈ I(β)

and fnk
(λ) ≤ fnk̄

(λ), for each λ ∈ B. Therefore,

fnk
(λnk

) ≤ fnk̄
(λnk

) < a

which contradicts the fact that fnk
(λnk

) = ‖fnk
‖∞ ≥ a, for each k ∈ N.

We have proved that fnk
(β) ≥ a, for each k ∈ N. This implies that limk→∞ fnk

(β) ≥
a and contradicts one of the hypothesis of the lemma, i.e., limn→∞ fn(λ) = 0

for each λ ∈ B.
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[34] M. Loève, Probability Theory I, 4th edition, Springer-Verlag, Berlin, 1977.

[35] B. Maslowski, J. Seidler, Probability Theory and Related Fields 118

(2000) 187-210.

[36] M.A. Naimark, Normed Rings, Wolters-Noordhoff Publishing, Gronongen

(1972).
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