氮化硅陶瓷的增韧研究

孙宏荣 王明志

(北京航空航天大学第九研究室、北京、100083)

STUDY ON TOUGHENING OF Si₃N₄ CERAMICS

Sun Hong-rong, Wang Ming-zhi

(The Ninth Research Department, Beijing University of Aeronautics and Astrnautics, Beijing, 100083)

摘 要 研究了加入 ZrO₂和 SiC 晶须对热压烧结 Si₃N₄的増强増韧作用。加入 ZrO₂和 SiC 晶 须能提高复合材料的断裂韧性 K_{1c} , 但降低了抗弯强度。分别加入 10vol%纯 ZrO₂和含有钇的 Y-ZrO₂, 使 Si₃N₄ 陶瓷的室温 K_{1c} 从原来的 6.3MPa · \sqrt{m} 分别提高到 7.3MPa · \sqrt{m} 和 7.6MPa · \sqrt{m} 。加入 10wt%SiC 晶须, 使 Si₃N₄ 陶瓷的室温 K_{1c} 从 6.3MPa · \sqrt{m} 提高到 7.1MPa · \sqrt{m} 。

关键词 碳化硅晶须,氧化铅,增韧

Abstract In this paper the influences of ZrO_2 and SiC Whiskers on strengthening and toughening effects of HP Si₃N₄ have been studied. By addition of ZrO_2 and SiC whiskers, fracture toughness $K_{\perp C}$ of composites increased, but flexural strength decreased simultaneously. In separate addition of 10vol% pure ZrO_2 and $Y-ZrO_2$ containing Y, fracture toughness of the Si₃N₄ ceramics at room temperature increased from 6.3 to 7.3 and 6.3 to 7.6 MPa $\cdot \sqrt{m}$ respectively. The improvement of fracture tonghness is due to the toughening effect of microcrack. By the way of addition of $10wt_{0}^{0}$ SiC whiskers, at room temperature $K_{\perp C}$ of Si₃N₄ ceramics is increased from 6.3 to 7.1 MPa $\cdot \sqrt{m}$. Toughening of SiC whisker was caused by crack deviation and pull-out effect of whiskers as well.

Key words SiC whisker, zirconia, toughening

高温结构陶瓷可能成为未来制造燃气涡轮发动机热端部件的材料,但其存在的主要问题之一是脆性。原因是材料在裂纹扩展过程中,除断裂表面能之外,再没有其他吸收能量的机制,因此一切的增韧原理都是基于在陶瓷断裂过程中产生更多的吸收能量的机制,从 而达到增韧的目的。对高温结构陶瓷有价值的增韧方法是纤维(晶须)增韧^[1]和氧化锆相变 增韧。本文研究了对 Si₃N₄ 陶瓷的增韧效果。

1 实验方法

1.1 原料

国产 Si₃N₄ 粉末, 经 X 光衍射分析 α-Si₃N₄ 大于 95%, 其他杂质是 0.6%Si, 0.16%Fe, 0.07%Al和0.11%W。

1992年4月14日收到。1992年11月5日收到修改稿

烧结助剂为 Y₂O₃ 和 Al₂O₃。Y₂O₃ 为分析纯粉末。Al₂O₃ 为硫酸铝铵经 1100~1250℃ 热分解制得。

增强增韧剂为 ZrO₂ 和 SiC 晶须。ZrO₂ 为化学纯粉末, ZrO₂含量大于 99.0%。X 光 衍射 为 单 斜 相 (m-ZrO₂)。含 Y₂O₃ 的 ZrO₂(Y-ZrO₂)是 用 化 学 共 沉 法 制 备 的 , Y₂O₃ 的含量为 2.7mol%, X 光 衍射为四方 ZrO₂(t-ZrO₂)和 单 斜 ZrO₂(m-ZrO₂)所 构 成。

SiC 晶须经 X 光衍射为 β-SiC 结构, 图 1 为其 SEM 照片,其直径为 0.1~ 1.0μm,长度在几十 μm 至几百 μm 级之 间。

1.2 增韧剂种类、用量及试样的制备过程

图 1 SiC 晶须的 SEM 照片

(1)3 种增韧材料 纯 ZrO₂; 含有 2.7mol%Y₂O₃ 的 ZrO₂(Y-ZrO₂); 碳化硅晶须。各种 材料的加入量如表 1 所示。

	ZrO ₂ / vol%	Y-ZrO ₂ / vol%	SiC 晶须 / wt%	
	0	0	0	
<i>b</i> u	4	4	-	
入	10	10	10	
量	16	16	20	
	22	-	30	

表1 增韧材料种类及用量

(2)SiC 晶须分散工艺 采用球磨混合、超声波振动以及利用胶体化学中胶体不聚沉 而能长期稳定地存在的原理获得满意的分散效果^[2]。首先将 Si₃N₄ 粉末与烧结助剂粉末在 球磨机内混合均匀,将 SiC 晶须在蒸馏水中超声波振动分散,然后将两种浆料在球磨机 内混合均匀,调整 pH 值,再经超声波振动和快速干燥后即可得到 Si₃N₄ 粉末与 SiC 晶须 分散均匀的混合料。

(3)试样的制备。按配方称取各种原料,经混合均匀后,在 50t 压力机上压制成直径 50mm 的圆形毛坯。在热压烧结炉内进行 1680℃烧结,压力为 25MPa,保温保压 20min。氮气压力为 0.12MPa。将获得的烧结体进行切割、研磨后得到力学性能试样。测 定抗弯强度试样的尺寸为 3×4×40mm³,测定K_{1C}试样的尺寸为 2×4×40mm³,试样切 口采用预制切口法制成。

(4)性能的检测 采用三点弯曲的方法测定各种复合材料的室温和高温抗弯强度以及 断裂韧性。测试设备为 AG-10T 机械伺服万能精密试验机,加载速率为 0.5mm / min。

2 实验结果及讨论

2.1 ZrO_2 含量对 ZrO_2 / Si_3N_4 陶瓷基复合 材料性能的影响

(1)ZrO₂ 含量与复合材料性能间的关系 如图 2 所示,室温抗弯强度随 ZrO₂ 含量的 增加而不断下降,当 ZrO₂ 含量为 22vol% 时达到 208MPa,下降了约 600MPa;随着 ZrO₂ 含量的增加,室温断裂韧性 K_{1c} 和 1200℃的 K_{1c} 都增加,当 ZrO₂ 达到 10vol%时,二者都出现峰值,分别从 6.3MPa・√m和 4.1MPa・√m提高到 7.3MPa・√m和 5.93MPa・√m。在全部 试验的 ZrO₂ 含量范围内,1200℃的 K_{1c} 都 较室温 K_{1c} 要低。估计是因为晶间玻璃相 在高温下软化所致。

图 2 ZrO₂ 加入量与复合材料性能间的关系

ZrO₂ 含量对复合材料致密度的影响如表 2 所示,复合材料相对密度随 ZrO₂ 含量的 增加而降低,但都在 96%以上。

ZrO ₂ 含量 / vol%	6 0	4	10	16	22
烧结密度 / g・cm	3 3.17	3.27	3.39	3.53	3.65
相对密度 %	98.1	98.1	97.1	96.8	96,0
0. 5k	(m) 2.958(<i>t</i>) 2.846(m)	o Sis Cho Cho Cho Sis Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	. 5k . 25 - Ž	 3. 17 (m) 2. 966 (t) 2. 853 (m) 	N ^e IS
25.00	30.00	35.00	25.00	30.00	35.00
	2 <i>0</i>			2 0	
	(a)			(6)	

表 2 ZrO,含量与复合材料密度间的关系

图 3 含 10vol%ZrO2的 ZrO2/Si3N4 材料试样的 X 光衍射图 (a)试样表面; (b)试样断口

(2)ZrO₂ 对 ZrO₂ / Si₃N₄ 复合材料力学性能影响的分析 X 光衍射表明, Si₃N₄ 基体中的 ZrO₂ 是以单斜相和四方相的形式同时存在,如图 3 所示。图 3(*a*)为含 10vol%ZrO₂ 试样表面的衍射图,而图 3(*b*)则为试样断口的衍射图。比较图 3(*a*)与图 3(*b*), t-ZrO₂ 与 m-ZrO₂ 的相对数量比例并未出现差别,t-ZrO₂ 在试样断裂过程中没有产生 t-ZrO₂ \rightarrow m-ZrO₂ 的相转变;ZrO₂ 对 Si₃N₄ 基体没有应力诱导相变增韧作用。而 ZrO₂ 的含量为

4vol%和 10vol%时 K_{1c} 的增加可能是微裂纹增韧机制^[3]。文献[4]指出在 Si₃N₄中由于 Si₃N₄基体对 ZrO₂颗粒的约束作用小,t-ZrO₂能稳定存在到室温的颗粒的临界尺寸小于 0.1µm,而本文所用的 ZrO₂颗粒重量积累达到 50%时的平均粒度为 0.42µm,大于临界尺 寸,因此大多数 ZrO₂颗粒在烧结后的冷却过程中产生了 t-ZrO₂→m-ZrO₂的转变而诱发 微裂纹。图 4SEM 说明了 ZrO₂ / Si₃N₄ 复合材料中存在的微裂纹。由于微裂纹很细小, 显出了一定的增韧效果,使 K_{1c} 随 ZrO₂的加入而增加。但随着 ZrO₂含量的进一步增 加,诱发的微裂纹过多,以及 ZrO₂颗粒的团聚加重而导致 K_{1c} 在出现峰值后下降。

随着 ZrO₂ 的加入,复合材料的强度却不断降低,是产生的微裂纹起了坏作用。另一方面随着 ZrO₂ 加入量的增多,其颗粒之间因分散不良,加重团聚现象,阻碍了烧结。表 2 说明,随着 ZrO₂ 数量的增加,相对密度不断降低。

| ¥ 4 10%ZrO₂ / Si₃N₄ 中的微裂纹 图 5 Y-ZrO₂(2.7%mol%Y₂O₃)加入量与复合材料性能关系
 2.2 Y-ZrO₂ 对 Y-ZrO₂ / Si₃N₄ 陶瓷复合材料性能的影响

Y-ZrO₂的加入量与复合材料力学性能间的关系如图 5 所示。复合材料的室温 K_{1c} 随 Y-ZrO₂的加入而增加,当添加量达到 10vol%时, K_{1c} 出现峰值,从 6.3MPa· \sqrt{m} 提高 到 7.6MPa· \sqrt{m} ,加入 Y-ZrO₂与加入纯 ZrO₂一样,皆降低了复合材料的强度,从 810MPa 降至 511MPa。图 6(*a*)为 Y-ZrO₂/Si₃N₄(10vol%Y-ZrO₂)复合材料试样表面的 X 光衍射图。与图 3(*a*)相比,加入 Y-ZrO₂者 t-ZrO₂与 m-ZrO₂的比值增大。说明加 Y₂O₃提高了 Si₃N₄基体中 t-ZrO₂存在的稳定性,因而 t-ZrO₂相对数量增多。这样在材 料冷却过程中由 t-ZrO₂→m-ZrO₂时,相变颗粒的数量会减少,诱发微裂纹的数量相应 减少,尺寸也减小,从而提高微裂纹的增韧效果。因此加入 10vol%Y-ZrO₂复合材料的 K_{1c} 达到 7.6MPa· \sqrt{m} ,优于加入同样数量的纯 ZrO₂者。图 6(*b*)为上述同样材料试样 断口的 X 光衍射图。将图 6(*a*)、图 6(*b*)两图比较, t-ZrO₂和m-ZrO₂的相对数量也无变 化。说明加入 Y-ZrO₂亦无应力诱导相变增韧,仍为微裂纹增韧机制。但加入 Y-ZrO₂ 所产生的微裂纹比加入纯 ZrO₂者要细小、而细小的微裂纹对强度的不利影响要小。因此 从图 5、图 2 的比较中看出 Y-ZrO₂/Si₃N₄复合材料的强度随 Y-ZrO₂更为有利。

2.3 SiC 晶须对 SiC 晶须 / Si₃N₄ 陶瓷复合材料性能的影响

SiC 晶须 / Si₃N₄ 复合材料密度随 SiC 晶须加入量的变化如表 3 所示,随着 SiC 晶须

表 3 SiC 晶须含量与复合材料密度间的关系

SiC 晶须加入量 / wt%	0	10	20	30
烧结密度 / g・cm ⁻³	3.17	2.93	2.84	2.76
相对密度/%	98.1	90.8	88.1	85.7

因 SiC 晶须含量增加时,更不易分 散,从而影响烧结的进行,故相对密度不断 降低,因而 SiC 晶须含量不能过高,其加 入量与复合材料性能间的关系如图 7 所示。 SiC 晶须的加入有损于氮化硅基体的抗弯强 度。复合材料的强度随 SiC 晶须含量的增 加不断降低。当 SiC 晶须含量达到 30wt% 时,强度从 810MPa 降低至 523MPa。SiC 晶须的抗拉强度为 3~14GPa^[5]。弹性模量

为 400~700GPa^[5], 而热压 Si₃N₄ 的抗拉 图7 SiC 晶须加入量与复合材料性能间关系 强度为 350~580MPa^[6], 弹性模量以 352GPa 计算^[7]得 E(晶须) / E(Si₃N₄)≈1.1~2, 因此 理论上 SiC 晶须对 Si₃N₄ 基体应有增强作用。这种增强作用取决于 SiC 晶须与基体界面的 结合强度、晶须的分散状况以及晶须的长径比等因素。如结合强度适当,不仅能增韧还有 增强效果。如果结合强度过低,晶须对基体的强度会有害。加之晶须过多时更不易分散而 阻碍烧结的进行,因此复合材料的强度反而随晶须加入量的增多而不断下降。文献[7]也 有类似的报导。因此适当提高晶须与基体的界面结合强度以及提高晶须的分散效果是非常 重要的。

SiC 晶须复合材料的室温 K_{1c} 随 SiC 晶须加入量的增加而提高,当含量大于 10wt% 后, K_{1c} 从 6.3MPa · \sqrt{m} 提高到 7.1MPa · \sqrt{m} 。SiC 晶须的增韧是由于 SiC 晶须的加入 造成了裂纹偏转^[1]和晶须的拔出效应^[3],吸收了更多的能量,从而提高了 K_{1c} 。从图 8 示 出本文所用试样断裂时因裂纹偏转而在断口上形成的明显阶梯状的断裂表面。图 9 为 SiC

晶须的拔出效应。当 SiC 晶须加入量过多时不易分散,产生 SiC 晶须的团聚物,阻碍了烧结的进行。因此图 7 表明,当 SiC 晶须加入量从 10wt%增至 30wt%时,室温K_{IC}出现降低的趋势。当然,断裂韧性K_{IC}出现峰值的 SiC 晶须的含量与烧结温度、烧结时间以及晶须的分散状况等有关。如 SiC 晶须含量较多时要达到良好的烧结状态就需要更长的烧结时间。

图8 30%SiC晶须 / Si₃N₄材料中裂纹 偏转效应 图9 30%SiC晶须 / Si₃N₄材料中SiC 晶须的拔出效应

3 结 论

(1)加入纯 ZrO_2 能将 Si_3N_4 基体的室温 K_{1c} 从 6.3MPa・ \sqrt{m} 提高到 7.3MPa・ \sqrt{m} ; 将 1200℃的 K_{1c} 从 4.1MPa・ \sqrt{m} 提高到 5.93MPa・ \sqrt{m} 。其最佳含量为 10vol%左右, 但 ZrO_2 却降低了基体的抗弯强度。

 (2)加入 Y-ZrO₂ 较加入纯 ZrO₂ 更为有利,加 Y-ZrO₂ 能使 Si₃N₄ 基体的室温K_{1C}从
 6.3MPa・√m 提高到 7.6MPa・√m。其最佳含量为 10vol%左右,加入 Y-ZrO₂ 对室温 抗弯强度的不利影响要小于加入纯 ZrO₂ 者。

(3)加入 SiC 晶须所形成的晶须复合材料能将 K_{IC} 从纯 Si₃N₄时的 6.3MPa · \sqrt{m} 提高 到 7.1MPa · \sqrt{m} 。

参考文献

- 1 吴建铣,李建保,黄勇,晶须增韧陶瓷基复合材料设计要点与复合技术,硅酸盐学报、1990,18(1):72~81
- 2 木下俊哉,佐藤 裕,植木正憲、久保紘 SiCウイスカ―强化Si₃N₄セラミ_ックス複合体の機械的性质.日本セラミ_ックス协会第二回秋季シンポジウム講演予稿集,日本,1989,307~308
- 3 张清纯. 陶瓷材料的力学性能. 北京: 科学出版社, 1987. 318~349
- 4 盛绪敏.徐洁.细分散ZrO2的增韧作用及其在Si3N4中的应用.硅酸盐学报, 1985, 13(3): 364~373
- 5 上野和夫. Si₃N₄-SiCウイスカ―系複合セラミックス. セラミックス, 1983, 18(12): 1040~1046
- 6 加藤诚轨,水谷惟恭,植松敬三,木枝畅夫译.ハイク・セラミックス.工学.内田老鹤圃, 1985.87
- 7 Shalek P D. Petrovic J J, Hurley G F, Gac F D. Hot-Pressed SiC Whisker / Si₃N₄ Matrix Composites. Amer Ceram Soc Bull, 1986, 65(2): 351~356