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LARGE SELF-INJECTIVE RINGS AND THE GENERATING HYPOTHESIS

LEIGH SHEPPERSON AND NEIL STRICKLAND

ABSTRACT. We construct a number of different examples of non-Noetherian graded rings that are injective
as modules over themselves (or have some related but weaker properties). We discuss how these are related
to the theory of triangulated categories, and to Freyd’s Generating Hypothesis in stable homotopy theory.

1. INTRODUCTION

In this paper we study graded commutative rings R that are large in various senses (in particular, not
Noetherian) and self-injective (meaning that R is injective as an R-module). We use graded rings because
they are relevant for our applications, but ungraded rings are covered as well because they can be regarded
as graded rings concentrated in degree zero. The graded setting is assumed everywhere, so “element” means
“homogeneous element” and “ideal” means “homogeneous ideal” and so on. Our rings will be commutative
in the graded sense, so that ba = (—1)l1*lab.

It is not hard to prove that any Noetherian self-injective ring is Artinian. In particular, if R is a finitely-
generated algebra over a field K that is self-injective then we must have dimg (R) < oo and it turns out that
R ~ Hom(R, K) as R-modules. Examples of this situation include R = K|[xz1,...,2,]/(r1,...,7,) for any
regular sequence 71, ...,7,, or the cohomology ring R = H*(M; K) for any closed orientable manifold M.
These are the most familiar examples of self-injective rings, and they are all very small. We will be looking
for examples that are much larger.

Our motivation comes from a question in stable homotopy theory, which we briefly recall. In stable
homotopy theory we study a certain triangulated category JF, the Spanier-Whitehead category of finite
spectra. For any X,Y € F the set Homz(X,Y') is a finitely generated abelian group. It turns out that most
methods for studying Homz(X,Y") treat the p-primary parts separately for different primes p. We will thus
fix a prime p and define [X,Y] = Z, ® Homz(X,Y"), where Z, is the ring of p-adic integers. These are the
morphism sets in a new triangulated category which we call F,. This has a canonical tensor structure, with
the tensor product of X and Y written as X A'Y. The unit for this structure is called S, so S A X ~ X.
As part of the triangulated structure we have a suspension functor ¥: 7, — F,, and we write S™ for X"S.
We put R,, = [S™,S]. These sets form a graded commutative ring, whose structure is extremely intricate.
A great deal of partial information is known, but it seems clear that there will never be a usable complete
description. Some highlights are as follows.

e R, =0forn <0, and Ry = Z,, and R,, is a finite abelian p-group for n > 0.

e Both the ranks and the exponents of the groups R, can be arbitrarily large.

e All elements in R,, with n > 0 are nilpotent. Thus, the reduced quotient is R/ V0 = L.

e Various results are available describing most or all of the structure of R,, for n < f(p), where f(z)
is a polynomial of degree at most three. The simplest of these says that R, =0 for 0 <n < 2p — 3,
and Rgpfg = Z/p

Now consider an arbitrary object X € F,,. We define m,(X) = [S™, X] for all n € Z. This defines a graded
abelian group 7. (X), which has a natural structure as an R-module.

Conjecture 1.1 (Freyd’s Generating Hypothesis). The functor m,: F, — Modpg is faithful.

This is actually a technical modification of Freyd’s conjecture [9], because Freyd did not tensor with the
p-adics. This causes various trouble in the development of the theory, which Freyd avoided in ad hoc ways.
Much later Hovey redeveloped the theory in the p-adic setting [10], which involves only minor modifications
to Freyd’s arguments but works much more smoothly.
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Nearly half a century after Freyd made his conjecture, there is still no hint of a proof or a counterexample.
However, there has been a certain amount of indirect progress; for example, various authors have settled the
analogous questions in other triangulated categories where computations are easier [1H4].

On the other hand, it is known that the Generating Hypothesis would have some very strong and surprising
consequences, as we now explain.

Definition 1.2.

(a) A graded ring R is coherent if every finitely generated ideal is finitely presented.
(b) A graded ring R is totally incoherent if the only finitely presented ideals are 0 and R.

Theorem 1.3 (Freyd [9], Hovey [10]). Suppose that the Generating Hypothesis is true.

(a) The functor m.: F, — Modg is automatically full as well as being faithful, so it is an embedding of
categories.

(b) For every object X € Fp, the image m.(X) is an injective R-module. In particular (by taking X = S)
the ring R is self-injective.

(¢) The ring R is totally incoherent.

Note in particular that (a) gives a full subcategory of Modg that has a natural triangulation. This is
very unusual; in almost all known triangulated categories, the morphisms are equivalence classes of homo-
morphisms under some nontrivial equivalence relation, and this equivalence structure is tightly connected to
the definition of the triangulation.

Our aim in this paper is to shed light on the Generating Hypothesis by finding examples of self-injective
rings that share some of the known or conjectured properties of the stable homotopy ring R.

Our main results are as follows. Firstly, one cannot disprove self-injectivity by looking only in a finite
range of degrees:

Theorem 1.4. Let R be a graded-commutative ring such that
(a) R, =0 fork <0
(b) Ry is finite for all k > 0.
Suppose given N > 0. Then there is an injective map ¢: R — R’ of graded rings such that
(1) R’ also has properties (a) and (b).
(2) ¢: Rr — R}, is an isomorphism for k < N
(3) R’ is self-injective.

This result was a great surprise to the authors at least, although the proof is not too hard. We will restate
and prove it as Theorem We conjecture that the theorem remains true if we allow Ry to be Z,, but we
have not proved this.

Most of our remaining results relate to specific examples. We have aimed to give a wide spread of examples,
rather than formulating each example with maximum possible generality. We will write F for Z/2.

Proposition 1.5. Let E be the exterior algebra over F with a generator x; € Fqi for allt € N. Then E is
self-injective and coherent. The reduced quotient is F/v/0 =T.

This will be proved as Example B7 and Proposition [5.4] (apart from the fact that E/v/0 = F, which is
clear).

Theorem 1.6. Consider the ring
C= ]F[y07y17 e ]/(yzg + YiYi+1 | 12> 0)7
with the grading given by |y;| = 2. Then C is self-injective and coherent. The reduced quotient is

C/VO0 =Flao, a1, ... ]/ (wix; | i # j) = F & @ znFlz,]

n>0
—_ 5 2
where T, =Y. Yn_;-

This will be proved as Propositions [[.I8] [[.25] and [.20]
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Definition 1.7. Let p be an odd prime, and define a graded ring J as follows. There are isomorphisms
n: Ly — Jo and C: Q/Z(p) — J_. Next, for each nonzero integer k there is a generator ax € Jyp—1)r—1
generating a cyclic group of order pU»(¥)+1 where vp(k) is the p-adic valuation of k. For the product structure,
we have

n(a)n(b) = n(ab) and n(a){(b) = ((ab) and n(a)ar = a o.
¢(a)¢(b) =0 and ((a)ay = 0 for all k.
If £ > 0 we have

Qpa_ = —_pap = ¢ (pflfvp(k) + Z(p)) :
o oy, =0 whenever j + k # 0.

Remark 1.8. It is known that J is the homotopy ring of the Bousfield localisation of the sphere spectrum
with respect to p-local K-theory [I4, Section 8], but we will not need to use that fact.

Theorem 1.9. The ring J = Z, ® J is self-injective and totally incoherent. The reduced quotient is

JINO = Z,.

This will be proved as Corollary B4 and Proposition 87 (apart from the fact that J /0 = Z,, which is
clear).

Remark 1.10. Tensoring with Z, here just has the effect of replacing Z,) in degree zero with Z,. Note
that this is not the same as the p-completion of J, because (Q/Z,)), = 0. Moreover, a derived version of
p-completion would replace Q/Z,) by a copy of Z, shifted by one degree, which is different again. The ring
J itself is not self-injective.

Definition 1.11. Let K be a field. For any map a: [0,1] = K we put supp(a) = {q € [0,1] | a(q) # 0}. We
say that a is an infinite root series if every nonempty subset of supp(a) has a smallest element (so supp(a)
is well-ordered). We let P denote the set of infinite root series, and call this the infinite root algebra.

Theorem 1.12. The formula
(@h)(@)= 3 alr)blg=r)
0<r<gq
gives a well-defined ring structure on P. With this structure, P is self-injective and totally incoherent. The
reduced quotient is P/\/6 =K.

This will be proved in Propositions .20 and [@.21] and Corollary @13
We will also discuss two rings that are not self-injective, but have a related property that we now explain.

Definition 1.13. Let R be a graded commutative ring, and let J be an ideal in R. We put anng(J) = {a €
R |aJ = 0}. It is tautological that the ideal ann%(.J) = anng(anng(J)) contains J. We say that R satisfies
the double annihilator condition if ann%(J) = J for all finitely generated ideals .J.

Proposition 1.14. If R is self-injective then it satisfies the double annihilator condition. Conversely, if R
is Noetherian and satisfies the double annihilator condition, then it is self-injective.

This is proved in Remark 2.4 and Theorem (.11

Definition 1.15. For any integer n we let B(n) be the set of exponents i such that 2¢ occurs in the binary
expansion of n, so B(n) is the unique finite subset of N such that n = EieB(n) 20,

The Rado graph has vertex set N, with an edge from ¢ to j if (i € B(j) or j € B(i)). The Rado ideal in
the exterior algebra E has a generator z;z; for each pair (7, j) such that there is no edge from ¢ to j in the
Rado graph. The Rado algebra @ is the quotient of E by the Rado ideal.

Remark 1.16. Although this looks like a very specialised definition, the appearance is deceptive. Roughly
speaking, any countable random graph is isomorphic to the Rado graph with probability one. See [51[6] for
discussion of the Rado graph. As far as we know, the corresponding algebra has not been considered before.

Theorem 1.17. The Rado algebra is totally incoherent (and in particular, not Noetherian). It satisfies the
double annihilator condition, but is not self-injective. The reduced quotient is Q//0 = TF.
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This will be proved as Propositions [10.5] and (apart from the fact that @Q/+/0 = F, which is
clear).

For our final example, we need to recall some theory of ordinals. There is an exponentiation operation
for ordinals (different from the usual one for cardinals). There is a countable ordinal called €y such that
€o = w, and no ordinal a < ¢( satisfies & = w®. Any ordinal o < ¢y has a unique Cantor normal form

a=wng +- +wn,

where the n; are positive integers and a > 81 > --- > ;.

Definition 1.18. We write jo(c, 3) for the coefficient of w® in the Cantor normal form of a. We then put

(e, B) = max(po (e, B), o (B, @))-
We then put
A=Fzy | a< 60]/(xa:6[13+”(a’ﬁ) | a, 8 < €, # B).
We call A the €g-algebra.
Given any function §: ¢¢ — N, we can give A a grading such that |z4| = §(«). In Section [[I] we will

describe a particular function § with the property that d(a) > 0 for all o, and all the sets §~1{n} are finite.
This will ensure that the homogeneous pieces Ay are finite for all d.

Theorem 1.19. If J is any ideal in A that is generated by a finite set of monomials, then J = ann?(J).
However, there are non-monomial ideals J with J # ann?(J), so A does not satisfy the double annihilator
condition, and is not self-injective. Moreover, A is totally incoherent, and the reduced quotient is

A/VO=F[zy | a < €/ (zazs | a # B).
This will be proved as Propositions ITT.17, 0T1.21] and I1.22] and Corollary

2. GENERAL THEORY OF SELF-INJECTIVE RINGS

Let R be a graded commutative ring, and let Modg be the category of graded R-modules. Suppose that
R is self-injective. For M € Modg we put DM = Hompg(M, R) (regarded as a graded R-module in the usual
way). This construction defines a functor D: Modgr — Mod%’, which is exact because R is self-injective. It
follows that D? gives an exact covariant functor from Modg to itself. There is a natural map x: M — D?M
given by k(m)(u) = u(m).
Definition 2.1. We let U/ = Ug denote the full subcategory of Modp consisting of the modules M for which
k: M — D?M is an isomorphism.

Proposition 2.2. The category U is closed under finite direct sums, suspensions and desuspensions, kernels,
cokernels, images and extensions. It also contains R itself.

Proof. This is clear from the exactness of the functor D? and the five lemma. O
Corollary 2.3. If J < R is a finitely generated ideal, then J and R/J lie in U.
Proof. They are the image and cokernel of some map ;. , 4R - R. O

Remark 2.4. If J is an ideal in R then
D(R/J)~{a € R|aJ =0} =anng(J).

By dualising the sequence J — R — R/J, we see that D(J) = R/anng(J). It follows that D?(J) =
anng(anng(J)) = ann%(J). Thus, we have J € U iff J = ann%(J). In particular, if J is finitely generated
then J = ann%(J).

Lemma 2.5. For any a € Ry there is an isomorphism D(Ra) ~ X~ %Ra.

Proof. Given u € D(Ra). we put a(u) = u(a) € Riie. This defines a map a: D(Ra) — Y~ ¢R, which

is clearly injective. Note that if b € anng(a) then a(a)b = a(ab) = «(0) = 0. This proves that a(a) €

ann%(Ra)dJre = (Ra)d+te. In the opposite direction, if ¢ € (Ra)g4t. then we have ¢ = ma for some m € R.,

and the rule p,,(z) = ma defines an element y,, € D(Ra)e with a(u,,) = ¢. This proves that the image of

a is ¥7Ra, as required. O
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Proposition 2.6. If R is self-injective and a € R then R/ ann(a) is also self-injective.

Proof. Put Q@ = R/ann(a), and let i: Q — R be induced by x — za, so i is injective, with image Ra. For
M € Modg we write Dg(M) = Homg (M, Q) = Homg(M, Q) and Dr(M) = Homg(M, R). We are given
that Dp is exact, and we must show that Dg is exact. The map i: ) — R gives a natural monomorphism
i: Dg(M) — Dg(M), and it will suffice to show that this is also an epimorphism. For any ¢: M — R we see
that ann(a).¢(M) = ¢(ann(a)M) = ¢(0) = 0, so (M) < ann%(a) = Ra, and i: Q — Ra is an isomorphism,
so ¢ = i(1p) for some ¢ € Dg(M), as required. O

Proposition 2.7. If R is self-injective and I and J are ideals in R then anng(I + J) = anng(]) Nanng(J)
and anng(I NJ) = anng(I) + anng(J).

Proof. There is a short exact sequence

R/(INJ) 1, R/ToR/J N Ry 4 ).

By applying the exact functor D, we get a short exact sequence

1
anng(I N J) Jrrl anng () ® anng(J) M anng (Il + J).

The claim follows. O
Corollary 2.8. If R is local and self-injective and I and J are nontrivial ideals, then INJ is also nontrivial.

Proof. Let m be the maximal ideal. As I and J are nontrivial we have ann(I) < R and ann(J) < R, so
ann(l) < m and ann(J) < m, so ann(I NJ) = ann(l) + ann(J) <m < R, so I N J is nontrivial. O

3. CRITERIA FOR SELF-INJECTIVITY
We first record a graded version of the standard Baer criterion for injectivity.

Definition 3.1. Let R be a graded ring, and let I be a graded R-module. We say that I satisfies the Baer
condition if for every graded ideal J < R, every integer d and every R-module homomorphism ¢: ¥9J — I,
there exists m € I such that ¢(a) = am for all @ € I. We say that I satisfies the finite Baer condition if
the same condition holds for all finitely generated graded ideals J.

Proposition 3.2. In the above context, the module I is injective if and only if it satisifes the Baer condition.

Proof. This was originally done in the ungraded context in [7], as an application of Zorn’s Lemma. The
proof is also given in many textbooks such as [12, page 63]. It can be modified in an obvious way to keep
track of gradings, which gives our statement above. O

Proposition 3.3. Suppose that I is finite for all d, and that I satisfies the finite Baer condition. Then I
also satisfies the full Baer condition and so is injective.

Proof. Consider a graded ideal J < R and a homomorphism ¢: $¢J — I. For each finitely generated ideal
K C J we put

M(K)={mel;| ¢(a) =am for all a € K}.
The finite Baer condition means that this is a nonempty subset of the finite set I;. Choose K such that
|M(K)| is as small as possible, and choose m € M (K). For a € J it is clear that M (K + Ra) C M(K), so
by the minimality property we must have M (K + Ra) = M(K), so m € M (K + Ra), so ¢(a) = am. This
proves the full Baer condition. 0

Definition 3.4. Let R be a graded ring, and let I be an R-module. A test pair of length r and degree d is
a pair (u,v) where v € R" and v € I" such that the entries u; and v; are homogeneous with |v;| = |u;| + d
for all i. A block for such a pair is a vector b € R" such that b.u = 0 but b.v # 0 (where b.x = ), b;x;). A

transporter is an element m € I; such that v; = mu; for all .

Remark 3.5. We implicitly formulate the theory of graded groups in such a way that the zero elements in
different degrees are distinct. Thus, the notation |u| is meaningful even if v = 0.
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Proposition 3.6. The module I satisfies the finite Baer condition iff every test pair has either a block or a
transporter.

Proof. Suppose that every test pair has either a block or a transporter. Consider a finitely generated graded
ideal J < R, and a homomorphism ¢: £¢J — R. Choose a list u = (u1,...,u,) of homogeneous elements
that generates J, and put v; = ¢(u;) € I. Note that if b € R" with b.u = 0 then we can apply ¢ to see that
b.v = 0. It follows that the pair (u,v) has no block, so it must have a transporter. This means that there is
an element m € I with ¢(u;) = u;m for all 4, and it follows easily that ¢(a) = am for all a € J, as required.

Conversely, suppose that I satisfies the finite Baer condition. Consider a test pair (u,v) of degree d with
no block, and let J be the ideal generated by the entries u;. Define ¢: X¢J — I by A, biug) = >, biv;
(the absence of a block means that this is well-defined). The finite Baer condition means that there is an
element m € Iy with ¢(a) = am for all a € J, and this m is clearly a transporter for (u,v). |

Corollary 3.7. Let R be a graded commutative ring such that Ry is finite for all k. Suppose also that there
are subrings

R(O)<R()<R2)<---<R
such that each R(n) is self-injective and R =J,, R(n). Then R is self-injective.

Proof. Any test pair (u,v) € R" x R" can be regarded as a test pair over R(n) for sufficiently large n. As
R(n) is self-injective, there must be a block in R(n)" or a transporter in R(n). It is clear from the definitions
that such a block or transporter still qualifies as a block or transporter over R, so we see that R satisfies the
finite Baer condition. As we have assumed that Ry is finite for all k, we can use Proposition B.3] to see that
R is injective as an R-module. 0

Theorem 3.8. Let R be a graded commutative ring such that Ry is finite for all k. Then the following are
equivalent:

(a) R is self-injective.

(b) For all finitely generated ideals J, K < R we have ann%(J) = J and

anng(J N K) = anng(J) + anng(K).
(c) For all elements a € R and every finitely generated ideal J < R we have ann%k(a) = Ra and
anng(J N Ra) = anng(J) + anng(a).

Proof. Tt follows from Remark [Z4] and Proposition [Z7] that (a) implies (b). If (b) holds, then (c) follows
immediately. Now suppose (c¢) holds. As we have assumed that Ry is finite for all k, we may use the theory
of blocks and transporters. We proceed by induction on the length of a test pair to show that every test
pair over the ring R has either a block or a transporter. Let (u;v) be a test pair of length 1 and degree d.
Suppose this test pair has neither block nor transporter. Then anng(u) < anng(v) and by assumption we
have Rv = ann%(v) < ann%(u) = Ru, that is, v = um for some m € R4. Since m is a transporter for this
test pair, we have a contradiction.

Now suppose each test pair of length < k and arbitrary degree has either a block or a transporter. A
test pair of length k 4+ 1 and degree d takes the form (u,ugy1;v,vk+1) where (u;v) is a test pair of length k
and degree d and (uky1,vk+1) IS a test pair of length 1 and degree d. By the inductive hypothesis, both the
test pairs (u;v) and (ug41,vk+1) have either a block or a transporter. If (u;v) has block 7, then (r,0) is a
block for the test pair (u, ugt1;v, vg+1). Similarly, if (ug41,vg+1) has block rg41, then (0,...,0,7%41) is a
block for the test pair (u, ug41;v,vg+1). Otherwise, (u;v) must have transporter m € Rg and (ug41, Vk+1)
must have transporter n € R4. In this situation, suppose the test pair (u, ugt1;v,vk4+1) has neither block
nor transporter and let J be the ideal generated by the entries of u. The absence of a block implies that
there is a well defined map ¢ : $4(J + Rugy1) — R defined by (S5 biuy) = S0 bvi. Now let s be an
element in the intersection J N Rugyi. Then we must have s = Zle Sil; = Sk41Uk+1 for elements s; € R
for each i. Applying the map ¢ to the zero element (Ele Sil;) — Sk41Uk+1 gives

k k
0= < E Si’l)i> — Sk4+1Vk+1 = ( E siuim> — Sk4+1Ug+1M = s(m — n)
i=1 i=1
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Thus it follows that the element m — n is in the annihilator ideal anng(J N Rug41). By assumption,
we have anng(J N Rugt1) = anng(J) + anng(ugt+1). Now let m —n = x — y where z € anng(J) and
y € anng(ugy1) and put 2 = m —x = n —y. Since w;z = u;(m — x) = u;m = v; for each i < k and
Ukt12 = Up+1 (N —Y) = Upt1n = Vg4 it follows that z is a transporter for the test pair (u, ugt1;v, vgp41). As
this gives a contradiction, it follows that every test pair of length k41 and arbitrary degree must have either
a block or transporter. We deduce that every test pair in the ring R must have either a block or transporter,
and since Ry, is finite for each k, we can use Proposition [3.6] to show that R is injective as an R-module. [

4. THE NOETHERIAN CASE

Theorem 4.1. Let R be a Noetherian graded commutative ring. Then the following are equivalent:
(a) R is self-injective.
(b) For every ideal J < R we have ann%(J) = J.
(¢) R is Artinian (and thus is a finite product of Artinian local rings), and each of the local factors has
one-dimensional socle.

The proof will be given after some lemmas.

Lemma 4.2. Let R be an Artinian local graded ring, with maximal ideal m, and put K = R/m. Suppose
that the socle soc(R) = anng(m) has dimension one over K. Then every nonzero ideal in R contains soc(R).

Proof. Let I be a nonzero ideal. By the Artinian condition, we can choose an ideal J that is minimal among
nonzero ideals contained in I. Recall that every Artinian ring is Noetherian (see for example [I3, Theorem
3.2]), so we can use Nakayama’s Lemma to see that mJ < J and thus (by minimality) that mJ = 0.
This means that J is a nontrivial K-subspace of soc(R), but soc(R) has dimension one, so J = soc(R), so
soc(R) < I. O

Lemma 4.3. Suppose that R is as in Lemma[{.2 Then for all ideals J < R we have ann%(J) =J.

Proof. First, it is standard that we can fit together a composition series for J with a composition series for
R/J to get a chain
O=lhy<hL<---<I, =R
with I;/I,_1 ~ K for all i, and J = I, for some ¢. Now let A; be the annihilator of I}, so we have
R=A>A,>--->A,=0.

Now mA;I;11 = Aj(mlip1) < AL = 0, so A;l;+1 < soc(R). On the other hand, we have A;I; = 0 and
Aiv11;41 = 0. We therefore have a natural map

&I Ai/ArL'Jrl — HOmK(IiJrl/Ii,SOC(R))

given by & (a+ Aij+1)(b+ I;) = ab. Tt is clear from the definitions that this is injective, and the codomain is
isomorphic to K, so A;/A; 1 is either 0 or K. It is standard that any two composition series have the same
length, so we must have A;/A;1; ~ K for all i, so A; has length r — i. After applying the same logic to
the composition series {A4,_;}I_, we see that the ideal ann(A;) = ann?(;) has length i. We also know that
I; < ann?(I;) and that I; also has length i; it follows that I; = ann?(I;), as required. O

Corollary 4.4. Suppose that R is as in Lemma[{.3 Then R is self-injective.

Proof. Consider an ideal I < R and an R-module map f: I — R. Choose a composition series 0 = Jy <
Ji <o < J. =1 We have J;/J;_1 ~ K so we can find a; € J; \ Ji_1 such that J; = J;_1 + Ra; with
ma; < Ji_q.

We will construct elements zg,...,z, € R such that f(a) = ax; for all a € J;. We start with o = 0.
Now suppose we have found z;—1. Put u; = f(a;) — z;—1a;. Using the fact that ma; < I,_; we find that
mu; = 0, so u; € soc(R). Next, we have a; ¢ I;_1 = ann?(I;_1), so ann(l;_1)a; # 0. As every nontrivial
ideal contains the socle, we see that u; € ann(;_1)a;, so we can write u; = y;a; for some y; with y;I;_1 = 0.
We now put z; = x;,_1 + y;. By construction we have f(a) = ax; for a € I,_1 or for a = a;, and it follows
that this equation holds for all a € I; as required. At the end of the induction we have an element x,, which
fulfils Baer’s criterion. ]



Proof of Theorem[{-1] It follows from Remark2.4lthat (a) implies (b). Now suppose that (b) holds. Consider
a descending chain of ideals Iy > Iy > I > --- in R. The ideals ann(l}) then form an ascending chain,
which must eventually stabilise because R is Noetherian. We can thus take annihilators again to see that
the original chain also stabilises. This shows that R is Artinian. It follows in a standard way that there
are only finitely many maximal ideals, and that R is the product of its maximal localisations. We thus
have a splitting R =[], R; say, where each factor R; an Artinian local ring. It follows that the lattice of
ideals in R is the product of the corresponding lattices for the factors R;, and thus that each R; satisfies
condition (b). We can thus reduce to the case where R is local, with maximal ideal m say. Recall that the
socle is soc(R) = {a € R | am = 0} = anng(m), which is naturally a vector space over the field K = R/m.
If soc(R) were zero we would have m = ann?(m) = ann(soc(R)) = ann(0) = R, which is a contradiction.
We can therefore choose a nonzero element u € soc(R). We find that Ku = Ru is a nonzero ideal in R, so
ann(Kwu) is a proper ideal containing ann(soc(R)) = m, so ann(Ku) = m by maximality. We can now take
annihilators again to see that Ku = ann(m) = soc(R), so soc(R) is one-dimensional. This proves (c).
Finally, we will assume (c) and prove (a). It is again easy to reduce to the case where R is local, and the
local case is covered by Corollary [£.4] g

Definition 4.5. Let K be a field. A Poincaré duality algebra over K is a graded commutative K-algebra
R equipped with a K-linear map 6: Ry — K for some d > 0 such that
e Fori<0Oori>dwehave R; =0
o Ry=K.
e For 0 <4 < d we have dimg (R;) < 00, and the map (a, b) — 6(ab) defines a perfect pairing between
Ri and Rd—i'

Proposition 4.6. Every Poincaré duality algebra is self-injective.

Proof. Let R be a Poincaré duality algebra of top dimension d, and put m = @, R;. It is clear that
R/m = K and m%*! = 0, and it follows that m is the unique maximal ideal. As R has finite total dimension
over K it is clearly Artinian. The perfect pairing condition implies that soc(R) = R4 and that this has
dimension one. It follows by Theorem [£.1] that R is self-injective.

Alternatively, for any R-module M we can define a natural map
7: Hompr(M, R) — Homg (Mg, K)

by 7(¢) = 6 o ¢4. Using the perfectness of the pairing we see that this is an isomorphism. As K is a field,
the functor M — Hompg (Mg, K) is exact, and it follows that the functor M — Hompg(R, R) is also exact,
or in other words that R is injective as an R-module. |

Example 4.7. Put

E =TFlxg,21,22,...]/(x7 | i >0),
with |2;| = 2°. For any finite set I C N we put 27 = [[,c; @i, so |a7| = > ,c; 2" and the elements 2; form a
basis for E over F. It follows that Ey ~ F for all k > 0, and Ex = 0 for k < 0. Let E(n) be the subalgebra
of E generated by xg,...,xn,—1. This is a Poincaré duality algebra, with socle generated by the element
[I;<, zi, and it is clear that E = |J,, E(n). Corollary 3.7 therefore tells us that E is self-injective.

5. COHERENCE
We now briefly recall some standard ideas about finite presentation.

Proposition 5.1. Let R be a graded commutative ring, and let M be a graded R-module. Then the following
are equivalent:

(a) There exists an exact sequence

p—lsp 2

M 0,

where Py and Py are finitely generated free modules.
(b) M s finitely generated, and for every epimorphism g: Py — M (with Py a finitely generated free
module) the module ker(g) is also finitely generated.
If these conditions hold, we say that M is finitely presented.
8



Remark 5.2. By a finitely generated free module we mean one of the form @@._, ¥4 R; we do not assume
that the degree shift d; is zero.

Proof. First suppose that (b) holds. Then any finite system of generators (my, ..., m,) for M will give rise
to an epimorphism g: Py — M, where Py = @, yImilR. By assumption ker(g) will be finitely generated,
and any finite system of generators will give an epimorphism f: P; — ker(g) < Py with P; free and finitely
generated, and this proves (a).

Conversely, suppose that (a) holds. The existence of g means that M is finitely generated. Consider
another epimorphism ¢': P} — M, where P] is free and finitely generated. As Py and P are projective, we

can choose maps Py % P} % Py with ¢'p = g and gq = ¢’. Put
K = image(P} RN P}) + image(pf: P, — P}).

It is easy to see that this is finitely generated and contained in ker(g’), so it will suffice to show that
ker(¢g’) < K. Consider an element x € ker(g’). We then have gq(z) = ¢’(x) = 0, but ker(g) = image(f) by
assumption, so ¢(x) = f(y) for some y € P;. We now have x = (1 — pq)(z) + pf(y) € K as required. O

Corollary 5.3. If R is Noetherian, then every finitely generated ideal is finitely presented.
Proof. Condition (b) is clearly satisfied. O

As we stated in Definition [[2] a graded ring R is said to be coherent if every finitely generated ideal
is finitely presented, and totally incoherent if the only finitely presented ideals are 0 and R. It is clear
that every Noetherian ring is coherent. We mention as background that if R is coherent, then the category
of finitely generated modules is closed under images, kernels, cokernels and extensions, so it is an abelien
category. The following example is standard:

Proposition 5.4. The infinite exterior algebra E (as in Exzample[4.7) is coherent.

Proof. Let E(n) be the subalgebra generated by zg,...,z,_1, and let E'(n) be generated by the remaining
variables, so F = E(n)®p E’(n). Any finitely generated ideal is the image of some E-linear map g: E” — E,
which will have the form g(u) = u.v for some vector v € E”. We must show that the module K = ker(g) is
finitely generated. Choose n large enough that v; € E(n) for all i. Now v gives a map ¢': E(n)” — E(n) of
E(n)-modules, and E(n) is Noetherian, so the module K’ = ker(g’) is finitely generated over E(n). We can
identify g with ¢’ ® 1 with respect to the splitting £ = E(n) ® E’(n), and it follows that K = K/ ® E(n)’,
and thus that any finite generating set for K’ over E(n) also generates K over E. O

The following result will be our main tool for proving incoherence results.

Lemma 5.5. Let A be a local graded ring, with mazimal ideal m, and let I be a finitely presented ideal in
A. Then for each v € I\ mI, the image of anny(u) in m/m? has finite dimension over A/m.

Note here that as u ¢ mI we have u # 0, so anna (u) < m and it is meaningful to talk about the image in
2

m/m?.
Proof. As I is finitely generated over A, we see that I/mI is a finite-dimensional vector space over A/m. We
can choose a basis for this space containing the image of u, and then choose elements of I lifting these basis
elements. This gives a list vy, ...,v, € I with v; = u such that the corresponding map ¢g: A” — I induces
an isomorphism g: (A/m)™ — I/mI. Now cok(g) is a finitely generated module with m. cok(g) = cok(g), so
cok(g) = 0 by Nakayama’s Lemma, so ¢ is an epimorphism. As I is assumed to be finitely presented, we see
that ker(g) is also finitely generated over A. Moreover, as g is an isomorphism we see that ker(g) < m”. It
follows that the image of ker(g) in (m/m?)™ is finite-dimensional. The intersection of ker(g) with the first copy
of Ain A™ is just the annihilator of u, so we see that the image of ann 4 (u) in m/m? is finite-dimensional. [J

Corollary 5.6. Let A be a local graded ring, with maximal ideal m. Suppose that for all u € A we have
either

(a) u=0; or

(b) the image of anna(u) in m/m? has infinite dimension; or

(¢c) w is invertible.



Then A is totally incoherent.

Proof. Let I be a finitely presented ideal. If mI = I then I = 0 by Nakayama’s Lemma. Otherwise, we can
choose u € I'\mI. As u ¢ mI we have u # 0. By the lemma, the image of ann4 (u) in m/m? must have finite
dimension. Thus, possibilities (a) and (b) are excluded, so v must be invertible. As u € I we conclude that
I=A 0

Next we record a graded version of Chase’s Theorem for coherent rings.

Theorem 5.7. Let R be a graded commutative ring. Then the following are equivalent:

(a) R is coherent.
(b) For all elements a € R and for every finitely generated ideal J < R, the conductor ideal

(J:a)={reR|racJ}

1s finitely generated.
(¢c) For all elements a € R, the annihilator ideal anng(a) is finitely generated, and for all finitely
generated ideals J, K < R, the intersection J N K is finitely generated.

Proof. The ungraded version of the proof is given in many textbooks such as [12] page 142]. It can be
modified in an obvious way to keep track of gradings, which gives our statement above. |

Theorem 5.8. Let R be a graded commutative ring such that Ry is finite for all k. Then the following are
equivalent:

(a) R is coherent and self-injective.
(b) R is coherent and for all finitely generated ideals J < R we have ann%(J) = J.
(c) For every finitely generated ideal J < R, the ideal anng(J) is finitely generated and ann%(J) = J.
(d) R is self injective and for all finitely generated ideals J < R, the ideal anng(J) is finitely generated.

Proof. Tt follows from Remark 24 that (a) implies (b). To show that (b) implies (c) we need to show that
the ideal anng(J) is finitely generated for each finitely generated ideal J < R. If we let (ry,...,7,) be
generators for the ideal J, then we can take the annihilator of J to give anng(J) = (), anng(r;). Since R is
assumed to be coherent, it follows from part (c¢) of Theorem [5.7] that anng(r;) is finitely generated for each
¢ and that a finite intersection of finitely generated ideals is also finitely generated. Thus anng(J) is finitely
generated as claimed. Now suppose that part (c) holds. To prove that (c) implies (d), we need to show that
R is injective as an R-module. For all ideals J, K < R we have

anng(anng(J) + anng(K)) = ann%(J) Nann%k(K) = J N K.

By assumption, the ideal sum anng(J) + anng(K) must be finitely generated. Thus we can take double
annihilators to give

anng(J) + anng(K) = anng(J N K).
Since Ry, is finite for each k, we can use part (b) of Theorem B.8 to complete the claim. We now conclude
by showing that (d) implies (a). By assumption, the annihilator ideal anng(a) is finitely generated for all
elements ¢ € R. Then for all ideals J, K < R we know that the ideal sum anng(J) + anng(K) is finitely
generated by assumption. By taking annihilators we then have

anng(anng(J) + anng(K)) = ann%(J) Nannf(K) = J N K

where the double annihilator condition holds by Remark 2.4l However, by assumption, the annihilator of a
finitely generated ideal is also finitely generated. Thus the intersection J N K must be finitely generated. It
follows from part (c) of Theorem [B.7] that the ring R is coherent as claimed. O

6. SELF-INJECTIVE ADJUSTMENT

Definition 6.1. We write R for the category of commutative graded F-algebras such that
(a) Ry =0 for all £ < 0.
(b) Ry =TF.
(¢) Ry is finite for all & > 0.
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Proposition 6.2. Let R be a ring in R, and let P be a finite set of test pairs in R that have no transporters.
Let m be a positive integer. Then there is an extension R’ > R of graded rings such that

(a) R is also in R.

(b) R}, = Ry, for all k < m.

(¢) Each test pair in P has a block in R'.

Proof. List the elements of P as (ug,v0), ..., (up—1,Vp—1) say. Suppose that (u;,v¢) has length r;, and let
d; be the maximum of the degrees of the entries u; ; for 0 < j < r;. Let P be the polynomial ring obtained
from R by adjoining variables by ; for 0 <t < p and 0 < j < r¢, with |b; ;| = m + dy — |ug ;| > m > 0. Put
wy = Z;;f b jus; € P and R’ = P/(wo,...,wp—1). There is an evident ring map n: R — R/, and also a
ring map 7: R’ — R given by m(b; ;) = 0 for all ¢t and j. It is clear that 7 = 1, so 7 is injective, and we
can use it to regard R’ as an extension of R. As |b; ;| > m > 0, it is easy to see that R' € R and that the
map R, — R} is surjective (and therefore bijective) for k < m. By construction we have b;.uy = 0 in R’.
We claim that b;.v; # 0 in R’, or equivalently that b;.v; cannot be written as ) csws in P. To see this,
let ¢* denote the constant term in the polynomial ¢;. By examining the coefficient of b; ; in the equation
by.vy = ZS csws we obtain vy ; = c*uy ; for all j, which means that ¢* is a transporter for (u;,v;), contrary
to assumption. Thus, b; is a block for (ut,v:) in R’, as required. ]

Definition 6.3. Let R be a ring in R, and let (u, v) be a test pair for R. We say that (u,v) is good if it has
either a block or a transporter, and bad otherwise. We say that (u,v) is nondegenerate if u; # 0 for all i.
For any homogeneous element € R we put |z|+ = max(0, |x|). The weight of (u,v) is Y, (1 + |us|+ + |vil4).

Lemma 6.4. Let R be a ring in R, and suppose that all nondegenerate test pairs are good. Then R is
self-injective.

Proof. Consider an arbitrary test pair (u,v) € R" x R". If there exists ¢ such that u; = 0 but v; # 0, then
the basis vector e; € R" is a block for (u,v). Otherwise, let (u/,v’) be the test pair obtained by removing all
zeros from w and the corresponding zeros from v. This is nondegenerate, so it has a block or a transporter. If
b’ is a block for (u/,v"), then we can construct a block for (u, v) by inserting some zeros. If m’ is a transporter
for (u',v’), then it is also a transporter for (u,v). We therefore see that all test pairs for R are good, so R
is self-injective. O

Lemma 6.5. There are only finitely many nondegenerate bad test pairs of any given weight.

Proof. Consider an integer N > 0. Any nondegenerate bad test pair (u,v) of weight N must have length at
most N. Moreover, as (u,v) is nondegenerate we must have u; # 0 for all i, and as R € R this means that
|u;] > 0. We also have )", |u;| < weight(u,v) = N. It is clear from this (and the finiteness of Ry) that there
are only finitely many possibilities for u. Next, let d be the degree of (u,v), so |v;| = |u;| + d. From this it
is clear that d < N. If d is sufficiently negative then we will have v; = 0 for all ¢, so 0 is a transporter for
(u,v), contradicting the assumption that (u,v) is bad. We therefore see that there are only finitely many
possibilities for d. Given w and d, it is clear that there are only finitely many possibilities for v. O

Theorem 6.6. Suppose that R € R, and that m > 0. Then there is an extension R’ > R such that
(a) R’ is also in R.
(b) R}, = Ry, for all k < m.
(¢) R’ is self-injective.

Proof. We define rings R'(0) < R'(1) < --- as follows. We start with R'(0) = R. For each k > 0, we
let R'(k + 1) be an extension of R’(k) that agrees with R'(k) in degrees less than k 4+ m, such that every
nondegenerate bad test pair of weight at most k in R’(k) has a block in R’(k 4 1). This can be constructed
by Proposition and Lemma Now take R’ to be the colimit of the rings R'(k). By construction we
have R, = R'(k); for sufficiently large k, and using this it is clear that R’ € R. Consider a nondegenerate
test pair (u,v) € R’. For sufficiently large k we can assume that k > weight(u, v) and that u;,v; € R'(k) for
all i. If (u,v) is good in R'(k) then it is good in R’. If it is bad in R/(k) then by construction it becomes
good in R'(k + 1) and therefore in R'. O
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7. THE CUBE ALGEBRA
Recall that in the statement of Theorem we introduced the ring
C= ]F[y07y17 . ]/(yz3 + YiYi+1 | 12> 0)7

with the grading given by |y;| = 2°. We now investigate the structure of this ring (which we call the cube
algebra).

Definition 7.1. We also put
Cln, 00] = Flyn, Ynt1s- - 1/ (47 + yiyira|n < i < 00)
Cln,m] = Flyn, ..., ym]/ (U7 + yitisaln < i <m)
Cln,m] = Cln,m]/ym.

Lemma 7.2. The evident maps

Cln+1,m]—=Cn+1,m+1] ——=C[n+ 1, ]

| l l

Cln,m] Cln,m + 1] Cln, 0]
| | |
[0, m] C[0,m + 1] Cl0,00] = C

are all split injective, so all the rings mentioned can be considered as subrings of C.
Proof. There is a graded ring map 7o: Flyo, y1,...] = C[n, m| given by
0 ifi<n
To(Yi) = S ¥s ifn<i<m
y2 " ifm <.
It is straightforward to check that 7o(y3 +;y:41) = 0 for all i > 0, so there is an induced map 7: C' — C[n, m).
It is clear that the composite C[n,m] — C' = C[n,m] is the identity, so the map C[n,m] — C is injective

for all m and n. The other claims follow from this. O
Definition 7.3. We write P for the polynomial ring Flyo, y1, - . .], so that C' is a quotient of P. A multiindex
is a sequence a = (ag, a1, ...) of natural numbers with a; = 0 for ¢ > 0. We write M P for the set of

all multiindices. Given @ € M P we write y® = [[, y{"" and |a| = |y*| = >, @;2". It is clear that the set
BP = {y® | a € M P} is a basis for P over F.

Definition 7.4. We put
M'Cln,m]={a€ MP|a;=0fori<nori>manda; <3forn<i<m}
MCn,m]={a € MP|a;=0fori<nori>m}
B'Cln,m| = {y* | a € M'C[n,m]}
BCln,m] = {y* | a € MC[n,m]}.

Note that in the definition of M’'C[n, m] the constraint a; < 3 does not apply when ¢ = m, so in particular
M’'C[n,m] is infinite.
Proposition 7.5. B'C[n,m]| is a basis for C[n,m|, and BC[n,m] is a basis for C[n,m]. Moreover, C|n,m]
is a Poincaré duality algebra over F.

The proof depends on the following result:

Lemma 7.6. Let A be a commutative algebra over F, let f(t) € A[t] be a monic polynomial of degree d, and
put B = Alx]/f(z). Then {1,z,...,2971} is a basis for B over A. Moreover, if A is finite-dimensional over
F and has Poincaré duality, then the same is true of B.
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Proof. We first claim that any polynomial g(x) € A[z] can be expressed uniquely in the form g(z) =
q(x)f(x) + r(z) with deg(r(z)) < d. This can easily be proved by induction on the degree of g(z), and it
follows directly that {1,...,2971} is a basis for B over A. Now suppose that A has Poincaré duality, so
there is a linear map 6: A — T such that the bilinear form (u,v) — 6(u,v) is perfect. This means that
there exist bases {uo,...,un—1} and {vg,...,vn—1} for A such that 6(u;v;) = J;;. Now define ¢: B — F
by (;5(2?;01 a;x') = 0(aq—1). We define bases {so, ..., Sns—1} and {to,...,tn4g—1} for B by snit+; = x'u; and
tnivj; = 2?17, for 0 < i < dand 0 < j < n. It is clear that ¢(sxty) = 1. Suppose we have 0 < k < k' < nd.
Write k = ni + j and ¥’ = ni’ 4+ j' as before; we must have either i < i’, or (i = ¢’ and j < j'). In either
case, we find that ¢(s;t;) = 0. Thus, the matrix of ¢ with respect to our bases is triangular, with ones on
the diagonal, proving that ¢ gives a perfect pairing on B. O

Proof of Proposition [7.3 From the definitions we have Clm,m] = Fly,] and B’'C[m,m] = {y5" | o, € N}
so it is clear that B’C[m,m)] is a basis for C[m, m]. Similarly, it is clear that the set C[m, m] = {1} is a basis
for the ring C[m, m] = C[m,m]/y,, = F, and that this has Poincaré duality.

Next, C[n,m] can be described as C[n + 1,m][yn]/f(yn), where f(t) =3 + yn11t is a monic polynomial
of degree three with coefficients in C[n + 1,m]. It also follows that C[n,m] = C[n + 1,m][ya]/f(yn). All
claims in the proposition now follow by downwards induction on n using Lemma 0

Remark 7.7. Note that the algebra

— F e _
C'[n, m] — S[ynv Yn+1, ) ymg 1]
(yn + YnYn+1, - - 7ym—1)
has the same number of relations as generators, and has finite dimension over F. It is known that in this
situation the sequence of relations is necessarily regular, and that the algebra automatically has Poincaré
duality. (This can be extracted from [I3] Section 17], for example.) This would give another approach to
Proposition
Definition 7.8. Let a be a multiindex. We say that
(a) «ais flat if oy < 3 for all 4;
(b) «a is n-truncated if o; = 0 for all i < n;
(c) «is m-solid if it is flat and whenever m < p < ¢ and o, > 0 we also have a; > 0.

We consider all flat multiindices to be oco-solid. For 0 <n < m < oo we put
MCn,m] = {a € MP | « is n-truncated and m-solid },
and BC[n,m] = {y® | « € MC[n,m|}. We also write MC for the set M C[0, 0] of all flat multiindices.

Proposition 7.9. BCn, 0] is a basis for C[n, o).

Proof. We must show that for each degree d € N, the set BC[n, o0]q is a basis for C[n, oo]q. Choose m > n
such that 2™ > d. It is then clear that BC[n, o0l = B'C[n,m]q and C[n,o0]q = C[n,m|q so the claim
follows from Proposition O

It is also true that BC[n,m] is a basis for C[n,m] when m < oo, but it is convenient to leave the proof
until later.

Proposition 7.10. For any multiindex o € M P, there is a multiindex § € MC such that y* = y°.
Proof. If a ¢ MC, we let k denote the smallest index such that oy > 2, and define o/ € M P by

(a7} ifi <k

, ap —2 ifi=%k
QG = e

Olk+1—|—1 lf’L:k—Fl

o, ifi >k+1.
Because y; = yryr+1 we have y® = ya/. Moreover, o’ has the same degree as «, and is lexicographically

lower than «. There are only finitely many monomials of any given degree, so the claim follows by induction
over the lexicographic order. 0
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Definition 7.11.

(a) We put z¢ = yo, and x,, = y, +y2_; for all n > 0.

(b) For n > m > 0 we put T[m,n] = [[:Z, i and Yimon] = H;in Yi-

Proposition 7.12. For all n > 0 we have y, = > .- 22 and YnZTnt1 = 0. Thus, the ring C can also be

1=0“*“n—1
presented as

C =TFlzg, x1,22,...]/(@nt1 inﬂ | n>0).
i=0

Proof. Once we recall that (a + b)* = a? + b (mod 2), the equation y,, = > 22" is easily checked by
induction. Note that this already holds in the polynomial ring P. As the elements x; can be expressed in
terms of the y; and vice-versa, we see that P = F[zg, x1,...]. The defining relations y2 + y,,yn+1 = 0 for C

can clearly be rewritten as y,x,+1 = 0 and thus as z,,4+; Z?:o ;vf;_i =0. O

Lemma 7.13. Whenever m < n we have ymyfmm] = Ylm,n+1]-
Proof. The inductive step is

ymy[Qqn,nle] = ymy[2m7n]y721+1 = y[m,n+1]y727,+1 = y[m,n]y?wrl = Yim,n)Yn+1Yn+2 = Yim,n+2]-

O
Corollary 7.14. For k > 0 we have yf:_l = Yim,m+k—1]-
Proof. The induction step is
k1 1\ 2
Yo = Um (yfn 1) = YmYim,mek—1] = Ylmmk]-
|

Lemma 7.15. Fiz m € N, and put
U={aeMC|a«aism-solid and a; = 0 for i < m}.
Then there is a bijection N — U written as k — 0[m, k] such that y?™* = y* in C.

Proof. First, if o € U it is clear that || is divisible by 2™, so we can define §: U — N by 6(«a) = |«|/2™.
Now consider k£ € N. There is a unique » € N such that 2" — 1 < k < 27+l _ 1. This means that
0<k— (2" —1) <27, so there is a unique set J C {0,1,...,7 — 1} with k — (2" = 1) = >, ;27. We put

0 ifi<m
1 ifm<i<m+randi—meJ
9[m7 k]z = . . .
2 ifm<i<m+4randi—meJ
0 ifm+r<i.
This is clearly in U. Next, we claim that y?"™* = yk . To see this, put z = yf,;nfl, which is the same as
Ym,m+r—1] by Corollary [.T4. We have
ye[m,k] — y[m,errfl] H Ymtj = 2 H Ymtj
jeJ jeJ
2T —143 ;27 j
uh =m0 =2 A
jeJ

=

Now, for 0 < j < r we have ymﬂ(yfnﬂ- + Ym+j+1) = 0 and z is divisible by Ym+4j SO z(yfnﬂ. + Ymgjt1) =
SO Ym+j+1 = Ypy; modulo ann(z). Tt follows inductively that y,,; = y2 (mod ann(z)), so [icsym+s =
[Lcs y2 (mod ann(z)), so 3"+ = gk as claimed. It also follows that 6(6[m,k]) = |y?l™Fkl|/2m =

lyml/2™ = k.
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Now let a be an arbitrary element of U. By the definition of solidity, there is an integer s > 0 such that
when m < i < m+ s we have o; € {1,2} and for ¢ > m + s we have ; = 0. It is then clear that

Y ovchlz ¥ 2
m<i<m+s m<i<m+ts

or in other words 2% — 1 < §(a) < 2571 — 1. Tt follows easily that o = 6[m, §(v)], so we have a bijection as
claimed. 0

Proposition 7.16. For 0 <n <m < oo, the set BC[n,m] is a basis for Cln,m].

Proof. The case m = oo was covered by Proposition [[.9] so we may assume that m < oo, so B'C[n, m] is a
basis for C[n, m] by Proposition [[.L5l However, Lemma [I.TH implies that B’C[n,m], considered as a system
of elements in C[n,m], is just the same as BC|[n, m]. O

Proposition 7.17. Suppose that 0 <n < k <m < 0o and k < oo. Then anncyy, ) (zr) = Cln, m]yg—1.

Proof. The m = oo case will follow from the m < oo case, because C[n,m|q = C[n,0]q when m is large
relative to d. We will thus assume that m < oo.
We have already observed that zxyx—1 = 0, so anngi, m)(2r) > C[n, mlyk—1, and multiplication by xy
gives a well-defined map f: Cln,m]/(C[n, m]yx—1) — C[n,m]. It will suffice to show that f is injective.
For this, we put

N ={a e MC[n,m] | ax—1 =0}
A={y*|ae N} CCln,m]
Z = span(4) < C[n,m].

By inspecting the generators and relations on both sides, we see that

Cln,m]/(C[n,mlyk—1) = C[n, k — 1] ® C[k, m].

Propositions and show that A also gives a basis for C[n,m]/(C[n, m]yx—1), so Cln,m] = Z &
(C[n, m]yg—1). Now let g denote the composite

Z = Cln,m]/(Cln, mlye—1) L Cln,m] 225 Cn,m)/Z.

It will certainly be enough to show that g is injective. It is not hard to see that yxZ < Z, and x, = y,%_l + Y,
so g(z) =xkz+ Z =y} _,z+ Z, so g gives an injective map from A to BC[n,m]\ A. These sets are bases
for the domain and codomain of g, so g is injective as required. O

Proposition 7.18. C is self-injective.

Proof. As C is finite in each degree, it will suffice (by Propositions and [36]) to show that every test pair
(u,v) in C has either a block or a transporter. Let d be the degree of (u,v), so |v;| = |u;|+d. Note that some
of the entries u; and v; may be zero, in which case |u;| or |v;| can be negative. Choose m such that 2™ > d
and also 2™ > |u,| and 2™ > |u;| for all 5. Now (u,v) can be regarded as a test pair in C[n,m|. Let m be
the projection C[n,m| — C[n,m] = C[n,m|/ym. As Cn,m] has Poincaré duality, it is self-injective, so the
test pair (m(u), 7(v)) has either a block or a transporter. First, suppose that there is a transporter 7(t), so
7(v;) = m(tu;) for all i. This is an equation between elements of degree |v;| < 2™, and 7: C[n, m] — C[n,m]
is an isomorphism in this degree, so v; = tu,, so we have a transporter for the original pair (u,v).

Suppose instead that there is a block for (7(u), 7(v)), say 7(b). This means that 7(b.u) = 0 but 7(b.v) # 0,
so b.u € C[n, mly,, but bw &€ C[n, m]y,,. Using our bases for the various rings under consideration, we see
that C[n, m|ym = (Cym) N Cn,m], and thus that b.v € Cy,,. It now follows from Proposition [[.17] that
(Zm41b).u = 0 and (2,410).v # 0, 80 Zy11b is a block for the original pair (u,v). O

We now wish to prove that C' is coherent, which turns out to involve substantial work. It will be convenient
to regard the set BC[n,m] = {y* | « € MC[n, m|} as a subset of C[n, m] rather than a subset of C[n, m]. We
write C [n,m] for the span of this set, so the projection C[n, m] — C[n, m] restricts to give an isomorphism
C[n,m] — C[n,m).
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Lemma 7.19. For p > 3 we have

2 2 2
Yio.p—31Y[0.p—1]91Yp=1Yp = Y0 p]
(and in particular, this is nonzero modulo yp11).

Proof. Put A = C|0, p]/ ann(yj ). We claim that in A we have

2
Y10,p—31Y[0,p—1]Y1Yp—1 = Y[0,p]-
Assuming this, we can just multiply by y ) to recover the statement in the lemma.

For 0 < i < p we have y;(y7 + yit1) = 050 Yjo 5] (Y7 + yi41) = 050 i1 = y7 in A. We thus have y, = y2*
in A for 0 < k <p, and so A = Flyp]. It is thus enough to show that the two sides of the claimed equation
have the same degree, which is a straightforward calculation. g

Lemma 7.20. For any p > 3 we have

3
BC0,p - 2] BC[0,p] € [[ BC[0,p - 1]y}, ;.
1=0

Proof. Consider « € MC[0,p — 2] and 8 € MCJ[0,p]. We note that y*,y# € C[0,p — 1] so we can rewrite
y*+P8 as an element of the basis B'C[0,p — 1], which means y®™# = y7 for some v € M'C[0,p — 1]. Tt will
be enough to show that v,_1 < 3.

Note that y* divides y[207p_3] and y? divides y[207p_1] so Y divides 9[20,,)_3]9[20,,,_1]- It follows using
Lemma [TT9 that y y,—1yp # 0 (mod yp41). However,

Yp—1Yp—1Yp = Yp—1Yp = Yp—1Ys = Yp—1Yp = Yp—1YpYp+1 = 0 (mod y,11),
so y” cannot be divisible by yéfl, as required. O
Definition 7.21. For any vector u € C™ and p > 0, we put
K(u,p) ={v e Cl0,p]" | uv =0}
K(u,p) = {v e Cl0,p]" | m(u).v = 0}.
More precisely, K (u,p) is the graded group where

K(u,p)a = {v € C[0,p]" | |v;] = d — |us| for all i and > u;v; = 0},

and K (u,p) is graded in a similar way.
Lemma 7.22. Ifu; € é[O,p — 2] for all i, then the map 7: K(u,p+1) — K(u,p + 1) is surjective.

Proof. Consider an element T € K (u, p+1). This can be written as 7(v) for a unique element v € C[0, p+1]™,
which must satisfy u.v =0 (mod yp4+1). We can write v as Zi:o URYE with vy € C[0, p]™. Using Lemma [7.20]
we see that w.vr can be written as Z?:o w;ry;,_, for some elements wj, € C[0,p — 1]. This gives u.v =

Z?:o Ei:o wjkygfly’;. After reducing the terms ygfly]’; using the defining relations for C', we obtain
UV =wWoo + Wo1Yp + wozyf) + wioYp-1 + (w11 + ’LU30)yp71yp + (w12 + 1U31)yp71y12,+
w20y§71 + w2ly§—1yp + w22y§71y§ + W32Yp—1YpYp+1-

By hypothesis, this maps to zero in C[0,p + 1] = C[0,p + 1]/yp+1. However, C[0,p + 1] splits as the direct
sum of subgroups C[0,p — l]yéflyg for 0 <4,j5 < 3, so we must have

wWop = Wp1 = Wo2 = Wi = Wo = Wa1 = waz =0

and W11 = W30 and W12 = W31, SO U.V = W32Yp—1YpYp+1-
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Now put d = |u.v|, so |wji| = d — j2P~1 — k2P. In particular, we have |wss| = d — 2P~1 — 2P — 2PF1 [f
d < 2P~1 4+ 2P 4+ 2PF1 then |wsa| < 0 so w3e = 0 so u.v = 0. This means that v € K (u,p+ 1) with 7(v) =79,
as required. Suppose instead that d > 2P~! + 2P + 2Pl We have
|’LU11| = |w30| =d—2or~1 _9or > optl

|w12| = |w31| :d—2p_l _2p+1 22;0'

However, the elements w; lie in C [0, p — 1], which is zero in degrees larger than 27 — 2. We therefore have
w11 = wie = wgg = w31 = 0, which means that u.vg = 0 and uw.v; = 0 and w.v, = w32yg_1 = W32Yp—1Yp-
Put

o' = vy + 01y, + v2(yh + Ypt1),

so w(v') = w(v) =T and

v’ = wwy + uvry, + u.vz(yf) + Ypt1) = wgzypflyp(yf7 + Yp+1) = 0.
Thus, v’ is the required lift of T in K (u,p + 1). O
Lemma 7.23. For all p > 0 we have a splitting

Cl0,p+1] = C[0,p] & @ TI0, plaf.-
k>0

Proof. By definition we have C[0,p + 1] = C[0, p|[yp+1]/(2p+1yp), where 11 = ypi1 + y3 as usual. From
this it is clear that

C[0, pllyp+1] = C[0, pl[wp11] = C[0,p) & @D C[0, plaf .-
k>0
The ideal generated by y,x,+1 in this ring clearly has a compatible splitting

Cl0, pllyp+1]-ypp1 = @ C[O,p]ypx§+1.
k>0

We can thus pass to the quotient to get

C Oup ral
Clowp+1] = €001 @) g Pk, = Cl0.5) © DTl
k>0 »PlYp k>0

as claimed. |
Corollary 7.24. Ifu; € CN'[O,p —2] fori=0,...,n—1, then K(u,p+1) =C[0,p+ 1].K (u, p).

Proof. Tt is clear that C[0, p+1]. K (u, p) < K(u,p+1). For the converse, consider an element v € K (u,p+1) <
C[0,p +1]". Using Lemma [Z.23] we can write v as vo + Y ;< mx’;“, with vg € C[0,p]" and T € C[0, p|”
(with 7, = 0 for k> 0). It follows that u.vg € C[0, p] and .7y € C[0, p] and

w.vgy + E (u.m)xlgﬂ =u.v = 0.
k>0

As the sum in Lemma [7.23is direct, we must have u.vg = 0 and u.7}, = 0, so vy € K (u,p) and Ty, € K (u, p).
By Lemma [[22] we can choose vy, € K (u,p) for k > 0 lifting 7). If B = 0 we choose v, = 0; this ensures
that vy, = 0 for £ > 0. We now have v = 3", ., vkx’;H € C[0,p + 1].K (u, p), as required. |

Proposition 7.25. The ring C' is coherent.

Proof. Let I < C be a finitely generated ideal. Choose elements uo, ..., un—1 generating I. These give an
epimorphism g: @, %“!C — I, with ker(g) = K (u,00), so it will suffice to show that K (u,cc) is finitely
generated as a C-module. Now choose p large enough that u; € C [0,p—2] for all i. As C[0, p] is Noetherian,
we can choose a finite subset T' C C]0, p|™ that generates K (u, p) as a C[0, p]-module. Corollary [[.24] tells us
that T also generates K (u,p+1) as a C[0, p+1]-module. In fact, we can apply the same corollary inductively
to see that T' generates K (u,q) as a C[0, gJ-module for all ¢ > p. As C = J, C[0,q] we conclude that T
generates K (u,00) as required. O
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Proposition 7.26. The reduced quotient of C is
C/VO =Fla; | i > 0]/(zix; | i # j).

Proof. Put C" = C'/+/0. We first claim that for all p,q with 0 < p < ¢ we have z,7, = 0 in C’. We may
assume inductively that z;z; = 0 in C” whenever 0 < i < j < ¢. By a nested downward induction over p, we
may assume that 2,z = 0 in ¢’ whenever p < k < ¢. As in Proposition[[.12, we have z, ZZ:O :zriqflfk =0.
We can multiply this by z, and use the inner and outer inductive assumptions to see that xpazqazf)qflfp =0,
or in other words x)'z, = 0 for some m > 0. This gives (z,z,)™ = 0in C’, but C” is reduced by construction
s0 xpxq = 0 in C” as claimed.
Now put
C" = C/(wwj | 4,4, i <j)=Flw; | i > 0]/(wiz; [ i,j >0, i <j).
We now see that C” is a quotient of C' by nilpotent elements, so C’ can also be described as C”’ /+/0. However,
there is an obvious splitting
C"=F& @xﬁ[zl],
i>0
and using this we see that C” is reduced. It follows that C' = C” as claimed. O

8. THE IMAGE OF J

We now study the graded ring J described by Definition [[L7, and the tensor product J = Z,®J. It is
standard that Z, ® Z/p" = Z/p". Moreover, the group Q/Z,) can be written as the colimit of the evident
sequence

Zlp—Z)p* = Z/p* — ...,
and we can tensor with Z, to get Z, ® (Q/Z,)) = Q/Z,). Thus, the only difference between .J and J is
that Jo = Z(,) whereas fo =Zp.

Definition 8.1. For each k € Z, we define

& Ty — HomZ(j—k—QuQ/Z(p))
by &k (a)(b) = ¢~ *(ab) (where ¢ is the isomorphism Q/Z,) — J_o = J_, that is given as part of the definition
of J.)

Lemma 8.2. The maps & are isomorphisms for all k.

Proof. For k # —2 this is a straightforward calculation. For k = —2 we use the description Q/Z,) =
lim Z/p’ to get
= | |
Hom(Q/Zy), Q/Zy)) = lim Hom(Z/p’, Q/ L)) = imZ/p’ = Z,,
J j
as required. -

Corollary 8.3. For J-modules M there is a natural isomorphism

~

Hom #(M, J) = Homz(M_2,Q/Z)).

~

Proof. Given ¢ € Hom (M, .J), we put
(@) =( T odog: M_o— Q/Z).

-~

This defines a map 7: Hom (M, J) — Homz (M _2,Q/Z)).
Now suppose we have a map ¢: M_5 — Q/Z,). For any k € Z we have a map
Gt My, — Homz(J k-2, Q/Zp)
given by ¢, (m)(a) = (—1)¥p(am). (The exponent of —1 here is morally |a||m| = —k(k + 2), but that is

~

congruent to k modulo 2.) Lemma B2 tells us that there is a unique element ¢y (m) € Ji such that

¢ (m)(a) = ¢~ (r(m)a)
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for all a € j_k_g. We leave it to the reader to check that this gives a map ¢: M — J of f—modules, and
that this is the unique such map with 7(¢) = 1. O

Corollary 8.4. The ring J is self-injective.

Proof. We need to show that the functor M ~ Hom (M, J) is exact, but it is isomorphic to the functor
M +— Homz(M_2,Q/Z,)), which is exact because Q/Z,) is divisible and therefore injective as an abelian
group. 0

Remark 8.5. The ring J itself is not self-injective. To see this, note that J_, is an ideal in J and is a
module over Z,. Choose any element a € Z, \ Z,) and define u: J_o — J by u(x) = ax. This cannot be
extended to give a J-linear endomorphism of .J.

Lemma 8.6. The ring J is local (in the graded sense). The unique mazimal graded ideal is given by mg = pZ,,

and my = :fk for all k # 0. Moreover, the elements ay, together with the element p give a basis for m/m?
over Z/p.

Proof. Tt is straightforward to check that the graded group m described above is an ideal in J. , and the
quotient J/m is the field Z/p, so it is a maximal ideal. Let m’ be an arbitrary maximal graded ideal. Put
a=@, £0 Ji. Every homogeneous element a € a satisfies a? = 0, and it follows that a < m’ This means

that m’ corresponds to a maximal ideal in the quotient J, /a >~ Z,, and the only such ideal is pZ,. It follows
that m’ = m as claimed. The description of m/m? is a straightforward calculation. O

Proposition 8.7. The ring J is totally incoherent.

Proof. Put V.= {a | k # 0 (mod p)} C J, so V is infinite and pV = 0 and V and remains linearly
independent in m/m?2. By inspecting the multiplication rules, we see that every non-invertible element of
J annihilates all elements of V with at most one exception. It follows using Corollary [5.6] that Jis totally
incoherent. g

9. THE INFINITE ROOT ALGEBRA

In this section we fix a field K and study the infinite root algebra P over K, which was introduced in
Definition [LTIl We first recall the details.

Definition 9.1. We say that a subset U C [0,1] is well-ordered if the usual order inherited from R is a
well-ordering, so every nonempty subset of U has a smallest element. It is equivalent to say that every
infinite nonincreasing sequence in U is eventually constant, or that there are no infinite, strictly decreasing
sequences.

An infinite Toot series is a function a: [0,1] — K such that the set supp(a) = {¢ | a(q) # 0} is well-
ordered. The infinite root algebra is the set P of all infinite root series. We regard this as an ungraded
object, or equivalently as a graded object concentrated in degree zero.

Remark 9.2. It is clear that any subset of a well-ordered set is well-ordered, and that the union of any two
well-ordered sets is well-ordered. Now if a,b € P we have supp(a + b) C supp(a) U supp(b), so P is closed
under addition. It is clearly also closed under multiplication by elements of K.

Lemma 9.3. Any well-ordered subset of [0,1] is countable. Moreover, for any countable ordinal «, there is
a well-ordered subset U C [0,1] that is order-isomorphic to c.

Proof. Firstly, we can regard rational numbers in [0, 1] as coprime pairs of integers and this gives a lexico-
graphic ordering on QN [0, 1], which is a well-ordering.

Next, let U be a well-ordered subset of [0,1]. We define f: U — Q as follows. If u is maximal in U, we
put f(u) = 1. Otherwise, the set {v € U | v > u} has a smallest element vy, and we define f(u) to be the
lexicographically smallest element of Q N [u,vg). It is clear that f is injective, so U is countable.

Let a be any countable ordinal; we claim that there is an order-embedding ¢g: o — [0,1]. To see this,
choose an injective map p: @ — N and then put

o(8) = Y200

v<B
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It is clear that this has the required properties. ]
Lemma 9.4. If U,V C [0,1] are well-ordered and w € [0,1] then {(u,v) € U x V | u+v = w} is finite.

Proof. Put U' = {u € U | w—u € V}. This is well-ordered (because it is a subset of U) and it will suffice
to show that it is finite. If not, we can define an infinite sequence ug < u; < ug < --- in U’ as follows: we
take ug to be the smallest element in U’, then take u; to be the smallest element in U’ \ {uo}, and so on.
We then note that w — ug, w — uy,w — ue, ... is an infinite strictly decreasing sequence in V', contradicting
the assumption that V is well-ordered. O

Lemma 9.5. Let U be a well-ordered subset of [0,1], and let (uy,) be a sequence in U. Then there exists an
infinite nondecreasing subsequence.

Proof. Put vg = min{u; | j > 0} (which is meaningful because U is well-ordered) and then ng = min{j | u; =
vo}. For i > 0 we define recursively v; = min{u; | j > n;—1} and n; = min{j > n;—1 | u; = v;}. We find
that ng <nj; <ng <--- and vg < vy <wy < ---, or equivalently un, < Up, < up, < --- as required. O]

Lemma 9.6. Let U and V be well-ordered subsets of [0,1], and put UxV ={u+v |u €U andv € V}.
Then U xV is also well-ordered.

Proof. Suppose not. We can then find an infinite strictly descending chain in U % V| so we can choose a
sequence (U, vy,) in U x V with u; + v; > w41 + v;41 for all i. Lemma tells us that after passing to a
subsequence, we may assume that u; < wuj;y; for all j. After passing again to a sparser subsequence, we may
also assume that vy < vi4q for all k. This is clearly impossible. [l

Proposition 9.7. We can make P into a commutative ring by the rule
ab(w) = Z a(u)b(v).
w=u+v

Proof. Lemma shows that the sum is essentially finite, so there is no problem with convergence. It is
clear that supp(ab) C supp(a) * supp(b), and Lemma shows that supp(a) * supp(b) is well-ordered, so
ab € P. Tt is straightforward to check that the multiplication operation is commutative, associative and
bilinear. Moreover, if we define e(0) = 1 and e(g) = 0 for g # 0, then e is a multiplicative identity element
for P. 0

Definition 9.8. For a € P\ {0}, we put 6(a) = min(supp(a)). We also put §(0) = oo.
Remark 9.9. Note that if 6(a) + §(b) < 1 we have

(ab)(6(a) + (b)) = a(4(a)) b(6(b)) # O,
so ab # 0 and §(ab) = é(a) + §(b). On the other hand, if 6(a) + d(b) > 1 then ab = 0.
Definition 9.10. For ¢ € R U {oo} with ¢ > 0, we define 27 € P by

:Cq(u)z{l ifu=gq

0 otherwise.

Remark 9.11. We note that
(a) 20 is the multiplicative identity element e.
(b) If ¢ > 1 then x? = 0.
(¢) 0 < g<1then §(z?) =q.
(d) For all ¢,r > 0 we have x%z" = x977,

Lemma 9.12. Consider an element a € P\ {0}. If a(0) =0 (or equivalently, 6(a) > 0) then a is nilpotent,
but if §(a) = 0 then a is invertible.

Proof. If §(a) > 0 then we can find a positive integer n with d(a) > 1/n, and using Remark [0.9] we see that

a™ = 0. Suppose instead that §(a) = 0. We can then write a = ue + b = u(e + b/u) where u € K \ 0

and e = 2 is the multiplicative identity of P and §(b) > 0, so b™ = 0 for some n. Now a has inverse

Yise u (=b/u) O
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Corollary 9.13. The map a — a(0) induces an isomorphism P/v/0 — K.
Proof. Clear. O
Definition 9.14. For a € P with 6(a) > ¢, we define \:(a) € P by

)\t(a)(r)_{a(r—i—t) fo<r<1l-—t

0 ifl—t<r<1L

Corollary 9.15. If §(a) >t then a = z* M\i(a) and §(\i(a)) = 6(a) —t. Moreover, if §(a) =t then \(a) is

invertible, so Pa = Px?.
Proof. The first two claims are clear from the definitions, and the third then follows using Lemma[0.121 [

Definition 9.16. For ¢ € [0, 1] we put
Jy={ae P|d(a) >t}
Jy={a€ P|da) >t} =Pz

Proposition 9.17. Every ideal in P has the form Ji or J,.

Proof. Let I be an ideal in P. If I = 0 then I = J;. Otherwise, we put ¢t = inf{6(a) | a € I'}. If t = §(a) for
some a € I then Corollary [@.15 shows that z* € I, and it follows easily that I = .J;. Suppose instead that
there is no element a € I with §(a) =¢. It is then clear that I < .J;. Moreover, if b € J; then §(b) > ¢ so (by
the infimum condition) there exists a € I with 6(b) > d(a) > t. After applying Corollary @15 to a and b, we
see that b is a multiple of a, and so b € I. We now see that I = J;, as required. O

Proposition 9.18. For all t € [0,1] we have annp(J;) = J1_; and annp(J;) = J1_;.

Proof. This follows easily from the fact that ab = 0 iff §(a) + §(b) > 1. O
Corollary 9.19. For any ideal I < P we have ann%(I) = I.

Proof. Immediate from the last two propositions. g
Proposition 9.20. P is self-injective.

Proof. As we have classified all ideals in P, we can use Baer’s criterion. Consider a number ¢ € [0, 1] and
a P-module map f: J; = () — P. If f(2!) = a then we must have J;_sa = f(J;_sz*) = f(0) = 0, so
a € ann(Jy_¢) = Jy, s0 a = 2 \;(a). We can now define f': P — P extending f by f’(p) = p Ai(a), so Baer’s
criterion is satisfied in this case.

Now consider instead a P-module map f: J; — P. If t = 1 then J; = 0 and the zero map P — P
extends f. We suppose instead that ¢ < 1. For s € (t,1] we put as = As(f(x*)), so the first case shows
that f(p) = pa, for all p € J, < J;. Now suppose that t < r < s < 1. As 2® € J, < J, we have
z®(ar — ag) = f(z°) — f(x®) =0, so a,(q) = as(q) for all ¢ <1 —s. Moreover, from the definition of the
A operation we have as(q) = 0 for ¢ > 1 — s, and thus certainly for ¢ > 1 — t. We now see that there is
a unique map a: [0,1] - K with a = a5 on [0,1 — 5] (for all s € (¢,1]) and @ = 0 on [1 —¢,1]. It follows
easily from these properties that supp(a) is well-ordered, so a € P. We also see from the first property that
f agrees with multiplication by a on J, for all s € (¢,1]. It follows that the same is true on Use(t,l] Js = Jg,
as required. O

Proposition 9.21. P is totally incoherent.

Proof. Let I be a finitely generated ideal, say I = (ay,...,a,), where we can assume that the generators a;
are nonzero. If r = 0 then I = 0, and this is finitely presented. If » > 0 we can use Corollary @13 to see
that I = J;, where t = min(6(a1), ..., d(a,)).

Now suppose that I is nonzero and finitely presented. We must have I = J,; for some ¢, so we have
an epimorphism g: P — I given by g(a) = ax®. Proposition 5] tells us that ker(g) must also be finitely
generated, but ker(g) = annp(x') = J1_;, and this is only finitely generated when ¢t = 0 and so ker(g) =
leOandlzjozP. ]
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Remark 9.22. Put P/ = {a € P | supp(a) C Q}. This is a subring of P, and one can adapt the above
arguments to show that it is again self-injective and totally incoherent. Every ideal in P has the form J; NP’
or J; N P’ for some t € [0,1], and these are all distinct except for the fact that J, N P’ = J; N P’ when t is
irrational.

10. THE RADO ALGEBRA

In this section we study the Rado algebra (), which was defined in Definition We will write T" for
the Rado graph.
We first clarify the kinds of graphs that we will consider.

Definition 10.1. A graph is a pair (V, E), where V is a set and E is a subset of V' x V such that

(a) For all v € V we have (v,v) € E.
(b) For all v,w € V we have ((v,w) € E iff (w,v) € E).

Definition 10.2. Let G = (V, E) and G’ = (V', E’) be graphs. A full embedding of G in G’ is an injective
map f: V — V' such E = (f x f)"1(E’) (so vertices vg,v; € V are linked by an edge in G iff the images
f(vg) and f(v1) are linked by an edge in G’). Similarly, a full subgraph of G’ is a graph of the form
G =G'ly = (V,E'NV?) for some subset V C V', so the inclusion map gives a full embedding G — G'.

Lemma 10.3. Suppose we have a finite graph G', a full subgraph G, and a full embedding f: G — T'. Then
there is a full embedding f': G' — T extending f.

Proof. Tt is easy to reduce to the case where G’ has only one more vertex than G, say V' = V II {z}. Put
A={v eV |(v,z) € E'} and N = max{f(v) | v € V} + 1, then let f': V' — N be the map extending f
with f/(z) =2+ _, 27() Tt is straightforward to check that this has the required properties. O

Remark 10.4. As we mentioned in Example [£7] each group Ej (for k& > 0) is isomorphic to F. The
generator is the element yr = rpy) = HieB(k) x;. We say that a finite subset I C N is I'-complete if the
full subgraph I'|; is a complete graph (so every two distinct points are linked by an edge). We say that a
natural number n is BI'-complete if B(n) is I'-complete. It is clear that the set

{yn | n is not BT-complete }
is a basis for the Rado ideal, and thus that the set
{yn | n is BT-complete }
gives a basis for Q.

Proposition 10.5. For any finitely generated ideal I < Q, we have ann?(I) = I. (In other words, Q satisfies
the double annihilator condition.)

Proof. Let I < @ be a finitely generated ideal. Because of Remark [[0.4] the ideal I must be generated by a
finite list of monomials, say I = (z4,,...,x4, ), where each 4; is a finite I'-complete subset of N. Simiilarly,
ann?(I) is generated by the monomials that it contains.

Let T be another I'-complete subset of N. If T contains A; for some 4, it is clear that zp € I. Suppose
instead that 7' does not contain any of the A;. Let N be strictly larger than any of the elements of TU(J, A;,
and put n =2V +3", 2%, so B(n) = {N}UT. It is clear that n & T and TU{n} is I'-complete so znxr # 0.
However, we claim that z,z4, = 0 for all . Indeed, as T 2 A; we can choose k € A; \ T. As N is so large
we cannot have n € B(k), and also k ¢ {N} UT = B(n), so ,2x = 0, so z,24, = 0 as claimed. We now
see that x,, € ann([I), but x,27 # 0, so x7 & ann?(I). Tt follows that ann?(I) = I as claimed. O

Proposition 10.6. @ is not self-injective.

Proof. Take any pair p,qg € N with p # ¢ and zpzy = 0 (say p = 0 and ¢ = 2). Put v = (x,,24) and

v = (0,24), and consider the test pair (u,v). Any transporter would have to be an element ¢ € Qo = {0,1}

with tz, = 0 and tz, = x4. It is clear from this that there is no transporter. A block would be a pair (a, b)

with bx, # 0 but ax, + bx, = 0 (so ax, = bz, # 0). This means that a and b are nonzero homogeneous

elements, say a = x4 and b = xp for some I'-complete sets A and B. As ax, # 0 we see that p ¢ A, and that

AU {p} is again I'-complete. Similarly, we have ¢ ¢ B and B U {¢} is I'-complete. The equation az, = bz,
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means that AU {p} = B U {q}, so we have A = C U {q} and B = C U {p} for some set C. This now gives
bry = zcxpry but xpxy = 0 so bx, = 0, contrary to assumption. This shows that we have neither a block
nor a transporter, so () is not self-injective. 0

Remark 10.7. We could give @ a different grading with such that there are some pairs (4, j) with ¢ # j but
|z;| = |z;], so z; + x; becomes homogeneous. One can check that if z;z; = 0 then ann?(z; + ;) = (z;, ;) #
(x; + x;), so the double annihilator condition no longer holds. We will discuss a similar situation with more
details in Lemma [[T.T8 We believe that the self-injectivity condition is similarly sensitive to the choice of
grading, but we do not have an example to prove this.

Proposition 10.8. @ is totally incoherent.

Proof. First, it is clear that @ is local, with maximal ideal m = (z; | i € N) = @, ., Qr. The generators
x; form a basis for m/m2. Note that if A C N is nonempty and I'-complete, then infinitely many of the
variables x; will satisfy x;x4 = 0, so the image of ann(z4) in m/m2 will have infinite dimension. The claim
therefore follows by Corollary 5.6l O

11. THE €yp-ALGEBRA

The ¢y algebra A was introduced in Definition [LT8 We now explain the definition in more detail, and
prove some properties.

Definition 11.1. Suppose we have a sequence § = (f#; > 2 > --- > ) of ordinals, and a sequence
n = (ny,...,n,) of positive integers. We write

C(B,n) = Wy 4. 4 WP,

Note that this uses ordinal exponentiation, defined in the usual recursive way by a”t! = aa® and o* =
Us<x o? when ) is a limit ordinal.

The following fact is standard (and not hard to prove by transfinite induction).

Proposition 11.2. For any ordinal o there is a unique pair (8,n) such that o = C(B,n). (This is the
Cantor normal form for a.)

Proof. See [11], Exercise 6.10], for example. O

Definition 11.3. We put 79 = w and define m,, recursively by 7,11 = w™, and then put ¢y = Un Tn.

One can check that ¢g = w, and that €y is the smallest ordinal with this property. Note that the
expression €y = w is the Cantor normal form of €¢5. For a < ¢y we find that the exponents 5; in the Cantor
normal form of « are strictly less than «, so in this case one can do induction or recursion based on the
Cantor normal form.

Definition 11.4. We define ¢: ¢¢ — N recursively by 6(0) = 1 and 6(a) = (3-,(6(B¢) + 2)ny) — 1 if

a=uwln + - 4+ whn,.
We will give enough examples to show that ¢ is not injective, which will be needed later.

Example 11.5.

5(1) =6w") = (5(0)+2)—1=2
5(2) =6w2) = (6(0)+2)2-1=5
Sw)=0w')=01)+2)-1=3

SwH+1) =dw'+w’) = (0(1) +2)+ (5(0)+2)—1=6

§(w?) =(6(2) +2)—1=6.

In order to analyse 4, it is helpful to modify the Cantor normal form slightly.
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Lemma 11.6. If a < ¢g then there is a unique way to write
with o > B1 > B2 > -+ > B (This is the expanded Cantor normal form.)

Proof. Just take the ordinary Cantor normal form and replace w?*n; by n; copies of w?. O

Lemma 11.7. For any d € N there are only finitely many ordinals « € ey with 6(a) = d.

Proof. Let A denote the alphabet {0, 7, +}. For each o < €y we define a word ¢(«) in A as follows. We start
with ¢(0) = 0. If § > 0 has expanded Cantor normal form 6 = W% + - -+ wPm we put

¢(9) = Qb(ﬂl)ﬂ'éb(ﬁz)ﬂ' .. (b(ﬂm)w 4t
(with m — 1 plusses at the end). For example we have
#(3) = ¢(w0 +w + wo) = 0007 + +
d(w” + w) = 0rrrOnm + .

It is clear from the definitions that §(6) is the length of ¢(#), and there are only 3¢ words in A of length d,
so it will suffice to show that ¢ is injective. If we interpret 7 as the operator z — w® then ¢(0) is a reverse
polish expression that evaluates to 6, and this implies injectivity. O

Corollary 11.8. ¢y is countable. O

Definition 11.9. Let A be the graded polynomial algebra over F generated by elements z,, for each ordinal
a < €, with |z] = 6(a).

Using Lemma [[1.7 we see that A is finite for all d.

Definition 11.10. For ordinals a, 8 < ¢y with o # 8 we define jo(c, 3) to be the coefficient of w? in
a. More explicitly, if the Cantor normal form of a involves a term w”n, then pg(a, 3) = n; if there
is no such term then po(c,8) = 0. One can check that if uo(e,8) > 0 then po(8,a) = 0. We put
e, B) = max(po(a, B), po(B, @)).

Proposition 11.11. For any finite set J C eg and map v: J — N there exists a € e \ J such that
w(a, B) =v(B) for all B € J. (We will call this the extension property.)

Proof. Write J in order as J = {1 > f2 > --- > 3,} and then take
a=whtl 4 wﬂl.l/(ﬁl) 44 wﬂT.l/(ﬁr).

It is visible that uo(c, 3¢) = v(B;) for all t. Also, because of the initial term w”1*! we have w® > o > f3; for
all ¢t and so pg(B:, ) = 0. Tt follows that u(w, B¢) = v(B:) for all ¢, as required. O

From now on we will only need the fact that our index set €g is countable and that the extension property
holds. It will therefore be notationally convenient to write I = ¢y and ignore the fact that the elements of I
are ordinals, and to write 7 instead of « for a typical element of I. We also put Iy = {(i,4) € I? | i # j}.

Definition 11.12. For each (i,7) € Iz we put p(i,j) = xixf(i’j)ﬂ. We then let A be the quotient of A by
all such elements p(i,j). We call this the ey-algebra.

Definition 11.13. Given a map a: I — N, we write supp(a) = {i | (i) > 0}. Let M A be the set of all
such maps a for which supp(c) is finite. For o« € M A we put z® =[], x?(l) € A. We write BA for the set
of all such monomials %, so BA is a basis for A. Next, put

MA = {a € MA|Vi#ja(i) > 0= a(j) < pli,j)}
and BA = {z“ | o € M A}. One can check that BA gives a basis for A.

Definition 11.14. A monomial ideal is just an ideal in A that is generated by some subset of BA.
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Remark 11.15. Let P be a monomial ideal, generated by {z“ | o € U} for some subset U C M A. Put
Ut ={a€ MA|a>p for some 8 € U}.

It is easy to see that {x® | @ € U™} is then a basis for P over F. It follows easily that sums, products,
intersections and annihilators of monomial ideals are again monomial ideals.

Lemma 11.16. If P is a monomial ideal then it is finitely generated if and only if there is a finite list of
monomials that generate it.

Proof. Suppose that P is generated by ai,...,a,, where the elements a; need not be monomials. We
can write a; = Eant ag,ox®, for some finite set U, C M A and some nonzero coefficients a; . Using
Remark we see that the terms z® (for o € Uy) lie in P. Put U = |J, U; (which is finite) and put
P = (z*|aeU)<P. Clarly a, € (z* | « € Uy) < P’ and the elements a; generate P so P < P’ so
P = P'. Thus, P is generated by a finite list of monomials. O

Proposition 11.17. Let P < A be a finitely generated monomial ideal. Then ann?(P) = P.

Proof. Tt is automatic that P < ann?(P), so it will suffice to prove the opposite inclusion. Note that both P
and ann?(P) are monomial ideals, so it will suffice to show that they contain the same monomials. Suppose
that z? is a nonzero monomial that does not lie in P; we must find y € ann(P) such that 2%y # 0.

We can choose a finite list a1, ..., o, € M such that P = (z®*,...,2%"). Put J = supp(f) U|J, supp(c),
which is a finite subset of I. Put N = max{3(j) | j € J}.

Next, for each t we note that = cannot be divisible by 2%, so we can choose i; € J such that oy (i;) > B(iy).
Using the extension property we can recursively define distinct elements kq, ..., k. € I'\ J such that

(a) p(ke,ir) = ou(iz) — 1

(b) (ke g) = N for j € 7\ {ir}

(¢) plke, ks) =1 for s < t.
Put y = [], xx,. This is nonzero by property (c). Property (a) tells us that xzj,2* = 0 for all ¢, which
implies that y € ann(A). On the other hand, we note that

e Clause (a) above tells us that yz? is not divisible by any relator p(ky, ;).

e Clause (b) tells us that yz? is not divisible by any relator p(k¢, j) with j € J\ {i;}.

e Clause (c) tells us that y2? is not divisible by any relator p(k¢, ks ).

e Our original assumption 2 # 0 implies that yz? is not divisible by any relator p(j, ") with j, j' € J.
This shows that y2® # 0, but y € ann(P), so 2° ¢ ann% P), as claimed. O
Lemma 11.18. Let i and j be any two distinct indices in I with |z;| = |z;| and p(i,j) = 0. Then

ann?(z; + x;) = (v, ) > (z; + z5).

Proof. As u(i,j) = 0 we have x;z; = 0 and so (using monomial bases) (x;) N (z;) = 0. If u(z; + ;) = 0 then
we have uz; = —ux;, with the left hand side in (z;) and the right hand side in (:CJ) s (x;) N (x;) = 0 this
gives uz; = uz; = 0. It now follows that ann(x; + ;) = ann(x;, z;) and so ann?(z; —i—x]) = ann2(:1ci, xj). As
(z;,x;) is a monomial ideal we also have ann?(z;, z;) = (x;,z;), so ann?(z; + z;) = (z;,2;) > (z; + x;) as
claimed. O

Corollary 11.19. Ezample shows that the lemma applies to the pair (w?,w+ 1), so A does not satisfy
the double annihilator condition. Thus, Remark[2.]) shows that A cannot be self-injective. 0

Remark 11.20. We could choose a different grading such that all the generators had different degrees,
which would eliminate any examples as in Lemma [[T.18 However, we cannot ensure that Ay has dimension
at most one for all d, because when i # j the elements xlmj " and a:lfil have the same degree and are linearly
independent. Thus, there will always be ideals that are not monomial ideals. We suspect that there is no
grading for which A satisfies the full double annihilator condition, but we have not proved this.

Proposition 11.21. A is totally incoherent.
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Proof. Put mp = 0 and my, = Ay, for all £ > 0, so A/m = F. Tt is clear that m is an ideal, and that the
(homogeneous) elements of m are precisely the elements of A that are not invertible. Given this, it follows
that m is the unique maximal ideal in A, so A is local. From the form of the relations in A we see that
{z; | i € I} is a basis for m/m?.
Now consider an element a € Ay for some d > 0. Put
U={iel|dl)<d}
V={u']ieI\U}.
We find that z;x; =0 for all € U and j € V. Moreover, we have a € (z; |1 € U), so ax; =0 forall j € V,
so the image of ann(a) in m/m? has infinite dimension.
Now let P be a finitely presented ideal in A. If P = mP then P = 0 by Nakayama’s Lemma. Otherwise,

we can choose a € P\mP, and Lemma 5.5 tells us that ann(a) has finite image in m/m?. The above remarks
show that we must have |a| =0, and a € mP so a # 0, so a is invertible, so P = A. O

Proposition 11.22. The reduced quotient is
A/VO =Flzi | i € 1]/ (zizj | i # j)-

(i g)+1

Proof. In A we have z; =0, so (:vi:vj)”(i’j)"’l =0, so z;z; is nilpotent. If we put

A= Af(wiwj | i # 5) =Flai | € I]/(zix; | i # 5),

we deduce that A/v/0 = A’/+/0. However, it is easy to see that A’ is already reduced, so A/v/0 = A’ as
claimed. g

12. TRIANGULATION

Recall that a triangulated category is a triple (C, %, A), where C is an additive category, and X: C — C is
an equivalence, and A is a class of diagrams of shape

X—>Y—>7—-3%¥X

(called distinguished triangles), subject to certain axioms that we will not list here.

Definition 12.1. Let R be a self-injective graded ring, let Modr be the category of R-modules, and let
¥: Modg — Modg be the usual suspension functor so that (X¥M); = M,;_;. Let InjMody be the full
subcategory of injective modules. A triangulation structure for R is a pair (N, A), where

(a) N is a full subcategory of InjMody containing R.

(b) N is closed under finite direct sums, retracts, suspensions and desuspensions.

(¢) A is a class of distinguished triangles making (A, 3, A) into a triangulated category.

We can also make a similar definition for ungraded rings.

Definition 12.2. Let R be a self-injective ungraded ring. An ungraded triangulation structure for R is a
pair (M, A), where

(a) N is a full subcategory of InjMod  containing R.

(b) N is closed under finite direct sums, retracts, suspensions and desuspensions.

(c) Ais a class of distinguished triangles making (N, 1, A) into a triangulated category.

In [15] we constructed ungraded triangulation structures for Z/4 and for Kle]/e? (where K is any field of
characteristic two). If Freyd’s Generating Hypothesis is true, then the image of the functor 7, gives a graded
triangulation structure for the ring 7. (S )1’7\ We have not succeeded in constructing any examples of graded
triangulation structures by pure algebra. Here we offer only some rather limited and negative results.

Lemma 12.3. If (N, A) is a triangulation structure (in the graded or ungraded context) then all distinguished
triangles in A are exact sequences.

Proof. The general theory of triangulated categories tells us that all functors of the form N(X,—) send
distinguished triangles to long exact sequences. By assumption we have R € A/, and we can take X = R to
prove the claim. O
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Lemma 12.4. If (N, A) is a triangulation structure then all surjective maps in N are split.

Proof. Let M I Nbea surjective map in . This must fit into a distinguished triangle L < M ERN NN
Here gf = 0 but f is surjective so g = 0. It is standard that the functor N (N, —) converts our distinguished
triangle to an exact sequence, so f.: N(N, M) — N(N, N) is surjective. We can thus find h: N — M with
fh=1,s0 h splits f. O

Corollary 12.5. If (N, A) is a triangulation structure then all finitely generated modules in N are projective.
Thus, if R is local then all such modules are free.

Proof. Let N be a finitely generated module in A/. This means that there is a surjective homomorphism
f: F — N for some finitely generated free module F. As N is standard we see that F' € A/, so the lemma
tells us that IV is a retract of F', so it is projective. It is well-known that finitely generated projective modules
over local rings are free. O

Proposition 12.6. Suppose that R is a local graded ring with R; = 0 for i <0, and suppose that R admits
a triangulation structure. Then R is totally incoherent.

Proof. Let m be the unique maximal ideal, and let (N, A) be a triangulation structure. It is not hard to see
that mg is the unique maximal ideal in Ry, so Ry is a local ring in the ungraded sense.

Let J be any finitely generated ideal. We can then find a finitely generated free module @ and an
epimorphism @ — J such that Q@/m@Q — J/mJ is an isomorphism. We will write g for the composite
map @ — J — R, so that J = image(g). If J is finitely presented then ker(g) is again finitely generated,
so we can find a finitely generated free module P and a map f: P — @ with image(f) = ker(g) and

P/mP =5 ker(g)/mker(g). With these minimal choices for P and Q, it is clear that P; = Q; = 0 when

i < 0. Next, we can fit ¢ into a distinguished triangle X' R 4 K5 Q% R. As gf =0, we can find a
lift f: P — K with if = f. We can combine this with d to give a map P ® ¥"'R — K, and a diagram
chase shows that this is surjective. Using Lemma [I2.4] we deduce that this map is split epi and that K is a
finitely generated free module. It follows that K; = 0 for i« < —1 and that K_; is a retract of Ry. As Ry
is local we must have either K_; = 0or K_; = Rg. If K_; = 0 then d: ¥"'R — K must be zero, which
implies that g: Q — R is split epi, which means that J = R. If K_; # 0 then we find that d must induce
an monomorphism ¥"'R/m — K, and as R is local this implies that d is a split monomorphism, and thus
that ¢ =0 and so J = 0. O

Remark 12.7. As mentioned previously, there is an ungraded triangulation structure for the ring Z/4. The
ideal (2) < Z/4 is finitely presented and is neither 0 nor Z/4. It follows that our grading assumptions are
playing an essential role in the proof of the above proposition.

Corollary 12.8. Neither the infinite exterior algebra (as in Ezample [{.7) nor the cube algebra (as in
Section[7) admits a triangulation structure.

Proof. Both rings are coherent, by Propositions [5.4] and [(.25] O
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