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ON REMOVABILITY PROPERTIES OF ψ-UNIFORM DOMAINS

IN BANACH SPACES

M. HUANG, M. VUORINEN, AND X. WANG ∗

Abstract. Suppose that E and E′ denote real Banach spaces with the same
dimension at least 2. The main aim of this paper is to show that a domain D

in E is a ψ-uniform domain if and only if D\PD is a ψ1-uniform domain, and a
domain D in E is a uniform domain if and only if D\PD is also a uniform domain,
where PD denotes a countable set in D with the property that the quasihyperbolic
distance between each pair of distinct points in it has a lower bound greater than
or equal to 1

2
.

1. Introduction and main results

The quasihyperbolic metric of a domain in a metric space was introduced by F. W.
Gehring and his students B. Palka and B. Osgood in the 1970’s [2, 3] in the setup of
the Euclidean space Rn, n ≥ 2. Since its first appearance, the quasihyperbolic metric
has become an important tool in geometric function theory and in its generaliza-
tions to metric spaces and to Banach spaces [18]. Yet, some basic questions of the
quasihyperbolic geometry in Banach spaces and even in Euclidean spaces are open.
For instance, only recently the convexity of balls of the quasihyperbolic metric has
been studied in [7, 8, 12, 20].

In this paper, we study the classes of uniform domains [11] and the wider class
of ψ-uniform domains [22] in Banach spaces and the stability of these classes of
domains under the removal of a countable set of points. The motivation for this
study stems from the discussions in [6, 16]. In [6], similar removability questions
were studied for the class of John domains. We begin with some basic definitions
and the statements of our results. The proofs and necessary supplementary notation
and terminology will be given thereafter.

Throughout the paper, we always assume that E and E ′ denote real Banach
spaces with the same dimension at least 2. The norm of a vector z in E is written as
|z|, and for each pair of points z1, z2 in E, the distance between them is denoted by
|z1− z2|, the closed line segment with endpoints z1 and z2 by [z1, z2]. We always use
B(x0, r) to denote the open ball {x ∈ E : |x − x0| < r} centered at x0 with radius
r > 0. Similarly, for the closed balls and spheres, we employ the usual notations
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B(x0, r) and ∂B(x0, r), respectively. We adopt some basic terminology following
closely [10, 14, 15, 16].

Definition 1. A domain D in E is said to be c-uniform if there exists a constant c
with the property that each pair of points z1, z2 in D can be joined by a rectifiable
arc γ in D satisfying

(1) min
j=1,2

ℓ(γ[zj, z]) ≤ c dD(z) for all z ∈ γ, and

(2) ℓ(γ) ≤ c |z1 − z2|,

where ℓ(γ) denotes the arc length of γ, γ[zj , z] the part of γ between zj and z, and
dD(z) the distance from z to the boundary ∂D of D [11]. Also we say that γ is a
double c-cone arc.

Definition 2. Let ψ : [0,∞] → [0,∞] be a homeomorphism. A domain D in E is
called ψ-uniform if

kD(z1, z2) ≤ ψ
( |z1 − z2|

min{dD(z1), dD(z2)}

)

for all z1, z2 ∈ D [22].

In [16], Väisälä obtained the following result concerning the removability property
of uniform domains. In Section 2 we shall discuss the connection between these two
notions of uniformity.

Theorem A. ([16, Theorem 6.5]) For x0 ∈ E and r > 0, the domains B(x0, r),
B(x0, r)\{x0} and E\{x0} are c-uniform domains with universal c.

Theorem B. ([16, Lemma 6.7]) Suppose that G is a c-uniform domain in E and

that x0 ∈ G. Then G0 = G\{x0} is c0-uniform with c0 = c0(c).

In [6], the authors discussed the removability property of John domains.

Theorem C. ([6, Lemma 6.7]) A domain D ⊂ R
n (n ≥ 2) is a John domain if and

only if G = D\P is also a John domain, where P = {p1, p2, · · · , pm} ⊂ D.

In general, when P is a countable set in a John domain D, the domain D\P need
not be a John domain (cf. [6, Example 1.5]). This motivates us to study countable
subsets of a domain satisfying the following quasihyperbolic separation condition.

For a domain D in E and a fixed sequence {xj : j = 1, 2, . . . } of points in D with
kD(xi, xj) ≥

1
2
for i 6= j, we always use the convenient notation

PD = {xj ∈ D : j = 1, 2, . . . }.

The purpose of this paper is to discuss the following two problems.

Problem 1. Suppose that D is a ψ-uniform domain in E. Is it true that G = D\PD

is a ψ1-uniform domain, where ψ1 depends only on ψ?

Problem 2. Suppose that D is a c-uniform domain in E. Is it true that G = D\PD

is a c1-uniform domain, where c1 = c1(c)?
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We are now in a position to formulate our results.

Theorem 1. A domain D in E is a ψ-uniform domain if and only if G = D\PD

is a ψ1-uniform domain, where ψ = 3ψ1(128t) and ψ1 = 212ψ(t) for t > 0.

As a corollary of Theorem 1, we have

Corollary 1. A domain D in E is a c-uniform domain if and only if G = D\PD

is a c1-uniform domain, where the constants c and c1 depend only on each other.

The proofs of Theorem 1 and Corollary 1 will be given in Section 3, and some
preliminaries will be introduced in Section 2.

2. Preliminaries

2.1. Quasihyperbolic distance and neargeodesics. The quasihyperbolic length

of a rectifiable arc or a path α in the norm metric in D is the number [3, 19]:

ℓkD(α) =

∫

α

|dz|

dD(z)
.

For each pair of points z1, z2 in D, the distance ratio metric jD(z1, z2) between z1
and z2 is defined by

jD(z1, z2) = log
(

1 +
|z1 − z2|

min{dD(z1), dD(z2)}

)

.

The quasihyperbolic distance kD(z1, z2) between z1 and z2 is defined in the usual
way:

kD(z1, z2) = inf{ℓkD(α)},

where the infimum is taken over all rectifiable arcs α joining z1 to z2 in D. For all
z1, z2 in D, we have [19]

kD(z1, z2) ≥ inf
α

{

log
(

1 +
ℓ(α)

min{dD(z1), dD(z2)}

)

}

≥
∣

∣

∣
log

dD(z2)

dD(z1)

∣

∣

∣
,(2.1)

where the infimum is taken over all rectifiable curves α in D connecting z1 and z2.
Since ℓ(α) ≥ |z1 − z2| in (2.1), for all z1, z2 in D, we have

(2.2) kD(z1, z2) ≥ jD(z1, z2).

The following observation easily follows from (2.2) and Definition 2.

Proposition 1. If D is ψ-uniform, then the homeomorphism ψ satisfies

ψ(t) ≥ log(1 + t)

for t > 0.

Next, if |z1 − z2| ≤ dD(z1), then we have [15], [21, Lemma 2.11]

(2.3) kD(z1, z2) ≤ log
(

1 +
|z1 − z2|

dD(z1)− |z1 − z2|

)

.

In [16], Väisälä characterized uniform domains by the quasihyperbolic metric.
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Theorem D. ([16, Theorem 6.16]) For a domain D, the following are quantitatively

equivalent:

(1) D is a c-uniform domain;

(2) kD(z1, z2) ≤ c′ jD(z1, z2) for all z1, z2 ∈ D;

(3) kD(z1, z2) ≤ c′1 jD(z1, z2) + d for all z1, z2 ∈ D.

Gehring and Palka [3] introduced the quasihyperbolic metric of a domain in R
n

and it has been recently used by many authors in the study of quasiconformal
mappings [1, 5, 20, 22] etc and related questions [4]. In the case of domains in R

n ,

the equivalence of items (1) and (3) in Theorem D is due to Gehring and Osgood
[2] and the equivalence of items (2) and (3) due to Vuorinen [22]. Many of the basic
properties of this metric may be found in [2, 15, 16]. By Theorem D, we see that
uniformity implies ψ-uniformity.

Recall that an arc α from z1 to z2 is a quasihyperbolic geodesic if ℓkD(α) =
kD(z1, z2). Each subarc of a quasihyperbolic geodesic is obviously a quasihyper-
bolic geodesic. It is known that a quasihyperbolic geodesic between every pair of
points in E exists if the dimension of E is finite, see [2, Lemma 1]. This is not
true in Banach spaces [17, Example 2.9]. In order to remedy this shortage, Väisälä
introduced the following concepts [16].

Definition 3. Let D be a domain in E. An arc α ⊂ D is ν-neargeodesic if
ℓkD(α[x, y]) ≤ ν kD(x, y) for all x, y ∈ α.

Obviously, a ν-neargeodesic is a quasihyperbolic geodesic if and only if ν = 1.
In [17], Väisälä proved the following property concerning the existence of near-

geodesics in E.

Theorem E. ([17, Theorem 3.3]) Let {z1, z2} ⊂ D and ν > 1. Then there is a

ν-neargeodesic in D joining z1 and z2.

2.2. Quasiconvexity.

Definition 4. We say that an arc γ in D ⊂ E is c-quasiconvex in the norm metric
if it satisfies the condition

ℓ(γ[z1, z2]) ≤ c |z1 − z2|

for every z1, z2 in γ.

The following result is due to Schäffer [13].

Theorem F. ([13, 4.4]) Suppose that S is a sphere, that T is a 2-dimensional linear

subspace in E and that the intersection S ∩ T contains at least two points. For

every pair {z1, z2} ⊂ T ∩ S, if γ ⊂ T ∩ S is the minor arc or a half circle with the

endpoints z1 and z2, then γ is 2-quasiconvex.

3. The proofs of Theorem 1 and Corollary 1

We recall that D denotes a domain in E and G = D\PD, where PD ⊂ D is a
countable set satisfying the quasihyperbolic separation condition. Before the proof
of Theorem 1, we prove several lemmas.
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Lemma 1. (1) If x ∈ D, log 1
1−λ

≤ 1
4
then B(x, λdD(x)) contains at most one point

of PD;

(2) If x ∈ G,
dG(x)
dD(x)

< λ, λ as in (1), then B(x, λdD(x)) contains exactly one point

of PD;

(3) If x ∈ G,
dG(x)
dD(x)

< λ, λ ≤ 1
16
, then B(x, λdD(x)) contains exactly one point xi

in PD which satisfies

dG(z) = |xi − z|

for all z ∈ B(x, 1
16
dD(x)).

Proof. (1) Let x ∈ D. It follows from (2.3) that

kD(B(x, λdD(x))) = sup{kD(u, v) : u, v ∈ B(x, λdD(x))} ≤ 2 log
1

1− λ
<

1

2
.

Then the hypotheses imply that (1) is true.

(2) Let x ∈ G with dG(x)
dD(x)

< λ. Then there exists some i such that |x−xi| < λdD(x).

Hence xi ∈ B(x, λdD(x)) and by (1) B(x, λdD(x)) cannot contain points in PD\{xi}.
Next we prove (3). By (1), B(x, 1

5
dD(x)) contains at most one point xi of PD. We

see from (2) that xi ∈ B(x, λdD(x)) and xi satisfies

|x− xi| = dG(x),

which shows for each z ∈ B(x, 1
16
dD(x)),

dG(z) = |xi − z|.

The proof is complete. �

Lemma 2. For w1, w2 ∈ G and 0 < µ ≤ 1
32
, if w2 ∈ B(w1, µdD(w1)) and

min{dG(w1), dG(w2)} ≤ µ

2
dD(w1), then

kG(w1, w2) ≤
13

2
jG(w1, w2).

Proof. Clearly, we have

max{dG(w1), dG(w2)} ≤ min{dG(w1), dG(w2)}+ |w1 − w2|(3.1)

≤
3µ

2
dD(w1).

By Lemma 1 (3), we see that there exists some point xi ∈ B(w1,
3µ
2
dD(w1)) ∩ PD

satisfying
|w2 − xi| = dG(w2) and |w1 − xi| = dG(w2).

Without loss of generality, we may assume

(3.2) min{dG(w1), dG(w2)} = dG(w2)

We use w1,1 to denote the intersection point of the closed segment [w1, xi] with the
sphere S(xi,min{dG(w1), dG(w2)}). It is possible that w1,1 = w1. Let T denote a 2-
dimensional linear subspace of E passing thorough the points w1, w2 and xi, and ω0
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the circle T ∩S(xi,min{dG(w1), dG(w2)}). Then w1,1 and w2 divide the circle ω0 into
two parts βi and β1,i. Without loss of generality, we may assume that ℓ(βi) ≤ ℓ(β1,i).
Then it follows from (3.2) that for each z ∈ βi,

|z − w1| ≤ |w1 − xi|+ |xi − z| ≤ 2µdD(w1),

whence

βi ⊂ B
(

w1, 2µdD(w1)
)

,

and so Lemma 1 yields that for each z ∈ βi,

dG(z) = dG(w2),

which, together with (2.3) and Theorem F, shows that

kG(w1, w2) ≤ kG(w1, w1,1) + ℓkG(βi)

≤ log
(

1 +
|w1 − w1,1|

dG(w2)

)

+
2|w2 − w1,1|

dG(w2)

≤ log
(

1 +
|w1 − w1,1|

dG(w2)

)

+
4

log 3
log

(

1 +
|w2 − w1,1|

dG(w2)

)

< (1 +
6

log 3
) log

(

1 +
|w1 − w2|

dG(w2)

)

≤
13

2
jG(w1, w2),

since
|w2−w1,1|

dG(w2)
≤ 4 and |w2 − w1,1| ≤ 2|w1 − w2|. Hence the proof follows. �

Lemma 3. For w1 ∈ G, suppose dG(w1) = 1
128
dD(w1). If w2 ∈ S(w1,

1
32
dD(w1)),

then

kG(w1, w2) ≤ 29kD(w1, w2).

Proof. It follows from Lemma 1 that there is a unique element xi in the intersection
PD ∩ B(w1,

1
64
dD(w1)) such that

dG(w2) = |w2 − xi| ≥
3

128
dD(w1) = 3dG(w1).

Then Lemma 2 and (2.1) imply

kG(w1, w2) ≤
13

2
log

(

1 +
|w1 − w2|

dG(w1)

)

=
13

2
log

(

1 +
128|w1 − w2|

dD(w1)

)

< 29 log
(

1 +
|w1 − w2|

dD(w1)

)

≤ 29kD(w1, w2),

which shows that the lemma is true. �
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Lemma 4. Let w1, w2 ∈ G and let γ denote a 2-neargeodesic joining w1 and w2 in

D. If dG(z) ≥
1

128
dD(z) for each z ∈ γ, then

kG(w1, w2) ≤ 28kD(w1, w2).

Proof. Obviously, we get

kG(w1, w2) ≤ ℓkG(γ[w1, w2]) =

∫

γ[w1,w2]

|dx|

dG(x)
≤ 128

∫

γ[w1,w2]

|dx|

dD(x)

= 128ℓkD(γ[w1, w2]) ≤ 28kD(w1, w2).

Hence the proof is complete. �

Lemma 5. Let w1, w2 ∈ D. If |w1 − w2| ≥
1
c
dD(w1) (c ≥ 2), then

|w1 − w2| ≥
1

c+ 1
dD(w2).

Proof. Suppose on the contrary that

|w1 − w2| <
1

c+ 1
dD(w2).

Then

dD(w1) ≥ dD(w2)− |w1 − w2| >
c

c+ 1
dD(w2),

which shows that

|w1 − w2| ≥
1

c
dD(w1) >

1

c+ 1
dD(w2).

This is the desired contradiction. �

3.1. The proof of Theorem 1. First we prove the sufficiency. Suppose that G is
a ψ1-uniform domain. Then we shall prove that for z1, z2 ∈ D,

kD(z1, z2) ≤ ψ
( |z1 − z2|

min{dD(z1), dD(z2)}

)

,

where ψ(t) = 3ψ1(128t) for t > 0, which implies that D is a ψ-uniform domain.
Without loss of generality, we assume that

min{dG(z1), dG(z2)} = dG(z1).

We divide the proof into two cases.

3.1.1. We first suppose that |z1 − z2| ≤
1
2
dD(z1).

Then it follows from (2.3) that

kD(z1, z2) ≤ log
(

1 +
|z1 − z2|

dD(z1)− |z1 − z2|

)

≤ 2 log
(

1 +
|z1 − z2|

dD(z1)

)

.(3.3)
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3.1.2. We then suppose that |z1 − z2| >
1
2
dD(z1).

Hence by Lemma 5, we have

(3.4) |z1 − z2| ≥
1

3
dD(z2).

Case 1. dG(z1) ≥
1
64
dD(z1).

Under this assumption, we have

kD(z1, z2) ≤ kG(z1, z2) ≤ ψ1

( |z1 − z2|

dG(z1)

)

≤ ψ1

(64|z1 − z2|

dD(z1)

)

.(3.5)

Case 2. dG(z1) <
1
64
dD(z1).

For a proof in this case, we let u1 ∈ S(z1,
1
32
dD(z1)). Then we know

(3.6) kD(z1, u1) ≤

∫

[z1,u1]

|dz|

dD(z)
≤

32|z1 − u1|

31dD(z1)
=

1

31
< log

(

1 +
|z1 − z2|

dD(z1)

)

,

since dD(z) ≥ dD(z1)− |z1 − z| ≥ 31
32
dD(z1) for each z ∈ [z1, u1]. Moreover, we get

(3.7) |u1 − z2| ≤ |z1 − z2|+ |z1 − u1| ≤
17

16
|z1 − z2|,

and it follows from Lemma 1 and the assumption “dG(z1) <
1
64
dD(z1)” that there

exists only one element xi in B(z1,
1
64
dD(z1)) ∩ PD such that dG(u1) = |u1 − xi| and

so

(3.8) dD(u1) > dG(u1) = |u1 − xi| ≥ |u1 − z1| − |z1 − xi| ≥
1

64
dD(z1).

Subcase 1. dG(z2) ≥
1

120
dD(z2).

Then by (3.6), (3.7) and (3.8), we have

kD(z1, z2) ≤ kD(z1, u1) + kD(u1, z2)(3.9)

≤ log
(

1 +
|z1 − z2|

dD(z1)

)

+ kG(u1, z2)

≤ jD(z1, z2) + ψ1

( |u1 − z2|

min{dG(u1), dG(z2)}

)

≤ jD(z1, z2) + ψ1

(

120
|u1 − z2|

min{dD(z1), dD(z2)}

)

≤ jD(z1, z2) + ψ1

(

128
|z1 − z2|

min{dD(z1), dD(z2)}

)

< 2ψ1

(

128
|z1 − z2|

min{dD(z1), dD(z2)}

)

.

Subcase 2. dG(z2) <
1

120
dD(z2).
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We take u2 ∈ S(z2,
1
32
dD(z2)). It follows from Lemma 1 and (3.4) that there is

only one element xi in B(z2,
1
32
dD(z2)) ∩ PD such that dG(u2) = |u2 − xi| and so

(3.10) dD(u2) ≥ dG(u2) = |u2 − xi| ≥ |u2 − z2| − |z2 − xi| ≥
11

480
dD(z2)

and by (3.4), we have

(3.11) |u1 − u2| ≤ |z1 − z2|+ |z1 − u1|+ |u2 − z2| ≤
37

32
|z1 − z2|.

It follows from (3.4) and a similar argument as in (3.6) that

(3.12) kD(z2, u2) ≤

∫

[z2,u2]

|dz|

dD(z)
≤

32|z2 − u2|

31dD(z2)
< log

(

1 +
|z1 − z2|

dD(z2)

)

.

Then we infer from (3.6), (3.8), (3.10), (3.11), (3.12) and Proposition 1 that

kD(z1, z2) ≤ kD(z1, u1) + kG(u1, u2) + kD(u2, z2)(3.13)

≤ 2jD(z1, z2) + kG(u1, u2)

≤ 2jD(z1, z2) + ψ1

( |u1 − u2|

min{dG(u1), dG(u2)}

)

≤ 2jD(z1, z2) + ψ1

(

64
|u1 − u2|

min{dD(z1), dD(z2)}

)

≤ 2jD(z1, z2) + ψ1

(

74
|z1 − z2|

min{dD(z1), dD(z2)}

)

< 3ψ1

(

74
|z1 − z2|

min{dD(z1), dD(z2)}

)

.

So the proof of the sufficiency follows from the inequalities (3.3), (3.5), (3.9) and
(3.13).

Next we prove the necessity. Suppose that D is a ψ-uniform domain. Then we
shall prove that for z1, z2 ∈ G,

kG(z1, z2) ≤ 212ψ
( |z1 − z2|

min{dG(z1), dG(z2)}

)

,

which implies that G is a ψ1-uniform domain with ψ1 = 213ψ.
Without loss of generality, we may assume that min{dG(z1), dG(z2)} = dG(z1).

In the following, we consider the two cases where dG(z1) ≤
1
64
dD(z1) and dG(z1) >

1
64
dD(z1), respectively.

3.1.3. We first suppose that dG(z1) ≤
1
64
dD(z1).

Let γ be a 2-neargeodesic joining z1 and z2 in D.

Case 3. |z1 − z2| ≤
1
32
dD(z1).

Then by Lemma 2 and Proposition 1, we have

Claim 1. kG(z1, z2) ≤
13
2
log

(

1 + |z1−z2|
dG(z1)

)

≤ 13
2
ψ
(

|z1−z2|
dG(z1)

)

.
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Case 4. |z1 − z2| >
1
32
dD(z1).

Then Lemma 5 implies

|z1 − z2| ≥
1

33
dD(z2).(3.14)

Obviously, there exists some point v1 ∈ γ ∩ S(z1,
1
32
dD(z1)) such that

γ[z2, v1] ⊂ D\B(z1,
1

32
dD(z1)).

By Lemma 1, there exists some point xi,1 ∈ B(z1,
1
64
dD(z1)) ∩ PD such that

(3.15) dG(v1) = |v1 − xi,1| ≥
1

64
dD(z1) ≥

1

66
dD(v1),

since dD(v1) ≤ dD(z1) + |z1 − v1| ≤
33
32
dD(z1).

It follows from Lemma 2 and (3.15) that

(3.16) kG(z1, v1) ≤
13

2
log

(

1 +
|z1 − v1|

dG(z1)

)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

.

Next, we divide the proof into two subcases.

Subcase 3. dG(z) ≥
1

128
dD(z) for each z ∈ γ[v1, z2].

By Lemma 4, we know

kG(v1, z2) ≤ 28kD(v1, z2) ≤ 28ℓkD(γ[v1, z2]) ≤ 28ℓkD(γ[z1, z2])

≤ 29kD(z1, z2) ≤ 29ψ
( |z1 − z2|

dG(z1)

)

,

since D is ψ-uniform, and so the following inequality easily follows from (3.16)

Claim 2. kG(z1, z2) ≤ kG(z1, v1) + kG(v1, z2) ≤ 519ψ
(

|z1−z2|
dD(z1)

)

.

Subcase 4. There exists some point z ∈ γ[v1, z2] such that dG(z) <
1

128
dD(z).

It follows from (3.15) that there exists some point y1 which is the first point in γ
along the direction from v1 to z2 such that

dG(y1) =
1

128
dD(y1).

Then Lemma 4 shows

kG(v1, y1) ≤ 28kD(v1, y1) ≤ 28ℓkD(γ[z1, z2])(3.17)

≤ 29kD(z1, z2) ≤ 29ψ
( |z1 − z2|

dD(z1)

)

.

Subsubcase 1. |z2 − y1| ≤
1
32
dD(y1).

Then we see from Lemma 2 that

(3.18) kG(y1, z2) ≤
13

2
log

(

1 +
|y1 − z2|

min{dG(y1), dG(z2)}

)

.
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Claim 3. kG(z1, z2) ≤ 564ψ
(

|z1−z2|
dG(z1)

)

.

We now prove this claim. Since

dD(z2) ≥ dD(y1)− |z2 − y1| ≥
31

32
dD(y1) ≥ 31|z2 − y1|,

we infer from (3.14) that

|z1 − z2| ≥
31

33
|y1 − z2|,(3.19)

and by (3.18), we get

kG(y1, z2) ≤
13

2
log

(

1 +
33|z1 − z2|

31min{dG(y1), dG(z2)}

)

.

Further, we have

kG(y1, z2) ≤ 35 log
(

1 +
|z1 − z2|

dG(z2)

)

.(3.20)

To prove this estimate, obviously, we only need to consider the case dG(z2) ≥
dG(y1). Since

dG(z2) ≤ dG(y1) + |z2 − y1| and |z2 − y1| ≤
1

32
dD(y1) = 4dG(y1),

we see from (3.18) that

kG(y1, z2) ≤
13

2
log

(

1+
|y1 − z2|

dG(y1)

)

≤
13

2
log

(

1+
5|y1 − z2|

dG(z2)

)

< 35 log
(

1+
|z1 − z2|

dG(z2)

)

.

Hence (3.20) is true.

We come back to the proof of Claim 3. It follows from (3.16), (3.17) and (3.20)
that

kG(z1, z2) ≤ kG(z1, v1) + kG(v1, y1) + kG(y1, z2)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 29ψ
( |z1 − z2|

dG(z1)

)

+ 35 log
(

1 +
|z1 − z2|

dG(z2)

)

≤ 42 log
(

1 +
|z1 − z2|

dG(z1)

)

+ 29ψ
( |z1 − z2|

dG(z1)

)

≤ 564ψ
( |z1 − z2|

dG(z1)

)

,

which shows that Claim 3 is true.

Subsubcase 2. |z2 − y1| >
1
32
dD(y1).

Obviously, there exists some point v2 ∈ γ ∩ S(y1,
1
32
dD(y1)) such that

γ[z2, v2] ⊂ D\B(y1,
1

32
dD(y1)).
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By Lemma 1, we see that there exists some point xi,2 ∈ PD ∩ B(y1,
1

128
dD(y1))

such that

dG(v2) = |v2 − xi,2| ≥ |v2 − y1| − |y1 − xi,2|(3.21)

≥
3

128
dD(y1) ≥

1

44
dD(v2),

since dD(v2) ≤ dD(y1) + |y1 − v2| ≤
33
32
dD(y1).

Moreover, by Lemma 3, we have

(3.22) kG(y1, v2) ≤ 29kD(y1, v2) ≤ 210kD(z1, z2).

If dG(z) ≥
1

128
dD(z) for each z ∈ γ[v2, z2], then Lemma 4 implies

kG(v2, z2) ≤ 28kD(v2, z2) ≤ 29kD(z1, z2),(3.23)

and thus we infer from (3.16), (3.17), (3.22), (3.23) that

kG(z1, z2) ≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 3 · 210kD(z1, z2).

Hence we have the following estimate.

Claim 4. kG(z1, z2) ≤ 212ψ
(

|z1−z2|
dG(z1)

)

.

For the remaining case, that is, when there exists some point z ∈ γ[v2, z2] such
that dG(z) <

1
128
dD(z), similar discussions as in Subcase 3 show that there exists

some point y2 ∈ γ[v2, z2] satisfying

dG(y2) =
1

128
dD(y2),

and

kG(v2, y2) ≤ 28kD(v2, y2).(3.24)

Now, if |z2 − y2| ≤
1
32
dD(y2), then the similar reasoning as in the proof of (3.20)

shows that

kG(y2, z2) ≤ 35 log
(

1 +
|z1 − z2|

dG(z2)

)

.(3.25)

Then it follows from (3.16), (3.17), (3.22), (3.24) and (3.25) that

kG(z1, z2) ≤ kG(z1, v1) + kG(v1, y1) + kG(y1, v2) + kG(v2, y2) + kG(y2, z2)

≤ 210kD(z1, z2) + 42 log
(

1 +
|z1 − z2|

dG(z1)

)

.

Hence we reach the following estimate.

Claim 5. kG(z1, z2) ≤ 2112ψ
(

|z1−z2|
dG(z1)

)

.

We assume now that |z2 − y2| >
1
32
dD(y2). Then there exists some point v3 ∈

γ[y2, z2] ∩ S(y2,
1
32
dD(y2)) such that

γ[z2, v3] ⊂ D\B(y2,
1

32
dD(y2)),
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and the similar reasoning as in the proof of (3.22) shows that

kG(y2, v3) ≤ 29kD(y2, v3) ≤ 210kD(z1, z2).

By repeating the procedure as above, we will reach a finite sequence of points in
γ:

(1) {z1, v1, y1, v2, y2, · · · , vt, z2} such that dG(z) ≥
1

128
dD(z) for each z ∈ γ[vt, z2];

or
(2) {z1, v1, y1, v2, y2, · · · , vt, yt, z2} such that |z2 − yt| ≤

1
32
dD(yt).

It follows from (2.1) that

kD(yi, vi+1) ≥ log
(

1 +
|yi − vi+1|

dD(yi)

)

≥ log
33

32

for each i ∈ {1, · · · , t}, and we see that

t ≤
kD(z1, z2)

log 33
32

.

For the former case, i.e., when the statement (1) as above holds, we have shown
that

(1) kG(z1, v1) ≤
13
2
log

(

1 + |z1−v1|
dG(z1)

)

≤ 13
2
log

(

1 + |z1−z2|
dG(z1)

)

;

(2) kG(vi, yi) ≤ 28kD(vi, yi), where i ∈ {1, · · · , t− 1};
(3) kG(yi, vi+1) ≤ 29kD(yi, vi+1), where i ∈ {1, · · · , t}; and
(4) kG(vt, z2) ≤ 28kD(vt, z2) ≤ 29kD(z1, z2).

Hence we obtain

kG(z1, z2) ≤ kG(z1, v1) +
t−1
∑

i=1

kG(vi, yi) +
t

∑

i=2

kG(yi−1, vi) + kG(vt, z2)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 28
t−1
∑

i=1

kD(vi, yi) + 29
t

∑

i=2

kD(yi−1, vi)

+35 log
(

1 +
|z1 − z2|

dG(z2)

)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 210kD(z1, z2) + 35 log
(

1 +
|z1 − z2|

dG(z2)

)

,

which shows

Claim 6. kG(z1, z2) ≤ 211ψ
(

|z1−z2|
dG(z1)

)

.

For the latter case, i.e., when the statement (2) as above holds, we also have
shown that

(1) kG(z1, v1) ≤
13
2
log

(

1 + |z1−v1|
dG(z1)

)

≤ 13
2
log

(

1 + |z1−z2|
dG(z1)

)

;

(2) kG(vi, yi) ≤ 28kD(vi, yi), where i ∈ {1, · · · , t};
(3) kG(yi, vi+1) ≤ 29kD(yi, vi+1), where i ∈ {1, · · · , t− 1}; and

(4) kG(yt, z2) ≤ 35 log
(

1 + |z1−z2|
dG(z2)

)

.
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Hence we get

kG(z1, z2) ≤ kG(z1, v1) +
t

∑

i=1

kG(vi, yi) +
t

∑

i=2

kG(yi−1, vi) + kG(yt, z2)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 28
t

∑

i=1

kD(vi, yi) + 29
t

∑

i=2

kD(yi−1, vi)

+35 log
(

1 +
|z1 − z2|

dG(z2)

)

≤
13

2
log

(

1 +
|z1 − z2|

dG(z1)

)

+ 210kD(z1, z2) + 35 log
(

1 +
|z1 − z2|

dG(z2)

)

,

which implies

Claim 7. kG(z1, z2) ≤ 211ψ
(

|z1−z2|
dG(z1)

)

.

Now we are in a position to conclude that the proof for the case dG(z1) ≤
1
64
dD(z1)

follows from Claims 1 ∼ 7.

3.1.4. We then suppose that dG(z1) >
1
64
dD(z1).

Case 5. |z1 − z2| ≤
1
2
dG(z1).

Then we have

kG(z1, z2) ≤

∫

[z1,z2]

|dz|

dG(z)
≤

2|z1 − z2|

dG(z1)
,

since dG(z) ≥ dG(z1)− |z1 − z| ≥ 1
2
dG(z1) for each z ∈ [z1, z2]. Hence we have

Claim 8. kG(z1, z2) ≤ 3 log
(

1 + |z1−z2|
dG(z1)

)

.

Case 6. |z1 − z2| >
1
2
dG(z1)

Since |z1 − z2| >
1

128
dD(z1), we know from Lemma 5 that

(3.26) |z1 − z2| >
1

129
dD(z2).

Let β be a 2-neargeodesic joining z1 and z2 in D. We divide the discussions into
two subcases.

Subcase 5. dG(z) ≥
1
64
dD(z) for each z ∈ β.

In this case, the following inequality easily follows from Lemma 4.

Claim 9. kG(z1, z2) ≤ 28kD(z1, z2) ≤ 28ψ
(

|z1−z2|
dG(z1)

)

.

Subcase 6. There exists some point z ∈ β such that dG(z) <
1
64
dD(z).

Then it follows from the assumption “dG(z1) >
1
64
dD(z1)” that there exists point

p1 which is the first point in β along the direction from z1 to z2 such that

dG(p1) =
1

64
dD(p1).



The removability property of ψ-uniform domains and uniform domains in Banach spaces 15

Then Lemma 4 shows

kG(z1, p1) ≤ 28kD(z1, p1).(3.27)

We consider the case where |z2 − p1| ≤
1
32
dD(p1) and the case where |z2 − p1| >

1
32
dD(p1), respectively.

Subsubcase 3. |z2 − p1| ≤
1
32
dD(p1).

It follows from (3.26) that

(3.28) |z2 − p1| ≤
1

31
dD(z2) ≤

129

31
|z1 − z2|

since dD(z2) ≥ dD(p1)− |z2 − p1| ≥
31
32
dD(p1).

By Lemma 1, we have

dG(z2) ≤
1

16
dD(p1) ≤ 4dG(p1).

Then we know from Lemma 2 and (3.28) that

kG(p1, z2) ≤
13

2
log

(

1 +
|z2 − p1|

min{dG(z2), dG(p1)}

)

≤ 28 log
(

1 +
|z2 − z1|

dG(z2)

)

,

which, together with (3.27), implies

Claim 10. kG(z1, z2) ≤ 28ψ
(

|z1−z2|
dG(z1)

)

.

Subsubcase 4. |z2 − p1| >
1
32
dD(p1).

Obviously, there exists some point q1 ∈ β[p1, z2] such that

β[q1, z2] ⊂ D\B(p1,
1

32
dD(p1)).

By Lemma 1, we see that there exists some point xi,3 ∈ PD ∩ B(p1,
1

128
dD(p1)) such

that

dG(q1) = |q1 − xi,3| ≥ |q1 − p1| − |p1 − xi,3|(3.29)

≥
3

128
dD(p1) ≥

1

44
dD(q1),

since dD(q1) ≤ dD(p1) + |p1 − q1| ≤
33
32
dD(p1).

Then the similar reasoning as in Subsubcase 2 in Subsection 3.1.3 implies that we
will get a finite sequence of points in β:

(1) {z1, p1, q1, · · · , ps, z2} such that dG(z) ≥
1

128
dD(z) for each z ∈ γ[ps, z2]; or

(2) {z1, p1, q1, · · · , ps, qs, z2} such that |z2 − qs| ≤
1
32
dD(qs).

It follows from the similar arguments as in Claims 6 and 7 in Subsubsection 2 that

Claim 11. kG(z1, z2) ≤ 211ψ
(

|z1−z2|
dG(z1)

)

.

The proof for the case dG(z1) >
1
64
dD(z1) follows from Claims 8 ∼ 11. Hence the

proof of Theorem 1 is complete. �
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3.2. The proof of Corollary 1. First, we prove the sufficiency. Suppose G =
D\PD is a c1-uniform domain. Then Theorem D implies that there exists a constant
c′1 depending only on c1 such that for all x and y in G,

kG(x, y) ≤ c′1 jG(x, y).

By Theorem 1, we see that for all z1 and z2 in D,

kD(z1, z2) ≤ 3c′1 log
(

1 +
128|z1 − z2|

min{dD(z1), dD(z2)}

)

≤ 384c′1jD(z1, z2),

which, together with Theorem D, shows that D is a c-uniform domain, where c
depends only on c1.

Next, we prove the necessity. Suppose that D is a c-uniform domain. Then
Theorem D implies that there exists a constant c′ depending only on c such that for
all x and y in D,

kD(x, y) ≤ c′ jD(x, y).

By Theorem 1, we see that for all z1 and z2 in G = D\PD,

kG(z1, z2) ≤ 212c′jG(z1, z2),

which, together with Theorem D, shows that G is a c1-uniform domain, where c1
depends only on c. �
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