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Abstract

For a market impact model, price manipulation and related notions play a role that is similar
to the role of arbitrage in a derivatives pricing model. Here, we give a systematic investigation into
such regularity issues when orders can be executed both at a traditional exchange and in a dark
pool. To this end, we focus on a class of dark-pool models whose market impact at the exchange
is described by an Almgren–Chriss model. Conditions for the absence of price manipulation for
all Almgren–Chriss models include the absence of temporary cross-venue impact, the presence of
full permanent cross-venue impact, and the additional penalization of orders executed in the dark
pool. When a particular Almgren–Chriss model has been fixed, we show by a number of examples
that the regularity of the dark-pool model hinges in a subtle way on the interplay of all model
parameters and on the liquidation time constraint.

Key Words: Price manipulation, transaction-triggered price manipulation, positive expected liquidation costs,

dark pool, market impact model, optimal order execution, optimal liquidation

1 Introduction

Recent years have seen a mushrooming of alternative trading platforms called dark pools. Orders
placed in a dark pool are not visible to other market participants (hence the name) and thus do not
influence the publicly quoted price of the asset. Thus, when dark-pool orders are executed against a
matching order, no direct price impact is generated, although there may be certain indirect effects.
Dark pools therefore promise a reduction of market impact and of the resulting liquidation costs. They
are hence a popular platform for the execution of large orders.

Dark pools differ from standard limit order books in that they do not have an intrinsic price finding
mechanism. Instead, the price at which orders are executed is derived from the publicly quoted prices
at an exchange. Thus, by manipulating the price at the exchange through placing suitable buy or sell
orders, the value of a possibly large amount of “dark liquidity” in the dark pool can be altered. For
this reason, dark pools have drawn significant attention by regulators; see IOSCO (2011). We refer to
Mittal (2008) for a practical overview on dark pools and some related issues of market manipulation.

In this paper, we consider a stochastic model for order execution at two possible venues: a dark
pool and an exchange. This model is a continuous-time variant of the one proposed by Kratz and
Schöneborn (2010). It is a natural model, because it extends the standard Almgren–Chriss market
impact model for exchange prices by a dark pool, where incoming matching orders are described by a
compound Poisson process. We refer to Almgren (2003) for details on the Almgren–Chriss model and
also to Bertsimas and Lo (1998) for a discrete-time precursor. A different approach to modeling and
analyzing dark pools was proposed by Laruelle et al. (2010).
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Kratz and Schöneborn (2010) mainly investigate optimal order execution strategies for an investor
who can trade at the exchange and in the dark pool. But they are also interested in price manipula-
tion strategies in the sense of Huberman and Stanzl (2004). Their Propositions 7.1 and 7.2 provide
some first results on the existence and the absence of such strategies, and they propose the further
investigation of this problem. We refer to Huberman and Stanzl (2004), Gatheral (2010), Alfonsi
et al. (2012), and our Section 3 for discussions on the importance of the absence of price manipulation
strategies. In Section 3 we will argue in particular that the absence of price manipulation and related
concepts can be regarded as a regularity condition that plays a similar role for a market impact model
as the absence of arbitrage for a derivatives pricing model.

Our main goal in this paper is to investigate in a systematic manner the existence and absence of
price manipulation with dark pools and related topics. To this end, we modify the setup of Kratz and
Schöneborn (2010) in several ways. On the one hand, we simplify their setup by using the concrete
continuous-time, single-asset Almgren–Chriss model to describe market impact at the exchange and
by restricting the possibilities for adjusting the sizes of orders in the dark pool1. On the other hand, we
allow for additional possibilities of cross-impact between the two venues and for additional “slippage”
in dark-pool execution.

In Section 4.1, our first main result characterizes completely those models from our class that are
sufficiently regular for all underlying Almgren–Chriss models, either in the sense of the absence of price
manipulation or in terms of the new condition of “positive expected liquidation costs”. The critical
quantities will be the size of “slippage” and the degrees of permanent and temporary cross-venue
impact. In Section 4.2, we then investigate the existence of model irregularities for special model
characteristics. It will turn out that generation of such irregularities hinges in a subtle way on the
interplay of all model parameters and on the liquidation time constraint. In Section 4.3 we illustrate in
a simplified setting that our regularity condition guarantees the existence of optimal order execution
strategies, and we show how such strategies can be computed.

The paper is organized as follows. In the subsequent Section 2 we introduce the model and
formulate our standing assumptions. In Section 3 we review and discuss several notions for the
regularity of a market impact model, namely the absence of standard and transaction-triggered price
manipulation and a new condition of positive expected liquidation costs. Our main results are stated
in Section 4 and proved in Section 6. We conclude in Section 5.

2 Model setup

We will analyze a continuous-time variant of the market impact model with dark pool that was
proposed in Kratz and Schöneborn (2010). This model is natural since it extends the continuous-time
version of the standard Almgren–Chriss market impact model for an investor who can generate price
impact by trading at an exchange; see Almgren (2003) for details on this model and also Bertsimas
and Lo (1998) for a discrete-time precursor. The Almgren–Chriss model has been the basis of many
academic studies pertaining to market impact and is also common in industry application.

In the Almgren–Chriss market impact model, it is assumed that the number of shares in the
trader’s portfolio is described by an absolutely continuous trajectory t 7→ Xt, the trading strategy.
Given this trading trajectory, the price at which transactions occur is

Pt = P 0
t + γ(Xt −X0) + h(Ẋt). (1)

1Kratz and Schöneborn (2010) allow for arbitrary adaptive adjustment of the sizes of orders in the dark pool. In our
model, these orders can only be placed at the beginning of the trading period, and their remainder can be cancelled at a
later time. The possibility of arbitrary adaptive adjustment of dark-pool orders influences the particular form of optimal
order execution strategies, but it does not have a significant impact on the existence and absence of price manipulation in
comparison to our setting, at least if we exclude so-called ‘fishing’ strategies (see Remark 3.5). Most dark pools operating
in practice will probably have order placement and cancellation policies which lie in between these two possibilities.
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Here, P 0
t is the unaffected stock price process. The term h(Ẋt) describes the temporary or instantaneous

impact of trading Ẋt dt shares at time t and only affects this current order. The term γ(Xt − X0)
corresponds to the permanent price impact that has been accumulated by all transactions until time t.
It is usually assumed to be linear in Xt −X0 with γ denoting a positive constant, because linearity is
also needed so as to exclude price manipulation; see Huberman and Stanzl (2004) or Gatheral (2010),
see also Almgren et al. (2005) for empirical justification.

Assumption 2.1. We assume that the unaffected stock price process (P 0
t )t≥0 is a càdlàg martingale

on a filtered probability space (Ω,F , (Ft),P) for which F0 is P-trivial. Trading strategies (Xt) must
be adapted to the filtration (Ft). The permanent-impact parameter γ is assumed to be strictly
positive. The temporary-impact function h : R → R is assumed to have the following properties: h
is continuous, strictly increasing, and satisfies h(0) = 0 and |h(x)| → ∞ for |x| → ∞. Moreover, the
function f(x) := xh(x) is assumed to be convex.

The condition that P 0 is a martingale is a standard assumption in the market impact literature.
One reason is that drift effects can be ignored due to the usually short trading horizons. In addition,
we are interested here in the qualitative effects of price impact on the stability of the model. A nonzero
drift would lead to the existence of profitable “round trips” that would have to be distinguished from
price manipulation strategies in the sense of Definition 3.1. Our assumptions on h are satisfied for the
popular choices of linear temporary impact, h(x) = ηx, or more generally for power-law impact,

h(x) = η sgn(x)|x|ν (2)

where η and ν are positive constants and, typically, ν ≤ 1; see Almgren et al. (2005) for a discussion.
An Almgren–Chriss model is thus defined in terms of the parameters

(γ, h, P 0). (3)

The Almgren–Chriss model is a market impact model for exchange-traded orders. We will now
extend this model by allowing the additional execution of orders in a dark pool. A dark pool is an
alternative trading venue in which unexecuted orders are invisible to all other market participants. In
this dark pool, buy and sell orders are matched and executed at the current price at which the asset
is traded at the exchange.

In addition to a trading strategy executed at the exchange, investors can place an order of X̂ shares
into the dark pool at time t = 0. This order will be matched with incoming orders of the opposite
side. These orders arrive at random times 0 < τ1 < τ2 < . . . and we denote the size of incoming
matching orders by Ỹ1, Ỹ2, . . . > 0. We consider only those orders that are a possible match. That is,
the Ỹi will describe sell orders when X̂ > 0 is a buy order and buy orders when X̂ < 0 is a sell order.
These incoming orders will then be matched piece by piece with the order X̂ until it is cancelled or
completely filled. That is,

Yi :=











sgn(X̂)Ỹi, if
∑i

j=1 Ỹj ≤ |X̂|,

X̂ − sgn(X̂)
∑i−1

j=1 Yj, if
∑i−1

j=1 Ỹj ≤ |X̂| and
∑i

j=1 Ỹj > |X̂ |,

0, if
∑i−1

j=1 Ỹj > |X̂|,

is the part of the incoming order that is actually executed against the remainder of X̂. By defining
the counting process associated with the arrival times (τk),

Nt := max{k ∈ N | τk ≤ t}, (4)
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the amount of shares that have been executed in the dark pool until time t can be conveniently denoted
by

Zt :=

Nt
∑

i=1

Yi.

By (Gt) we denote the rightcontinuous filtration generated by (Ft) and Z.
In the first part of the paper, we make some very mild assumptions on the laws and interdependence

of the random variables (τi), (Ỹi), and P 0:

Assumption 2.2. We assume the following conditions:

0 < τ1 < ∞ P-a.s. and λ0 := inf
0<δ≤1

1

δ
P[ τ1 ≤ δ ] > 0; (5)

there exists x0 > 0 such that λ1 := inf
δ>0

P[ Ỹ1 ≥ x0 | τ1 ≤ δ ] > 0. (6)

We furthermore assume that P 0 is a martingale also under the filtration (Gt) generated by (Ft) and
Z.

Condition (5) means that the intensity for the arrival of the first matching order is bounded away
from zero. Condition (6) states that there is a positive probability that the first incoming matching
order has at least size x0, conditional on the event that {τ1 ≤ δ}. Clearly, these assumptions are
very mild. The requirement that P 0 is a (Gt)-martingale allows (τi) and (Ỹi) to depend on P 0 in
an arbitrary manner but, conversely, limits the dependence of P 0 on these random variables. This
limitation is entirely natural since we will explicitly model the possible dependence of exchange-quoted
prices on dark-pool executions via (9). Note that Assumption 2.2 is satisfied in particular when τ1
has an exponential distribution and (τi), (Ỹi), and P 0 are independent random variables, as we will
assume in the second part of the paper.

Now we consider an investor who must liquidate an initial asset position of X0 ∈ R shares during
the time interval [0, T ]. The problem of how to do this in an optimal fashion is known as the optimal
order execution problem; see, e.g., Gökay et al. (2010), Schöneborn (2008), Schied and Slynko (2011),
and the references therein.

In the extended dark pool model, the investor will first place an order of X̂ ∈ R shares in the
dark pool2 and then choose a liquidation strategy of Almgren–Chriss-type for the execution of the
remaining assets at the exchange. This latter strategy must be absolutely continuous in time. It
will thus be described by a process (ξt) that parameterizes the speed by which shares are sold at the
exchange. Moreover, until fully executed, the remaining part of the order X̂ can be cancelled at a
(possibly random) time ρ < T . Hence, the number of shares held by the investor at time t is

Xt := X0 +

∫ t

0
ξs ds+ Zρ

t−, (7)

where Zρ
t− denotes the left-hand limit of Zρ

t = Zρ∧t.

Definition 2.3. Let an initial position X0 ∈ R and a liquidation horizon T > 0 be given. An
admissible trading strategy is a triple χ := (X̂, ξ, ρ) where X̂ ∈ R, ρ is a (Gt)-stopping time such that

2If at time t = 0 the dark pool contains an order Ỹ0 of the opposite side, then the investor could fill this order
immediately and then start liquidating the remaining asset position X0 − Ỹ0, maybe by resizing the dark-pool order.
Therefore we can assume that the dark pool does not contain a matching order at t = 0. Moreover, restricting the
placement of dark-pool orders to t = 0 lets us exclude so-called ‘fishing’ strategies; see Remark 3.5 below.
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ρ < T P-a.s., and ξ is a (Gt)-predictable process that is P-a.s. bounded uniformly in t and ω. In
addition, the liquidation constraint

X0 +

∫ T

0
ξt dt+ Zρ = 0 (8)

must be P-a.s. satisfied. The set of all admissible strategies for given X0 and T is denoted by X (X0, T ).

Due to (7) and (8), the terminal asset position of any admissible strategy is XT = 0, since our
requirement ρ < T implies that Zρ

T− = Zρ.
Now we turn to the definition of the prices at which the orders at the exchange and in the dark

pool are executed. In particular, we will specify the cross impacts of order execution in the dark pool
on the exchange price and vice versa. Here, our approach is to introduce a model that is flexible
enough to allow for a wide range of possible mutual influences of orders executed on both venues.
Extending (1), the price at which assets can be traded at the exchange is defined as

Pt = P 0
t + γ

(
∫ t

0
ξs ds+ αZρ

t−

)

+ h(ξt). (9)

Here α ∈ [0, 1] describes the intensity of the possible permanent impact of an execution in the dark
pool on the price quoted at the exchange. The existence of such a cross-venue impact can be made
plausible by noting that without the dark pool the matching order would have been executed at the
exchange and there would have generated permanent price impact in a favorable direction. Thus,
the price impact generated by the execution of a dark-pool order can be understood in terms of a
deficiency in opposite price impact.

The price at which the ith incoming order is executed in the dark pool will be

P̂τi = P 0
τi + γ

(∫ τi

0
ξs ds+ αZτi− + βYi

)

+ g(ξτi)

= Pτi + βγYi + (g(ξτi)− h(ξτi)).

(10)

In this price, orders executed at the exchange have full permanent impact, but their possible temporary
impact is described by a function g : R → R. The parameter β ≥ 0 in (10) describes additional
“slippage” related to the dark-pool execution, which will result in transaction costs of the size βγY 2

i .
It may also be used to account for hidden costs, which relate to dark pools but which are extremely
difficult to model explicitly. For instance, one can think of costs arising from the phenomena of adverse
selection or ‘fishing’; see Mittal (2008) and Kratz and Schöneborn (2010). Moreover, due to the very
nature of dark pools, data may be sparse so that there will be a high degree of model uncertainty.
The parameter β can thus also serve as a penalization of dark-pool orders in view of adverse selection,
model misspecification, fishing (see Remark 3.5), and other hidden costs that are difficult to model
explicitly. In this case, P̂τi in (10) is not the actual price at which the dark-pool order is executed,
but it is a virtual adjusted price that includes hidden costs and penalties.

Assumption 2.4. We assume that α ∈ [0, 1], β ≥ 0, and that g either vanishes identically or satisfies
the conditions on h in Assumption 2.1.

Definition 2.5. The dark-pool extension of a given Almgren–Chriss model is defined in terms of the
new parameters

(α, β, g, (τi), (Ỹi)) (11)

satisfying Assumptions 2.2 and 2.4.
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Our main goal in this paper is to study the influence of these parameters on the stability and
regularity of the model and, in particular, on the optimal execution problem. Our investigation will
be based on an analysis of the revenues generated by a trading strategy. In such a strategy, ξt dt shares
are bought at price Pt at each time t. In addition, Yi shares are bought at price P̂τi at each time τi.
The revenues generated by the strategy until time T are thus given by

RT = −

∫ T

0
ξsPs ds−

NT∧ρ
∑

i=1

YiP̂τi . (12)

To emphasize the dependence of RT on the strategy χ = (X̂, ξ, ρ) we will sometimes also write Rχ
T .

3 Price manipulation

Our main concern in this paper is to investigate the stability and regularity of the dark-pool extension
in dependence on the parameters (γ, h, P 0) and (α, β, g, (τi), (Ỹi)). This question is analogous to
establishing the absence of arbitrage in a derivatives pricing model, where absence of arbitrage is a
necessary condition for the existence of replicating strategies of a given contingent claim.

But there must also be a difference in the notions of regularity of a derivatives pricing model and
of a market impact model. In a derivatives pricing model, one is interested in constructing strategies
that almost surely replicate a given contingent claim, and this is the reason why one must exclude
the existence of arbitrage opportunities defined in the usual almost-sure sense. In a market impact
model, one is interested in constructing optimal order execution strategies. These strategies are not
defined in terms of an almost-sure criterion but as minimizers of a cost functional of a risk averse
investor. Commonly used cost functionals involve expected value as in Bertsimas and Lo (1998)
and Gatheral (2010), mean-variance criteria as in Almgren and Chriss (2001), expected utility as in
Schied and Schöneborn (2009) and Schöneborn (2008), or alternative risk criteria as in Forsyth et al.
(2010) and Gatheral and Schied (2011). Therefore, also the regularity conditions to be imposed on a
market impact model need to be formulated in a similar manner. To make such regularity conditions
independent of particular investors preferences, it is reasonable to formulate them in a risk-neutral
manner:

Definition 3.1 (Huberman and Stanzl (2004)). A round trip is an admissible trading strategy with
X0 = 0. A price manipulation strategy is a round trip that has strictly positive expected revenues,
E[RT ] > 0.

When the revenues are a concave functional of an order execution strategy, as it is often the case, the
existence of price manipulation precludes the existence of optimal execution strategies for risk-neutral
investors, because one can generate arbitrarily large expected revenues by adding a multiple of a price
manipulation strategy. In most cases, the same argument also works for risk-averse investors provided
that risk aversion is small enough. The problem of characterizing the absence of price manipulation
in a dark-pool model was formulated in Kratz and Schöneborn (2010), along with some first results in
that direction. Analyses of the absence of price manipulation in various other market impact models
were given, e.g., by Huberman and Stanzl (2004), Gatheral (2010), Alfonsi and Schied (2010), Alfonsi
et al. (2012), and Gatheral et al. (2011).

It was observed in Alfonsi et al. (2012) that the absence of price manipulation may not be sufficient
to guarantee the stability of the model, because optimal order execution strategies can still oscillate
strongly between alternating buy and sell trades, a property one should exclude for obvious reasons.
This was the reason for introducing the following notion.
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Definition 3.2 (Alfonsi et al. (2012)). A market impact model admits transaction-triggered price
manipulation if the expected execution costs of a sell (buy) program can be decreased by intermediate
buy (sell) trades.

In our situation there would be transaction-triggered price manipulation if there exists X0 ∈ R and
a strategy (X̂, ξ, ρ) for which either X̂ or some ξt have the same sign as X0 and that has strictly higher
expected revenues than all strategies (X̂ ′, ξ′, ρ′) for which both X̂ ′ and ξ′t have always the opposite
sign of X0. We will also consider the following notion:

Definition 3.3. The model has positive expected liquidation costs if for all X0 ∈ R, T > 0, and every
corresponding order execution strategy

E[RT ] ≤ X0P0. (13)

Condition (13) states that on average it is not possible to make a profit beyond the face value of
a position out of the market impact generated by one’s own trades. We have the following hierarchy
of regularity conditions in our model.

Proposition 3.4. (a) If there is no transaction-triggered price manipulation, we have positive ex-
pected liquidation costs.

(b) If we have positive expected liquidation costs, then there is no price manipulation.

Implication (a) holds for every market impact model in which buy orders increase the price and
sell orders decrease the price. This implication is particularly useful in models where the condition of
positive expected liquidation costs is violated, since it immediately yields the existence of transaction-
triggered price manipulation. Implication (b) clearly holds for every market impact model.

Remark 3.5. A common price manipulation strategy is the so-called ‘fishing’ strategy in dark pools;
see Mittal (2008). In a fishing strategy, agents first send small orders to dark pools so as to detect
dark liquidity. Once a dark-pool order is detected, the visible price at the exchange is manipulated
for a short period in a direction that is unfavorable for that order. Finally, a large order is sent to the
dark pool so as to be executed against the dark liquidity at the manipulated price.

Here, we are not interested in the profitability of such predatory fishing strategies but primarily
in the stability and regularity of optimal order execution algorithms in dark pool and exchange. We
therefore exclude fishing strategies by allowing the placement of orders in the dark pool only at time
t = 0. Allowing for the placement of dark-pool orders at times t > 0 will increase the class of admissible
strategies. In such an extended setting, the conditions of no-price manipulation or of positive expected
liquidation costs will be violated as soon as they are violated in our present setting.

4 Results

An Almgren–Chriss model is specified by the parameters (γ, h, P 0) satisfying Assumption 2.1. Its
extension incorporating a dark pool is based on the additional parameter set (α, β, g, (τi), (Ỹi)), which
will always be assumed to satisfy Assumptions 2.2 and 2.4. We are interested in the conditions we
need to impose on these parameters such that the extended market model is regular. Here, regularity
refers to the absence of price manipulation and related notions as explained in the preceding section.

4.1 General regularity results

Our first result characterizes completely those parameters (α, β, g, (τi), (Ỹi)) for which the dark-pool
extension of every Almgren–Chriss model is sufficiently regular for all time horizons.

7



Theorem 4.1. For given (α, β, g, (τi), (Ỹi)), the following conditions are equivalent.

(a) For any Almgren–Chriss model, the dark-pool extension has positive expected liquidation costs.

(b) For any Almgren–Chriss model, the dark-pool extension does not admit price manipulation for
every time horizon T > 0.

(c) We have α = 1, β ≥ 1
2 and g = 0.

Remark 4.2. Let us comment on the three conditions in part (d) of the preceding theorem.

(i) The requirement α = 1 means that an execution of a dark-pool order must generate the same
permanent impact on the exchange-quoted price as a similar order that is executed at the
exchange. At first sight, this requirement might seem artificial. At second thought, however,
one realizes that price impact generated by the execution of a dark-pool order can be understood
in terms of a deficiency in opposite-price impact; see the discussion following (9).

(ii) The condition β ≥ 1
2 means that the execution of a dark-pool order of size Yi needs to generate

“slippage” of at least γ
2Y

2
i . This latter amount is just equal to the costs from permanent impact

one would have incurred by executing the order at the exchange. With this amount of slippage,
the savings by executing an order not at the exchange but at a dark pool would thus be equal to
the costs generated by permanent impact. It seems that dark pools that are currently operative
do not charge transaction costs or taxes of this magnitude. Nevertheless, our theorem states
that a penalization with a factor β ≥ 1

2 is needed for a robust stabilization of the model against
irregularities.

(iii) The requirement g = 0 means that temporary impact from trades executed at the exchange
must not affect the price at which dark-pool orders are executed. This requirement may not
be surprising, although the (Gt)-predictability of the exchange-traded part (ξt) of an admissible
strategy excludes short-term manipulation in immediate response of the arrival of a matching
order in the dark pool.

In Theorem 4.1, it is crucial that we may vary at least the parameter h of the underlying Almgren-
Chriss model. If all parameters are fixed, we can only obtain the following implication instead of an
equivalent characterization of regular models.

Theorem 4.3. Suppose an Almgren–Chriss model with parameters (γ, h, P 0) has been fixed. When a
dark-pool extension (α, β, g, (τi), (Ỹi)) of this model does not admit price manipulation for all T > 0,
then

β ≥ α−
1

2
. (14)

If, in addition, there is equality in (14) and g(x) = κh(x) for some constant κ ≥ 0, then κ = 0 and
α = 1.

In the next section, we will analyze several concrete situations in which some of the model param-
eters are chosen in a particular way. Our corresponding results will first illustrate that (14) cannot be
improved in general. For instance, it will follow from Corollary 4.11 that even in the case α = β = 0 it
may happen that there is no price manipulation for all T > 0, but this situation is then characterized
in terms of relations between γ, h, and the law of τ1.
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4.2 Regularity and irregularity for special model characteristics

In this section, we will investigate in more detail the regularity and irregularity of a dark-pool extension
of a fixed Almgren–Chriss model. To this end, we will assume throughout this section that slippage is
zero, β = 0, which is the natural (naive) first guess in setting up a dark-pool extension of an Almgren–
Chriss model. We know from Theorem 4.1, though, that there must be some Almgren–Chriss model
such that there is price manipulation for sufficiently large time horizon T .

First, we will look into the role played by T in the existence of price manipulation. We show
there exists a critical threshold T ∗ ≥ 0 such that there is no price manipulation for T < T ∗ but
price manipulation does exist for T > T ∗. We will show that all three cases T ∗ = ∞, 0 < T ∗ < ∞,
and T ∗ = 0 can occur. Second, we will analyze the stronger requirements of absence of transaction-
triggered price manipulation and of positive expected liquidation costs. We will find situations in
which there is no price manipulation for all T > 0 but where the condition of positive expected
liquidation costs fails and where there is transaction-triggered price manipulation for sufficiently large
T .

We will make the following simplifying but natural assumption on the dark-pool extension defined
through (α, β, g, (τi), (Ỹi)).

Assumption 4.4. We assume the following conditions throughout Section 4.2.

(a) Slippage is zero: β = 0.

(b) The process (Nt), as defined in (4), is a standard Poisson process with parameter θ > 0 and
(Ỹi) are i.i.d. random variables with common distribution µ on (0,∞]. We also assume that the
stochastic processes (P 0

t ), (Nt), and (Ỹi) are independent.

Note that Assumption 4.4 (b) implies that

lim
t↑∞

Nt
∑

i=1

Yi = X̂ P-a.s. (15)

Note also that we do not exclude the possibility that Ỹi takes the value +∞ with positive probability.
The particular case Ỹi = +∞ P-a.s., corresponding to µ = δ∞, can be regarded as the limiting case
of infinite liquidity in the dark pool. It results in Y1 = X̂ and hence in an immediate execution of the
entire order X̂. In fact, many dark pools allow the specification of lower limits on the size of matching
orders, for instance to avoid the effects of ‘fishing’. So, in principle, it should be possible to set this
lower limit equal to X̂. Unless µ = δ∞, setting such a limit will however lower the arrival rate θ of
matching orders.

In Propositions 4.5 and 4.7, we will consider the situation in which the execution of a dark-pool
order has full permanent impact on the price at the exchange, i.e., α = 1. In view of our assumption
β = 0, Theorem 4.3 implies that there will be price manipulation for sufficiently large T . The following
proposition shows that one then can also generate arbitrarily large expected revenues. In contrast to
the situation in many other market impact models, this conclusion is not obvious in our case, because
the expected revenues are typically not a concave functional of admissible strategies.

Proposition 4.5. Suppose that an Almgren–Chriss model has been fixed and that α = 1. Then, for
any X0 ∈ R,

lim
T↑∞

sup
χ∈X (X0,T )

E[Rχ
T ] = +∞.

In particular, the condition of positive expected liquidation costs is violated.

9



Now we examine in more detail the role played by T in the existence of price manipulation. First,
we show that for a certain class of models there is no price manipulation for small T .

Proposition 4.6. Let g = 0 and h(x) = ηx. If T ≤ 2η
γ , then there is no price manipulation.

Since the class X (X0, T ) of admissible strategies increases with T , the existence of price manip-
ulation for one T implies the existence of price manipulation for any T ′ ≥ T . Hence there exists a
critical value T ∗ such that there is no price manipulation for T < T ∗ but price manipulation does
exist for T > T ∗. For α = 1 and linear temporary impact, the next proposition shows, that T ∗ = 2η

γ .
Furthermore, we show that T ∗ = 0 for sublinear temporary impact.

Proposition 4.7. Suppose that an Almgren–Chriss model has been fixed and that α = 1.

(a) If g = 0 and temporary impact in the Almgren–Chriss model is linear, i.e., h(x) = ηx, then there
is no price manipulation if and only if

T ≤
2η

γ
. (16)

(b) If P[Ỹ1 > x] > 0 for all x and h has sublinear growth, i.e.,

lim
|x|→∞

h(x)

x
= 0,

then there is price manipulation for every T > 0.

For the next set of results, we will assume that

α = 0, g = 0 and h(x) = ηx, (17)

in addition to Assumption 4.4. By Theorem 4.1, we know that there exists an Almgren–Chriss model
for which there is price manipulation and for which the condition of positive expected liquidation costs
is violated for sufficiently large T . Our aim is to give a refined analysis for the class of Almgren–Chriss
models with linear temporary price impact. We first take a look at the condition of positive expected
liquidation costs.

Proposition 4.8. Consider a fixed Almgren–Chriss model and suppose that condition (17) holds.

(a) If γ
η < 2θ, we have for any X0 ∈ R \ {0},

lim
T↑∞

sup
χ∈X (X0,T )

E[Rχ
T ] ≥ X0P0 +

1

2
γ2X2

0

1

2ηθ − γ
> X0P0. (18)

(b) If either γ
η = 2θ and X0 6= 0 or γ

η > 2θ, then

lim
T↑∞

sup
χ∈X (X0,T )

E[Rχ
T ] = +∞.

In particular, the condition of positive expected liquidation costs is violated in both cases.

Proposition 3.4 immediately yields that there is transaction-triggered price manipulation in the
situations considered in Proposition 4.8. We are interested in the form of these manipulations.

Proposition 4.9. Consider a fixed Almgren–Chriss model and suppose that condition (17) holds. The
violation of positive expected liquidation costs in Proposition 4.8 can only be obtained by intermediate
buy (sell) trades at the exchange during an overall sell (buy) program.

10



Therefore, if T is large enough, only a strategy that manipulates the exchange-quoted price can
be more profitable than other strategies.

Some of the preceding results can be strengthened in the infinite-liquidity limit µ = δ∞. We refer
to the paragraph after Assumption 4.4 for a discussion of this condition. We first show that (18)
actually becomes an equality.

Proposition 4.10. Consider a fixed Almgren–Chriss model. Suppose moreover that condition (17)
holds and that µ = δ∞. Then, for X0 ∈ R and γ

η < 2θ,

lim
T↑∞

sup
χ∈X (X0,T )

E[Rχ
T ] = X0P0 +

1

2
γ2X2

0

1

2ηθ − γ
. (19)

Equation (19) is remarkable, because it implies on the one hand that the condition of positive
expected liquidation costs is violated. By taking X0 = 0 we see, on the other hand, that there is no
price manipulation and T ∗ = ∞. In fact, we have the following result.

Corollary 4.11. Consider a fixed Almgren–Chriss model. Suppose moreover that condition (17) holds
and that µ = δ∞. Then there is no price manipulation for every T > 0 if and only if γ

η ≤ 2θ.

By comparing the preceding result with Propositions 3.4 and 4.10, we arrive the following state-
ment.

Corollary 4.12. Under the assumptions of Corollary 4.11 there is always transaction-triggered price
manipulation for sufficiently large T . Standard price manipulation, however, exists only for γ

η > 2θ.

4.3 Optimal order execution strategies

In this section, we illustrate some of our results by determining an optimal strategy for selling X0 > 0
shares. To this end, we will make a number of simplifying assumptions, because our main goal is
to analyze the regularity of the model. In particular, for us, optimality of a strategies refers to the
maximization of the expected revenues. For a detailed analysis of optimal order execution strategies
in a discrete-time model with dark pool we refer to Kratz and Schöneborn (2010).

We fix an Almgren–Chriss model and assume that Assumption 4.4 (b) holds and that

α = 1, β =
1

2
, g = 0. (20)

Then Theorem 4.1 guarantees that there is no price manipulation. For simplicity, we will also assume
that there is infinite liquidity in the dark pool in the sense that

µ = δ∞. (21)

Then the entirety of the dark-pool order X̂ will either be filled when τ1 ≤ ρ or it will be cancelled
when τ1 > ρ. In this setting, an admissible strategy (X̂, ξ, ρ) will be called a single-update strategy if
ρ is a deterministic time in [0, T ) and ξ is predictable with respect to the filtration generated by the
stochastic process 1{τ1≤t}, t ≥ 0.

Note that the process ξ of a single-update strategy evolves deterministically until there is an
execution in the dark pool, i.e., until time τ1. At that time, ξ can be updated. But the update will
only depend on the time τ1 and not on any other random quantities. In particular, ξ can be written
as

ξt =

{

ξ0t , if t ≤ τ1 or τ1 > ρ,

ξ1t , if t > τ1 and τ1 ≤ ρ,
(22)

where ξ0 is deterministic and ξ1 depends on τ1.

11



Proposition 4.13. Suppose that that Assumption 4.4 (b), (20), and (21) hold. For any X0 ∈ R and
T > 0 there exists a single-update strategy that maximizes the expected revenues E[RT ] in the class of
all admissible strategies.

Now we show how an optimal single-update strategy can be computed. To this end, we make the
additional simplifying assumption that temporary impact is linear, h(x) = ηx. It will follow from
Equation (40) in the proof of Proposition 4.13 that the expected revenues of a single-update strategy
are given by

E[RT ] = X0P0 −
1

2
γX2

0 −

∫ ρ

0
η(ξ0s )

2e−θs ds− ηe−θρ (X0 −
∫ ρ
0 ξ0s ds)

2

T − ρ

−

∫ ρ

0
ηθe−θt (X0 −

∫ t
0 ξ

0
s ds− X̂)2

T − t
dt.

(23)

A standard calculation shows that the strategy X0
t := X0 −

∫ t
0 ξ

0
s ds, 0 ≤ t ≤ ρ, minimizing this

expression is the solution of the Euler–Lagrange equation

−Ẍ0
t + θẊ0

t + θ
X0

t − X̂

T − t
= 0 (24)

with initial condition X0
0 = X0 and a terminal condition X0

ρ that will be determined later. By using
the computer algebra software Mathematica, we found the analytic solution

X0
t = X̂+
(

θTeθT (T − ρ)(Ei(−Tθ)− Ei(θ(ρ− T )))− ρ+ T (1− eθρ)
)−1

{

− eθtρX0

+(t− T )
(

X0e
θρ −X0

ρ + X̂
)

+ θ(T − t)eθT
[

Ei((t− T )θ)(T (X0 −X0
ρ + X̂)

−ρX0) +X0(ρ− T )Ei(θ(ρ− T )) + T (X0
ρ − X̂)Ei(−Tθ)

]

+ eθtT (X0 −X0
ρ + X̂)

}

,

where Ei(t) =
∫ t
−∞ s−1es ds is the exponential integral function. The constants ρ, X̂ and X0

ρ can then

be determined by optimizing the expression (23) numerically. Finally, the part ξ1 of the strategy,
which describes the trades to be executed at the exchange after time ρ ∧ τ1 is given by

ξ1t =























Xτ1 − X̂

T − τ1
on {τ1 ≤ ρ},

Xρ

T − ρ
on {ρ < τ1};

see (39) in the proof of Proposition 4.13.

5 Conclusion

We have analyzed the regularity of a class of dark-pool extensions of an Almgren–Chriss model and
found that such models admit price manipulation strategies unless the model parameters satisfy cer-
tain restrictions. These restrictions are satisfied for every Almgren–Chriss model when the penalty
parameter β is equal to 1

2 , the cross-venue impact parameter α is 1, and there is no temporary price
impact from the exchange on dark-pool prices. With these choices, the dark-pool extension of any

12



Almgren–Chriss model is free of price manipulation, has positive expected liquidation costs, and hence
admits reasonable optimal order execution strategies. In this sense, the model is then regular.

It should be noted, however, that the parameter values α = 1 and β = 1
2 will typically not

correspond to values found in empirical analysis or calibration of real-world dark pools. Our results
can therefore provide some indication that dark pools may create market inefficiencies and disturb
the price finding mechanism of markets, although further empirical analysis will be needed to support
this conjecture.

6 Proofs

Recall from Assumption 2.2 that the martingale property of (P 0
t ) is retained by passing to the enlarged

filtration (Gt). Next, for an admissible strategy, the asset position process X defined in (7) is an
admissible integrand for P 0 since it is leftcontinuous, (Gt)-adapted, and hence (Gt)-predictable. Recall
also that f(x) = xh(x).

Lemma 6.1. The terminal revenues of an admissible strategy for given X0 and T are given by

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ

(

X0 +

Nρ
∑

i=1

Yi

)2

−

∫ T

0
f(ξt) dt

−

Nρ
∑

i=1

Yi

(

γ

∫ τi

0
ξs ds− αγXτi+ + βγYi + g(ξτi)

)

.

Proof. First we prove that

−

∫ T

0
ξtP

0
t dt−

Nρ
∑

i=1

YiP
0
τi = X0P

0
0 +

∫ T

0
Xt dP

0
t .

To this end, we first define X̃t :=
∫ t
0 ξs ds and note that P-a.s. X̃T = −X0 − Zρ

T− = −X0 − Zρ
T .

Moreover, the independence of N and P 0 implies that P-a.s. P 0
τi− = P 0

τi . In particular, the quadratic
co-variations [P 0, N ] and [P 0, Z] vanish P-a.s. It follows that P-a.s.

X0P
0
0 +

∫ T

0
Xt dP

0
t = X0P

0
0 +

∫ T

0

(

X0 +

∫ t

0
ξs ds+ Zρ

t−

)

dP 0
t

= X0P
0
0 +X0(P

0
T − P 0

0 ) +

∫ T

0
X̃t dP

0
t +

∫ T

0
Zρ
t− dP 0

t

= −P 0
TZ

ρ
T− −

∫ T

0
ξtP

0
t dt+ Zρ

TP
0
T −

∫ T

0
P 0
t− dZρ

t

= −

∫ T

0
ξtP

0
t dt−

Nρ
∑

i=1

YiP
0
τi−

= −

∫ T

0
ξtP

0
t dt−

Nρ
∑

i=1

YiP
0
τi .

13



Thus, P-a.s.,

RT = −

∫ T

0
ξtPt dt−

Nρ
∑

i=1

YiP̂τi

= −

∫ T

0
ξt

(

P 0
t + γ

(∫ t

0
ξs ds+ αZρ

t−

)

+ h(ξt)

)

dt

−

Nρ
∑

i=1

Yi



P 0
τi + γ





∫ τi

0
ξs ds+ α

i−1
∑

j=1

Yj



+ βγYi + g(ξτi)





= X0P
0
0 +

∫ T

0
Xt dP

0
t − γ

∫ T

0

∫ t

0
ξs ds ξt dt−

∫ T

0
ξtγαZ

ρ
t− dt−

∫ T

0
f(ξt) dt

−

Nρ
∑

i=1

Yi



γ

∫ τi

0
ξs ds+ αγ

Nρ
∑

j=i+1

Yj + βγYi + g(ξτi)





= X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ

(∫ T

0
ξt dt

)2

− γα

Nρ
∑

i=1

Yi

∫ T

τi

ξt dt−

∫ T

0
f(ξt) dt

−

Nρ
∑

i=1

Yi



γ

∫ τi

0
ξs ds+ αγ

Nρ
∑

j=i+1

Yj + βγYi + g(ξτi)





= X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ



X0 +

Nρ
∑

i=1

Yi





2

−

∫ T

0
f(ξt) dt

−

Nρ
∑

i=1

Yi

(

γ

∫ τi

0
ξs ds − αγXτi+ + βγYi + g(ξτi)

)

.

In the last step, we have again used the fact that XT = XT+ = 0 P-a.s.

Proof of Proposition 3.4. (a): Assume X0 ≥ 0, and let the trading strategy be selling only, i.e. ξt ≤ 0
for all t and Yi ≤ 0 for all i. Then Pt ≤ P 0

t for all t and P̂τi ≤ P 0
τi for all i. Using integration by parts,

we find that

RT ≤ −

∫ T

0
ξsP

0
s ds−

NT∧ρ
∑

i=1

YiP
0
τi = X0P

0
0 +

∫ T

0
Xt dP

0
t .

Since (P 0) is a martingale, E[RT ] ≤ X0P
0
0 for such a trading strategy. Absence of transaction-triggered

price manipulation implies that the expected revenues cannot be increased by intermediate sell trades
and therefore, we have E[RT ] ≤ X0P

0
0 for all trading strategies. The case X0 ≤ 0 works analogously.

(b): By setting X0 = 0 in (13) we find that E[RT ] ≤ 0 for round trips.

In the following, we will consider round trips which cancel the order in the dark pool after the first
execution, i.e. X0 = 0 and ρ = τ1 ∧ r with some r < T . With Lemma 6.1 we find that the revenues of
such a round trip are

RT =

∫ T

0
Xt dP

0
t −

γ

2
1{τ1≤r}Y

2
1 −

∫ T

0
f(ξt) dt

−1{τ1≤r}Y1 (γXτ1− − αγ(Xτ1− + Y1) + βγY1 + g(ξτi)) .
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Furthermore, we will consider strategies that do not depend on P 0, i.e. they only depend on τ1 and
Y1. In particular, these strategies can be written as

ξt =

{

ξ0t , if t ≤ τ1 or τ1 > r,

ξ1t , if t > τ1 and τ1 ≤ r,
(25)

where ξ0 is deterministic and ξ1 depends on τ1 and Y1. As in Section 4.3, we will call these strategies
single-update round trips. We define further X0

t =
∫ t
0 ξ

0
s ds.

The revenues of a single-update round trip are

E[RT ] = −

∫ r

0
f(ξ0t )P[ t ≤ τ1 ] dt− P[ τ1 > r ]

∫ T

r
f(ξ0t ) dt (26)

−E

[∫ T

τ1

f(ξ1t ) dt; τ1 ≤ r

]

− E

[

γ∆Y 2
1 + γ(1− α)X0

τ1Y1 + g(ξ0τ1)Y1 ; τ1 ≤ r
]

where

∆ := −α+
1

2
+ β. (27)

We will next prove Theorem 4.3. The proof of Theorem 4.1 will be based on Theorem 4.3.

Proof of Theorem 4.3. We first show that we must have that ∆ ≥ 0 when there is no price manip-
ulation. To this end, we assume by way of contradiction that ∆ < 0 but that there is no price
manipulation for all T . Consider the single-update round trip with r = T/2, X̂ > 0, and

ξt =

{

−2Y1

T if t > r and τ1 ≤ r

0 otherwise.

The expected revenues of this strategy satisfy

E[RT ] = −E

[

T

2
f

(

−
2Y1

T

)

+ γ∆Y 2
1 ; τ1 ≤

T

2

]

= E

[

Y1h

(

−
2Y1

T

)

− γ∆Y 2
1 ; τ1 ≤

T

2

]

.

The continuity of h(x) at x = 0 yields that h(−2Y1/T ) ր 0 for T ↑ ∞. Dominated convergence and
our assumption ∆ < 0 hence imply that

lim
T↑∞

E[RT ] = −γ∆E [Y 2
1 ] > 0.

It follows that for sufficiently large T the expected revenues are strictly positive, and so there is price
manipulation. But this contradicts our assumption.

We now consider the special case in which ∆ = 0 and g(x) = κh(x) for some κ ≥ 0 and deduce
κ = 0. By way of contradiction, we will show that there is price manipulation for sufficiently large T
when κ > 0. Consider any single-update round trip. When holding r fixed and taking T arbitrarily
large, we can liquidate the asset position Xτ1∧r arbitrarily slowly during [r, T ] and thus achieve that
both ξ0t ց 0 and ξ1t ց 0 for t ≥ r as T ↑ ∞. By sending T to infinity in (26), it follows that we can
achieve via monotone convergence that

lim
T↑∞

E[RT ] = −E

[ ∫ r

0
f(ξ0t )1{t≤τ1} dt+

(

γ∆Y 2
1 + γ(1− α)X0

τ1Y1 + g(ξ0τ1)Y1

)

1{τ1≤r}

]

, (28)

where we keep the term with ∆ for the moment, although ∆ = 0 here, because this and the subsequent
formulas will also be used later on. Now we take some δ ∈ (0, 1), which will be specified later, and let
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r = δ and ξ0t = −δ for 0 ≤ t ≤ δ. We also suppose that X̂ > 0. Then

lim
T↑∞

E[RT ]

= −E

[

f(−δ)

∫ δ

0
1{t≤τ1} dt+

(

γ∆Y 2
1 + Y1

(

γ(1− α)X0
τ1 + g(−δ)

)

)

1{τ1≤δ}

]

(29)

≥ −δf(−δ)− E

[

(

γ∆Y 2
1 + Y1g(−δ)

)

1{τ1≤δ}

]

(30)

= −κh(−δ)
( δf(−δ)

κh(−δ)
+ E[Y1 | τ1 ≤ δ ]P[ τ1 ≤ δ ]

)

≥ −κh(−δ)δ
(

−
δ

κ
+ λ0λ1x0

)

,

where we have used (5) and (6) in the last step. Due to the assumption λ0λ1x0 > 0, this expression
is strictly positive as soon as δ > 0 is small enough. This implies the desired existence of price
manipulation for sufficiently large T .

We now show that we must have α = 1 when ∆ = 0 and g = 0. To this end, we assume by way
of contradiction that α < 1. As before, we may assume that (28) holds. When taking r = 1 and
ξ0t := −δ1[0,1] for δ ∈ (0, 1), we have X0

τ1 = −δτ1 on {τ1 ≤ r}, and (28) yields that

lim
T↑∞

E[RT ] = −E

[ ∫ 1

0
f(−δ)1{t≤τ1} dt+ γ(1− α)X0

τ1Y11{τ1≤r}

]

≥ δ
[

h(−δ) + γ(1− α)E
[

τ1Y11{τ1≤r}

]

]

.

But the latter expression is strictly positive as soon as δ is small enough, because E[ τ1Y11{τ1≤r} ] is
strictly positive by (5) and (6). Hence, α < 1 implies the existence of price manipulation for sufficiently
large T .

Proof of Theorem 4.1. The implication (a)⇒(b) follows immediately by taking X0 = 0.
(b)⇒(c): We already know from Theorem 4.3 that we must have ∆ ≥ 0, where ∆ is as in (27).

Thus, it remains to show that g = 0 and α = 1.
We start by showing that g = 0. To this end, we assume by way of contradiction that there is no

price manipulation but g 6= 0. Then g must satisfy the conditions on a temporary-impact function in
Assumption 2.1. When ∆ = 0, we can take h := g and get the desired contradiction from the second
part of Theorem 4.3. So let us now consider the case ∆ > 0. To this end, we consider again the
situation in the proof of Theorem 4.3 in which (28) holds and where r = δ, δ ∈ (0, 1), and ξ0t = −δ
for 0 ≤ t ≤ δ. Then we have from (30) that

lim
T↑∞

E[RT ] ≥ −δf(−δ)− γ∆E
[

Y 2
1 1{τ1≤δ}

]

− g(−δ)E
[

Y11{τ1≤δ}

]

.

On the one hand, we have 0 < Y1 = Ỹ1 ∧ X̂ ≤ X̂ and hence

E
[

Y 2
1 1{τ1≤δ}

]

≤ X̂2
P[ τ1 ≤ δ ].

On the other hand, our assumption (6) implies that for all X̂ such that 0 < X̂ ≤ x0 we have
E[Y1 | τ1 ≤ δ ] ≥ λ1X̂. Thus, for 0 < X̂ ≤ x0 we have

lim
T↑∞

E[RT ] ≥ −δf(−δ)−
(

γ∆X̂2 + g(−δ)λ1X̂
)

P[ τ1 ≤ δ ].
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Choosing X̂ = −g(−δ)λ1/(2γ∆) yields

lim
T↑∞

E[RT ] ≥ −δf(−δ) +
g(−δ)2λ2

1

4∆γ
P[ τ1 ≤ δ ] ≥ δg(−δ)2

(δh(−δ)

g(−δ)2
+

λ2
1

4∆γ
λ0

)

, (31)

where we have used (5) in the last step. One can check that the function h(x) := xg(x)2 satisfies
Assumption 2.1. But with this choice, the right-hand side of (31) becomes strictly positive for suf-
ficiently small δ > 0, and we obtain price manipulation for sufficiently large T . This completes the
proof of g = 0.

Now we show that we must have α = 1. To this end, we assume by way of contradiction that
α < 1 and start from the identity (29), which holds for r = δ, X̂ > 0, ξ0t = −δ for 0 ≤ t ≤ δ, and a
suitable choice for ξ1 and ξ0t (t > δ), depending on T . We take δ = 1 and hence have X0

τ1 = −τ1 on
{τ1 ≤ 1}. Since g = 0, (29) implies that

lim
T↑∞

E[RT ] = −E

[

f(−1)

∫ 1

0
1{t≤τ1} dt+

(

γ∆Y 2
1 − γ(1− α)Y1τ1

)

1{τ1≤1}

]

dt

≥ −f(−1) + E

[(

− γ∆Y 2
1 + γ(1− α)Y1τ1

)

1{τ1≤1}

]

. (32)

Next we consider Almgren–Chriss models with fixed permanent-impact parameter γ > 0 and with
temporary impact function εh, where h is fixed and ε > 0. Suppose first that ∆ = 0. Then we get in
the limit ε ↓ 0,

lim
ε↓0

lim
T↑∞

E[RT ] ≥ γ(1− α)E
[

Y1τ11{τ1≤1}

]

> 0,

which implies that there is price manipulation for small enough ε and large enough T .
For ∆ > 0, we get

lim
ε↓0

lim
T↑∞

E[RT ] ≥ E

[(

− γ∆Y 2
1 + γ(1− α)Y1τ1

)

1{τ1≤1}

]

= γ∆X̂E

[ (

−
(Ỹ1 ∧ X̂)2

X̂
+

1− α

∆
·
Y1 ∧ X̂

X̂
τ1

)

1{τ1≤1}

]

.

But it is easy to see that the expectation on the right will be strictly positive as soon as X̂ is sufficiently
small, since

(Y1 ∧ X̂)2

X̂
−→ 0 and

Y1 ∧ X̂

X̂
−→ 1 as X̂ ↓ 0.

This shows that there is price manipulation for small enough ε and large enough T when α < 1.
(c)⇒(a): Assume that α = 1, β ≥ 1

2 , g ≡ 0. Note that

∫ τi

0
ξs ds−Xτi+ = −

i
∑

j=1

Yi −X0. (33)

With Lemma 6.1 we get for the revenues of an admissible strategy (X̂, ρ, ξ)

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ



X0 +

Nρ
∑

i=1

Yi





2

−

∫ T

0
f(ξt) dt

+

Nρ
∑

i=1

Yi



γ

i
∑

j=1

Yi + γX0 − βγYi





= X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γX2

0 −

∫ T

0
f(ξt) dt−

(

β −
1

2

)

γ

Nρ
∑

i=1

Y 2
i .

17



Therefore,

E[RT ] = X0P
0
0 −

1

2
γX2

0 − E

[∫ T

0
f(ξt) dt

]

−
(

β −
1

2

)

γE





Nρ
∑

i=1

Y 2
i



 ≤ X0P
0
0 .

This establishes (a).

Proof of Proposition 4.5. Let X0 ∈ R and α = 1, β = 0. The revenues for a strategy are given by

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γX2

0 −

∫ T

0
f(ξt) dt

+
1

2
γ

Nρ
∑

i=1

Y 2
i −

Nρ
∑

i=1

Yig(ξτi).

Consider the following trading strategy with ρ = T
2 and given X̂ 6= 0,

ξt =

{

0, if 0 ≤ t ≤ ρ,

−2
X0+Zρ

T , if ρ < t ≤ T.

The expected revenues of this strategy are

E[RT ] = X0P
0
0 −

1

2
γX2

0 − E

[

T

2
f

(

−2
X0 + ZT/2

T

)]

+
1

2
γE





NT/2
∑

i=1

Y 2
i





= X0P
0
0 −

1

2
γX2

0 + E

[

(

X0 + ZT/2

)

h

(

−2
X0 + ZT/2

T

)]

+
1

2
γE





NT/2
∑

i=1

Y 2
i



 .

Recall that |ZT/2| is bounded by |X̂ | for all T and that Yi is nonzero only as long as |
∑i−1

j=1 Ỹj | <

|X̂|. Hence, with probability one, only finitely many Yi are nonzero. Therefore, and by dominated
convergence,

lim
T↑∞

E[RT ] = X0P
0
0 −

1

2
γX2

0 +
1

2
γE

[

∞
∑

i=1

Y 2
i

]

.

When sending |X̂ | to infinity,
∑∞

i=1 Y
2
i tends to infinity with probability one. Hence, we can make

limT↑∞ E[RT ] arbitrarily large.

Proof of Proposition 4.6. Lemma 6.1 and (33) yield

RT =

∫ T

0
Xt dP

0
t −

1

2
γ





Nρ
∑

i=1

Yi





2

− η

∫ T

0
ξ2t dt− γ

Nρ
∑

i=1

Yi



(1− α)

∫ τi

0
ξs ds− α

i
∑

j=1

Yj





=

∫ T

0
Xt dP

0
t + α





1

2
γ

Nρ
∑

i=1

Y 2
i − η

∫ T

0
ξ2t dt





+(1− α)



−η

∫ T

0
ξ2t dt− γ

Nρ
∑

i=1

Yi

∫ τi

0
ξs ds−

1

2
γ





Nρ
∑

i=1

Yi





2

 .
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Note that

η

∫ T

0
ξ2t dt ≥

η

T

(

∫ T

0
ξt dt

)2
=

η

T

(

Nρ
∑

i=1

Yi

)2
≥

η

T

Nρ
∑

i=1

Y 2
i ,

where we have used Jensen’s inequality in the first step. Thus,

1

2
γ

Nρ
∑

i=1

Y 2
i − η

∫ T

0
ξ2t dt ≤

(γ

2
−

η

T

)

Nρ
∑

i=1

Y 2
i . (34)

Furthermore, let Ξ := supt∈[0,T ] |
∫ t
0 ξs ds|. Then, by Jensen’s inequality,

∫ T

0
ξ2t dt ≥ T

( 1

T

∫ T

0
|ξt| dt

)2
≥

Ξ2

T
.

We can estimate

−η

∫ T

0
ξ2t dt− γ

Nρ
∑

i=1

Yi

∫ τi

0
ξs ds ≤ −η

Ξ2

T
+

Nρ
∑

i=1

|Yi|γΞ.

The right-hand side is maximized by

Ξ =
γT

2η

Nρ
∑

i=1

|Yi|.

Therefore,

−η

∫ T

0
ξ2t dt− γ

Nρ
∑

i=1

Yi

∫ τi

0
ξs ds−

1

2
γ





Nρ
∑

i=1

Yi





2

≤
γ

2





Nρ
∑

i=1

|Yi|





2
(

γT

2η
− 1

)

. (35)

Combining (34) and (35) yields

RT ≤

∫ T

0
Xt dP

0
t + α

(γ

2
−

η

T

)

Nρ
∑

i=1

Y 2
i + (1− α)

γ

2





Nρ
∑

i=1

|Yi|





2
(

γT

2η
− 1

)

≤

∫ T

0
Xt dP

0
t

for T ≤ 2η/γ and we find E[RT ] ≤ 0.

Proof of Proposition 4.7. Part (a): Necessity follows from Proposition 4.6. For the proof of sufficiency,
let us assume that T > 2η/γ. Then there exists ε ∈ (0, T ) such that

1

2
γ −

η

T − ε
> 0.

Consider the round trip with ρ = τ1 ∧ ε, arbitrary X̂ 6= 0, and

ξt =

{

− Y1

T−ε , if t > ε and τ1 ≤ ε,

0, otherwise.

The expected revenues of this strategy are

E[RT ] =

(

1

2
γ −

η

T − ε

)

E[Y 2
1 ; τ1 ≤ ε] > 0.
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Hence, there is price manipulation for T > 2η/γ.
Part (b): Let T > 0 and fix X̂ such that

γ

2
X̂2 −

T

2
f
(

2
X̂

T

)

=
X̂2

2

(

γ −
h(2X̂/T )

X̂

)

> 0,

which is possible due to the sublinearity of h. Now we impose X̂ as lower limit on matching orders in
the dark pool so that Y1 = X̂ P-a.s, which is possible to our assumption that Ỹ1 is unbounded. The
arrival of this first matching order will again be exponentially distributed with a parameter θ̃ < θ.

Now we take ρ = T/2 and

ξt :=











0, t ≤ ρ,

0, t > ρ and τ > ρ,

−2X̂/T, t > ρ and τ ≤ ρ.

The expected revenues of this strategy are

E[RT ] = −E

[∫ T

0
f(ξt) dt

]

+

∫ ρ

0
θ̃e−θ̃t

(

1

2
γX̂2 + X̂g(0)

)

dt

= (1− e−θ̃ρ)

(

1

2
γX̂2 −

T

2
f

(

2
X̂

T

))

> 0.

So there is price manipulation.

Now we prove the results pertaining to the assumptions that α = β = 0, g ≡ 0, and h(ξ) = ηξ.
Under this conditions, Lemma 6.1 yields

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ



X0 +

Nρ
∑

i=1

Yi





2

− η

∫ T

0
ξ2t dt−

Nρ
∑

i=1

Yi

(

γ

∫ τi

0
ξs ds

)

. (36)

Proof of Proposition 4.8. Proof of (a): Take ρ = T
2 and

ξt =











− γ
2η X̂, if t ≤ τ1, t ≤ ρ,

0, if t > τ1, t ≤ ρ

−
Xρ+

ρ , if t > ρ,

where X̂ will be specified later. By (36), we find that

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ



X0 +

Nρ
∑

i=1

Yi





2

− η(ρ ∧ τ1)
γ2

4η2
X̂2 − η

X2
ρ+

ρ
+

Nρ
∑

i=1

Yiτ1
γ2

2η
X̂.

In the limit T ↑ ∞ we will have
Nρ
∑

i=1

Yi =

NT/2
∑

i=1

Yi −→ X̂.

Hence, using the fact that E[τ1] =
1
θ ,

lim
T↑∞

E[RT ] = X0P
0
0 −

1

2
γ(X0 + X̂)2 +

1

θ

γ2

4η
X̂2. (37)
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Choosing

X̂ = −
2X0ηθ

γ − 2ηθ

yields

lim
T↑∞

E[RT ] = X0P
0
0 +

1

2
γ2X2

0

1

2ηθ − γ
> X0P0.

This concludes the proof of part (a).
Proof of (b): We first consider the case in which γ

ηθ = 2 and X0 6= 0. With the same strategy as
in part (a) we find with (37) that

lim
T↑∞

E[RT ] = X0P
0
0 −

1

2
γX2

0 − γX0X̂.

For X0 6= 0, the right-hand side can be made arbitrarily large by taking X̂ with the opposite sign of
X0 and making |X̂ | large.

Now we consider the case in which γ
ηθ > 2. With (37) we find

lim
T↑∞

E[RT ] = X0P
0
0 −

1

2
γX2

0 − γX0X̂ + εX̂2,

where ε > 0. Again, the right-hand side can be made arbitrarily large by sending X̂ to infinity.

Proof of Proposition 4.9. In view of Proposition 4.8, the assertion will be implied by the following
claim: If, for 0 ≤ t < ρ, we have ξt ≤ 0 when X0 > 0 or ξt ≥ 0 when X0 < 0, then

E[RT ] ≤ X0P
0
0 .

In proving this claim, we will consider the case X0 > 0. The case X0 < 0 is analogous. With
Lemma 6.1 we find that

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ



X0 +

Nρ
∑

i=1

Yi





2

−

∫ T

0
f(ξt) dt−

Nρ
∑

i=1

Yiγ

∫ τi

0
ξs ds.

Consider first the case X̂ ≤ 0. Then

−

Nρ
∑

i=1

Yiγ

∫ τi

0
ξs ds ≤ 0

and E[RT ] ≤ X0P
0
0 follows.

Consider next the case X̂ > 0. Since ξt ≤ 0 this implies Xt ≥ 0 for all t. Especially, Xτi− ≥ 0, or
equivalently

∫ τi

0
ξs ds ≥ −X0 −

i−1
∑

j=1

Yi.

Therefore, we find that

RT ≤ X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γX2

0 −
1

2
γ

Nρ
∑

i=1

Y 2
i −

∫ T

0
f(ξt) dt

and E[RT ] ≤ X0P
0
0 follows.
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Proof of Proposition 4.10. The revenues in this case are

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ(X0 + 1{τ1≤ρ}X̂)2 − η

∫ T

0
ξ2t dt− 1{τ1≤ρ}γX̂(Xτ1− −X0)

≤ X0P
0
0 +

∫ T

0
Xt dP

0
t

+1{τ1≤ρ}

(

−
1

2
γ(X0 + X̂)2 − η

(Xτ1− −X0)
2

τ1
− γX̂(Xτ1− −X0)

)

.

The rightmost expression is maximized by

Xτ1− = X0 −
γ

2η
τ1X̂

and we find

RT ≤ X0P
0
0 +

∫ T

0
Xt dP

0
t + 1{τ1<ρ}

(

−
1

2
γ(X0 + X̂)2 +

γ2

4η
τ1X̂

2

)

(38)

and thus
E[RT ] ≤ X0P

0
0 + E[f(ρ, X̂)],

where

f(ρ, X̂) :=

∫ ρ

0
θe−θt

(

−
1

2
γ(X0 + X̂)2 +

γ2

4η
tX̂2

)

dt.

We see that f(0, X̂) = 0 and the term in parenthesis is increasing in t. Therefore, if X̂ is such that
f(∞, X̂) > 0, then we have f(ρ, X̂) ≤ f(∞, X̂) for all ρ < ∞. For X̂ with f(∞, X̂) ≤ 0 we have
f(ρ, X̂) ≤ 0 for all ρ < ∞. Thus,

E[RT ] ≤ X0P
0
0 + 0 ∨ f(∞, X̂) = X0P

0
0 +

(

−
1

2
γ(X0 + X̂)2 +

γ2

4ηθ
X̂2
)+

.

The right-hand side is maximized by taking

X̂ = 2X0
ηθ

γ − 2ηθ
,

and so

E[RT ] ≤ X0P
0
0 +

1

2
γ2X2

0

1

2ηθ − γ
.

The statement now follows with Proposition 4.8.

Proof of Corollary 4.11. We already know from Proposition 4.8 (b) that there is price manipulation
for γ

η > 2θ. On the other hand, Proposition 4.10 implies that is no price manipulation for γ
η < 2θ.

Hence, it remains to analyze the case γ
η = 2θ. For a round trip with X0 = 0, our estimate (38) yields

that in this case

RT ≤

∫ T

0
Xt dP

0
t + 1{τ1<ρ}γ

(

γ

4η
τ1 −

1

2

)

X̂2.

Hence,
E[RT ] ≤ γX̂2

E[g(ρ)]

where

g(ρ) :=

∫ ρ

0
θe−θt

(

γ

4η
t−

1

2

)

dt =
γ

4ηθ

(

1− e−θρ(1 + θρ)
)

−
1

2
(1 − e−θρ) = −

1

2
θρe−θρ ≤ 0.

This gives E[RT ] ≤ 0.
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Proof of Proposition 4.13. Under the assumptions α = 1, β = 1
2 , and g = 0, the revenues of an

admissible strategy are given by

RT = X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γ
(

X0 + 1{τ1≤ρ}X̂
)2

−

∫ T

0
f(ξt) dt+ γX̂

(

1

2
X̂ +X0

)

1{τ1≤ρ}

= X0P
0
0 +

∫ T

0
Xt dP

0
t −

1

2
γX2

0 −

∫ T

0
f(ξt) dt.

Taking the conditional expectation with respect to Fτ1∧ρ and using optional sampling yields

E[RT | Fτ1∧ρ ] = X0P
0
0 +

∫ τ1∧ρ

0
Xt dP

0
t −

γ

2
X2

0 −

∫ τ1∧ρ

0
f(ξt) dt− E

[

∫ T

τ1∧ρ
f(ξt) dt

∣

∣Fτ1∧ρ

]

.

Due to the liquidation constraint, we must have
∫ T
τ1∧ρ

ξt dt = Xτ1∧ρ − 1{τ1<ρ}X̂, and so the convexity
of f and Jensen’s inequality yield that

∫ T

τ1∧ρ
f(ξt) dt ≥ (T − τ1 ∧ ρ)f

(Xτ1∧ρ − 1{τ1<ρ}X̂

T − τ1 ∧ ρ

)

with equality if, for τ1 ∧ ρ ≤ t ≤ T ,

ξt =























Xτ1 − X̂

T − τ1
on {τ1 ≤ ρ}

Xρ

T − ρ
on {ρ < τ1}.

(39)

These two possibilities will correspond to the single update of ξ̄ at τ1.
Note next that, due to the (Gt)-predictability of the processes (ξt) and (ρ∧ t)t≥0, (ξs)s≤t and ρ∧ t

are independent of τ1, conditional on {t ≤ τ1}. It follows that

E[RT ] = E[E[RT | Fτ1∧ρ ] ]

≤ X0P
0
0 −

γ

2
X2

0 − E
[

∫ τ1∧ρ

0
f(ξt) dt+ (T − τ1 ∧ ρ)f

(Xτ1∧ρ − 1{τ1≤ρ}X̂

T − τ1 ∧ ρ

)

]

= X0P
0
0 −

γ

2
X2

0 − E
[

F (X̂, ξ, ρ)
]

, (40)

where the functional F maps X̂ ∈ R, ξ ∈ L1[0, T ], and r ∈ [0, T ] to

F (X̂, ξ, r) =

∫ ∞

0
du θe−θu

{∫ u∧r

0
f(ξt) dt+ (T − u ∧ r)f

(X0 +
∫ u∧r
0 ξt dt− 1{u≤r}X̂

T − u ∧ r

)

}

.

When F admits a minimizer (X̂∗, ξ∗, r∗), then concatenating ξ∗ with (39) in r∗ ∧ τ1 yields an optimal
strategy that is a single-update strategy.

To show the existence of a minimizer of F , take any triple (X̃, ξ̃, r̃) for which C := F (X̃, ξ̃, r̃) < ∞.
We then only need to look into those triples (X̂, ξ, r) for which F (X̂, ξ, r) ≤ C. Without loss of
generality, we can pick the component ξ from the set

KC :=
{

ξ ∈ L1[0, T ]
∣

∣

∣

∫ T

0
f(ξt) dt ≤ CeθT

}

,
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because we clearly have

F (X̂, ξ, r) ≥

∫ ∞

T
du θe−θu

∫ u∧r

0
f(ξt) dt = e−θT

∫ r

0
f(ξt) dt

and we can set ξt := 0 for t > r.
The set KC is a closed convex subset of L1[0, T ]. Hence it is also weakly closed in L1[0, T ]. It is

also uniformly integrable according to the criterion of de la Vallée Poussin and our assumption that f
has superlinear growth. Hence, the Dunford–Pettis theorem (Dunford and Schwartz, 1958, Corollary
IV.8.11) implies that KC is weakly sequentially compact in L1[0, T ]. From now on we will endow KC

with the weak topology.
It follows in particular that

sup
ξ∈KC

∫ T

0
|ξt| dt < ∞. (41)

Since

F (X̂, ξ, r) ≥

∫ r

0
du θe−θu(T − u)f

(X0 +
∫ u
0 ξt dt− X̂

T − u

)

,

the superlinear growth of f and (41) imply that there is a constant C1 ≥ 0 such that |X̂ | ≤ C1 when
F (X̂, ξ, r) ≤ C. Hence we can restrict our search of a minimizer to the sequentially compact set

K := [−C1, C1]×KC × [0, T ].

Next,

[0, T ] ×KC ∋ (r, ξ) −→

∫ r

0
ξt dt =

∫ T

0
ξt1[0,r](t) dt

is a continuous map. Moreover, denoting by f∗ the Fenchel-Legendre transform of the convex function
f , we have f∗∗ = f due to the biduality theorem, and so

[0, T ]×KC ∋ (r, ξ) 7−→

∫ r

0
f(ξt) dt = sup

ϕ∈L∞

[
∫ T

0
1[0,r](t)ξtϕt dt−

∫ r

0
f∗(ϕt) dt

]

;

see, e.g., Theorem 2 in Rockafellar (1968). It follows that this map is lower semicontinuous as the
supremum of continuous maps.

Altogether, it follows that F is lower semicontinuous on the sequentially compact set K and so
admits a minimizer.
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