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ABSTRACT 

High performance computing (HPC) is a very attractive and 

relatively new area of research, which gives promising results 

in many applications. In this paper HPC is used for pricing of 

American options. Although the American options are very 

significant in computational finance; their valuation is very 

challenging, especially when the Monte Carlo simulation 

techniques are used. For getting the most accurate price for 

these types of options we use Quasi Monte Carlo simulation, 

which gives the best convergence. Furthermore, this 

algorithm is implemented on both GPU and CPU. 

Additionally, the CUDA architecture is used for harnessing 

the power and the capability of the GPU for executing the 

algorithm in parallel which is later compared with the serial 

implementation on the CPU. In conclusion this paper gives 

the reasons and the advantages of applying HPC in 

computational finance. 
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I. INTRODUCTION 

To calculate the value of American options numerically 

intensive methods must be applied: differential methods, fast 

Fourier transform and Monte Carlo simulations.  

The Monte Carlo method is a numerical computational 

method commonly used in simulating physical problems, 

where it is impossible or impractical to obtain analytical (or 

closed form) solution for the system of equations. Using 

Monte Carlo is very convenient because the computational 

time of Monte-Carlo simulation increases approximately 

linearly with the number of variables, while in most other 

methods, the computational time increases exponentially with 

the number of variables.  

American options represent a challenging problem in 

computational finance due to their early exercise feature. 

These options can be exercised at any time up to maturity.  

In recent researches good results are achieved when American 

options are priced with Monte Carlo simulations. 

[2][6][7][11] 

This paper is focused on using the capabilities of the graphics 

processing unit (GPU), and also will compare the 

performances between GPU and CPU when both are used for 

processing the same algorithm. Both GPU and CPU will be 

used for valuing American options using Quasi Monte Carlo 

simulations. Valuation will be made on a single option on a 

large number of stock pricing paths needed for higher 

accuracy of the Monte Carlo simulation.  

II. PROJECT GOALS 

The purpose of this paper is to give a brief description of 

American options, and also to suggest a parallel way of 

solving them by using Quasi Monte Carlo simulations.  

In this paper we will answer the following questions: 

1. How to evaluate the American options in discrete time 

periods? 

2. Which simulation to apply in order to achieve more 

accurate evaluation of the American options? 

3. How to optimally use the limited resources of the GPU 

for valuing options? 

4. How to use the SIMT method which is part of the CUDA 

architecture in order to evaluate the American options? 

5. What is the speed up of the parallel implementation of 

the algorithm over the serial implementation?  

6. What is the advantage of using GPGPU when the Monte 

Carlo simulation is used for American option pricing? 

III. BACKGROUND  

A. Why GPU computing? 

With the development of multi -core processors the inability 

to process large amounts of data for a very short time was 

solved. Hardware architecture of graphic cards was the most 

convenient for this problem to be overcome. The graphics 

card has many cores and each core has hardware support for 

many threads. This construction of the graphics card was used 

for it to be applied as a graphics card for general purpose - 

GPGPU. [14] 

NVidia, a well-known manufacturer for graphics cards, 

accommodated the graphics cards that appeared after the 8400 

GS to be capable of processing a lot of data in parallel. In 

2006 NVidia developed the CUDA architecture. The CUDA 

architecture uses the C/C++ language. 

If the programmer knows how to properly use the CUDA 

architecture, and with proper allocation of the processes, very 

high system performance can be achieved [15]. Recent 

researches indicate that the GPU can process data up to ten 

times faster than the CPU [16]. When optimization on the 

CPU is not performed, then the GPU performances can be a 

hundred times better than the CPU performances [17]. 

B. Options and Option pricing 

Options are financial derivative instruments and represent a 

contract where the holder has the right but not the obligation 

to buy (or sell) an underlying asset for a determined price at 

the determined date. Options that give its holder the right to 

buy the underlying asset are called call options. Options when 



the holder gains the right to sell the underlying asset for a 

determined price at the determined date are called put options. 

Options exist in two main categories: vanilla options and 

exotic options.  

In 1973 Fisher Black and Myron Scholes developed a closed 

form solution to price plain vanilla European Call/Put 

options. This closed form solution today is known as the 

Black-Scholes formula [1]. 

Depending on when the option can be exercised, there are 

different types of options, such as European, Bermudan and 

American Options. 

C. Black-Scholes model 

Black-Scholes model first appeared in 1972 as a title in the 

journal "Journal of Finance" in which Fischer Black and 

Myron Scholes did an empirical study. [2] 

The Black-Scholes model is a model for pricing European 

options that can be exercised at the expiry date T. This model 

is the foundation for more complex models. This model 

provides a partial differential equation (PDE) for evaluation 

of the option price and is based on several assumptions, such 

as: the underlying asset price (spot price) follows a log 

normal distribution, the volatility of the underlying spot price 

is constant and the risk free rate of return is constant. [1] 

1) The Black Scholes pricing formulas 

The Black-Scholes formulas for pricing European call and put 

options at time T=0 are: 
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where c is the value for a call option, p is the value of a put 

option, CND(d) is the Cumulative Normal Distribution 

function, 
0
S  is the current price of the underlying asset, X is 

exercise price, T is expiry time, r is continuously 

compounded risk free interest rate, v is implied volatility for 

the underlying asset.  

D. Monte Carlo and Quasi Monte Carlo 

Monte Carlo simulation is a popular technique for options 

pricing. Monte Carlo simulation is used for solving complex 

problems, such as high-dimensional integrals. While Monte 

Carlo is very useful for solving these major problems, it has 

one drawback, namely the need for great computing power. 

[3] 

Monte Carlo simulation was invented by Stanislaw Ulam, 

Fermi Von Neumann and Metropolis in the 1940's. [4]. Monte 

Carlo simulation can be used for solving not just one but 

multiple problems. [18] An example of solving multiple 

problems at once is the pricing of options where at once 

thousands of options need to be priced. The Monte Carlo 

approach simulates paths for asset prices. Because many 

independent paths need to be calculated at once, it becomes 

clear that one of the most important features of the Monte 

Carlo simulation is the parallelization. The Monte Carlo 

simulation converges faster for more dimensional problems, 

requires less memory and its programming is easier than 

others techniques for pricing options.  

The difference between Monte Carlo and Quasi Monte Carlo 

is that points in Monte Carlo (x1, x2, x3, …, xN) are randomly 

chosen and independent, unlike the Quasi Monte Carlo 

simulation where points are generated quasi randomly. In 

many applications, this method proved to be a method with 

more advantages compared to the traditional Monte Carlo 

simulation method. This is due to its faster convergence and 

higher accuracy [5][6][7] [8] [9]. 

We use the Quasi Monte Carlo approach because it improves 

the convergence properties of the Monte Carlo techniques. 

In our algorithm for pricing American options our purpose is 

to generate multiple samples for each path. We perform 

permutation on the quasi-random arrays by using linear 

congruential generator in order to generate statistically 

independent samples for each path. These samples are 

generated with uniform distribution by this quasi-random 

generator, and then they are normally distributed N(0, 1) by 

using the Moro Inverse Cumulative Normal Distribution.   

When the Monte Carlo simulation is used for option pricing it 

actually estimates the expected put and call values. The core 

of this method is corresponding to the underlying Wiener 

process described in [1], generating N numeric samples using 

normal or pseudo normal distribution N(0,1). This process 

then averages the possible end period stock profits for every 

single path: 
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By discounting the estimated future price with e
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estimation of the present fair value of the derivative: 

Tr

meanfair eTcpcp
t
S

t
S

*),()/()0,()/(       (8) 

Here c (call) and p (put) values are calculated by (6) and (7). 

E. American options 

The early methods used for pricing American options were 

binomial trees and other lattice methods, such as trinomial 

trees and finite difference methods. These methods were used 

to solve the partial differential equation (PDE) and its 

associated boundary value. 



Unlike European options where the holder exercises the 

options at maturity, the American option gives the holder the 

right to choose when to exercise the options, that is, the 

holder has the right to exercise the option at any moment up 

to the maturity of the option.  

American options always give higher value for the option 

than European options, because at least the final option value 

is equal to the European option price.  

Pricing the American option with Monte Carlo simulation is 

very difficult because of the inability to approximate in 

continuous time and because of the American options early 

exercise feature. [9][10][11][12] 

In order to avoid this problem, American options are 

considered as Bermudian options. In Bermudian options the 

whole time period is divided into several discrete times. For 

example, if American option can be exercised in any point of 

time t where 0 ≤ t ≤ T, in Bermudian style options, the option 

can be exercised only at a fixed set of times 0 ≤ t1≤ t2≤ t3 … ≤ 

tn=T. 

In the American option pricing, the option holder compares 

the early exercise value and expected continuation value. This 

helps him to decide to early exercise the option or to keep it 

for the later time, when its value will be higher because his 

intention is to maximize the income, that is, to get the most 

optimal value for the given option.  

Exercise boundary is an essential term in American option 

pricing. The exercise boundary refers to a threshold value for 

each time step, which shows if the option should be exercised 

or not. 

For a call option, the holder should exercise the option when 

the value of the option is above the exercise boundary 

whereas for the put it is the opposite. The boundary at 

maturity is the exercise price, or the European option price. 

Different methods make approximation of the exercise 

boundary in different ways. Simulation techniques like Monte 

Carlo try to find the optimal option value for every path 

where the value is above the exercise boundary, and then 

make the approximation.  

Methods and techniques for pricing American options are 

described in section IV. 

IV. RELATED WORK 

In [10], Broadie and Glasserman developed algorithm for 

pricing American- style securities using Monte Carlo with 

two branch processes. The first process gives an upper bound 

on the option price and the second gives a lower bound on the 

option price. The two processes converge to the true price. 

�Rogers in [11] also developed an algorithm for pricing 

American options using Monte Carlo simulation. He uses 

direct simulation approach, based on dual formulation on the 

optimal exercise problem. This method leads to an upper 

bound on the option price. Van Roy  and Tsitsiklis [19] have 

introduced simulation-based methods for pricing the complex 

American option by iteration. 

V. ALGORITHM 

The algorithm that we implemented is based on backward 

induction or dynamic programing principle. This approach is 

similar to [9] and [19], but the difference is that they don’t 

calculate the option in the period [tm-1,t m] with the Black-

Scholes formula 

Our purpose by using this approach is to find the optimal 

exercise boundary by which we will get upper bound on the 

value of the American option. 

Because of inability to estimate the American option price in 

continuous time, let’s suppose that the American option is the 

Bermudian type of option with the possibility to exercise the 

option in discrete time steps T = {t1, t2, t3, t4, ..., tm =T }. 

Since there is no optimal strategy for exercising the option, 

we start from the period T and continue backward through all 

time points. 

The price of the American option is at least equal to the 

European one. If the American option is exercised at expiry 

time tm=T, then the price of the American option is equal to 

the price of the European option.  

Expiry period is divided by m equally spaced points. The 

distance between the points is t=T/(m+1). The points are ti for 

i={1,2,…,m}. 

At the point ti-1 the underlying stock is approximated by the 

Monte Carlo simulation  
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We need the underlying asset value at time ti-1 in order to 

calculate the exercise boundary in the period [ti-1,t i]. 

Here we make an assumption that at time t0 the underlying 

price is the primary underlying price, and at time ti the value 

of the underlying asset is equal to the exercise value. 

The calculation of the exercise boundary is performed by 

using the Black-Scholes formula ),,,,(
1
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After calculating the value of the call option for the period [ti-

1,ti]  this value will be the exercise boundary for the previous 

point ti-1. At time point ti-1 the call value is calculated by:  
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Continuing backward, the value of the call option is 

calculated by: 
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Here X is the exercise price, r is the risk free rate of return, v 

is the volatility, t is the time point, and zi is the random 

generated sample for every time step. Then we approximate 

the final call value by using (6). 

 

Figure 1: Value of American option vs. number of exercise 

points. 



In this algorithm we assume that all future values of the 

underlying stock price are known, and we can choose the best 

time point to exercise the option. Therefore, the algorithm 

gives the upper bound the value of the American option.  

Figure 1 shows the value of the American option as a function 

of the number of exercise points.  

VI. CUDA ARCHITECTURE AND PARALLEL IMPLEMENTATION 

Developing a parallel algorithm is not an easy task to do. Our 

algorithm is based on the NVidia SDK samples for pricing the 

European Options with Monte Carlo simulation. In order to 

implement parallel and accurate algorithm for pricing 

American options with Quasi Monte Carlo simulation we 

modified and adopted these samples [16]. We must consider 

the CUDA resource constrains, such as memory bandwidth, 

number of blocks, threads etc. in order to implement an 

effective and fast algorithm. 

First of all there are multiple types of CUDA memories, such 

as, registers, shared memory, and constant memory. These 

memories can be accessed at higher speed and in more 

parallel manner than the global memory. 

The techniques which are very important for achieving the 

performance upgrading are titled as: Reduction technique, 

Global memory bandwidth, Dynamic partitioning of the SM 

resources, Data prefetching and Instruction mix 

The reduction technique is very important when we want to 

achieve fast program execution and proper thread 

organization. 

By using this technique divergence is avoid within the warp. 

That is accomplished by adding every element within shared 

memory with the element which is half section away from it. 

The size of the section is equal to the block size. All threads 

within the warp follow the same path for execution. 

Divergence is avoided by using this way of calculating partial 

sums, but there is still a one problem, half of the elements 

remain idle after the first loop, and more and more after every 

loop. Solution to this problem is to halve the number of 

blocks and to replace them into the single load. 

This means that we put the result from the one thread from 

global memory and the other thread from global memory 

which is half a section away from the first one into the shared 

memory directly. The second element is further half a section 

than the first element. This helps all threads within the blocks 

to be used. 

Another technique very important is the instruction mix. 

Using this technique we can achieve performance 

improvements when we avoid loops, calculation using 

floating point number etc. Because the technique mentioned 

above uses loops for each iteration, in order to calculate the 

section size, the following change is performed. Because the 

maximum thread block size is 512, we calculated every 

possible block size and put that in the runtime.  

if (blockSize >= 512) { 

if (tid < 256) { add[tid] += add[tid + 256]; }__syncthreads();} 

Also when the number of threads within the warp is smaller 

than 32, instructions within the warp are SIMD synchronous. 

So it is recommended to use the unrolling of the loop by 

defining all the possibilities for adding threads. When the 

number of threads is smaller than 32 it is recommended  to 

avoid the method__syncthreads() because it can affect the 

performance. 

The global memory bandwidth also had to be taken into 

account. In order to get maximum speed accesses to global 

memory, and also fast global memory response, we used the 

technique called coalescing. With this technique we load 

threads going through the column instead of loading from the 

row.  

We also used the technique called dynamic partitioning of the 

SM resources. In our algorithm we check for the number of 

paths used. If the number is large, than smaller number of 

blocks will be used but larger number of threads. Because the 

number of registers required is large, the accommodated 

number of blocks will be small. By using this technique we 

make dynamic partitioning of the SM resources. This helps 

performance improvement to be achieved because the 

resources in SM are limited.  

By using the samples from [20] and [16] we succeeded to 

implement an algorithm which works very fast and 

accurately. 

The test results are made on a system which uses Intel Core i7 

2.20 GHz processor, and on a graphics card NVidia GeForce 

GT 540 M. The GPU has 96 CUDA cores and is supported 

for using the CUDA architecture. 

Our test results show that when more threads are used for 

observing huge number of paths then we get a significant 

increase in performance. If the number of blocks is higher 

than is necessary for performing the valuation, by the results 

below in the Table 2, it is easy to notice that it can cause 

degradation of the performance. It is noticeable that we need 

to know how to use the resource constrains in order to 

achieve a performance increase. 

In the Table 2, below are listed the achieved increases in 

performance, which depend on the number of paths, number 

of threads per block, and the number of blocks per option, 

used for the Monte Carlo simulation. 

In Table 2 below when the number of paths is smaller than 

8192, then one block per option is used. 

Table 2: GPU and CPU speed comparison. 

Threads  

Blocks Per 

option 

Speed 

256 

64 

CPU  

512 

6 

CPU  

256 

64 

GPU  

512 

16 

GPU  

512 

64 

GPU  

10 0.08 0.09 0.04 0.06 0.04 

100 0.18 0.24 0.06 0.07 0.04 

1000 1.27 1.23 0.09 0.04 0.06 

10000 11.9 11.43 0.09 0.07 0.04 

100000 110.62 110.24 0.13 0.08 0.16 

200000 229.02 222.02 0.11 0.09 0.16 

300000 337.91 335.34 0.12 0.11 0.20 

500000 

1000000 

555.97 

1100.15 

563.49 

1125.76 

0.18 

0.23 

0.15 

0.16 

0.20 

0.21 

 

The results from Table 2 demonstrate that when the number 

of paths used for the simulation is small then the execution 

times on CPU and GPU are very close. For ten paths the CPU 



computational time is double the time than the GPU 

computational time. For hundreds of paths to thousands of 

paths the GPU is approximately three times faster than CPU 

in executing the algorithm. For 1000 to 10000 of paths the 

execution of the algorithm on the GPU is thirty time shorter 

than that of the algorithm executed on the CPU. For 10000 to 

100000 GPU is more than 150 times faster than CPU when 

executing the algorithm. The maximum speedup is achieved 

when one million paths are used. In this case the CPU is more 

than 6500 times slower than GPU. As more paths are used the 

speed of CPU decreases, while the GPU speed remains very 

close as the time when only 10 paths were used. 

Figure 2, shows the difference in the execution time of the 

same algorithm for American options in ten points on the 

CPU and the GPU.  
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Figure 2: Difference in execution time on CPU and GPU. 

From these results it is obvious that the GPU is the most 

suitable solution for today’s needs of processing a huge 

amount of data for a very short time. As the number of 

simulation pats increases and the accuracy of results 

improves, execution time of Monte Carlo simulation doesn’t 

degrade when executed on GPU. 

VII. CONCLUSION 

Pricing of American Options using Monte Carlo simulation is 

an active area of academic research. In this paper we describe 

serial and parallel implementation of an algorithm for pricing 

of American options. The algorithm gives the upper bound on 

the value for the American options. The returned call value 

for equivalent input parameters on both CPU and GPU is the 

same and always higher than the European option with the 

same input parameters. We also implemented a very fast 

parallel algorithm, which is capable of simulating more than 

one million paths for Monte Carlo simulation in 

approximately 0.15µs. 

We showed that the parallel algorithm implemented on the 

GPU is more than 6500 times faster than the serial one 

implemented on the CPU.  
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