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Abstract

We propose a framework to study optimal trading policies in a one-tick pro-rata
limit order book, as typically arises in short-term interest rate futures contracts. The
high-frequency trader has the choice to trade via market orders or limit orders, which
are represented respectively by impulse controls and regular controls. We model and
discuss the consequences of the two main features of this particular microstructure:
first, the limit orders sent by the high frequency trader are only partially executed, and
therefore she has no control on the executed quantity. For this purpose, cumulative
executed volumes are modelled by compound Poisson processes. Second, the high
frequency trader faces the overtrading risk, which is the risk of brutal variations in
her inventory. The consequences of this risk are investigated in the context of optimal
liquidation.

The optimal trading problem is studied by stochastic control and dynamic progra-
mming methods, which lead to a characterization of the value function in terms of an
integro quasi-variational inequality. We then provide the associated numerical reso-
lution procedure, and convergence of this computational scheme is proved. Next, we
examine several situations where we can on one hand simplify the numerical procedure
by reducing the number of state variables, and on the other hand focus on specific cases
of practical interest. We examine both a market making problem and a best execution
problem in the case where the mid-price process is a martingale. We also detail a high
frequency trading strategy in the case where a (predictive) directional information on
the mid-price is available. Each of the resulting strategies are illustrated by numerical
tests.

Keywords: Market making, limit order book, pro-rata microstructure, inventory risk,
marked point process, stochastic control.



1 Introduction

In most of modern public security markets, the price formation process, or price discovery,
results from competition between several market agents that take part in a public auction.
In particular, day trading sessions, which are also called continuous trading phases, consist
of continuous double auctions. In these situations, liquidity providersﬂ continuously set bid
and ask prices for the considered security, and the marketplace publicly displays a (possibly
partial) information about these bid and ask prices, along with transactions prices. The
action of continuously providing bid and ask quotes during day trading sessions is called
market making, and this role was tradionnally performed by specialist firms. However, due
to the recent increased availability of electronic trading technologies, as well as regulatory
changes, a large range of investors are now able to implement such market making strategies.
These strategies are part of the broader category of high frequency trading (HFT) strategies,
which are characterized by the fact that they facilitate a larger number of orders being sent
to the market per unit of time. HFT takes place in the continuous trading phase, and
therefore in the double continuous auction context, but actual mechanisms that implement
this general continuous double auction set-up directly influence the price formation process
and, as a consequence, HFT strategies.

In this work, we shall focus on the case where the continuous double auction is imple-
mented by a limit order book (LOB), operated under the pro-rata rnicrostructureEl, see [10]
and [I]. This microstructure can be encountered on some derivatives markets, and espe-
cially in short-term interest rate (STIR) futures markets, also known as financial futures,
traded e.g. on LIFFE (London International Financial Futures and options Exchange) or
on CME (Chicago Mercantile Exchange). We will describe this microstructure in depth
in Section 2, but the general mechanism of this microstructure is as follows: an incoming
market order is dispatched on all active limit orders at the best price, with each limit order
contributing to execution in proportion to its volume. In particular, we will discuss the
two main consequences of this microstructure on HF T strategies which are the oversizing
of the best priced slices of the LOB and the overtrading risk.

Our main goal is to construct an HFT strategy, by means of optimal stochastic control,
that targets the pro-rata microstructure. We allow both limit orders and market orders in
this HF'T strategy, modelled respectively as continuous and impulse controls, due to consid-
erations about direct trading costs. From a modelling point of view, the key novelty is that
we take into account partial execution for limit orders, which is crucial in the pro-rata case.
For this purpose we introduce a Poissonian model for trades processes, that can be fitted
to a large class of real-world execution processes, since we make few assumptions about the
distributions of execution volumes. From a practical trading point of view, we allow the
HFT to input predictive information about price evolution into the strategy, so that our
algorithm can be seen as an information-driven HFT strategy (this situation is sometimes
called HFT with superior information, see [4]). We derive the dynamic programming equa-
tion corresponding to this mixed impulse/regular control problem. Moreover, we are able to

Tn this paper, we call liquidity provider any investor that currently trades with limit orders
2This microstructure differs from the price/time microstructure that can be encountered on most cash
equity markets, see [9].



reduce the number of relevant state variables to one in two situations of practical interest:
first, in the simple case where the mid-price is a martingale, and second, in the case where
the mid-price is a Lévy process, in particular when the HFT has predictive information
on price trend, in line with recent studies [5]. We provide a computational algorithm for
the resolution of the dynamic programming equation, and prove the convergence of this
scheme. We illustrate numerically the behavior of the strategy and perform a simulated
data benchmarked backtest.

High-frequency trading has recently received sustained academic interest. The refer-
ence work for inventory-based high frequency trading is Avellaneda and Stoikov (2008) [2].
The authors present the HFT problem as an inventory management problem and define
inventory risk as the risk of holding a non-zero position in a risky asset. They also pro-
vide a closed-form approximate solution in a stylized market model where the controls are
continuous. Several works are available that describe optimal strategies for HFT on cash
equities or foreign exchange, e.g. [I1], [7], [9] or [12]. Guéant, Tapia and Lehalle ([7])
provide extensive analytical treatment of the Avellaneda and Stoikov model. Veraart ([12])
includes market orders (that are modelled as impulse controls) as well as limit order in the
context of FX trading. Guilbaud and Pham ([9]) study market/limit orders HF'T strategies
on stocks with a focus on the price/time microstructure and the bid/ask spread modelling.
More recently, Cartea, Jaimungal and Ricci ([4]) consider a HFT strategy that takes into
account influence of trades on the LOB, and give the HFT superior information about the
security price evolution. A growing literature is dedicated to modelling the dynamics of
the limit order book itself, and its consequences for the price formation process. A popular
approach is the Poisson Limit Order Book model as in Cont and de Larrard ([5]). These
authors are able to retrieve a predictive information on price behavior (together with other
LOB features) based on the current state of the order book. Finally, in empirical litera-
ture, much work is available for cash equities e.g. [§], but very few is dedicated to markets
operating under pro-rata microstructure. We would like to mention the work by Field and
Large (]6]), which provides a detailed empirical description of pro-rata microstructure.

This paper is organized as follows: in Section 2, we detail the market model and explain
the high frequency trading strategy. In Section 3, we formulate the control problem, derive
the corresponding dynamic programming equation (DPE) for the value function, and state
some bounds and symmetry properties. We also simplify the DPE in two cases of practical
interest, namely the case where the price is a martingale, and the case where the investor
has predictive information on price trend available. In Section 4, we provide the numeri-
cal algorithm to solve the DPE, and we study the convergence of the numerical scheme
towards the exact solution, by proving the monotonicity, stability and consistency for this
scheme. We also provide numerical tests including computations of the optimal policies
and performance analysis on a simulated data backtest. Finally, in Section 5, we show how
to extend our model in the optimal liquidation case, i.e. when the investor’s objective is to
minimize the trading costs for unwinding her portfolio.



2 Market model

Let us fix a probability space (£, F,P) equipped with a filtration F = (F;);>0 satisfying
the usual conditions. It is assumed that all random variables and stochastic processes are
defined on the stochastic basis (2, F,F, P).

Prices in a one-tick microstructure. We denote by P the midprice, defined as a Markov
process with generator P valued in P. We shall assume that P is a special semimartingale
such that its predictable finite variation term A satisfies the canonical structure: dA; <
d < P >, with a bounded density process:
dA;
0y = ——, (2.1)
d< P >;

and the sharp bracket process < P > is absolutely continuous with respect to the Lebesgue
measure:

d< P> = p(P)dt, (2.2)

for some positive continuous function ¢ on P. We denote by d > 0 the tick size, and we
shall assume that the spread is constantly equal to ¢, i.e. the best ask (resp. bid) price
is P* := P+ % (resp. P’ := P — g) This assumption corresponds to the case of the
so-called one-tick microstructure [6], which can be encountered e.g. on short term interest
rates futures contracts.

Trading strategies. For most of investors, the brokerage costs are paid when a transaction
occurs, but new limit order submission, update or cancel are free of charge. Therefore,
the investor can submit or update her quotes at any time, with no costs associated to
this operation: it is then natural to model the limit order strategy (make strategy) as
a continuous time predictable control process. On the contrary, market orders lead to
immediate execution, and are costly, so that continuous submission of market orders would
lead to bankruptcy. Therefore, we choose to model the market order strategy (take strategy)
as impulse controls. More precisely, we model trading strategies by a pair a = (/™€ qteke)
in the form:
amete = (Lg7L§)t20’ ol = (70 6n) e

The predictable processes L% and LP, valued in {0, 1} represent the possible make regimes:
when L¢ = 1 (resp. L? = 1) this means that the investor has active limit orders at the
best ask price (resp. best bid price) at time ¢, else, if L¢ = 0 (resp. L? = 0) this means
that the investor has no active order at the best ask price (resp. best bid price) at time t¢.
Practical implementation of such rule would be, for example, to send a limit order with a
fixed quantity, when the corresponding control is 1, and cancel it when it turns to 0. On
the other hand, (7, )nen is an increasing sequence of stopping times, representing the times
when the investor chooses to trade at market, and &,, n > 0 are F,, -measurable random
variables valued in R, representing the quantity purchased if &, > 0 or sold if &, < 0.

Execution processes in a pro-rata microstructure. The pro-rata microstructure (see



[10] for extensive presentation and discussion) can be schematically described as followsﬂ
when a market order comes in the pro-rata limit order book, its volume is dispatched
among all active limit orders at best prices, proportionnally to each limit orders volumes,
and therefore create several transactions (see Figure [1)).
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Figure 1: Schematic view of the pro-rata market microstructure.

This pro-rata microstructure fundamentally differs from price-time microstructure [9] for
two reasons: first, several limit orders at the best prices receive incoming market order flow,
regardless of the time priority, and second, market makers tend to oversize their liquidity
offering (that is, posting limit order with much higher volume than they actually want to
trade) in order to increase their transaction volume. For example, on the three-months
EURIBOR futures contracts, the liquidity available at the best prices is 200 times higher
than the average transaction size. Therefore, to model a market making strategy, one must
take into account the fact that limit orders are always oversized, so that the executed volume
is a random variable on which the market maker has no controﬁ More precisely, let N¢
(resp. N®) be a Poisson process of intensity A* > 0 (resp. A’), whose jump times represent
the times when execution by a market order flow occurs at best ask (resp. best bid), and we
assume that N and N° are independent. Let (¢%)nen+ and (¢2),en+ be two independent
sequences of i.i.d integrable random variables valued in (0, c0), of distribution laws u® and
u?, which represent the transacted volume of the n'* execution at best ask and best bid.
We denote by v%(dt,dz) (resp. v°(dt,dz)) the Poisson random measure associated to the
marked point process (N, ((%)nen+) (resp. (N, (¢%)nen+)) of intensity measure \u®(dz)dt

3For a detailled description of actual trading rules, and a general overview of STIR futures trading, we
refer to [I] and references therein.

4This differs from the price-time microstructure case, in which the market maker can control the upper
bound of the execution volume by adjusting the limit order volume.



(resp. APub(dz)dt), which is often identified with the compound Poisson processes

N t oo Nib t poo
Ui = ZC% - /0 /0 zv(dt dz), 9] = ZCZ = /0 /0 2 V0(dt, dz). (2.3)
n=1 n=1

representing the cumulative volume of transaction at ask, and bid. Notice that these
processes model only the trades in which the investor has participated.

Cash holdings and inventory. The cash holdings process X and the cumulated number
of stocks Y (also called inventory) hold by the investor evolve according to the following

dynamics:
dX; = L}(P-+ g)dﬂg — L)(P- — g)dﬂfg, Tn <t < Tni1 (2.4)
dY, = L2d0? — Le¢d9?, 7, <t < Tpyi (2.5)
X = Xpe = —&Pr, — \én\(g +¢) — e, (2.6)
Y, =Y, _ = & (2.7)

The equations — model the evolution of the cash holdings and inventory under
a limit order (make) strategy, while equations — describe the jump on the cash
holdings and inventory when posting a market order (take) strategy, subject to a per share
fee € > 0 and a fixed fee £g > 0. In the sequel, we impose the natural admissibility condition
that the size of the market order should not be larger than the current inventory, i.e. |&,| <
|Y:, —|, n > 0, and we shall denote by A the set of all admissible make and take strategies
o = (amake’ atakze)‘

Remark 2.1 Let us define the process V; = X; + Y P, which represents at time ¢ the
marked-to-market value of the portfolio (or book value of the portfolio). From ——

(2.6)-(2.7), we see that its dynamics is governed by:

b
AV, = =(Lbd¥}+ L¢dv}) + Y,-dP;, (2.8)

5
5
Vi = Ve = _’fn’(§ +€) — <o (2.9)

In equation , we notice that a trade at market will always diminish the marked to
market value of our portfolio, due to the fact that we have to “cross the spread”, hence trade
at a least favorable price. On the other hand, in equation , the term [ g(Lgdﬁf—i—L?dﬁ?)
is always positive, and represents the profit obtained from a limit order execution, while
the term [ Y;-dP; represents the portfolio value when holding shares in the stock, hence
inducing an inventory risk, which one wants to reduce its variance.

3 Market making optimization procedure

3.1 Control problem formulation

The market model in the previous section is fully determined by the state variables (X, Y, P)
controlled by the limit /market orders strategies o = (o€, at®*¢) € A. The market maker



wants to optimize her profit over a finite time horizon T (typically short term), while keeping
control of her inventory risk, and to get rid of any risky asset by time 7. We choose a mean-
variance optimization criterion, and the goal is to

T
maximize E[XT — 'y/ YZd< P>, } over all strategies « € A, st Yr=0. (3.1)
0

The integral fOT Y;z_d < P >; is a quadratic penalization term for holding a non zero
inventory in the stock, and v > 0 is a risk aversion parameter chosen by the investor.

Let us now rewrite problem in a more standard formulation. Notice indeed that one
can remove mathematically the constraint Y7 = 0 on the inventory control, by introducing
the liquidation function:

5
L(z,y,p) = x+yp— Iyl(§ +¢) —eo,

which represents the cash obtained after an immediate liquidation of the inventory via a
market order. Thus, problem (3.1)) is formulated equivalently as

T
maximize E [L(XT, Yr, Pr) — ’y/ Y?Q(Pt)dt] over all strategies a € A, (3.2)
0

where we used also (2.2)). Let us then define the value function for the problem (3.2):

T
W) = S By [LX0 Ve P~ [ V2P (33)
[e%S] t

for t € [0,T), (z,y,p) € R? x P. Here, given a € A, E;,,, denotes the expectation

operator under which the process (X,Y, P) solution to (2.4)-(2.5)-(2.6])-(2.7) with initial
state (X;-,Y;—, P,-) = (z,y,p), is taken. Problem (3.3) is a mixed impulse/regular con-
trol problem in Markov model with jumps that we shall study by dynamic programming

methods.

First, we state some bounds on the value function.

Proposition 3.1 There exists some constant Kp (depending only on the price process and
7) such that for all (t,z,y,p) € [0,T] x R? x P,

)
L(w,y,p) < v(t.oy,p) < wtyp+ 5 (N +Na")(T —1) + Kp, (3.4)
where i* = [° zp(dz), b= I 2pub(dz) are the mean of the distribution laws p® and pb.

Proof. The lower bound in is derived easily by considering the particular strategy,
which consists of liquidating immediately all the current inventory via a market order, and
then doing nothing else until the final horizon. Let us now focus on the upper bound.
Observe that in the definition of the value function in , we can restrict obviously to
controls a € A s.t.

T
E[/ Yt2d<P>t} < (3.5)
0

7



For such strategies, we have:
Eiayp |:L(XT7 Yr, Pr) — / Y2d < P >, }
T
< Eiayp [VT - 7/ de/ <P > }
t

) T T
< z+yp+Eigyp [5 (0%, + ﬂ?p_t) "‘/t Y- dPs — W/t Yid< P>, }

(S T
r+yp+Eisyp b(ﬁ%,t +95_,) + /t (Yi-0s —vY2)d < P >, } )

Here, the second inequality follows from the relation , together with the fact that L¢, L°
< 1, 9%, ¥° are increasing processes, and also that jumps of V are negative by . The
last equality holds true by and the fact that [ Y_dM is a square-integrable martingale
from , where M is the martingale part of the semimartingale P. Since 6 is bounded
and v > 0, this shows that for all strategies « satisfying , we have:

Et,x,y,p [L(XTa YT7PT / Y2d < P > ]
5
< a+yp+ B0 + 0] + KE[< P >1),

for some positive constant K, which proves the required result by recalling the character-
istics of the compound Poisson processes 9% and 9, and since < P >7 is assumed to be
square-integrable. O

Remark 3.1 The terms of the upper bound in has a financial interpretation. The
term x + yp represents the marked-to-market value of the portfolio evaluated at mid-price,
whereas the term K p stands for a bound on profit for any directional frictionless strategy
on the fictive asset that is priced P. The term g()\aﬂ“ + Nab) (T — t), always positive,
represents the upper bound on profit due to market making, i.e. the profit of the strategy
participating in every trade, but with no costs associated to managing its inventory.

3.2 Dynamic programming equation

For any (¢,¢%) € {0,1}2, we introduce the non-local operator associated with the limit
order control:

£ = P ggere 4 (TP, (3.6)
where
a o 5 a
re(t,z,y,p) = /0 o(t,x+ z(p+ 2) y—2,p) — ot z,y,p)| p*(dz)
% 5
IP¢(t,x,y,p) = A”/O z(p — 2) y+ 2,p) — (t, z,y,p)| u’(dz),



for (t,x,y,p) [0,7] x R x R x P. Let us also consider the impulse operator associated with
admissible market order controls, and defined by:

)
Mgb(t,x,y,p) = sSup qb(t,az—ep— |€|(§+€) _50?9“‘6’]9)-
e[yl yl]

The dynamic programming equation (DPE) associated to the control problem (3.3)) is
a quasi-variational inequality (QVI) in the form:

min | — ov _ sup £ty 4 g, v— Mv] = 0, on [0,T)xR*xP, (3.7)
at (@a’gb)€{071}2

together with the terminal condition:
v(T,.) = L, on R*xP, (3.8)

where we denoted by g the function: g(y,p) = y?0(p). This DPE may be written explicitly

as:
. ov a &0 ) a
mln[_a_P’U—)‘ (/0 [U<t7$+Z(P+§)ay—Zap)—U(tafﬁay»PﬂM (dz))+ (39>
& 1)
— /\b</0 [o(t.2 = 2(p = 5)y+2p) - v(t,ﬂ;?Jvzﬂ)]ul’(ch))+ +y%0(p) ;
é
v(t,xvyap)_ sup U(tax_ep_‘e|(§+€)_507y+67p)] = Oa
e€—lyl,ly[]
for (t,z,y,p) € [0,T) x R? x P, together with the terminal condition:
)

U(T,l‘,y,p) = TH+Yp— |y|(§ + E) — €0, V(:L‘,y,p) € R2 x P. (310)

By standard methods of dynamic programming, one can show that the value function in
(3.3) is the unique viscosity solution under growth conditions determined by (3.4)) to the
DPE ((5.2))-(3.10) of dimension 3 (in addition to the time variable).

3.3 Dimension reduction in the Lévy case

We now consider a special case on the mid-price process where the market making control
problem can be reduced to the resolution of a one-dimensional variational inequality invol-
ving only the inventory state variable. We shall suppose actually that P is a Lévy process
so that

Plp = ¢,, and o isa constant, (3.11)

where Ip is the identity function on P, i.e. Ip(p) = p, and o > 0, ¢, are real constants
depending on the characteristics triplet of P. Two practical examples are:

e Martingale case: The mid-price process P is a martingale, so that PIp = 0. This
martingale assumption in a high-frequency context reflects the idea that the market maker
has no information on the future direction of the stock price.



e Trend information: To remove the martingale assumption, one can introduce some
knowledge about the price trend. A typical simple example is when P follows an arithmetic
Brownian motion (Bachelier model). A more relevant example is described by a pure jump
process P valued in the discrete grid Z with tick § > 0, and such that

P(Pyn—P,=6|F) = 7w h+o(h)
P(Pt+h — Pt =—9 ‘]:t) = 7m h+ 0(h>
P(|Piyn— Pi| > 0|F) = o(h),
where 7t 7= > 0, and o(h) is the usual notation meaning that lim;_,o o(h)/h = 0. Relation
(3.11) then holds with ¢, = wd, where @w = 7" — 7~ represents a constant information
about price direction, and ¢ = (7+ + 77)6%. In a high-frequency context, this model is
of practical interest as it provides a way to include a (predictive) information about price
direction. For example, work have been done in [5] to infer the future prices movements
(at the scale of a few seconds) from the current state of the limit order book in a Poisson

framework. In this work, as well as in our real data tests, the main quantities of interest are
the volume offered at the best prices in the limit order book, also known as the imbalance.

In this Lévy context, the value function v is decomposed into the form:

v(t,z,y,p) = L(x,y,p)+w(t,y), (3.12)

where w is solution to the integral variational inequality:

o ~
min | — 8—2} —yep +yoy® — Tw — Thw, w— Mw] = 0, on [0,7) xR, (3.13)
together with the terminal condition:
w(T,y) = 0, VyeR, (3.14)

where Z¢ and Z° are the nonlocal integral operators:

2wty = A [ oty =2 - wt) + 25+ G+ 2ol ~ o — 2D]utd)

Tutt) = N[ w2 = wn) + 25+ G+l - o+ D))

and M is the nonlocal operator:

Multy) = sup[ulty+e) (3 +)y+el + el — lol) 0]
e€[=lyllyl]
The interpretation of the decomposition is the following. The term L(z,y,p) rep-
resents the book value that the investor would obtain by liquidating immediately with a
market order, and w is an additional correction term taking into account the illiquidity
effects induced by the bid-ask spread and the fee, as well as the execution risk when sub-
mitting limit orders. Moreover, in the Lévy case, this correction function w depends only
on time and inventory. From , we have the following bounds on the function w:
0 < wlty) < (% +e)ly| + g(A“ﬁ“ + AT — ) + Kp, Y(t,y) € [0,T] x R.

Actually, we have a sharper upper bound in the Lévy context.

10



Proposition 3.2 Under (3.11)), we have:

2
0 < w(ty) < (T—t)[%+/\“(5+6)ﬂ“+)\b(5+ﬁ)ﬂb]7

for all (t,x,y,p) € [0,T] x R x P.

Proof. For any (z,y,p) € R? x P, we notice that

1)
L(fﬂ,y,p)— sup L(a:—ep—|e|(§+€)—6o,y—|—e,p)
e€[—lyl,lyl]

)
= g+(=+e)|—|yl+ inf |e|—|—|y+eq = g9 > 0. (3.15)
2 e€[=lyl,lyll

We also observe that for all z > 0:

6 ) )
Lz +2(p+3)y—2p) = L@yp) = z5+(G+e)(lyl—ly—=])
< (0+¢)z, (3.16)
and similarly:
)
Lx—z(p— =),y +2z,p) — Llz,y,p) < (0+¢)z. (3.17)

2
Let us then consider the function ¢(t, z,y,p) = L(z,y,p) + (T — t)u, for some real constant
u to be determined later. Then, ¢(7,.) = L, and by (3.16)-(3.17]), we easily check that:

——— swp LM+ g
Ot (to)efoay?
> u— X6+ e)a% — N(6 + )i’ — yep +v12p.
The r.h.s. of this last inequality is a second order polynomial in y and therefore it is always
nonnegative iff:

& —dyp(u— N6 +e)a® = N (0 +e)p’) < 0,
which is satisfied once the constant u is large enough, namely:
2
‘p - b —b
= N0 +ea*+ N +e)i’.
NG O+ N0+
For such choice of v = u, and denoting by dA) the associated function: ngb(t, x,Yy,p) =
L(z,y,p) + (T — t)u we have
d¢ vy
_9% _ sup o ’Zb¢+7£] > 0,
Ot (o m)efoy?

which shows, together with 1} that gﬁ is a supersolution of 1} 1) From comparison

principle for this variational inequality, we deduce that

v < ¢ on [0,T] xR?x P,

>

u

which shows the required upper bound for w = v — L. O

Finally, from (3.13)-(3.14)), and in the case where A\* = A?, u® = p®, and by stressing
the dependence of w in c,, we see that w satisfies the symmetry relation:

w(t,y,cp) = w(t,—y,—c,), Y(t,y)€[0,T] xR. (3.18)

11



4 Numerical resolution

In this section, we focus on the numerical resolution of the integral variational inequality
(3.13)-(3.14)), which characterizes the reduced value function of the market-making problem
in the Lévy case.

4.1 Numerical scheme

We provide a computational scheme for the integral variational inequality (3.13)). We first
consider a time discretization of the interval [0, 7] with time step h = T//N and a regular

time grid Ty = {tx = kh, k = 0,...,N}. Next, we discretize and localize the inventory
state space on a finite regular grid: for any M > 0 and Ny € N, and denoting by Ay = N

Y
we set:

YM = {yi:iAy,’i:—Ny,...,Ny}.

We denote by Proj,;(y) := =M V (y A M), and consider the discrete approximating distri-
bution of u® and u’, defined by:

At = Y pt(liAy; (i + DAY ))Siay 20 = D p([iAy; (i + 1)Ay))diay
ieZt ieZt

with J, the Dirac measure at x. We then introduce the operator associated to the explicit
time-space discretization of the integral variational inequality (3.13[): for any real-valued
function ¢ on [0, 7] x R, ¢t € [0,T], and y € R, we define:

Sh’AY’M(t, Y,p) = max [Th’AY’M(taya@) ; /\;lh’AY’M(ta Y 30)}7
where
T Mty 0) = p(ty) — hyoy® + hycp
([ fott,Projasty = 2) = o))
[l Gl — Iy = uc(a)
+ )\bh(/o [gp(t,ProjM(y +2)) — o(t, y)]ﬂb(dz)
+ [T G el - o+ i)
and

MEEYM (L y, o)

- 5
= sup [ip(t, Projas(y +€)) = (5 +e)(ly +el +lel = y) =] (4.1)
e€¥an[=lyl 1yl
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By recalling that z = maxyc(g1) {x, we see that the operator ThAY-M may be written
also as:

ThAYMt gy o) = —hyoy? + hyep +  max [gp(t, y)(1 — Ahee — \oheb) (4.2)
Lo be{0,1}

wone ([ ple, Profagy - )it (d)

[T G ol — v u(a:)
+ Abheb(/ooo (t, Proju (y + 2)) b (dz)

[T e Gl -+ =)o)

Note that the integral terms involving ¢ in SP2Y-M(t y, ¢) are in fact finite sums, and
therefore are readily computable. We also assume, for simplicity sake, that the terms
Stz (S + o)yl — ly — 2)u(dz) and [T 52+ (5 +e)(Jyl — |y + 2[)ub(dz) are exactly
computable.

We then approximate the solution w to (3.13)-(3.14) by the function w™2v-™ on Ty x
Y s solution to the computational scheme:

N,) =0 (4.3)

wy) = SPAYM@g g WA MY =0, N—1,yeYy (4.4)

wh,Ay ,M (t

wh,Ay ,M (t

4.2 Convergence of the numerical scheme

In this section, we study the convergence of the numerical scheme — by showing the
monotonicity, stability and consistency properties of this scheme. We denote by Cg([O, T] x
R) the set of bounded continuously differentiable functions on [0,7] x R, with bounded
derivatives.

Proposition 4.1 (Monotonicity)

For any h >0 s.t. h < NN the operator SV "M s non-decreasing in @, i.e. for any
(t,y) € [0,T] x R and any ¢, € CLH([0,T] xR) , s.t. ¢ < :

ShAY Mgy o) < SMAYM gy )

Proof. From the expression (4.2)), it is clear that 7™2v-M (¢, 5. ), and then also S™2Y M (¢, y, )
is monotone in ¢ once 1 — A\®h — APh > 0. O

Proposition 4.2 (Stability)

For any h, Ay, M > 0 there exists a unique solution WM to (4.3)-(4.4), and the se-

wh,Ay,M)

quence ( is uniformly bounded: for any (t,y) € Tn x Yy,

2

g < WA M(ty) < (T —1) ITPp+>\“(5+€)ﬂ“+/\b(5+6)ﬂb}-

13



Proof. Existence and uniqueness of w®2v-™ follows from the explicit backward scheme

(4.3)-(4.4). Let us now prove the uniform bounds. We consider the function

2
T (t) = (T —t) % + A6 4 €)% + N (8 4 e) b
and notice that W*(t) > SMAvM (¢ 4 |y T*) by the same arguments as in Proposition
Moreover, we have, by definition, w™2Y-"M (T y) = W*(T) = 0, and therefore, a direct
recurrence from - shows that w2y "M (t y) < U*(¢t) for all (¢,y) € T, x Yas, which
is the required upper bound for w2y M,

On the other hand, we notice that S2v:M(¢,0,p) > o(t,0) for any function ¢ on
[0,7] x R, and ¢ € [0,T], by considering the “diffusive” part of the numerical scheme with
the particular controls ¢¢ = ¢* = 0. Therefore, since wh’AY’M(T, 0) = 0, we obtain by
induction on — that w™2"M(t,0) > 0 for any t € Ty. Finally, considering the
obstacle part of the numerical scheme, with the particular control e = —y, shows that
whAY M (g ) > whBAY Mt 0) — ey > —gg for any (t,y) € Ty x Yy, which proves the

required lower bound for w™2v-M O

Proposition 4.3 (Consistency)
For all (t,y) € [0,T) x R and ¢ € CL([0,T] x R), we have

1
lim - [@(tC y) = T M@ + by, @)] (4.5)
(h, Ay, M) = (0,0,00) I

' y') = (tv)

Iy

= 5, (L) —ye, + ey’ ~Tp(ty) — Tp(t.y)

and

(h, A z»g% (0,0, 00) Mh’AY’M(t/ + h,y’, 4P) = M@(tyy) (4'6)
Ty > )

Proof. The consistency relation (4.6]) follows from the continuity of the function (¢,y,e)

8
= p(t,y+e) — (5 +¢)(ly+e| + el = |y]) — 0. On the other hand, we have for all (¢, y’)
€[0,T) x R,

1 1
= ety - Thay M 4 by, 90)} = Tley) = ot +hy)] —ye, + py?  (4.7)
- I(??A)GM(t, + h" y/7 30) - II?,AY’M(t, + h" y/7 30))

where

Iyt Mty ) = )‘a(/ooo [o(t, Proja (y — 2)) — ¢(t,y)] i (d2)
+ [T Gl - 2luta),
T Mty ) = N /0 [o(t. Projy(y + 2)) — (t,y)] i*(d2)

+ /OOO 32+ +)llyl — by + 2D]d=))

14



The three first terms of converge trivially to —%f(t,y) —ycp + yoy? as h goes to
zero and (t',y') goes to (t,y). Hence, in order to get the consistency relation, it remains to
prove the convergence of Z™Y M (¢ + b,y ) to T%(t,y) as (h, Ay, M) goes to (0,0, 00),
and (t',y") goes to (t,y) (an identical argument holds for II?’AY’M(t’ +h,y',¢)). By writing
that |z4 — 2/, | < |z — 2'|, we have

‘L’Z’AY’M(t’ +h,y @) — T, y)‘

< Xt +h,y) — ot y)|
+A“/O @(t" + h,Projp (v — 2))a*(dz) —/0 so(t,y—Z)u“(dZ)‘
< Xt +h,y) — ot y)|
M-+y' ) . M+y’
x| [ et =2t = [ et =2t a)
x| [Tt wh-anitas) — [ ety - 2ut(as)
M+y/ M+y/
< Xt +h,y) — o(t,y)|

+\° /Ooo\w(t'+h7y’—f€(Z)) — o(t,y — 2)|p*(d2)

+ 22 plloops ([M +y', 00)),

where we denote by k(z) = LALJ Ay . Here | z]| denotes the largest integer smaller than z.
Y
Since the smooth function ¢ has bounded derivatives, say bounded by [ ||s, it follows
that
A M+ hy o) = T(ty)| < AleW oo (h+ 21y =yl + Ay)
+ 2Mlp oo ([M + ¢/, 00)),

which proves that

: h,Ay M (41 ! _
A A}l)lg(oo )Ia YR+ hy ) = Tt y),
5 Y , U, 00
', y') = (t,v)

hence completing the consistency relation (4.5)). O

Theorem 4.1 (Convergence)
The solution w2y "M to the numerical scheme (14.3)-(4.4) ) converges locally uniformly to
w on [0,T) xR, as (h, Ay, M) goes to (0,0,00).

Proof. Given the above monotonicity, stability and consistency properties, the convergence

of the sequence (w"?v-M) towards w, which is the unique bounded viscosity solution to

(3-13])-(3.14), follows from [3]. We report the arguments for sake of completeness. From
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the stability property, the semi-relaxed limits:

wi(t,y) = lim inf wh Ay Mt o),
(hs Ay, M) — (0,0, 00)
' y") = (ty)

wi(ty) = limsup — w™A M),
(h, Ay, M) — (0,0, c0)
t'y") = (t,y)

are finite lower-semicontinuous and upper-semicontinuous functions on [0, 7] xR, and inherit

the boundedness of (wh’AY’M ). We claim that w, are w* are respectively viscosity super and

subsolution of —. Assuming for the moment that this claim is true, we obtain
by the strong comparison principle for — that w* < w,. Since the converse
inequality is obvious by the very definition of w, and w*, this shows that w, = w* = w
is the unique bounded continuous viscosity solution to -, hence completing the
proof of convergence.

In the sequel, we prove the viscosity supersolution property of w, (a symmetric argument
for the viscosity subsolution property of w* holds true). Let (¢,7) € [0,7) x R and ¢ a test
function in C}([0,T] x R) s.t. (£,7) is a strict global minimimum point of w, — ¢. Then,
one can find a sequence (t],,y;,) in [0,7) x R, and a sequence (h,,, A}, M,) such that:

(thyvn) = B7), (hn, A%, My) — (0,0,00), w204 — w,(T,g),

hn 7A§’} 7Mn

(t',,9.,) is a global minimum point of w — .

Denoting by ¢, = (w2% Mn —) (¢ ), we have whn2¥Mn > 4 ¢, From the definition
of the numerical scheme S"»#%-Mn and its monotonicity, we then get:

n+ ot ) = w0 M o)
— Shn:AﬁyMn (t',n, + hn7 y;w whnyAﬁyMn)

v

St BT 4 by gy 0+ Ga) = SPEEM(E -y, 0) + G
max |7/ Mu (4 4 by @), MA@ by 90)} + Gn,

which implies

@ty yh) = T Mo (4! 4 byl )
I

min | Pt ) = MEETM (4 by 0)] 2 0,

By the consistency properties (4.5))-(4.6)), and by sending n to infinity in the above inequa-
lity, we obtain the required viscosity supersolution property:

9

min | — SE(E.9) — g, + v ~ I°0(E.5) ~ T'e(E.) . ¢(0.5) ~ Me(E.5)| = o.

4.3 Numerical tests

In this section, we provide numerical results for the (reduced-form) value function and
optimal policies in the martingale case and the trend information case, and a backtest on
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Parameter | Value
4] 12.5 EUR/contract

1.05 E
c 0 05 EUR /contract Parameter | Value
€0
A 0.0551 Ny 100

_ Nr 500
p exp(1//i)
_ Ny 20
i 20 contracts
v 25105 (b) Discretization parame-
o ters

T 100 s

(a) Market and risk parameters

Figure 2: Parameters for numerical results.

simulated data for the trend information case. Parameters for these numerical tests are
shown in Figure

This set of parameters are chosen to be consistent with calibration data on the front
maturity for 3-months EURIBOR future, see for example [6]. Within this section, and for
this set of parameters, we will denote by w” the value function and by o* the make/take
strategy associated with the backward numerical scheme —. Given a generic con-
trolled process Z and a control a € A, we will denote Z% the process controlled by «.. Unless
specified otherwise, such processes will be supposed to start at zero: typically, we assume
that the investor starts from zero cash and zero inventory at date ¢ = 0 in the following
numerical tests. Finally, we will write indifferently w”(t,y, cp) or w”(t,y) := w"(t,y,0) to
either stress or omit the dependence in cp.

e The martingale case: in the martingale case, we performed the algorithm —
with parameters shown above.

Figure [3displayed the reduced-form value function w” on [0, T]x [~ Ny; Ny]. This result
illustrates the linear bound as noticed in proposition and also the symmetry of
w” as pointed out in . We also observe the monotonicity over RT™ and R~ of the value
function w”(t,.).

In Figure [4, we display the optimal make and take policies. The optimal take policy
(on the left side) is represented as the volume to buy or sell with a market order, as a
function of the time and inventory (t,y) € [0,7] x [-~Ny; Ny]. We notice that a market
order only occurs when the inventory becomes to large, and therefore, the take policy can
be interpreted as a “stop-loss” constraint, i.e. an emergency rebalancing of the portfolio
when the inventory risk is too large.

The optimal make policy is represented as the regime of limit orders posting as a function
of the time and inventory (¢,y) € [0,T] x [-Ny; Ny]. For sake of simplicity, we represented
the sum of ¢* and ¢ on the map. The meaning of this surface is as follows: 0 means that
there is no active limit orders on either sides, 2 means that there is active limit orders on
both bid and ask sides, and 1 means that there is only one active limit order either on
the bid or the ask side, depending on the sign of y (if ¥y < 0 only the bid side is active,
and if y > 0 only the ask side is active). We notice that when close to maturity 7', the
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200

0

Inventory

h

(a) Optimal take policy. (b) Optimal make policy

Figure 4: Numerical results for the martingale case: representation of optimal make and
take policies .

optimal strategy tends to be more agressive, in the sense that it will seek to get rid of any
positive or negative inventory, to match the terminal liquidation constraint. Moreover, we
notice that close to date 0, the dependence in ¢t seems to be negligible, which indicates that
a“stationary regime” may be attained for large T

e The trend information case: in this case, we provide a backtest of the optimal strategy

18



on simulated data in addition to the plots of the value function w” and optimal policy o*.

0.625

0.3125¢

cp
Q

—-0.3125¢

—-0.625t

~50 ) 50 100 ~50 0 50

Inventory Inventory
(a) Value function w” at date ¢t = 0. (b) Optimal policy o* at date t = 0.

Figure 5: Value function and optimal policy for the trend information case.

Figure [5| displays the value function and optimal policy at date ¢t = 0, in the plane
(y,cp). The value function has central symmetry properties as expected in , and
should be read as follows: dark green zones represent situation where a market order to
buy must be sent, light green means that a limit order is active only at bid, white means
that limit orders are active on both sides, light red means that a limit order is active only at
ask, and dark red means that a market order to sell must be sent. The value function also
increases with |cp|. This effect can be interpreted as the gain in performance due to the
superior information on price trend cp. The interpretation of this extra performance due to
cp is that the optimal policy avoids part of the adverse selection risk by using this predictive
information about price movements. Let us provide a qualitative example: assume that
after the high frequency trader acquired a positive inventory, the adverse selection effect
implies that price should go down; therefore, using the fact that in this case we should have
cp < 0, the optimal strategy will be either to cancel the bid limit order (light red zone)
and keep ask limit order active, or depending on the value of |cp|, send a market order to
get rid of our positive inventory (dark red zone).

We performed a benchmarked backtest on simulated data and a performance analysis
in this case. The benchmark strategy is made of constant controls (a.k.a symmetric or
constant strategy):

abenchmark make , benchmark , 0)

(a

amake ,benchmark — (1’ 1)

In order to make our simulated data backtest closer to the reality, we chosed to slightly
deviate from the original price model, and use a varying price trend. We simulate a price
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process model given by
By = Py+8(N = N,

where N1 and N~ are the Euler scheme simulation of Cox processes of respective intensities
7t and 7~ defined as follows

4T = K=/
dTr;' —dr, =dw; = —bwdl+ odB;

where K > 0, # > 0 and o > 0 are positive constants, and B is an independent Brownian
motion. Note that we choosed the sum 7 47~ to be the constant K, for simplicity sake: it
means that, disregarding the direction of price variation, the mean number of price change
per second is assumed to be constant P (| P, — P| = ) = Kh + o(h), which provides an
easy way to calibrate the parameter K while reducing the dimension of the simulation. The
interpretation of this simulation model is as follows: we add an exogenous risk factor B,
which drives the price trend information w as an Ornstein-Uhlenbeck process. Notice that
this supplementary risk factor B is not taken into account in our optimization procedure
and thus has a penalizing impact on the strategy’s performance: therefore it does not spoil
the backtest. This model choice for the process (w;) is an convenient way to simulate the
real-world situation, where the high-frequency trader continuously updates her predictive
information about short-term price movements, based e.g. on the current state of the limit
order book. Therefore, qualitatively speaking, our optimization procedure is consistent with
this simulation model if we choose 6§ and o s.t. the variation of the (reduced-form) value
function w due to predictive information is very small compared to the variation of the value
function due to other market events (e.g. an execution event). This assumption is consistent
with HFT practice since the HF trader is able to adapt very quickly to a modification of
this predictive information. Backtest parameters involved in this simulation are shown in

Figure [0

Parameter | Value
K 1.0

0 2

o 0.01
Nyo 10000

Figure 6: Backtest parameters

Let us denote by 9% and ¥° the Euler scheme simulation of the compound poisson
processes 9 and ¥°, with dynamics (2.3). Therefore, for a € {a*, a?""markY " we were
able to compute the Euler scheme simulation X (resp. Yo‘) of X (resp. Y?), starting at
0 at t = 0, by replacing ¥¢ (resp. ¥°) by e (resp. 7§b) in equation (resp. (2.5).

We performed Njp;¢ simulation of the above processes. For each simulation w €
[1...Nyc] and for a € {a*, abenchmarkl " we stored the following quantities: the terminal
wealth after terminal liquidation V&(w) := L(X%(w), Y*(w), P(w)), called “performance”
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in what follows ; the total executed volume Qb () = 2-0.7] Y (w) — Y (w)| ; and
the volume executed at market Qmeketa(y) = >_p0,7] 1én(w)?|. Finally, we denote by m(.)
the empirical mean, by 3(.) the empirical standard deviation, by skew(.) the empirical
skewness, and by kurt(.) the empirical kurtosis, taken over w € [1...Ny/c].

Quantity Definition a* qbenchmark
Info ratio over T m(V3) /o (Vi) 0.238 0.104
Profit per trade m(Vy)/m(Qotb) 1.37 3.86
Risk per trade o (Vi) /m(Qtotab-) 5.73 37.21
Mean performance m(Vi) 376.08 | 773.15
Standard deviation of perf o(Vi) 1574.97 | 7462.96
Skew of perf skew (V) 0.027 -0.0468
Kurtosis of perf kurt (V) 3.21 7.48
Mean total executed volume | m(Q) 274.77 | 200.27
Mean at market volume m(Qmarket. ) 101.75 | 0.
Ratio market over total exec | m(Qmeket) /m(Qtotal-) | 0.37 0.

Figure 7: Synthetis table for backtest. Categories are, from top to bottom: relative per-
formance metrics, period-adjusted performance metrics, absolute performance metrics and
absolute activity metrics.

Figure [7] displayed a synthesis of descriptive statistics for this backtest. We first notice

benchmark

that the information ratio over T of a* is more than twice that of « Second,

1)
the per trade metrics can be compared to the half-spread 3 = 6.25 EUR/contract, and

we see that although the mean profit per trade is smaller for the optimal strategy, the
risk associated to each trade is dramatically reduced compared to the benchmark. This

1400

1200

1000f

800}

[ Optimal
600+ =

Empirical frequency

400}

Benchmark

200}
o e nnmmuill 1
-15000 —-10000 -5000 0 5000 10000 15000
Performance

Figure 8: Empirical distribution of performance VT- The graph shows the number of
occurences for each bin on Nj;¢ = 10000 simulations.

is confirmed by the empirical distribution of performance, also shown in Figure |8, where
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the dark blue represents the performance distribution of the optimal strategy and the light
purple represents the performance distribution of the benchmark strategy. We see that not
only benchmark has higher standard deviation, but also higher excess kurtosis and heavy
tails: this is due to the fact that inventory can be very large for the benchmark strategy,
and therefore it bears a non-negligible market risk (or inventory risk). Finally, we see that
about 37% of the trades are done with market orders, which indicates that this feature of
the strategy is relevant when exposed to adverse selection risk (the risk that the mid-price
moves unfavourably after a limit order execution).

ol o(Vy) | m(Vy)
6.67.10-04 | 13.36 | 0.09
4.44.10-04 | 351.16 | 20.98
2.96.10-04 | 495.43 | 30.97
1.98.10-04 | 649.11 | 39.28
1.32.10-04 | 849.05 106.14
8.78.10-05 | 1048.73 | 177.27
5.85.10-05 | 1264.10 | 253.50
3.90.10-05 | 1428.10 | 309.95
2.60.10-05 | 1546.30 | 351.86
1.73.10-05 | 1635.61 | 368.15
1.16.10-05 | 1639.65 | 332.51

Figure 9: Varying risk aversion parameter ~: data.

Varying risk aversion parameter
400
ud
350 -
[
300 g
g o
£ 250 i
£
'§ 200
g ]
@ 150
]
100 0
50
w " ¥
o
0 200 400 600 800 1000 1200 1400 1600 1800
Standard deviation of performance

Figure 10: Varying risk aversion parameter 7: plot.

Our last numerical test is devoted to displaying the influence of the risk aversion para-
meter . All other parameters remaining the same, we tested several values of v (as
indicated in Figure @, and characterized the performance of the corresponding strategy by
the pair (U(VT'), m(VT)), which gives the efficient frontier plot displayed in Figure As
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expected, a reduction of v increases the standard deviation of the strategy: this is due to
the fact that a small v allows for large open position i.e. large inventory, and therefore the
market risk is greater. For small v, performance is also better since the investor can sustain
large inventories, and therefore is less impatient to get rid of it: in particular, the proportion
of volume executed at market is increasing in v. We see that in real trading conditions, ~
must be chosen as small as possible, i.e. the value allowing the greatest performance, but
maintaining the market risk sustainable.

5 Best execution problem and overtrading risk

In this section, we apply our market model framework to a best execution problem. The
trading objective of the investor is to liquidate Yy > 0 assets over the finite time interval
[0,7]. She is not allowed to purchase stock during the liquidation period, and may only
buy back the asset in case of short position. In this context, the investor posts continuously
a limit sell order (with a volume much larger that the required quantity Yp) at the best
ask price, and also runs market (sell) orders strategy until she reaches either a negative
inventory or the terminal date. By doing so, she hopes to trade as much as possible at the
ask price, and therefore avoiding to cross the spread.

Mathematically, this means that the investor uses a subset Ay of strategies @ = (o™ =
(L%, LY), a'®¢) in A such that:

1,0) fort<r
aLb — (7 ’
(Li Lo) { (0,0) fort>rT

ol = (1., ) U (1, =Y;), with 7, <7, ¢ <0,

where 7 = inf{t > 0 : ¥; < 0} A T. The value function associated to this liquidation
problem is then defined by

T
ve(t,z,y,p) = SHE Et,x,y,p[L(XT,YT,PT)—v/ YZo(Ps)ds|, (5.1)
acAy t

for (t,x,y,p) € [0,T] x R? x P. With the notation in (3.6)), the operator corresponding to
the limit order in Ay is given by £ = P + I'?, while the impulse operator associated to
the market order in Ay is defined by:

1)
M@ Sp(tvxayap) - Sup 90(75’33—617—‘€|(§+5)—507?J+€,P)
ee[_‘ylvo]

The dynamic programming equation associated to (5.1]) takes the form:

_ Ouw

5 Pog —T%yp + vg, vy — M[Ug] = 0, on[0,7) xR x (0,00) x P,

min [
together with the terminal and boundary conditions:

vg = L, on ({T} xRxRxP)U([0,T) x Rx R_ x P).
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The above boundary condition for nonpositive inventory is related to the overtrading risk,
which is the risk that the investor sold too much assets via the (oversized) limit order at
the best ask price. This risk occurs typically in execution problems on pro-rata limit order

book, see [6].
Again, in the Lévy case (3.11)), the value function vy is reduced into:

v(t,x,y,p) = L(z,y,p) +welt,y),
where wy is solution to the integro-variational inequality:
min{ SO e, oy
N ot
30 [ [t = 2) = wele) + 25 + (5 + )l - by = 2]
we(t,y) — sup [wz(t,y te)— (g o)y +el+le| - Jy|) — go]} — 0,

e€[—y,0]

for (t,y) € [0,T") x (0, 00), together with the terminal and boundary conditions:
we(t,y) = 0, Y(t,y)e {TIxR)U([0,T) x R_).

Inveniory
Inventory

FRONTIER
ol LIMIT ORDER ONLY
j of, L
e o ) 40 0 80 100

h ’ . . ’
o 0 40 60 a0
Time (s}

Time (s}

(a) Value Function w, (b) Optimal policy (take)

Figure 11: Numerical results for the simple liquidation problem (for cp = 0). On the left
side, level lines are indicated for the value function wy. On the right side, numbers indicated
on the figure represent the quantity to sell in the optimal market order control.

The associated numerical scheme reads now as follows:

w?(tN,y) = 0, yeR,
w?(tkay) = 0, k:O,,N—]_,ySO,
wél(tkay) - [nh’AY’M(t7y, (’0) ; M?’AY,M(t’yﬂD)}’ k= Oa s ;N - 1) Yy e YL:
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where YL =Yy NR4,

hAy M
TS0 by, e) = elty) — hyoy® + hycp

+ th( /OOO [t Projy (y — 2)) — (t,y)] 1" (dz)
+ [ e+ G ool — = =D]uc(a)
and

MEBYM gy o)

= s [t Proiy(y+ ) — (5 + )y + el +lel — Iyl) o).
e€Y prN[—y,0]

In this case, the optimal policy shown in Figure [I1]is simple to describe. The state space
is delimited in two zones: when the inventory is small, the HF'T must wait for her limit sell
order to be executed; and when the inventory is large, the HFT must send a market sell
order to avoid the market risk related to holding a large position.

The frontier between the two zones (indicated in bold red in Figure can be inter-
preted as an optimal trading curve, a concept that is extensively documented (see e.g. [7])
in the optimal execution literature. The optimal trading curve is the inventory that the
investor should hold, seen as a function of time, in order to minimize overall trading costs.
Therefore, in the typical setting, the execution strategy consists in trading via market or-
ders to get as close as possible to the optimal trading curve. Similarly, in our case, we can
see on Figure that the optimal strategy will behave similarly for large inventories (i.e.
when above the trading curve): indeed, we observe that the quantities to sell are such that
the market orders strategy would keep the inventory close to the optimal trading curve,
if no limit orders were allowed. Now, in our case, we observe two specific features of the
optimal strategy: 1) the optimal trading curve does not reach 0 at maturity, and therefore
the HF'T has to get rid of her inventory at market at final date to match the constraint
Yr = 0. This is due to the fact that a supplemental gain is always achievable when the
limit order is executed. Therefore, this features leads to an execution strategy where the
final trade is bigger than intermediary trades; 2) below the optimal trading curve, i.e. in
the region where the HFT trades via limit orders only, the sell limit order is always active,
and can lead to an execution. Therefore, the inventory is always below the optimal trad-
ing curve, and the distance between the current inventory and the optimal trading curve
equals the volume executed via limit orders. This differs from classic pattern-based best
execution strategies, for example the U-shaped execution strategy that consists in trading
a large quantity at the beginning and at the end of the liquidation, and trade regularly
small quantities in between. Indeed, the optimal strategy does not provide a fixed pattern
for every execution, but provide the optimal action to take given the observation of the
inventory that is still to be sold and the market characteristics as e.g. the mean traded
volume at ask per second A®i%, or trades volume distributions at ask p®.

Finally, let us notice that this strategy can be interpreted as a convenient way to avoid
the cost of crossing the spread during the liquidation of a portfolio, but we did not take into
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account the impact of the market order on the transaction price. In the case of a pro-rata
microstructure, available volumes offered at best prices are usually about 200 times larger
than the mean volume of market orders (see [6]), and therefore it is consistent to consider
that there is no impact on the price for our market orders. Yet, the model can easily be
modified by adding an impact component in the obstacle operator M, to take care of this
effect. We also did not model the possibility that the intensities A* and A’ of execution
processes may vary, and postpone this investigation for future research.
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