
Optimal high-frequency trading in a pro-rata microstructure

with predictive information

Fabien GUILBAUD

Laboratoire de Probabilités et
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Modèles Aléatoires

CNRS, UMR 7599
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Abstract

We propose a framework to study optimal trading policies in a one-tick pro-rata

limit order book, as typically arises in short-term interest rate futures contracts. The

high-frequency trader has the choice to trade via market orders or limit orders, which

are represented respectively by impulse controls and regular controls. We model and

discuss the consequences of the two main features of this particular microstructure:

first, the limit orders sent by the high frequency trader are only partially executed, and

therefore she has no control on the executed quantity. For this purpose, cumulative

executed volumes are modelled by compound Poisson processes. Second, the high

frequency trader faces the overtrading risk, which is the risk of brutal variations in

her inventory. The consequences of this risk are investigated in the context of optimal

liquidation.

The optimal trading problem is studied by stochastic control and dynamic progra-

mming methods, which lead to a characterization of the value function in terms of an

integro quasi-variational inequality. We then provide the associated numerical reso-

lution procedure, and convergence of this computational scheme is proved. Next, we

examine several situations where we can on one hand simplify the numerical procedure

by reducing the number of state variables, and on the other hand focus on specific cases

of practical interest. We examine both a market making problem and a best execution

problem in the case where the mid-price process is a martingale. We also detail a high

frequency trading strategy in the case where a (predictive) directional information on

the mid-price is available. Each of the resulting strategies are illustrated by numerical

tests.

Keywords: Market making, limit order book, pro-rata microstructure, inventory risk,

marked point process, stochastic control.
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1 Introduction

In most of modern public security markets, the price formation process, or price discovery,

results from competition between several market agents that take part in a public auction.

In particular, day trading sessions, which are also called continuous trading phases, consist

of continuous double auctions. In these situations, liquidity providers1 continuously set bid

and ask prices for the considered security, and the marketplace publicly displays a (possibly

partial) information about these bid and ask prices, along with transactions prices. The

action of continuously providing bid and ask quotes during day trading sessions is called

market making, and this role was tradionnally performed by specialist firms. However, due

to the recent increased availability of electronic trading technologies, as well as regulatory

changes, a large range of investors are now able to implement such market making strategies.

These strategies are part of the broader category of high frequency trading (HFT) strategies,

which are characterized by the fact that they facilitate a larger number of orders being sent

to the market per unit of time. HFT takes place in the continuous trading phase, and

therefore in the double continuous auction context, but actual mechanisms that implement

this general continuous double auction set-up directly influence the price formation process

and, as a consequence, HFT strategies.

In this work, we shall focus on the case where the continuous double auction is imple-

mented by a limit order book (LOB), operated under the pro-rata microstructure2, see [10]

and [1]. This microstructure can be encountered on some derivatives markets, and espe-

cially in short-term interest rate (STIR) futures markets, also known as financial futures,

traded e.g. on LIFFE (London International Financial Futures and options Exchange) or

on CME (Chicago Mercantile Exchange). We will describe this microstructure in depth

in Section 2, but the general mechanism of this microstructure is as follows: an incoming

market order is dispatched on all active limit orders at the best price, with each limit order

contributing to execution in proportion to its volume. In particular, we will discuss the

two main consequences of this microstructure on HFT strategies which are the oversizing

of the best priced slices of the LOB and the overtrading risk.

Our main goal is to construct an HFT strategy, by means of optimal stochastic control,

that targets the pro-rata microstructure. We allow both limit orders and market orders in

this HFT strategy, modelled respectively as continuous and impulse controls, due to consid-

erations about direct trading costs. From a modelling point of view, the key novelty is that

we take into account partial execution for limit orders, which is crucial in the pro-rata case.

For this purpose we introduce a Poissonian model for trades processes, that can be fitted

to a large class of real-world execution processes, since we make few assumptions about the

distributions of execution volumes. From a practical trading point of view, we allow the

HFT to input predictive information about price evolution into the strategy, so that our

algorithm can be seen as an information-driven HFT strategy (this situation is sometimes

called HFT with superior information, see [4]). We derive the dynamic programming equa-

tion corresponding to this mixed impulse/regular control problem. Moreover, we are able to

1In this paper, we call liquidity provider any investor that currently trades with limit orders
2This microstructure differs from the price/time microstructure that can be encountered on most cash

equity markets, see [9].
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reduce the number of relevant state variables to one in two situations of practical interest:

first, in the simple case where the mid-price is a martingale, and second, in the case where

the mid-price is a Lévy process, in particular when the HFT has predictive information

on price trend, in line with recent studies [5]. We provide a computational algorithm for

the resolution of the dynamic programming equation, and prove the convergence of this

scheme. We illustrate numerically the behavior of the strategy and perform a simulated

data benchmarked backtest.

High-frequency trading has recently received sustained academic interest. The refer-

ence work for inventory-based high frequency trading is Avellaneda and Stoikov (2008) [2].

The authors present the HFT problem as an inventory management problem and define

inventory risk as the risk of holding a non-zero position in a risky asset. They also pro-

vide a closed-form approximate solution in a stylized market model where the controls are

continuous. Several works are available that describe optimal strategies for HFT on cash

equities or foreign exchange, e.g. [11], [7], [9] or [12]. Guéant, Tapia and Lehalle ([7])

provide extensive analytical treatment of the Avellaneda and Stoikov model. Veraart ([12])

includes market orders (that are modelled as impulse controls) as well as limit order in the

context of FX trading. Guilbaud and Pham ([9]) study market/limit orders HFT strategies

on stocks with a focus on the price/time microstructure and the bid/ask spread modelling.

More recently, Cartea, Jaimungal and Ricci ([4]) consider a HFT strategy that takes into

account influence of trades on the LOB, and give the HFT superior information about the

security price evolution. A growing literature is dedicated to modelling the dynamics of

the limit order book itself, and its consequences for the price formation process. A popular

approach is the Poisson Limit Order Book model as in Cont and de Larrard ([5]). These

authors are able to retrieve a predictive information on price behavior (together with other

LOB features) based on the current state of the order book. Finally, in empirical litera-

ture, much work is available for cash equities e.g. [8], but very few is dedicated to markets

operating under pro-rata microstructure. We would like to mention the work by Field and

Large ([6]), which provides a detailed empirical description of pro-rata microstructure.

This paper is organized as follows: in Section 2, we detail the market model and explain

the high frequency trading strategy. In Section 3, we formulate the control problem, derive

the corresponding dynamic programming equation (DPE) for the value function, and state

some bounds and symmetry properties. We also simplify the DPE in two cases of practical

interest, namely the case where the price is a martingale, and the case where the investor

has predictive information on price trend available. In Section 4, we provide the numeri-

cal algorithm to solve the DPE, and we study the convergence of the numerical scheme

towards the exact solution, by proving the monotonicity, stability and consistency for this

scheme. We also provide numerical tests including computations of the optimal policies

and performance analysis on a simulated data backtest. Finally, in Section 5, we show how

to extend our model in the optimal liquidation case, i.e. when the investor’s objective is to

minimize the trading costs for unwinding her portfolio.
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2 Market model

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 satisfying

the usual conditions. It is assumed that all random variables and stochastic processes are

defined on the stochastic basis (Ω,F ,F,P).

Prices in a one-tick microstructure. We denote by P the midprice, defined as a Markov

process with generator P valued in P. We shall assume that P is a special semimartingale

such that its predictable finite variation term A satisfies the canonical structure: dAt �
d < P >t, with a bounded density process:

θt =
dAt

d < P >t
, (2.1)

and the sharp bracket process < P > is absolutely continuous with respect to the Lebesgue

measure:

d < P >t = %(Pt)dt, (2.2)

for some positive continuous function % on P . We denote by δ > 0 the tick size, and we

shall assume that the spread is constantly equal to δ, i.e. the best ask (resp. bid) price

is P a := P + δ
2 (resp. P b := P − δ

2). This assumption corresponds to the case of the

so-called one-tick microstructure [6], which can be encountered e.g. on short term interest

rates futures contracts.

Trading strategies. For most of investors, the brokerage costs are paid when a transaction

occurs, but new limit order submission, update or cancel are free of charge. Therefore,

the investor can submit or update her quotes at any time, with no costs associated to

this operation: it is then natural to model the limit order strategy (make strategy) as

a continuous time predictable control process. On the contrary, market orders lead to

immediate execution, and are costly, so that continuous submission of market orders would

lead to bankruptcy. Therefore, we choose to model the market order strategy (take strategy)

as impulse controls. More precisely, we model trading strategies by a pair α = (αmake, αtake)

in the form:

αmake =
(
Lat , L

b
t

)
t≥0

, αtake =
(
τn, ξn

)
n∈N.

The predictable processes La and Lb, valued in {0, 1} represent the possible make regimes:

when Lat = 1 (resp. Lbt = 1) this means that the investor has active limit orders at the

best ask price (resp. best bid price) at time t, else, if Lat = 0 (resp. Lbt = 0) this means

that the investor has no active order at the best ask price (resp. best bid price) at time t.

Practical implementation of such rule would be, for example, to send a limit order with a

fixed quantity, when the corresponding control is 1, and cancel it when it turns to 0. On

the other hand, (τn)n∈N is an increasing sequence of stopping times, representing the times

when the investor chooses to trade at market, and ξn, n ≥ 0 are Fτn-measurable random

variables valued in R, representing the quantity purchased if ξn ≥ 0 or sold if ξn < 0.

Execution processes in a pro-rata microstructure. The pro-rata microstructure (see
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[10] for extensive presentation and discussion) can be schematically described as follows3:

when a market order comes in the pro-rata limit order book, its volume is dispatched

among all active limit orders at best prices, proportionnally to each limit orders volumes,

and therefore create several transactions (see Figure 1).
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Figure 1: Schematic view of the pro-rata market microstructure.

This pro-rata microstructure fundamentally differs from price-time microstructure [9] for

two reasons: first, several limit orders at the best prices receive incoming market order flow,

regardless of the time priority, and second, market makers tend to oversize their liquidity

offering (that is, posting limit order with much higher volume than they actually want to

trade) in order to increase their transaction volume. For example, on the three-months

EURIBOR futures contracts, the liquidity available at the best prices is 200 times higher

than the average transaction size. Therefore, to model a market making strategy, one must

take into account the fact that limit orders are always oversized, so that the executed volume

is a random variable on which the market maker has no control4. More precisely, let Na

(resp. N b) be a Poisson process of intensity λa > 0 (resp. λb), whose jump times represent

the times when execution by a market order flow occurs at best ask (resp. best bid), and we

assume that Na and N b are independent. Let (ζan)n∈N∗ and (ζbn)n∈N∗ be two independent

sequences of i.i.d integrable random variables valued in (0,∞), of distribution laws µa and

µb, which represent the transacted volume of the nth execution at best ask and best bid.

We denote by νa(dt, dz) (resp. νb(dt, dz)) the Poisson random measure associated to the

marked point process (Na, (ζan)n∈N∗) (resp. (N b, (ζbn)n∈N∗)) of intensity measure λaµa(dz)dt

3For a detailled description of actual trading rules, and a general overview of STIR futures trading, we

refer to [1] and references therein.
4This differs from the price-time microstructure case, in which the market maker can control the upper

bound of the execution volume by adjusting the limit order volume.
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(resp. λbµb(dz)dt), which is often identified with the compound Poisson processes

ϑat =

Na
t∑

n=1

ζan =

∫ t

0

∫ ∞
0

z νa(dt, dz), ϑbt =

Nb
t∑

n=1

ζbn =

∫ t

0

∫ ∞
0

z νb(dt, dz). (2.3)

representing the cumulative volume of transaction at ask, and bid. Notice that these

processes model only the trades in which the investor has participated.

Cash holdings and inventory. The cash holdings process X and the cumulated number

of stocks Y (also called inventory) hold by the investor evolve according to the following

dynamics:

dXt = Lat
(
Pt− +

δ

2

)
dϑat − Lbt

(
Pt− −

δ

2

)
dϑbt , τn ≤ t < τn+1 (2.4)

dYt = Lbtdϑ
b
t − Lat dϑat , τn ≤ t < τn+1 (2.5)

Xτn −Xτn− = −ξnPτn − |ξn|
(δ

2
+ ε
)
− ε0, (2.6)

Yτn − Yτn− = ξn. (2.7)

The equations (2.4)-(2.5) model the evolution of the cash holdings and inventory under

a limit order (make) strategy, while equations (2.6)-(2.7) describe the jump on the cash

holdings and inventory when posting a market order (take) strategy, subject to a per share

fee ε > 0 and a fixed fee ε0 > 0. In the sequel, we impose the natural admissibility condition

that the size of the market order should not be larger than the current inventory, i.e. |ξn| ≤
|Yτn−|, n ≥ 0, and we shall denote by A the set of all admissible make and take strategies

α = (αmake, αtake).

Remark 2.1 Let us define the process Vt = Xt + YtPt, which represents at time t the

marked-to-market value of the portfolio (or book value of the portfolio). From (2.4)-(2.5)-

(2.6)-(2.7), we see that its dynamics is governed by:

dVt =
δ

2
(Lbtdϑ

b
t + Lat dϑ

a
t ) + Yt−dPt, (2.8)

Vτn − Vτn− = −|ξn|(
δ

2
+ ε)− ε0. (2.9)

In equation (2.9), we notice that a trade at market will always diminish the marked to

market value of our portfolio, due to the fact that we have to “cross the spread”, hence trade

at a least favorable price. On the other hand, in equation (2.8), the term
∫
δ
2(Lbtdϑ

b
t+L

a
t dϑ

a
t )

is always positive, and represents the profit obtained from a limit order execution, while

the term
∫
Yt−dPt represents the portfolio value when holding shares in the stock, hence

inducing an inventory risk, which one wants to reduce its variance.

3 Market making optimization procedure

3.1 Control problem formulation

The market model in the previous section is fully determined by the state variables (X,Y, P )

controlled by the limit/market orders strategies α = (αmake, αtake) ∈ A. The market maker
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wants to optimize her profit over a finite time horizon T (typically short term), while keeping

control of her inventory risk, and to get rid of any risky asset by time T . We choose a mean-

variance optimization criterion, and the goal is to

maximize E
[
XT − γ

∫ T

0
Y 2
t−d < P >t

]
over all strategies α ∈ A, s.t YT = 0. (3.1)

The integral
∫ T

0 Y 2
t−d < P >t is a quadratic penalization term for holding a non zero

inventory in the stock, and γ > 0 is a risk aversion parameter chosen by the investor.

Let us now rewrite problem (3.1) in a more standard formulation. Notice indeed that one

can remove mathematically the constraint YT = 0 on the inventory control, by introducing

the liquidation function:

L(x, y, p) = x+ yp− |y|
(δ

2
+ ε
)
− ε0,

which represents the cash obtained after an immediate liquidation of the inventory via a

market order. Thus, problem (3.1) is formulated equivalently as

maximize E
[
L(XT , YT , PT )− γ

∫ T

0
Y 2
t %(Pt)dt

]
over all strategies α ∈ A, (3.2)

where we used also (2.2). Let us then define the value function for the problem (3.2):

v(t, x, y, p) = sup
α∈A

Et,x,y,p

[
L(XT , YT , PT )− γ

∫ T

t
Y 2
s %(Ps)ds

]
, (3.3)

for t ∈ [0, T ], (x, y, p) ∈ R2 × P. Here, given α ∈ A, Et,x,y,p denotes the expectation

operator under which the process (X,Y, P ) solution to (2.4)-(2.5)-(2.6)-(2.7) with initial

state (Xt− , Yt− , Pt−) = (x, y, p), is taken. Problem (3.3) is a mixed impulse/regular con-

trol problem in Markov model with jumps that we shall study by dynamic programming

methods.

First, we state some bounds on the value function.

Proposition 3.1 There exists some constant KP (depending only on the price process and

γ) such that for all (t, x, y, p) ∈ [0, T ]× R2 × P,

L(x, y, p) ≤ v(t, x, y, p) ≤ x+ yp+
δ

2

(
λaµ̄a + λbµ̄b)(T − t) +KP , (3.4)

where µ̄a =
∫∞

0 zµa(dz), µ̄b =
∫∞

0 zµb(dz) are the mean of the distribution laws µa and µb.

Proof. The lower bound in (3.4) is derived easily by considering the particular strategy,

which consists of liquidating immediately all the current inventory via a market order, and

then doing nothing else until the final horizon. Let us now focus on the upper bound.

Observe that in the definition of the value function in (3.3), we can restrict obviously to

controls α ∈ A s.t.

E
[ ∫ T

0
Y 2
t d < P >t

]
< ∞. (3.5)

7



For such strategies, we have:

Et,x,y,p

[
L(XT , YT , PT )− γ

∫ T

t
Y 2
s d < P >s

]
≤ Et,x,y,p

[
VT − γ

∫ T

t
Y 2
s d < P >s

]
≤ x+ yp+ Et,x,y,p

[δ
2

(
ϑaT−t + ϑbT−t

)
+

∫ T

t
Ys−dPs − γ

∫ T

t
Y 2
s d < P >s

]
= x+ yp+ Et,x,y,p

[δ
2

(
ϑaT−t + ϑbT−t

)
+

∫ T

t

(
Ys−θs − γY 2

s

)
d < P >s

]
.

Here, the second inequality follows from the relation (2.8), together with the fact that La, Lb

≤ 1, ϑa, ϑb are increasing processes, and also that jumps of V are negative by (2.9). The

last equality holds true by (2.1) and the fact that
∫
Y−dM is a square-integrable martingale

from (3.5), where M is the martingale part of the semimartingale P . Since θ is bounded

and γ > 0, this shows that for all strategies α satisfying (3.5), we have:

Et,x,y,p

[
L(XT , YT , PT )− γ

∫ T

t
Y 2
s d < P >s

]
≤ x+ yp+

δ

2
E
[
ϑaT−t + ϑbT−t] +KE[< P >T ],

for some positive constant K, which proves the required result by recalling the character-

istics of the compound Poisson processes ϑa and ϑb, and since < P >T is assumed to be

square-integrable. 2

Remark 3.1 The terms of the upper bound in (3.4) has a financial interpretation. The

term x+ yp represents the marked-to-market value of the portfolio evaluated at mid-price,

whereas the term KP stands for a bound on profit for any directional frictionless strategy

on the fictive asset that is priced P . The term δ
2

(
λaµ̄a + λbµ̄b)(T − t), always positive,

represents the upper bound on profit due to market making, i.e. the profit of the strategy

participating in every trade, but with no costs associated to managing its inventory.

3.2 Dynamic programming equation

For any (`a, `b) ∈ {0, 1}2, we introduce the non-local operator associated with the limit

order control:

L`a,`b = P + `aΓa + `bΓb, (3.6)

where

Γaφ(t, x, y, p) = λa
∫ ∞

0

[
φ
(
t, x+ z(p+

δ

2
), y − z, p

)
− φ(t, x, y, p)

]
µa(dz)

Γbφ(t, x, y, p) = λb
∫ ∞

0

[
φ
(
t, x− z(p− δ

2
), y + z, p

)
− φ(t, x, y, p)

]
µb(dz),
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for (t, x, y, p) [0, T ]×R×R× P. Let us also consider the impulse operator associated with

admissible market order controls, and defined by:

Mφ(t, x, y, p) = sup
e∈[−|y|,|y|]

φ
(
t, x− ep− |e|(δ

2
+ ε)− ε0, y + e, p

)
.

The dynamic programming equation (DPE) associated to the control problem (3.3) is

a quasi-variational inequality (QVI) in the form:

min
[
− ∂v

∂t
− sup

(`a,`b)∈{0,1}2
L`a,`bv + γg , v −Mv

]
= 0, on [0, T )× R2 × P, (3.7)

together with the terminal condition:

v(T, .) = L, on R2 × P, (3.8)

where we denoted by g the function: g(y, p) = y2%(p). This DPE may be written explicitly

as:

min
[
− ∂v

∂t
− Pv − λa

(∫ ∞
0

[
v
(
t, x+ z(p+

δ

2
), y − z, p

)
− v(t, x, y, p)

]
µa(dz)

)
+

(3.9)

− λb
(∫ ∞

0

[
v
(
t, x− z(p− δ

2
), y + z, p

)
− v(t, x, y, p)

]
µb(dz)

)
+

+ γy2%(p) ;

v(t, x, y, p)− sup
e∈[−|y|,|y|]

v
(
t, x− ep− |e|(δ

2
+ ε)− ε0, y + e, p

)]
= 0,

for (t, x, y, p) ∈ [0, T )× R2 × P, together with the terminal condition:

v(T, x, y, p) = x+ yp− |y|
(δ

2
+ ε
)
− ε0, ∀(x, y, p) ∈ R2 × P. (3.10)

By standard methods of dynamic programming, one can show that the value function in

(3.3) is the unique viscosity solution under growth conditions determined by (3.4) to the

DPE (5.2)-(3.10) of dimension 3 (in addition to the time variable).

3.3 Dimension reduction in the Lévy case

We now consider a special case on the mid-price process where the market making control

problem can be reduced to the resolution of a one-dimensional variational inequality invol-

ving only the inventory state variable. We shall suppose actually that P is a Lévy process

so that

PIP = cP , and % is a constant, (3.11)

where IP is the identity function on P, i.e. IP(p) = p, and % > 0, cP are real constants

depending on the characteristics triplet of P . Two practical examples are:

• Martingale case: The mid-price process P is a martingale, so that PIP = 0. This

martingale assumption in a high-frequency context reflects the idea that the market maker

has no information on the future direction of the stock price.
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• Trend information: To remove the martingale assumption, one can introduce some

knowledge about the price trend. A typical simple example is when P follows an arithmetic

Brownian motion (Bachelier model). A more relevant example is described by a pure jump

process P valued in the discrete grid δZ with tick δ > 0, and such that

P
(
Pt+h − Pt = δ |Ft

)
= π+h+ o(h)

P
(
Pt+h − Pt = −δ |Ft

)
= π−h+ o(h)

P
(
|Pt+h − Pt| > δ |Ft

)
= o(h),

where π+, π− > 0, and o(h) is the usual notation meaning that limh→0 o(h)/h = 0. Relation

(3.11) then holds with cP = $δ, where $ = π+ − π− represents a constant information

about price direction, and % = (π+ + π−)δ2. In a high-frequency context, this model is

of practical interest as it provides a way to include a (predictive) information about price

direction. For example, work have been done in [5] to infer the future prices movements

(at the scale of a few seconds) from the current state of the limit order book in a Poisson

framework. In this work, as well as in our real data tests, the main quantities of interest are

the volume offered at the best prices in the limit order book, also known as the imbalance.

In this Lévy context, the value function v is decomposed into the form:

v(t, x, y, p) = L(x, y, p) + w(t, y), (3.12)

where w is solution to the integral variational inequality:

min
[
− ∂w

∂t
− ycP + γ%y2 − Iaw − Ibw , w − M̃w

]
= 0, on [0, T )× R, (3.13)

together with the terminal condition:

w(T, y) = 0, ∀y ∈ R, (3.14)

where Ia and Ib are the nonlocal integral operators:

Iaw(t, y) = λa
(∫ ∞

0

[
w(t, y − z)− w(t, y) + z

δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz)

)
+

Ibw(t, y) = λb
(∫ ∞

0

[
w(t, y + z)− w(t, y) + z

δ

2
+ (

δ

2
+ ε)(|y| − |y + z|)

]
µb(dz)

)
+
,

and M̃ is the nonlocal operator:

M̃w(t, y) = sup
e∈[−|y|,|y|]

[
w(t, y + e)− (

δ

2
+ ε)(|y + e|+ |e| − |y|)− ε0

]
.

The interpretation of the decomposition (3.12) is the following. The term L(x, y, p) rep-

resents the book value that the investor would obtain by liquidating immediately with a

market order, and w is an additional correction term taking into account the illiquidity

effects induced by the bid-ask spread and the fee, as well as the execution risk when sub-

mitting limit orders. Moreover, in the Lévy case, this correction function w depends only

on time and inventory. From (3.4), we have the following bounds on the function w:

0 ≤ w(t, y) ≤ (
δ

2
+ ε)|y|+ δ

2

(
λaµ̄a + λbµ̄b)(T − t) +KP , ∀(t, y) ∈ [0, T ]× R.

Actually, we have a sharper upper bound in the Lévy context.
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Proposition 3.2 Under (3.11), we have:

0 ≤ w(t, y) ≤ (T − t)
[ c2

P

4γρ
+ λa(δ + ε)µ̄a + λb(δ + ε)µ̄b

]
,

for all (t, x, y, p) ∈ [0, T ]× R2 × P.

Proof. For any (x, y, p) ∈ R2 × P, we notice that

L(x, y, p)− sup
e∈[−|y|,|y|]

L(x− ep− |e|(δ
2

+ ε)− ε0, y + e, p)

= ε0 + (
δ

2
+ ε)

[
− |y|+ inf

e∈[−|y|,|y|]
|e|+ |y + e|

]
= ε0 > 0. (3.15)

We also observe that for all z ≥ 0:

L(x+ z(p+
δ

2
), y − z, p)− L(x, y, p) = z

δ

2
+ (

δ

2
+ ε)

(
|y| − |y − z|

)
≤ (δ + ε)z, (3.16)

and similarly:

L(x− z(p− δ

2
), y + z, p)− L(x, y, p) ≤ (δ + ε)z. (3.17)

Let us then consider the function φ(t, x, y, p) = L(x, y, p) + (T − t)u, for some real constant

u to be determined later. Then, φ(T, .) = L, and by (3.16)-(3.17), we easily check that:

−∂φ
∂t
− sup

(`a,`b)∈{0,1}2
L`a,`bφ + γg

≥ u− λa(δ + ε)µ̄a − λb(δ + ε)µ̄b − ycP + γy2ρ.

The r.h.s. of this last inequality is a second order polynomial in y and therefore it is always

nonnegative iff:

c2
P − 4γρ(u− λa(δ + ε)µ̄a − λb(δ + ε)µ̄b) ≤ 0,

which is satisfied once the constant u is large enough, namely:

u ≥ û :=
c2
P

4γρ
+ λa(δ + ε)µ̄a + λb(δ + ε)µ̄b.

For such choice of u = û, and denoting by φ̂ the associated function: φ̂(t, x, y, p) =

L(x, y, p) + (T − t)û we have

−∂φ̂
∂t
− sup

(`a,`b)∈{0,1}2
L`a,`b φ̂+ γg ≥ 0,

which shows, together with (3.15), that φ̂ is a supersolution of (3.7)-(3.8). From comparison

principle for this variational inequality, we deduce that

v ≤ φ̂ on [0, T ]× R2 × P,

which shows the required upper bound for w = v − L. 2

Finally, from (3.13)-(3.14), and in the case where λa = λb, µa = µb, and by stressing

the dependence of w in cP , we see that w satisfies the symmetry relation:

w(t, y, cP ) = w(t,−y,−cP ), ∀(t, y) ∈ [0, T ]× R. (3.18)
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4 Numerical resolution

In this section, we focus on the numerical resolution of the integral variational inequality

(3.13)-(3.14), which characterizes the reduced value function of the market-making problem

in the Lévy case.

4.1 Numerical scheme

We provide a computational scheme for the integral variational inequality (3.13). We first

consider a time discretization of the interval [0, T ] with time step h = T/N and a regular

time grid TN = {tk = kh , k = 0, . . . , N}. Next, we discretize and localize the inventory

state space on a finite regular grid: for any M > 0 and NY ∈ N, and denoting by ∆Y =
M

NY
,

we set:

YM =
{
yi = i∆Y , i = −NY , . . . , NY

}
.

We denote by ProjM (y) := −M ∨ (y ∧M), and consider the discrete approximating distri-

bution of µa and µb, defined by:

µ̂a =
∑
i∈Z+

µa([i∆Y ; (i+ 1)∆Y ))δi∆Y
, µ̂b =

∑
i∈Z+

µb([i∆Y ; (i+ 1)∆Y ))δi∆Y
,

with δx the Dirac measure at x. We then introduce the operator associated to the explicit

time-space discretization of the integral variational inequality (3.13): for any real-valued

function ϕ on [0, T ]× R, t ∈ [0, T ], and y ∈ R, we define:

Sh,∆Y ,M (t, y, ϕ) = max
[
T h,∆Y ,M (t, y, ϕ) ; M̃h,∆Y ,M (t, y, ϕ)

]
,

where

T h,∆Y ,M (t, y, ϕ) = ϕ(t, y)− hγ%y2 + hycP

+ λah
(∫ ∞

0

[
ϕ(t,ProjM (y − z))− ϕ(t, y)

]
µ̂a(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz)

)
+

+ λbh
(∫ ∞

0

[
ϕ(t,ProjM (y + z))− ϕ(t, y)

]
µ̂b(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y + z|)

]
µb(dz)

)
+
,

and

M̃h,∆Y ,M (t, y, ϕ)

= sup
e∈YM∩[−|y|,|y|]

[
ϕ(t,ProjM (y + e))− (

δ

2
+ ε)(|y + e|+ |e| − |y|)− ε0

]
. (4.1)
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By recalling that x+ = max`∈{0,1} `x, we see that the operator T h,∆Y ,M may be written

also as:

T h,∆Y ,M (t, y, ϕ) = −hγ%y2 + hycP + max
`a,`b∈{0,1}

[
ϕ(t, y)(1− λah`a − λbh`b) (4.2)

+ λah`a
(∫ ∞

0
ϕ(t,ProjM (y − z))µ̂a(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz)

)
+ λbh`b

(∫ ∞
0

ϕ(t,ProjM (y + z))µ̂b(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y + z|)

]
µb(dz)

)]
.

Note that the integral terms involving ϕ in Sh,∆Y ,M (t, y, ϕ) are in fact finite sums, and

therefore are readily computable. We also assume, for simplicity sake, that the terms∫∞
0

δ
2z + ( δ2 + ε)(|y| − |y − z|)µa(dz) and

∫∞
0

δ
2z + ( δ2 + ε)(|y| − |y + z|)µb(dz) are exactly

computable.

We then approximate the solution w to (3.13)-(3.14) by the function wh,∆Y ,M on TN ×
YM solution to the computational scheme:

wh,∆Y ,M (tN , .) = 0 (4.3)

wh,∆Y ,M (tk, y) = Sh,∆Y ,M (tk+1, y, w
h,∆Y ,M ) , k = 0, . . . , N − 1 , y ∈ YM . (4.4)

4.2 Convergence of the numerical scheme

In this section, we study the convergence of the numerical scheme (4.3)-(4.4) by showing the

monotonicity, stability and consistency properties of this scheme. We denote by C1
b ([0, T ]×

R) the set of bounded continuously differentiable functions on [0, T ] × R, with bounded

derivatives.

Proposition 4.1 (Monotonicity)

For any h > 0 s.t. h <
1

λa + λb
the operator Sh,∆Y ,M is non-decreasing in ϕ, i.e. for any

(t, y) ∈ [0, T ]× R and any ϕ,ψ ∈ C1
b ([0, T ]× R) , s.t. ϕ ≤ ψ :

Sh,∆Y ,M (t, y, ϕ) ≤ Sh,∆Y ,M (t, y, ψ)

Proof. From the expression (4.2), it is clear that T h,∆Y ,M (t, y, ϕ), and then also Sh,∆Y ,M (t, y, ϕ)

is monotone in ϕ once 1− λah− λbh > 0. 2

Proposition 4.2 (Stability)

For any h,∆Y ,M > 0 there exists a unique solution wh,∆Y ,M to (4.3)-(4.4), and the se-

quence (wh,∆Y ,M ) is uniformly bounded: for any (t, y) ∈ TN × YM ,

−ε0 ≤ wh,∆Y ,M (t, y) ≤ (T − t)
[ c2

P

4γρ
+ λa(δ + ε)µ̄a + λb(δ + ε)µ̄b

]
.
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Proof. Existence and uniqueness of wh,∆Y ,M follows from the explicit backward scheme

(4.3)-(4.4). Let us now prove the uniform bounds. We consider the function

Ψ?(t) = (T − t)
[
c2
P

4γρ
+ λa(δ + ε)µ̄a + λb(δ + ε)µ̄b

]
and notice that Ψ?(t) ≥ Sh,∆Y ,M (t + h, y,Ψ?) by the same arguments as in Proposition

3.2. Moreover, we have, by definition, wh,∆Y ,M (T, y) = Ψ?(T ) = 0, and therefore, a direct

recurrence from (4.3)-(4.4) shows that wh,∆Y ,M (t, y) ≤ Ψ?(t) for all (t, y) ∈ Tn×YM , which

is the required upper bound for wh,∆Y ,M .

On the other hand, we notice that Sh,∆Y ,M (t, 0, ϕ) ≥ ϕ(t, 0) for any function ϕ on

[0, T ] × R, and t ∈ [0, T ], by considering the“diffusive” part of the numerical scheme with

the particular controls `a = `b = 0. Therefore, since wh,∆Y ,M (T, 0) = 0, we obtain by

induction on (4.3)-(4.4) that wh,∆Y ,M (t, 0) ≥ 0 for any t ∈ TN . Finally, considering the

obstacle part of the numerical scheme, with the particular control e = −y, shows that

wh,∆Y ,M (t, y) ≥ wh,∆Y ,M (t, 0) − ε0 ≥ −ε0 for any (t, y) ∈ TN × YM , which proves the

required lower bound for wh,∆Y ,M . 2

Proposition 4.3 (Consistency)

For all (t, y) ∈ [0, T )× R and ϕ ∈ C1
b ([0, T ]× R), we have

lim
(h, ∆Y ,M)→ (0, 0,∞)

(t′, y′)→ (t, y)

1

h

[
ϕ(t′, y′)− T h,∆Y ,M (t′ + h, y′, ϕ)

]
(4.5)

= −∂ϕ
∂t

(t, y)− ycP + γ%y2 − Iaϕ(t, y)− Ibϕ(t, y)

and

lim
(h, ∆Y ,M)→ (0, 0,∞)

(t′, y′)→ (t, y)

M̃h,∆Y ,M (t′ + h, y′, ϕ) = M̃ϕ(t, y) (4.6)

Proof. The consistency relation (4.6) follows from the continuity of the function (t, y, e)

→ ϕ(t, y + e)− (
δ

2
+ ε)(|y + e|+ |e| − |y|)− ε0. On the other hand, we have for all (t′, y′)

∈ [0, T )× R,

1

h

[
ϕ(t′, y′)− T h,∆Y ,M (t′ + h, y′, ϕ)

]
=

1

h

[
ϕ(t′, y′)− ϕ(t′ + h, y′)

]
− y′cP + γρy′2 (4.7)

− Ih,∆Y ,M
a (t′ + h, y′, ϕ)− Ih,∆Y ,M

b (t′ + h, y′, ϕ),

where

Ih,∆Y ,M
a (t, y, ϕ) = λa

(∫ ∞
0

[
ϕ(t,ProjM (y − z))− ϕ(t, y)

]
µ̂a(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz)

)
+

Ih,∆Y ,M
a (t, y, ϕ) = λb

(∫ ∞
0

[
ϕ(t,ProjM (y + z))− ϕ(t, y)

]
µ̂b(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y + z|)

]
µb(dz)

)
+
.
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The three first terms of (4.7) converge trivially to −∂ϕ
∂t

(t, y) − ycP + γ%y2 as h goes to

zero and (t′, y′) goes to (t, y). Hence, in order to get the consistency relation, it remains to

prove the convergence of Ih,∆Y ,M
a (t′ + h, y′, ϕ) to Iaϕ(t, y) as (h,∆Y ,M) goes to (0, 0,∞),

and (t′, y′) goes to (t, y) (an identical argument holds for Ih,∆Y ,M
b (t′+h, y′, ϕ)). By writing

that |x+ − x′+| ≤ |x− x′|, we have∣∣∣Ih,∆Y ,M
a (t′ + h, y′, ϕ)− Iaϕ(t, y)

∣∣∣
≤ λa

∣∣ϕ(t′ + h, y′)− ϕ(t, y)
∣∣

+ λa
∣∣∣ ∫ ∞

0
ϕ(t′ + h,ProjM (y′ − z))µ̂a(dz) −

∫ ∞
0

ϕ(t, y − z)µa(dz)
∣∣∣

≤ λa
∣∣ϕ(t′ + h, y′)− ϕ(t, y)

∣∣
+ λa

∣∣∣ ∫ M+y′

0
ϕ(t′ + h, y′ − z)µ̂a(dz) −

∫ M+y′

0
ϕ(t, y − z)µa(dz)

∣∣∣
+ λa

∣∣∣ ∫ ∞
M+y′

ϕ(t′ + h,−M)µ̂a(dz) −
∫ ∞
M+y′

ϕ(t, y − z)µa(dz)
∣∣∣

≤ λa
∣∣ϕ(t′ + h, y′)− ϕ(t, y)

∣∣
+ λa

∫ ∞
0

∣∣ϕ(t′ + h, y′ − κ(z)) − ϕ(t, y − z)
∣∣µa(dz)

+ 2λa‖ϕ‖∞µa
(
[M + y′,∞)

)
,

where we denote by κ(z) = b z
∆Y
c∆Y . Here bzc denotes the largest integer smaller than z.

Since the smooth function ϕ has bounded derivatives, say bounded by ‖ϕ(1)‖∞, it follows

that ∣∣∣Ih,∆Y ,M
a (t′ + h, y′, ϕ)− Iaϕ(t, y)

∣∣∣ ≤ λa‖ϕ(1)‖∞
(
h+ 2|y′ − y|+ ∆Y

)
+ 2λa‖ϕ‖∞µa

(
[M + y′,∞)

)
,

which proves that

lim
(h, ∆Y ,M)→ (0, 0,∞)

(t′, y′)→ (t, y)

Ih,∆Y ,M
a (t′ + h, y′, ϕ) = Iaϕ(t, y),

hence completing the consistency relation (4.5). 2

Theorem 4.1 (Convergence)

The solution wh,∆Y ,M to the numerical scheme ((4.3)-(4.4)) converges locally uniformly to

w on [0, T )× R, as (h,∆Y ,M) goes to (0, 0,∞).

Proof. Given the above monotonicity, stability and consistency properties, the convergence

of the sequence (wh,∆Y ,M ) towards w, which is the unique bounded viscosity solution to

(3.13)-(3.14), follows from [3]. We report the arguments for sake of completeness. From
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the stability property, the semi-relaxed limits:

w∗(t, y) = lim inf
(h, ∆Y ,M)→ (0, 0,∞)

(t′, y′)→ (t, y)

wh,∆Y ,M (t′, y′),

w∗(t, y) = lim sup
(h, ∆Y ,M)→ (0, 0,∞)

(t′, y′)→ (t, y)

wh,∆Y ,M (t′, y′),

are finite lower-semicontinuous and upper-semicontinuous functions on [0, T ]×R, and inherit

the boundedness of (wh,∆Y ,M ). We claim that w∗ are w∗ are respectively viscosity super and

subsolution of (3.13)-(3.14). Assuming for the moment that this claim is true, we obtain

by the strong comparison principle for (3.13)-(3.14) that w∗ ≤ w∗. Since the converse

inequality is obvious by the very definition of w∗ and w∗, this shows that w∗ = w∗ = w

is the unique bounded continuous viscosity solution to (3.13)-(3.14), hence completing the

proof of convergence.

In the sequel, we prove the viscosity supersolution property of w∗ (a symmetric argument

for the viscosity subsolution property of w∗ holds true). Let (t̄, ȳ) ∈ [0, T )×R and ϕ a test

function in C1
b ([0, T ] × R) s.t. (t̄, ȳ) is a strict global minimimum point of w∗ − ϕ. Then,

one can find a sequence (t′n, y
′
n) in [0, T )× R, and a sequence (hn,∆

n
Y ,Mn) such that:

(t′n, y
′
n) → (t̄, ȳ), (hn,∆

n
Y ,Mn) → (0, 0,∞), whn,∆

n
Y ,Mn → w∗(t̄, ȳ),

(t′n, y
′
n) is a global minimum point of whn,∆

n
Y ,Mn − ϕ.

Denoting by ζn = (whn,∆
n
Y ,Mn−ϕ)(t′n, y

′
n), we have whn,∆

n
Y ,Mn ≥ ϕ+ζn. From the definition

of the numerical scheme Shn,∆n
Y ,Mn , and its monotonicity, we then get:

ζn + ϕ(t′n, y
′
n) = whn,∆

n
Y ,Mn(t′n, y

′
n)

= Shn,∆n
Y ,Mn(t′n + hn, y

′
n, w

hn,∆n
Y ,Mn)

≥ Shn,∆n
Y ,Mn(t′n + hn, y

′
n, ϕ+ ζn) = Shn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ) + ζn

= max
[
T hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ) , M̃hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

]
+ ζn,

which implies

min
[ϕ(t′n, y

′
n)− T hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

hn
, ϕ(t′n, y

′
n)− M̃hn,∆n

Y ,Mn(t′n + hn, y
′
n, ϕ)

]
≥ 0.

By the consistency properties (4.5)-(4.6), and by sending n to infinity in the above inequa-

lity, we obtain the required viscosity supersolution property:

min
[
− ∂ϕ

∂t
(t̄, ȳ)− ȳcP + γ%ȳ2 − Iaϕ(t̄, ȳ)− Ibϕ(t̄, ȳ) , ϕ(t̄, ȳ)− M̃ϕ(t̄, ȳ)

]
≥ 0.

2

4.3 Numerical tests

In this section, we provide numerical results for the (reduced-form) value function and

optimal policies in the martingale case and the trend information case, and a backtest on

16



Parameter Value

δ 12.5 EUR/contract

ε 1.05 EUR/contract

ε0 0

λ 0.05s−1

µ exp(1/µ̄)

µ̄ 20 contracts

γ 2.5.10−5

T 100 s

(a) Market and risk parameters

Parameter Value

NY 100

NT 500

N$ 20

(b) Discretization parame-

ters

Figure 2: Parameters for numerical results.

simulated data for the trend information case. Parameters for these numerical tests are

shown in Figure 2.

This set of parameters are chosen to be consistent with calibration data on the front

maturity for 3-months EURIBOR future, see for example [6]. Within this section, and for

this set of parameters, we will denote by wh the value function and by α? the make/take

strategy associated with the backward numerical scheme (4.3)-(4.4). Given a generic con-

trolled process Z and a control α ∈ A, we will denote Zα the process controlled by α. Unless

specified otherwise, such processes will be supposed to start at zero: typically, we assume

that the investor starts from zero cash and zero inventory at date t = 0 in the following

numerical tests. Finally, we will write indifferently wh(t, y, cP ) or wh(t, y) := wh(t, y, 0) to

either stress or omit the dependence in cP .

• The martingale case: in the martingale case, we performed the algorithm (4.3)-(4.4)

with parameters shown above.

Figure 3 displayed the reduced-form value function wh on [0, T ]×[−NY ;NY ]. This result

illustrates the linear bound (3.2) as noticed in proposition 3.2, and also the symmetry of

wh as pointed out in (3.18). We also observe the monotonicity over R+ and R− of the value

function wh(t, .).

In Figure 4, we display the optimal make and take policies. The optimal take policy

(on the left side) is represented as the volume to buy or sell with a market order, as a

function of the time and inventory (t, y) ∈ [0, T ] × [−NY ;NY ]. We notice that a market

order only occurs when the inventory becomes to large, and therefore, the take policy can

be interpreted as a “stop-loss” constraint, i.e. an emergency rebalancing of the portfolio

when the inventory risk is too large.

The optimal make policy is represented as the regime of limit orders posting as a function

of the time and inventory (t, y) ∈ [0, T ]× [−NY ;NY ]. For sake of simplicity, we represented

the sum of `a and `b on the map. The meaning of this surface is as follows: 0 means that

there is no active limit orders on either sides, 2 means that there is active limit orders on

both bid and ask sides, and 1 means that there is only one active limit order either on

the bid or the ask side, depending on the sign of y (if y < 0 only the bid side is active,

and if y > 0 only the ask side is active). We notice that when close to maturity T , the
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Figure 3: Reduced form value function wh.

(a) Optimal take policy. (b) Optimal make policy

Figure 4: Numerical results for the martingale case: representation of optimal make and

take policies α?.

optimal strategy tends to be more agressive, in the sense that it will seek to get rid of any

positive or negative inventory, to match the terminal liquidation constraint. Moreover, we

notice that close to date 0, the dependence in t seems to be negligible, which indicates that

a“stationary regime” may be attained for large T .

• The trend information case: in this case, we provide a backtest of the optimal strategy

18



on simulated data in addition to the plots of the value function wh and optimal policy α?.

-50 0 50 100
-0.625

-0.3125
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0.625

Inventory

C
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(a) Value function wh at date t = 0.

-50 0 50 100
-0.625

-0.3125

0

0.3125

0.625

Inventory
C
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(b) Optimal policy α? at date t = 0.

Figure 5: Value function and optimal policy for the trend information case.

Figure 5 displays the value function and optimal policy at date t = 0, in the plane

(y, cP ). The value function has central symmetry properties as expected in (3.18), and

should be read as follows: dark green zones represent situation where a market order to

buy must be sent, light green means that a limit order is active only at bid, white means

that limit orders are active on both sides, light red means that a limit order is active only at

ask, and dark red means that a market order to sell must be sent. The value function also

increases with |cP |. This effect can be interpreted as the gain in performance due to the

superior information on price trend cP . The interpretation of this extra performance due to

cP is that the optimal policy avoids part of the adverse selection risk by using this predictive

information about price movements. Let us provide a qualitative example: assume that

after the high frequency trader acquired a positive inventory, the adverse selection effect

implies that price should go down; therefore, using the fact that in this case we should have

cP < 0, the optimal strategy will be either to cancel the bid limit order (light red zone)

and keep ask limit order active, or depending on the value of |cP |, send a market order to

get rid of our positive inventory (dark red zone).

We performed a benchmarked backtest on simulated data and a performance analysis

in this case. The benchmark strategy is made of constant controls (a.k.a symmetric or

constant strategy):

αbenchmark := (αmake , benchmark, 0)

αmake , benchmark := (1, 1)

In order to make our simulated data backtest closer to the reality, we chosed to slightly

deviate from the original price model, and use a varying price trend. We simulate a price
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process model given by

P̂t = P̂0 + δ(N+
t −N

−
t ),

where N+ and N− are the Euler scheme simulation of Cox processes of respective intensities

π+ and π− defined as follows

π+ + π− ≡ K = %/δ2

dπ+
t − dπ

−
t := d$t = −θ$tdt+ σdBt

where K > 0, θ > 0 and σ > 0 are positive constants, and B is an independent Brownian

motion. Note that we choosed the sum π+ +π− to be the constant K, for simplicity sake: it

means that, disregarding the direction of price variation, the mean number of price change

per second is assumed to be constant P (|Pt+h − Pt| = δ) = Kh+ o(h), which provides an

easy way to calibrate the parameter K while reducing the dimension of the simulation. The

interpretation of this simulation model is as follows: we add an exogenous risk factor B,

which drives the price trend information $ as an Ornstein-Uhlenbeck process. Notice that

this supplementary risk factor B is not taken into account in our optimization procedure

and thus has a penalizing impact on the strategy’s performance: therefore it does not spoil

the backtest. This model choice for the process ($t) is an convenient way to simulate the

real-world situation, where the high-frequency trader continuously updates her predictive

information about short-term price movements, based e.g. on the current state of the limit

order book. Therefore, qualitatively speaking, our optimization procedure is consistent with

this simulation model if we choose θ and σ s.t. the variation of the (reduced-form) value

function w due to predictive information is very small compared to the variation of the value

function due to other market events (e.g. an execution event). This assumption is consistent

with HFT practice since the HF trader is able to adapt very quickly to a modification of

this predictive information. Backtest parameters involved in this simulation are shown in

Figure 6.

Parameter Value

K 1.0

θ 2

σ 0.01

NMC 10000

Figure 6: Backtest parameters

Let us denote by ϑ̂a and ϑ̂b the Euler scheme simulation of the compound poisson

processes ϑa and ϑb, with dynamics (2.3). Therefore, for α ∈ {α?, αbenchmark}, we were

able to compute the Euler scheme simulation X̂α (resp. Ŷ α) of Xα (resp. Y α), starting at

0 at t = 0, by replacing ϑa (resp. ϑb) by ϑ̂a (resp. ϑ̂b) in equation (2.4) (resp. (2.5)).

We performed NMC simulation of the above processes. For each simulation ω ∈
[1...NMC ] and for α ∈ {α?, αbenchmark}, we stored the following quantities: the terminal

wealth after terminal liquidation V̂ α
T (ω) := L(X̂α(ω), Ŷ α(ω), P̂ (ω)), called “performance”
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in what follows ; the total executed volume Q̂total,α(ω) :=
∑

[0,T ] |Ŷ α
t (ω) − Ŷ α

t−(ω)| ; and

the volume executed at market Q̂market,α(ω) :=
∑

[0,T ] |ξn(ω)α|. Finally, we denote by m(.)

the empirical mean, by Σ(.) the empirical standard deviation, by skew(.) the empirical

skewness, and by kurt(.) the empirical kurtosis, taken over ω ∈ [1...NMC ].

Quantity Definition α? αbenchmark

Info ratio over T m(V̂ .
T )/σ(V̂ .

T ) 0.238 0.104

Profit per trade m(V̂ .
T )/m(Q̂total,.) 1.37 3.86

Risk per trade σ(V̂ .
T )/m(Q̂total,.) 5.73 37.21

Mean performance m(V̂ .
T ) 376.08 773.15

Standard deviation of perf σ(V̂ .
T ) 1574.97 7462.96

Skew of perf skew(V̂ .
T ) 0.027 -0.0468

Kurtosis of perf kurt(V̂ .
T ) 3.21 7.48

Mean total executed volume m(Q̂total,.) 274.77 200.27

Mean at market volume m(Q̂market,.) 101.75 0.

Ratio market over total exec m(Q̂market,.)/m(Q̂total,.) 0.37 0.

Figure 7: Synthetis table for backtest. Categories are, from top to bottom: relative per-

formance metrics, period-adjusted performance metrics, absolute performance metrics and

absolute activity metrics.

Figure 7 displayed a synthesis of descriptive statistics for this backtest. We first notice

that the information ratio over T of α? is more than twice that of αbenchmark. Second,

the per trade metrics can be compared to the half-spread
δ

2
= 6.25 EUR/contract, and

we see that although the mean profit per trade is smaller for the optimal strategy, the

risk associated to each trade is dramatically reduced compared to the benchmark. This

Optimal

Benchmark
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Figure 8: Empirical distribution of performance V̂ .
T . The graph shows the number of

occurences for each bin on NMC = 10000 simulations.

is confirmed by the empirical distribution of performance, also shown in Figure 8, where
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the dark blue represents the performance distribution of the optimal strategy and the light

purple represents the performance distribution of the benchmark strategy. We see that not

only benchmark has higher standard deviation, but also higher excess kurtosis and heavy

tails: this is due to the fact that inventory can be very large for the benchmark strategy,

and therefore it bears a non-negligible market risk (or inventory risk). Finally, we see that

about 37% of the trades are done with market orders, which indicates that this feature of

the strategy is relevant when exposed to adverse selection risk (the risk that the mid-price

moves unfavourably after a limit order execution).

γ σ(V̂ .
T ) m(V̂ .

T )

6.67.10-04 13.36 0.09

4.44.10-04 351.16 20.98

2.96.10-04 495.43 30.97

1.98.10-04 649.11 39.28

1.32.10-04 849.05 106.14

8.78.10-05 1048.73 177.27

5.85.10-05 1264.10 253.50

3.90.10-05 1428.10 309.95

2.60.10-05 1546.30 351.86

1.73.10-05 1635.61 368.15

1.16.10-05 1639.65 332.51

Figure 9: Varying risk aversion parameter γ: data.

Figure 10: Varying risk aversion parameter γ: plot.

Our last numerical test is devoted to displaying the influence of the risk aversion para-

meter γ. All other parameters remaining the same, we tested several values of γ (as

indicated in Figure 9), and characterized the performance of the corresponding strategy by

the pair (σ(V̂ .
T ),m(V̂ .

T )), which gives the efficient frontier plot displayed in Figure 10. As
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expected, a reduction of γ increases the standard deviation of the strategy: this is due to

the fact that a small γ allows for large open position i.e. large inventory, and therefore the

market risk is greater. For small γ, performance is also better since the investor can sustain

large inventories, and therefore is less impatient to get rid of it: in particular, the proportion

of volume executed at market is increasing in γ. We see that in real trading conditions, γ

must be chosen as small as possible, i.e. the value allowing the greatest performance, but

maintaining the market risk sustainable.

5 Best execution problem and overtrading risk

In this section, we apply our market model framework to a best execution problem. The

trading objective of the investor is to liquidate Y0 > 0 assets over the finite time interval

[0, T ]. She is not allowed to purchase stock during the liquidation period, and may only

buy back the asset in case of short position. In this context, the investor posts continuously

a limit sell order (with a volume much larger that the required quantity Y0) at the best

ask price, and also runs market (sell) orders strategy until she reaches either a negative

inventory or the terminal date. By doing so, she hopes to trade as much as possible at the

ask price, and therefore avoiding to cross the spread.

Mathematically, this means that the investor uses a subsetA` of strategies α = (αmake =

(La, Lb), αtake) in A such that:

(Lat , L
b
t) =

{
(1, 0) for t < τ,

(0, 0) for t ≥ τ

αtake = (τn, ζn)n ∪ (τ,−Yτ ), with τn < τ, ζn < 0,

where τ = inf{t ≥ 0 : Yt ≤ 0} ∧ T . The value function associated to this liquidation

problem is then defined by

v`(t, x, y, p) = sup
α∈A`

Et,x,y,p

[
L(XT , YT , PT )− γ

∫ T

t
Y 2
s %(Ps)ds

]
, (5.1)

for (t, x, y, p) ∈ [0, T ]× R2 × P. With the notation in (3.6), the operator corresponding to

the limit order in A` is given by L1,0 = P + Γa, while the impulse operator associated to

the market order in A` is defined by:

M` ϕ(t, x, y, p) = sup
e∈[−|y|,0]

ϕ
(
t, x− ep− |e|(δ

2
+ ε)− ε0, y + e, p

)
The dynamic programming equation associated to (5.1) takes the form:

min
[
− ∂v`

∂t
− Pv` − Γav` + γg , v` −M`v`

]
= 0, on [0, T )× R× (0,∞)× P,

together with the terminal and boundary conditions:

v` = L, on
(
{T} × R× R× P

)
∪
(
[0, T )× R× R− × P

)
.
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The above boundary condition for nonpositive inventory is related to the overtrading risk,

which is the risk that the investor sold too much assets via the (oversized) limit order at

the best ask price. This risk occurs typically in execution problems on pro-rata limit order

book, see [6].

Again, in the Lévy case (3.11), the value function v` is reduced into:

v`(t, x, y, p) = L(x, y, p) + w`(t, y),

where w` is solution to the integro-variational inequality:

min
{
− ∂w`

∂t
− ycP + γ%y2

−λa
∫ ∞

0

[
w`(t, y − z)− w`(t, y) + z

δ

2
+ (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz) ;

w`(t, y)− sup
e∈[−y,0]

[
w`(t, y + e)− (

δ

2
+ ε)(|y + e|+ |e| − |y|)− ε0

]}
= 0,

for (t, y) ∈ [0, T )× (0,∞), together with the terminal and boundary conditions:

w`(t, y) = 0, ∀(t, y) ∈
(
{T} × R

)
∪
(
[0, T )× R−

)
.

(a) Value Function w` (b) Optimal policy (take)

Figure 11: Numerical results for the simple liquidation problem (for cP = 0). On the left

side, level lines are indicated for the value function w`. On the right side, numbers indicated

on the figure represent the quantity to sell in the optimal market order control.

The associated numerical scheme reads now as follows:

wh` (tN , y) = 0, y ∈ R,
wh` (tk, y) = 0, k = 0, . . . , N − 1, y ≤ 0,

wh` (tk, y) = max
[
T h,∆Y ,M
` (t, y, ϕ) ; Mh,∆Y ,M

` (t, y, ϕ)
]
, k = 0, . . . , N − 1 , y ∈ Y+

M ,
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where Y+
M = YM ∩ R+,

T h,∆Y ,M
` (t, y, ϕ) = ϕ(t, y)− hγ%y2 + hycP

+ λah
(∫ ∞

0

[
ϕ(t,ProjM (y − z))− ϕ(t, y)

]
µ̂a(dz)

+

∫ ∞
0

[δ
2
z + (

δ

2
+ ε)(|y| − |y − z|)

]
µa(dz)

)
and

Mh,∆Y ,M
` (t, y, ϕ)

= sup
e∈YM∩[−y,0]

[
ϕ(t,ProjM (y + e))− (

δ

2
+ ε)(|y + e|+ |e| − |y|)− ε0

]
.

In this case, the optimal policy shown in Figure 11 is simple to describe. The state space

is delimited in two zones: when the inventory is small, the HFT must wait for her limit sell

order to be executed; and when the inventory is large, the HFT must send a market sell

order to avoid the market risk related to holding a large position.

The frontier between the two zones (indicated in bold red in Figure 11) can be inter-

preted as an optimal trading curve, a concept that is extensively documented (see e.g. [7])

in the optimal execution literature. The optimal trading curve is the inventory that the

investor should hold, seen as a function of time, in order to minimize overall trading costs.

Therefore, in the typical setting, the execution strategy consists in trading via market or-

ders to get as close as possible to the optimal trading curve. Similarly, in our case, we can

see on Figure 11 that the optimal strategy will behave similarly for large inventories (i.e.

when above the trading curve): indeed, we observe that the quantities to sell are such that

the market orders strategy would keep the inventory close to the optimal trading curve,

if no limit orders were allowed. Now, in our case, we observe two specific features of the

optimal strategy: 1) the optimal trading curve does not reach 0 at maturity, and therefore

the HFT has to get rid of her inventory at market at final date to match the constraint

YT = 0. This is due to the fact that a supplemental gain is always achievable when the

limit order is executed. Therefore, this features leads to an execution strategy where the

final trade is bigger than intermediary trades; 2) below the optimal trading curve, i.e. in

the region where the HFT trades via limit orders only, the sell limit order is always active,

and can lead to an execution. Therefore, the inventory is always below the optimal trad-

ing curve, and the distance between the current inventory and the optimal trading curve

equals the volume executed via limit orders. This differs from classic pattern-based best

execution strategies, for example the U-shaped execution strategy that consists in trading

a large quantity at the beginning and at the end of the liquidation, and trade regularly

small quantities in between. Indeed, the optimal strategy does not provide a fixed pattern

for every execution, but provide the optimal action to take given the observation of the

inventory that is still to be sold and the market characteristics as e.g. the mean traded

volume at ask per second λaµ̄a, or trades volume distributions at ask µa.

Finally, let us notice that this strategy can be interpreted as a convenient way to avoid

the cost of crossing the spread during the liquidation of a portfolio, but we did not take into
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account the impact of the market order on the transaction price. In the case of a pro-rata

microstructure, available volumes offered at best prices are usually about 200 times larger

than the mean volume of market orders (see [6]), and therefore it is consistent to consider

that there is no impact on the price for our market orders. Yet, the model can easily be

modified by adding an impact component in the obstacle operator M` to take care of this

effect. We also did not model the possibility that the intensities λa and λb of execution

processes may vary, and postpone this investigation for future research.
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[7] Guéant O., Fernandez Tapia J. and C.-A. Lehalle (2011): “Dealing with inventory risk”, preprint.

[8] Gould M.D., Porter M.A, Williams S., McDonald M., Fenn D.J. and S.D. Howison (2010): “The

limit order book: a survey”, preprint.

[9] Guilbaud F. and H. Pham (2011): “Optimal high frequency trading with limit and market

orders”, preprint.

[10] Karel Janecek, Martin Kabrhel (2007): “Matching Algorithms of International Exchanges”,

working paper.
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