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Pointwise multipliers of

Calderón-Lozanovskĭı spaces

Pawe l Kolwicz∗, Karol Leśnik∗ and Lech Maligranda

Abstract

Several results concerning multipliers of symmetric Banach function spaces are presented

firstly. Then the results on multipliers of Calderón-Lozanovskĭı spaces are proved. We

investigate assumptions on a Banach ideal space E and three Young functions ϕ1, ϕ2 and ϕ,

generating the corresponding Calderón-Lozanovskĭı spaces Eϕ1
, Eϕ2

, Eϕ so that the space

of multipliers M(Eϕ1
, Eϕ) of all measurable x such that x y ∈ Eϕ for any y ∈ Eϕ1

can

be identified with Eϕ2
. Sufficient conditions generalize earlier results by Ando, O’Neil,

Zabrĕıko-Rutickĭı, Maligranda-Persson and Maligranda-Nakai. There are also necessary

conditions on functions for the embedding M(Eϕ1
, Eϕ) ⊂ Eϕ2

to be true, which already in

the case when E = L1, that is, for Orlicz spaces M(Lϕ1, Lϕ) ⊂ Lϕ2 give a solution of a

problem raised in the book [26]. Some properties of a generalized complementary operation

on Young functions, defined by Ando, are investigated in order to show how to construct the

function ϕ2 such that M(Eϕ1
, Eϕ) = Eϕ2

. There are also several examples of independent

interest.

1. Introduction and preliminaries

Pointwise multiplication and the space of pointwise multipliers between Orlicz spaces
as well as between some other Banach ideal spaces were investigated by several authors.
Here we try to prove such theorems for the Calderón-Lozanovskĭı spaces Eϕ generated by
the Banach ideal space E and the Young function ϕ, which are generalizations of Orlicz
spaces, Orlicz-Lorentz spaces and contain the p-convexification E(p)(1 ≤ p < ∞) of E.
The spaces Eϕ were introduced by Calderón [10, p. 122] and Lozanovskĭı [23] (see also
Lozanovskĭı [25]). Geometry of the spaces Eϕ was intensively investigated during the last
20 years (see, for example, [19] and the references given there) and we should also mention
here that they are, in fact, special cases of general Calderón-Lozanovskĭı spaces ρ(E, F )
for F = L∞, being important in the interpolation theory (cf. [21], [26]).

Let (Ω,Σ, µ) be a complete σ-finite measure space and L0 = L0(Ω) be the space of
all classes of µ-measurable real-valued functions defined on Ω. A Banach space E =
(E, ‖ · ‖E) is said to be a Banach ideal space on Ω if E is a linear subspace of L0(Ω) and
satisfies the so-called ideal property, which means that if y ∈ E, x ∈ L0 and |x(t)| ≤ |y(t)|
for µ-almost all t ∈ Ω, then x ∈ E and ‖x‖E ≤ ‖y‖E.
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A Banach ideal space E on Ω is saturated if every A ∈ Σ with µ(A) > 0 has a
subset B ∈ Σ of finite positive measure for which χB ∈ E. For any such space E it
is possible to construct a set ΩE ∈ Σ such that: (i) every element of E vanishes µ-
a.e. on Ω \ ΩE and (ii) every measurable A ⊂ ΩE with µ(A) > 0 has a measurable
subset B of finite positive measure with χB ∈ E. Furthermore, ΩE is the union of an
expanding sequence of sets {Ak} such that µ(Ak) < ∞ and χAk ∈ E for each k ∈ N.
A set ΩE is called the support of E and denoted by suppE. Note that we should say
here “a support” rather than “the support” since in general there will be other sets
Ω̃E which can also satisfy (i) and (ii). However, they coincide µ-a.e with ΩE , that is,
µ(Ω̃E \ΩE) = µ(ΩE \ Ω̃E) = 0. It is also clear that any Banach ideal space E can always
be naturally identified with a saturated Banach ideal space on a possibly smaller measure
space ΩE . In such space E there exists an element x0 which is strictly positive µ-a.e. on
ΩE , for example, x0 =

∑∞
k=1 χAk/(2

k‖χAk‖E). In particular, for a Banach ideal space E
we have suppE = Ω if and only if E has a weak unit, i.e., a function x in E which is
positive µ-a.e. on Ω (see [18] and [26]).

A point x ∈ E is said to have order continuous norm if for any sequence (xn) in
E such that 0 ≤ xn ≤ |x| and xn → 0 µ-a.e. on Ω we have ‖xn‖E → 0. By Ea we
denote the subspace of all order continuous elements of E. It is known that x ∈ Ea if and
only if ‖xχAn‖E ↓ 0 for any sequence {An} satisfying An ց ∅ (that is An ⊃ An+1 and
µ(
⋂∞
n=1An) = 0). A Banach ideal space E is called order continuous if every element of

E has order continuous norm, that is, E = Ea.
We say that E has the Fatou property if 0 ≤ xn ↑ x ∈ L0 with xn ∈ E and

supn∈N ‖xn‖E <∞ imply that x ∈ E and ‖xn‖E ↑ ‖x‖E .
If we consider the space E over a non-atomic measure µ with suppE = Ω, then we

say that E is a Banach function space. If we replace the measure space (Ω,Σ, µ) by
the counting measure space

(

N, 2N, m
)

, then we say that E is a Banach sequence space
(denoted by e). In the last case the symbol ek = (0, . . . , 0, 1, 0, . . .) stands for the k-th
unit vector.

The weighted Banach function space E(w), where w is a measurable positive function
(weight) on Ω, is defined by the norm ‖x‖E(w) = ‖xw‖E.

More information about Banach function spaces and Banach sequence spaces can be
found, for example, in [8], [18], [21] and [22].

Let E and F be ideal Banach spaces in L0(Ω) with their norms ‖ · ‖E and ‖ · ‖F ,
respectively. The space of pointwise multipliers M(E, F ) is defined by

M(E, F ) = {x ∈ L0(Ω) : xy ∈ F for all y ∈ E}

with the usual operator norm. This space is important, for example, in investigation of
superposition operators and in factorization theorems. Some properties of superposition
operators may be expressed by means of multiplicator spaces (cf. [4], [5]). They are also
appearing in factorization theorems. Lozanovskĭı proved that every function x ∈ L1 can be
factorized by y ∈ E and z ∈ E ′ in such a way that x = yz and ‖y‖E‖z‖E′ ≤ (1 + ε)‖x‖L1,
where ε > 0 is an arbitrary number (cf. [24]). This theorem can be generalized to the
form F = E · M(E, F ) under some assumptions on the spaces (see [35], [39]). In the
case of sequence spaces (not necessarily ideal) the spaces M(E, F ) were investigated in [2]
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and used for description of different spaces of analytic functions on the disk by sequence
multipliers of Taylor coefficients. More details about the space M(E, F ) we put in the
next section.

In this paper we give improvements of the results on multipliers known for Orlicz
spaces Lϕ to the more general situation of Calderón-Lozanovskĭı spaces Eϕ. We need to
recall some necessary definitions about Orlicz and Calderón-Lozanovskĭı spaces.

A function ϕ : [0,∞) → [0,∞] is called a Young function (or Orlicz function if it
is finite-valued) if ϕ is convex, non-decreasing with ϕ(0) = 0; we assume also that ϕ
is neither identically zero nor identically infinity on (0,∞) and limu→b−ϕ

ϕ(u) = ϕ(bϕ) if

bϕ <∞, where bϕ = sup{u > 0 : ϕ(u) <∞}.
Note that from the convexity of ϕ and the equality ϕ(0) = 0 it follows that limu→0+ ϕ(u)

= ϕ(0) = 0. Furthermore, from the convexity and ϕ 6≡ 0 we obtain that limu→∞ ϕ(u) =
∞.

If we denote aϕ = sup{u ≥ 0 : ϕ(u) = 0}, then 0 ≤ aϕ ≤ bϕ ≤ ∞ and aϕ < ∞, bϕ >
0, since a Young function is neither identically zero nor identically infinity on (0,∞).
Moreover, aϕ = 0 if ϕ is 0 only at 0 and bϕ = ∞ if ϕ(u) < ∞ for u ∈ [0,∞). If ϕ takes
only two values 0 and ∞, then 0 < aϕ = bϕ < ∞. The function ϕ is continuous and
nondecreasing on [0, bϕ) and is strictly increasing on [aϕ, bϕ).

For a given Banach ideal space E on Ω and a Young function ϕ we define on L0(Ω) a
convex semimodular Iϕ by

Iϕ(x) :=

{

‖ϕ ◦ |x|‖E if ϕ ◦ |x| ∈ E,
∞ otherwise,

where (ϕ ◦ |x|)(t) = ϕ(|x(t)|), t ∈ Ω. By the Calderón-Lozanovskĭı space Eϕ we mean

Eϕ = {x ∈ L0 : Iϕ(cx) <∞ for some c = c(x) > 0},

which is a Banach ideal space on Ω with the so-called Luxemburg-Nakano norm defined
by

‖x‖Eϕ = inf {λ > 0 : Iϕ (x/λ) ≤ 1} .
If E = L1 (E = l1), then Eϕ is the Orlicz function (sequence) space Lϕ (lϕ) equipped
with the Luxemburg-Nakano norm (cf. [20], [26]). If E is a Lorentz function (sequence)
space Λw (λw), then Eϕ is the corresponding Orlicz-Lorentz function (sequence) space Λϕ,w

(λϕ,w), equipped with the Luxemburg-Nakano norm. On the other hand, if ϕ(u) = up, 1 ≤
p < ∞, then Eϕ is the p-convexification E(p) of E with the norm ‖x‖E(p) = ‖|x|p‖1/pE . If
ϕ(u) = 0 for 0 ≤ u ≤ 1 and ϕ(u) = ∞ for u > 1, then Eϕ = L∞ with equality of the
norms. If suppE = Ω, then suppEϕ = Ω, that is, Eϕ has a weak unit.

For two ideal Banach spaces E and F on Ω the symbol E
C→֒ F means that the

embedding E ⊂ F is continuous with the norm which is not bigger than C, i.e., ‖x‖F ≤
C‖x‖E for all x ∈ E. In the case when the embedding E

C→֒ F holds with some (unknown)
constant C > 0 we simply write E →֒ F . Moreover, E = F (and E ≡ F ) means that the
spaces are the same and the norms are equivalent (equal).

The paper is organized as follows: In Section 1 some necessary definitions and notation
are collected, including the Calderón-Lozanovskĭı spaces Eϕ. In Section 2 the space of

3



pointwise multipliers M(E, F ) is defined and some general results are presented. In
Theorem 1, some important results in the case of symmetric spaces E, F on [0, 1] and
[0,∞) are proved. It is important to mention here that for symmetric spaces on [0, 1]
we have that M(E, F ) 6= {0} if and only if we have the imbedding E →֒ F . Also the
fundamental function of M(E, F ) is described in terms of fundamental functions fE and
fF . Better results appeared in two cases, when either as E we have the smallest symmetric
space (the Lorentz space ΛfE) or when E is the largest Marcinkiewicz space Mφ1 and F is
the smallest Lorentz space Λφ. Section 3 contains information about the Young function
and its relations with its inverse. Then three relations between three Young functions are
defined and some results proved for two of these relations (relations for large and small
arguments).

Section 4 investigates the embedding Eϕ2 →֒ M (Eϕ1 , Eϕ). In Theorem 2 there are
sufficient conditions on the Young functions ϕ1, ϕ2, ϕ and on the Banach ideal space E
for such an inclusion. In Theorem 3 and 4 there are necessary conditions on functions
under some additional assumptions on the space E. In the special case when E = L1 and
the corresponding spaces are Orlicz spaces, then these theorems where proved already by
Ando [3] and O’Neil [32].

Section 5 deals with a more difficult reverse embedding M (Eϕ1 , Eϕ) →֒ Eϕ2 . The spe-
cial case M(Lp, L1) →֒ Lp

′
is the famous Landau resonance theorem, which was extended

to the case M(Lϕ, L1) →֒ Lϕ
∗

by several authors (see, for example, [29], where there are
results for Orlicz space Lϕ being even a quasi-Banach space). The first results on the
embedding M(Lϕ1 , Lϕ) →֒ Lϕ2 , that is, for Orlicz spaces generated by Orlicz functions on
non-atomic measure space, were given by Zabrĕıko-Rutickĭı [43] and Maligranda-Persson
[28]. Using a recent result of Maligranda and Nakai [27] for Orlicz spaces on general σ-
finite measure spaces and for arbitrary Young functions we were able to adopt this proof
to the situation of Calderón-Lozanovskĭı spaces Eϕ (Theorem 5). Theorem 6 is interesting
here since under certain monotonicity assumption it was possible to get also a necessary
condition on Young functions for the embedding M (Eϕ1 , Eϕ) →֒ Eϕ2 . This result, for the
special case of Orlicz spaces in which case E = L1, gives an answer to the problem posed
in Maligranda’s book [26, Problem 4, p. 77] under additional assumption of monotonicity
of ratio of the fundamental functions fEϕ1 and fEϕ .

In Section 6 we have collected, as corollaries from some results in Sections 4 and 5, the
necessary and sufficient conditions on functions so that the equality M (Eϕ1 , Eϕ) = Eϕ2

holds provided E is a Banach ideal space with the Fatou property and suppE = Ω.
2 Section 7 contains construction of a new function from two Young functions defined
probably for the first time by Ando [3]. This is a complementary function to ϕ1 with
respect to ϕ given by the formula

(ϕ⊖ ϕ1) (u) = sup
v>0

[ϕ (uv)− ϕ1 (v)] .

The result on this construction gave possibility to improve Theorem 6 having another
monotonicity condition (Theorem 7). Finally, in Example 8 we show that this last
monotonicity condition cannot be dropped. This Example 8 presents construction of
an Orlicz function ψ such that the non-separable Orlicz space Lψ[0, 1] is a proper sub-
space of L2[0, 1] and M(Lψ[0, 1], L2[0, 1]) = L∞[0, 1]. Moreover, the space Lψ[0, 1] is
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also not L2[0, 1]-perfect, that is, (Lψ)L
2L2

:= M(M(Lψ , L2), L2) 6= Lψ. This is because
(Lψ)L

2L2
= (L∞)L

2
= L2 6= Lψ.

2. On the space of pointwise multipliers M(E, F )

Let E and F be ideal Banach spaces in L0(Ω) with their norms ‖ · ‖E and ‖ · ‖F ,
respectively. The space of pointwise multipliers M(E, F ) is defined by

M(E, F ) = {x ∈ L0(Ω) : xy ∈ F for all y ∈ E} (1)

and the functional on it

‖x‖M(E,F ) = sup{‖xy‖F , y ∈ E, ‖y‖E ≤ 1} (2)

defines a complete semi-norm. It is a norm and M(E, F ) is an ideal Banach space if and
only if suppE = Ω, that is, E has a weak unit, i. e., x0 ∈ E such that x0 > 0 µ-a.e. on Ω
(in particular, E 6= {0}). In the case when F = L1 we have M(E,L1) = E ′, where E ′ is
the classical associated space to E or the Köthe dual space of E, and which is a Banach
function space provided suppE = Ω. Moreover, suppE ′ ⊂ suppE and they are equal if
‖ · ‖E has the Fatou null property (if xn ↑ x and ‖xn‖E = 0 for all n ∈ N, then ‖x‖E = 0).

Always E
1→֒ E ′′ and E ≡ E ′′ if and only if E has the Fatou property. Note that M(E, F )

can be {0} and it can be that suppM(E, F ) is smaller than suppE ∩ suppF (cf. Example
1(c) below).

The notation E ′ for the associated space to E is the reason why sometimes the space
M(E, F ) is denoted as EF . Banach ideal spaces for which E ≡ E ′′ are sometimes called
perfect spaces and therefore the Banach ideal space E is called F -perfect if E ≡ EFF .
For example, L∞ and F with suppF = Ω are F -perfect. Also EF is F -perfect provided
suppF = suppEF = Ω and E is L1-perfect if and only if E has the Fatou property.

General properties and several calculated concrete examples can be found in [5], [28]
[38] (see also [2], [9], [11], [12], [26], [27], [31], [39] and [42]). Let us collect some of these
properties and examples:

(i) If E0
C→֒ E1, then M(E1, F )

C→֒ M(E0, F ).

(ii) If F0
C→֒ F1, then M(E, F0)

C→֒ M(E, F1).

(iii) E
1→֒ EFF and this embedding follows from the Hölder-Rogers inequality

of the form
‖xy‖F ≤ ‖x‖E · sup‖z‖E≤1 ‖yz‖F = ‖x‖E · ‖y‖M(E,F )

for any x ∈ E and y ∈M(E, F ).
(iv) EF is F -perfect, that is, EF ≡ EFFF .

(v) The embedding L∞ C→֒ M(E, F ) holds if and only if E
C→֒ F .

(vi) If suppE = Ω, then M(E,E) ≡ L∞.

(vii) M(E, F )
1→֒M(F ′, E ′) ≡M(E ′′, F ′′). If F has the Fatou property, then

M(E, F ) ≡ M(F ′, E ′).

(viii) M(E, F )
1→֒ M(FG, EG) ≡M(EGG, FGG). If F is G-perfect, then

M(E, F ) ≡M(EGG, FGG).
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(ix) For 1 < p <∞ we have M(E(p), F (p)) ≡M(E, F )(p).
(x) We have equality ‖x‖M(E(w1),F (w2)) ≡ ‖w2

w1
x‖M(E,F ) for x ∈M(E(w1), F (w2)).

In particular, if suppE = Ω, then M(E(w1), E(w2)) ≡ L∞(w2/w1).
(xi) If F has the Fatou property, then M(E, F ) also has this property.

Example 1. (a) If 1 ≤ q < p < ∞, 1/r = 1/q − 1/p, E has the Fatou prop-
erty and supp E = Ω, then M(E(p), E(q)) ≡ E(r). In particular, M(E(p), E) ≡ E(p′),
M(Lp(µ), Lq(µ)) ≡ Lr(µ) and M(Lpw1

, Lqw2
) ≡ Lrw2/w1

for 1 ≤ q ≤ p ≤ ∞.

(b) Let 1 ≤ p < q <∞. If the measure µ is non-atomic, then M(Lp(µ), Lq(µ)) = {0}.
Moreover, M(lp, lq) ≡ l∞.

(c) Let Ω = [0, 2] with the Lebesgue measure m. If E = L1[0, 1] ⊕ L2[1, 2] with
‖x‖E = ‖x‖L1[0,1] + ‖x‖L2[1,2] and F = L2[0, 2], then M(E, F ) = L∞[1, 2].

(d) Let Ω = [0, 2] with the Lebesgue measure m. If E = L1[0, 1]⊕L∞[1, 2] with ‖x‖E =
‖x‖L1[0,1]+‖x‖L∞[1,2], then Ea = L1[0, 1], suppEa = [0, 1], suppE = [0, 2] and for any Young
functions ϕ, ϕ1 we have Eϕ = Lϕ[0, 1]⊕L∞[1, 2] and M(Eϕ1 , Eϕ) = M(Lϕ1 [0, 1], Lϕ[0, 1])⊕
L∞[1, 2].

We also need some results in the case of symmetric spaces. By a symmetric function
space (symmetric Banach function space) on I, where I = [0, 1] or I = [0,∞) with the
Lebesgue measure m, we mean a Banach ideal space E = (E, ‖ · ‖E) with the additional
property that for any two equimeasurable functions x ∼ y, x, y ∈ L0(I) (that is, they have
the same distribution functions dx = dy, where dx(λ) = m({t ∈ I : |x(t)| > λ}), λ ≥ 0)
and x ∈ E we have that y ∈ E and ‖x‖E = ‖y‖E. In particular, ‖x‖E = ‖x∗‖E , where
x∗(t) = inf{λ > 0: dx(λ) ≤ t}, t ≥ 0.

The fundamental function fE of a symmetric function space E on I is defined by
the formula fE(t) = ‖χ[0, t]‖E, t ∈ I. It is well-known that each fundamental function is
quasi-concave on I, that is, fE(0) = 0, fE(t) is positive, non-decreasing and fE(t)/t is
non-increasing for t ∈ (0, m(I)) or, equivalently, fE(t) ≤ max(1, t/s)fE(s) for all s, t ∈
(0, m(I)). Taking f̃E(t) := infs∈(0,m(I))(1 + t

s
)fE(s) we obtain that the function f̃E is

concave and fE(t) ≤ f̃E(t) ≤ 2fE(t) for all t ∈ I. For any quasi-concave function φ on I
the Marcinkiewicz function space Mφ is defined by the norm

‖x‖Mφ
= sup

t∈I
φ(t) x∗∗(t), x∗∗(t) =

1

t

∫ t

0

x∗(s)ds.

This is a symmetric Banach function space on I with the fundamental function fMφ
(t) =

φ(t) and E
1→֒ MfE since

x∗∗(t) ≤ 1

t
‖x∗‖E‖χ[0,t]‖E′ = ‖x‖E

1

fE(t)
for any t ∈ I. (3)

The fundamental function of a symmetric function space E = (E, ‖ · ‖E) is not necessary
concave but we can introduce an equivalent norm on E in such a way that the fundamental
function will be concave. In fact, for the fundamental function fE of E consider the new
norm on E defined by formula

‖x‖1E = max(‖x‖E , ‖x‖M
f̃E

), x ∈ E.
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Then ‖x‖E ≤ ‖x‖1E ≤ max(‖x‖E, 2‖x‖MfE
) ≤ 2‖x‖E . Moreover,

‖χ[0,t]‖1E = max(fE(t), f̃E(t)) = f̃E(t)

and (E, ‖ · ‖1E) is a symmetric Banach function space with concave fundamental function
(cf. Zippin [44], Lemma 2.1).

For any symmetric function space E with concave fundamental function fE there is
also a smallest symmetric space with the same fundamental function. This space is the
Lorentz function space given by the norm

‖x‖ΛfE =

∫

I

x∗(t)dfE(t) = fE(0+)‖x‖L∞(I) +

∫

I

x∗(t)f ′
E(t)dt.

We have then embeddings

ΛfE

1→֒ E
1→֒ MfE ,

and all fundamental functions are fE .
Any non-trivial symmetric function space E on I (E is non-trivial if E 6= {0}) is

intermediate space between the spaces L1(I) and L∞(I). More precisely,

L1(I) ∩ L∞(I)
C1→֒ E

C2→֒ L1(I) + L∞(I),

where C1 = 2fE(1), C2 = 1/fE(1) and ‖x‖L1∩L∞ = max(‖x‖L1, ‖x‖L∞), ‖x‖L1+L∞ =

inf {‖x0‖L1 + ‖x1‖L∞ : x = x0 + x1, x0 ∈ L1, x1 ∈ L∞} =
∫ 1

0
x∗(s)ds (see [21], Theorem

4.1). In particular, supp E = I.
A symmetric function space E on I has the majorant property if for all x ∈ L0, y ∈ E,

the condition
∫ t

0
x∗(s) ds ≤

∫ t

0
y∗(s) ds for all t ∈ I implies that x ∈ E and ‖x‖E ≤ ‖y‖E.

Every symmetric function space with the Fatou property or separable symmetric function
space have the majorant property. More information about symmetric spaces on I =
[0,∞) can be found in the book [21].

Theorem 1. Let E and F be non-trivial symmetric function spaces on I.

(i) Then the space of multipliers M(E, F ) is a symmetric function space on I.

Moreover, if the symmetric spaces E, F are on I = [0, 1], then M(E, F ) 6= {0} if
and only if E →֒ F .

(ii) If F has the majorant property, then M(E, F ) has also majorant property and

‖x‖M(E,F ) = sup
‖y‖E≤1

‖x∗y∗‖F . (4)

(iii) We have fM(E,F )(t) ≥ sup0<s≤t
fF (s)
fE(s)

for all 0 < t < m(I), and if fF is a concave

function with fF (0+) = 0, then

fM(E,F )(t) ≤
∫ t

0

f ′
F (s)

fE(s)
ds for all t ∈ (0, m(I)). (5)
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If, in addition, fF (t)
fE(t) ta

is a non-decreasing function on (0, b) for some a > 0 and

b ∈ (0, m(I)), then

fF (t)

fE(t)
≤ fM(E,F )(t) ≤

1

a

fF (t)

fE(t)
for all t ∈ (0, b). (6)

In the case when fF is only quasi-concave function, then we should multiply the right
sides of inequality (5) and (6) by constant 2.

(iv) If fE is a concave function on I with fE(0+) = 0, then

fM(ΛfE ,F )(t) = sup
s≤t

fF (s)

fE(s)
for all t ∈ I,

provided the last supremum is finite.

(v) Let φ, ψ be concave functions on I, φ(0+) = ψ(0+) = 0 and denote φ1(t) = t
ψ(t)

.

Then Mφ1

C→֒ Λφ with optimal constant C > 0 if and only if C =
∫

I
ψ′(s)φ′(s) ds <

∞. Moreover, M(Mφ1 ,Λφ) ≡ Λη, where η(t) =
∫ t

0
ψ′(s)φ′(s) ds and η(t) < ∞ for

t ∈ I.

Before the proof of Theorem 1 we give the embedding results of independent interest.

Proposition 1. Let E and F be non-trivial symmetric function spaces on I.

(i) If either I = [0, 1] or I = [0,∞) and M(E, F ) 6= {0}, then χC ∈ M(E, F ) for each
set C ⊂ I with m(C) <∞.

(ii) If I = [0, 1], then M(E, F ) 6= {0} if and only if E →֒ F .

(iii) If I = [0,∞) and there exists x ∈ M(E, F ) with x∗(∞) = limt→∞ x∗(t) > 0, then
E →֒ F .

(iv) If I = [0,∞) and M(E, F ) 6= {0}, then Efin ⊂ F , where Efin is the space of elements
from E with supports having finite measure.

Proof of Proposition 1. (i) Let 0 6= x ∈ M(E, F ). Then there are a δ > 0 and a
measurable set A ⊂ I with 0 < m(A) <∞ such that

δ χA ≤ |x|χA.
Thus χA ∈ M(E, F ). We will prove that χB ∈ M(E, F ) for each B ⊂ I with m(B) =
m(A). There is a measure preserving transformation ω : A→ B such that ω(A) = B (cf.
[37], Theorem 17, p. 410). Then χA = χB(ω) and for any y ∈ E

y(ω)χA = y(ω)χB(ω) ∼ y χB,

where y(ω)χA is a function on I defined as y(ω(t)) if t ∈ A and 0 if t /∈ A. In fact, for
any λ > 0 we have

m({t ∈ I : |y(w(t))χA(t)| > λ}) = m({t ∈ A : |y(w(t))| > λ})
= m(ω−1({s ∈ B : |y(s)| > λ}))
= m({s ∈ B : |y(s)| > λ})
= m({s ∈ I : |y(s)χB(s)| > λ}).
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Since χA ∈ M(E, F ) and E is symmetric it follows that y(ω)χA ∈ F . Consequently, by
symmetry of F we have y χB ∈ F . If C ⊂ I, then using the fact that measure is non-
atomic we can write C as a finite sum of disjoint sets Bk such that m(Bk) = m(A), k =
1, 2, . . . , n− 1 and m(Bn) ≤ m(A). Then χC = χ∪nk=1Bk

=
∑n

k=1 χBk ∈M(E, F ).
(ii) The sufficiency follows from general properties (i) and (vi) since the embedding

E →֒ F gives that M(E, F ) ←֓ M(F, F ) = L∞. We need to prove necessity. If M(E, F ) 6=
{0}, then by (i) χ[0,1] ∈M(E, F ). Therefore if x ∈ E, then x = xχ[0,1] ∈ F .

(iii) Let x ∈M(E, F ) be such that x∗(∞) > 0. Then the set

A = {t ∈ I : |x(t)| ≥ x∗(∞)/2}

has infinite measure. Let y ∈ E be arbitrary. Assume for the moment that there exists
a measure preserving transformation ω : A → I such that ω(A) = I. Then y(ω)χA ∼ y.
Hence, by the symmetry of E, we obtain y(ω)χA ∈ E and so x y(ω)χA ∈ F because
x ∈M(E, F ). However,

x∗(∞)

2
|y(ω)|χA ≤ |x y(ω)|χA ∈ F,

that is, y(ω)χA ∈ F and also y ∈ F by symmetry of F . The only left is to show that
there exists a measure preserving transformation ω : A → I such that ω(A) = I. Since
m(A) =∞ and Lebesgue measure is σ-finite and non-atomic we can write A as a countable
sum of disjoint subsets (An)∞n=1 of A, each of measure 1. Using the fact that there are
measure preserving transformations ωn : An → [n − 1, n) such that ω(An) = [n − 1, n)
(cf. [37], Theorem 17, p. 410) we can define mapping ω : A → I such that ω(A) = I
by taking ω(t) := ωn(t) if t ∈ An (n = 1, 2, . . .). Observe that ω is a measure preserving
transformation because for any B ⊂ I we have

m(ω−1(B)) = m

[

ω−1

( ∞
⋃

n=1

(B ∩ [n− 1, n))

)]

= m

[ ∞
⋃

n=1

ω−1
n (B ∩ [n− 1, n))

]

=
∞
⋃

n=1

m[ω−1
n (B ∩ [n− 1, n))] =

∞
⋃

n=1

m(B ∩ [n− 1, n)) = m(B).

(iv) If M(E, F ) 6= {0} and y ∈ Efin, then by Proposition 1(i) we obtain χsupp y ∈
M(E, F ), which implies y ∈ F .

Remark 1. Note that Efin needs not be complete therefore the inclusion Efin ⊂ F
is not continuous, in general. However, for any d > 0 there exists a constant c = c(d) > 0

such that E |A
c→֒ F |A for each A ⊂ I with m(A) = d, that is, ‖xχA‖F ≤ c‖xχA‖E for

x ∈ E.
Of course, E |A

c→֒ F |A for each A with m(A) < ∞, but we need to show that c
depends only on d, not on A. Suppose, on the contrary, that there is sequence (An)

of sets with m(An) = d and E |An
cn→֒ F |An, where cn → ∞ and cn can not be taken

smaller. Choose c so that E |[0,d]
c→֒ F |[0,d] . Moreover, since cn were optimal, one can find
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a sequence (xn) ∈ ∏E |An with ‖xn‖E = 1 such that cn
2
‖xn‖E ≤ ‖xn‖F . But for each

n ∈ N one has x∗n ∈ E |[0,d] by symmetry of E and finally

∞← cn
2
‖x∗n‖E|[0,d] =

cn
2
‖xn‖E|An ≤ ‖xn‖F |An = ‖x∗n‖F |[0,d] ≤ c‖x∗n‖E|[0,d] = c,

and this contradiction proves the claim.

Remark 2. The proof of the embedding in Proposition 1(i) can also be found in [1,
Theorem 1] or [16, Lemma 5.2], where the authors showed more general results from which,
in particular, it follows that the existence of a nonzero pointwise multiplier necessarily
implies that E →֒ F . However, our proof is much simpler. Moreover, the inclusion in
Proposition 1(iii) is proved in [1, Corollary 9] and in [9, Lemma 6.1] but the authors used
the fact that M(E, F ) is already a symmetric space which we want to prove here.

Example 2. For symmetric spaces on I = [0,∞) the relation M(E, F ) 6= {0} can
happen even if we don’t have an embedding E ⊂ F . In fact, for E = L2 and F = L2 ∩L1

on I = [0,∞) we have E 6⊂ F but

M(E, F ) = M(L2, L2 ∩ L1) ≡ L∞ ∩ L2.

Proof of Theorem 1. (i) Let I = [0, 1]. Assume that x ∼ z and 0 6= z ∈ M(E, F ). By
[21, Lemma 2.1, p. 60] (cf. also [6], p. 777) for any ǫ > 0 there is a measure-preserving
mapping ω : [0, 1]→ [0, 1] such that

‖x(ω)− z‖L∞ ≤ ε.

Moreover, Proposition 1(ii) guarantees that E
C→֒ F . Thus, for every y ∈ E, ‖y‖E ≤ 1,

we have

‖xy‖F = ‖x(ω)y(ω)‖F ≤ ‖zy(ω)‖F + ‖[x(ω)− z] y(ω)‖F
≤ ‖zy(ω)‖F + ε‖y(ω)‖F ≤ ‖zy(ω)‖F + Cε‖y(ω)‖E
≤ ‖z‖M(E,F ) + Cε.

Taking the supremum over all such y, we obtain

‖x‖M(E,F ) ≤ ‖z‖M(E,F ) + Cε,

or, since ε > 0 is arbitrary, ‖x‖M(E,F ) ≤ ‖z‖M(E,F ). The reverse inequality can be proved
similarly and the proof is complete in the case when I = [0, 1].

Let I = [0,∞). We divide the proof into two parts.

A. Suppose x ∈M(E, F ) and x∗(∞) > 0. Set

x1(t) := max(|x(t)|, x∗(∞)), t ∈ I.

Then, for any y ∈ E, we obtain x y ∈ F and x∗(∞) y ∈ F since by Proposition 1(iii) we
have imbedding E ⊂ F . Thus x1 y ∈ F for any y ∈ E and whence x1 ∈ M(E, F ). We
will prove that

‖x‖M(E,F ) = ‖x1‖M(E,F ). (7)
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Clearly, it is enough to show that ‖x‖M(E,F ) ≥ ‖x1‖M(E,F ). Let ε > 0 be arbitrary. We
can find y ∈ E with ‖y‖E ≤ 1 such that

(1− ε)‖x1‖M(E,F ) ≤ ‖x1 y‖F .

Consider two sets

A := {t ∈ I : (1− ε) x∗(∞) ≤ |x(t)| ≤ (1 + ε) x∗(∞)},

and
B := {t ∈ I : |x(t)| > (1 + ε) x∗(∞)}.

Then
x1 χB = |x|χB, m(A) =∞, and x1 χA ≥ |x|χA ≥ (1− ε) x1 χA.

Similarly as in the proof of the case (iii) of Proposition 1 we can find measure preserving
transformation ω0 : A→ I\B such that ω0(A) = I\B. Define ω : A ∪ B → I by

ω(t) :=

{

ω0(t), if t ∈ A,
t, if t ∈ B.

Then ω is measure preserving transformation and ω(A∪B) = I. Moreover, y(ω)χA∪B ∼ y
and

|x y(ω)|χA∪B = |x y(ω)|χA + |x y(ω)|χB
≥ (1− ε) x1 |y(ω)|χA + x1 |y(ω)|χB
≥ (1− ε) x1 |y(ω)|χA∪B.

On the other hand, since y(ω0)χA ∼ y χI\B it follows that

dx1y = dx1yχB + dx1yχI\B ≤ dx1yχB + d(1+ε)x∗(∞) yχI\B

= dx1yχB + d(1+ε)x∗(∞) y(ω0)χA

≤ d(1+ε)x1y(ω)χB + d(1+ε)x1y(ω0)χA

= d(1+ε)x1y(ω)χA∪B
.

Thus, (x1 y)∗(t) ≤ [(1 + ε) x1 y(ω)χA∪B]∗(t) and

(1− ε)‖x1‖M(E,F ) ≤ ‖x1 y‖F ≤ (1 + ε)‖x1 y(ω)χA∪B‖F
≤ 1 + ε

1− ε ‖x y(ω)χA∪B‖F ≤
1 + ε

1− ε ‖x‖M(E,F ),

which means that

‖x1‖M(E,F ) ≤
1 + ε

(1− ε)2 ‖x‖M(E,F ),

or, since ε > 0 is arbitrary, ‖x1‖M(E,F ) ≤ ‖x‖M(E,F ).
Let z ∼ x. Then z1 ∼ x1, where x1 ∈ M(E, F ) and z1(t) = max(|z(t)|, z∗(∞)), t ∈ I.

We may follow the proof of (i), applying Lemma 2.1, p. 60 in [21], to conclude that
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z1 ∈M(E, F ) and ‖x1‖M(E,F ) = ‖z1‖M(E,F ). Clearly, z1 ≥ |z| and so z ∈M(E, F ). Using
then equality (7) we obtain

‖x‖M(E,F ) = ‖x1‖M(E,F ) = ‖z1‖M(E,F ) = ‖z‖M(E,F ),

and symmetry of M(E, F ) is proved.

B. Assume x∗(∞) = 0 and 0 6= x ∈ M(E, F ). Take any z ∼ x. Then, by [21, Lemma
2.1, p. 60], for any ǫ > 0 there is a measure-preserving mapping ω : I → I such that

‖x− z(ω)‖L1∩L∞ < ε,

and, for any y ∈ E, ‖y‖E ≤ 1, we have

‖zy‖F = ‖z(ω)y(ω)‖F ≤ ‖xy(ω)‖F + ‖[z(ω)− x] y(ω)‖F
≤ ‖x‖M(E,F ) + ‖[z(ω)− x] y(ω)‖F .

Since ‖y(ω)‖E ≤ 1, then, by using Lemma 1 proved below, we can find a decomposition
y(ω) = u + v such that u ∈ E,m(supp u) ≤ 1 and v ∈ E ∩ L∞ with ‖v‖L∞ ≤ 1

fE(1)
.

Therefore, applying Proposition 1(iv) on inclusion Efin ⊂ F , we obtain

‖zy‖F ≤ ‖x‖M(E,F ) + ‖[z(ω)− x] [u+ v]‖F
≤ ‖x‖M(E,F ) + ‖[z(ω)− x] u‖F + ‖[z(ω)− x] v‖F
≤ ‖x‖M(E,F ) + ‖z(ω)− x‖L1∩L∞ ‖u‖F + ‖[z(ω)− x] v‖F
≤ ‖x‖M(E,F ) + ε ‖u‖F + ‖v‖L∞‖z(ω)− x‖F
≤ ‖x‖M(E,F ) + ε ‖u‖F +

1

fE(1)
‖z(ω)− x‖L1∩L∞ · 2fF (1)

= ‖x‖M(E,F ) + ε ‖u‖F + 2ε
fF (1)

fE(1)
.

Using Remark 1 we have ‖u‖F ≤ c‖u‖E since m(suppu) ≤ 1 and, hence,

‖zy‖F ≤ ‖x‖M(E,F ) + ε c‖u‖E + 2ε
fF (1)

fE(1)
≤ ‖x‖M(E,F ) + ε c+ 2ε

fF (1)

fE(1)
.

Taking the supremum over all y ∈ E, ‖y‖E ≤ 1, we obtain

‖z‖M(E,F ) ≤ ‖x‖M(E,F ) + ε c+ 2ε
fF (1)

fE(1)
,

and since ε > 0 is arbitrary ‖z‖M(E,F ) ≤ ‖x‖M(E,F ). The reversed inequality can be proved
similarly turning the roles of both functions and the proof is complete.

Lemma 1. Let E be a symmetric space on [0,∞). If y ∈ E and ‖y‖E ≤ 1, then we
can find a decomposition y = u + v such that u ∈ E, ‖u‖E ≤ 1 with m(supp u) ≤ 1 and
v ∈ E ∩ L∞ with ‖v‖L∞ ≤ 1/fE(1).
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Proof of Lemma 1. If either y∗(1) > y∗(∞) ≥ 0 or y∗(1) = y∗(∞) > 0, then we can
take y = u+ v, where u = yχA and v = yχI\A with A = {s > 0 : |y(s)| > y∗(1)}. In fact,
m(A) ≤ 1 and

‖v‖L∞ ≤ y∗(1) ≤
∫ 1

0

y∗(t)dt ≤ ‖y‖E‖χ[0,1]‖E′ ≤ 1/fE(1).

If y∗(1) = y∗(∞) = 0 and Asupp y, then m(A) = t for some 0 < t ≤ 1. Then y = yχA + 0
is such a decomposition.

Proof of Theorem 1. (ii) Let x ∈M(E, F ), y ∈ E. By Theorem 1(i) and symmetry of
E we have x∗ ∈M(E, F ), y∗ ∈ E and thus x∗y∗ ∈ F . Moreover,

sup
‖y‖E≤1

‖x∗y∗‖F = sup
‖y∗‖E≤1

‖x∗y∗‖F

≤ sup
‖z‖E≤1

‖x∗z‖F = ‖x∗‖M(E,F ).

On the other hand, since a symmetric space F has the majorant property and

∫ t

0

(xy)∗(s)ds = sup
m(A)=t

∫

A

|x(s)y(s)|ds ≤
∫ t

0

x∗(s)y∗(s)ds for all t ∈ I,

it follows that ‖xy‖F ≤ ‖x∗y∗‖F and, hence,

‖x‖M(E,F ) = sup
‖y‖E≤1

‖xy‖F ≤ sup
‖y‖E≤1

‖x∗y∗‖F ≤ ‖x∗‖M(E,F ) = ‖x‖M(E,F ),

where the last equality follows from (i), that is, from symmetry of M(E, F ) and equality
(4) is proved.

We show that if F has the majorant property, then M(E, F ) has it as well. Let
x ∈M(E, F ), z ∈ L0 and

∫ t

0

z∗(s) ds ≤
∫ t

0

x∗(s) ds

for all t ∈ I. By Hardy lemma

∫ t

0

z∗(s) y∗(s) ds ≤
∫ t

0

x∗(s) y∗(s) ds (8)

for all t ∈ I and each y ∈ E. Since, by (i), M(E, F ) is symmetric it follows that
x∗ ∈ M(E, F ). Then x∗y∗ ∈ F for each y ∈ E. The majorant property of F and
inequality (8) give z∗y∗ ∈ F . Following analogously as above and applying majorant
property of F we obtain zy ∈ F . Thus, z ∈ M(E, F ) and by (8) ‖z∗y∗‖F ≤ ‖x∗y∗‖F .
Taking the supremum over all y ∈ E with ‖y‖E ≤ 1 we have ‖z‖M(E,F ) ≤ ‖x‖M(E,F ),
which shows the majorant property of M(E, F ).

(iii) For any t ∈ I we have

fM(E,F )(t) = sup
‖y‖E≤1

‖y χ[0,t]‖F ≥ sup
s∈I
‖ χ[0,s]

fE(s)
χ[0,t]‖F = sup

s≤t

fF (s)

fE(s)
.
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On the other hand, if fF is a concave function and fF (0+) = 0, then by the general

properties (i) and (ii) we have M(MfE ,ΛfF )
1→֒ M(E, F ) and, hence,

fM(E,F )(t) ≤ fM(MfE
,ΛfF )(t) = sup

‖y‖MfE≤1

‖yχ[0,t]‖ΛfF

≤ sup
y∗≤1/fE

∫ t

0

y∗(s)dfF (s) ≤
∫ t

0

f ′
F (s)

fE(s)
ds.

If, in addition, we have monotonicity assumption on fF (t)
fE(t) ta

, then, by using the fact that

f ′
F (s) ≤ fF (s)/s for almost all s ∈ I, we obtain for t ∈ (0, b)

∫ t

0

f ′
F (s)

fE(s)
ds ≤

∫ t

0

fF (s)

s fE(s)
ds =

∫ t

0

fF (s)

fE(s) sa
sa−1ds

≤ fF (t)

fE(t) ta

∫ t

0

sa−1ds =
1

a

fF (t)

fE(t)
.

(iv) The estimation follows from the equality ‖x∗‖M(ΛfE ,F ) = sups∈I
‖x∗χ[0,s]‖F
fE(s)

proved

in [28, Theorem 3] since then

fM(ΛfE ,F )(t) = sup
s∈I

‖χ[0,t]χ[0,s]‖F
fE(s)

= sup
s≤t

fF (s)

fE(s)
.

(v) First we show the equivalence. Suppose
∫

I
ψ′(s)φ′(s) ds = C <∞. If ‖x‖Mφ1

≤ 1,
then for all 0 < t < m(I)

1

ψ(t)

∫ t

0

x∗(s) ds =
φ1(t)

t

∫ t

0

x∗(s) ds ≤ 1,

whence
∫ t

0

x∗(s)ds ≤ ψ(t) =

∫ t

0

ψ′(s)ds

for each t ∈ I. Thus, by Hardy lemma (see Proposition 3.6, p. 56 in [21]),

∫

I

x∗(s)φ′(s) ds ≤
∫

I

ψ′(s)φ′(s) ds = C (9)

and so ‖x‖Λφ ≤ C, which means that Mφ1

C→֒ Λφ. Moreover,

‖ψ′‖Mφ1
= sup

t∈I
φ1(t) (ψ′)

∗∗
(t) = sup

t∈I

1

ψ(t)

∫ t

0

ψ′(s) ds = 1. (10)

Note that for x = x∗ = ψ′ we have equality in estimate (9), that is, C is optimal.

Suppose, conversely, Mφ1

C→֒ Λφ with optimal constant C. Then

∫

I

ψ′(s)φ′(s) ds ≤ c ‖ψ′‖Mφ1
= C. (11)
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Moreover, if x = x∗ and ‖x‖Mφ1
= 1, then 1 = supt∈I

φ1(t)
t

∫ t

0
x(s) ds, whence

∫ t

0
x(s) ds ≤

ψ(t) =
∫ t

0
ψ′(s) ds for any t ∈ I. By Hardy lemma,

∫ t

0
x(s)φ′(s) ds ≤

∫ t

0
ψ′(s)φ′(s) ds for

each t ∈ I. Consequently

‖x‖Λφ =

∫

I

x(s)φ′(s) ds ≤
∫ t

0

ψ′(s)φ′(s) ds

for any x ∈Mφ1 with ‖x‖Mφ1
= 1. Thus

‖x‖Λφ ≤
∫ t

0

ψ′(s)φ′(s) ds ‖x‖Mφ1
,

for all x ∈Mφ1 . But C ≤
∫

I
ψ′(s)φ′(s) ds, because C is optimal, which together with (11)

gives the equality C =
∫ t

0
ψ′(s)φ′(s) ds.

The equality of spaces follows from the following facts: if x∗ ∈ M(Mφ1 ,Λφ) and since
‖ψ′‖Mφ1

= 1 we obtain x∗ψ′ ∈ Λφ or
∫

I

(x∗ψ′)∗(s)φ′(s) ds =

∫

I

x∗(s)ψ′(s)φ′(s) ds ≤ ‖x∗‖M(Mφ1
,Λφ),

and, thus, ‖x‖Λη ≤ ‖x∗‖M(Mφ1
,Λφ). On the other hand, if x ∈ Λη and ‖y‖Mφ1

≤ 1 is

arbitrary or, equivalently,
∫ t

0
y∗(s) ds ≤ ψ(t) =

∫ t

0
ψ′(s) ds for all t ∈ I, then, by the

Hardy inequality,
∫

I

x∗(s)y∗(s)φ′(s) ds ≤
∫

I

x∗(s)ψ′(s)φ′(s) ds = ‖x‖Λη .

Thus ‖xy‖Λφ ≤ ‖x‖Λη for any ‖y‖Mφ1
≤ 1 and so ‖x∗‖M(Mφ1

,Λφ) ≤ ‖x‖Λη . The proof is
complete.

Example 3. A special case of symmetric spaces for which we can calculate the
fundamental function of their space of multipliers was given in [15, Example 4.2] and we
give a short proof of this result. Let E →֒ F be two ultrasymmetric spaces on [0, 1] with
the same parameter G̃, that is,

‖x‖E = ‖fE(t)x∗(t)‖G̃, ‖x‖F = ‖fF (t)x∗(t)‖G̃,
where G̃ is a symmetric space on (0, 1) with respect to the measure dt/t (see Pustylnik
[33] and Astashkin-Maligranda [7]). Then

fM(E,F )(t) = sup
0<s≤t

fF (s)

fE(s)
for all t ∈ (0, 1]. (12)

In fact, for any ‖x‖E ≤ 1 we have

‖xχ[0,t]‖F = ‖fF (xχ[0,t])
∗‖G̃ ≤ ‖fFx∗χ[0,t]‖G̃ = ‖fF

fE
fEx

∗χ[0,t]‖G̃

≤ sup
0<s≤t

fF (s)

fE(s)
‖fEx∗χ[0,t]‖G̃ ≤ sup

0<s≤t

fF (s)

fE(s)
,

and the reverse estimate is always true by Theorem 1(iii). Thus we obtain equality (12).
Another example of spaces with equality (12) will be given in Example 9.
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3. Some properties of Young functions

To state and prove our main results we will need to define some subclasses of Young
functions, an inverse of Young function and their properties. We write ϕ > 0 when aϕ = 0
and ϕ <∞ if bϕ =∞. Define the sets of Young functions Y (i), for i = 1, 2, 3, as

Y (1) = {ϕ : bϕ =∞} ,
Y (2) = {ϕ : bϕ <∞ and ϕ (bϕ) =∞} ,
Y (3) = {ϕ : bϕ <∞ and ϕ (bϕ) <∞} .

For an Young function ϕ we define its right-continuous inverse in a generalized sense by
the formula (cf. O’Neil [32]):

ϕ−1(v) = inf{u ≥ 0 : ϕ(u) > v} for v ∈ [0,∞) and ϕ−1(∞) = lim
v→∞

ϕ−1(v). (13)

Note that {u ≥ 0 : ϕ (u) > v} 6= ∅ for each v ∈ [0,∞).
We will often use properties of an Young function ϕ and its generalized inverse ϕ−1.

Therefore let us collect these properties here.

Lemma 2. We have

(i) ϕ(ϕ−1(u)) ≤ u for all u ∈ [0,∞) and u ≤ ϕ−1(ϕ(u)) if ϕ(u) <∞.

(ii) ϕ−1(ϕ(u)) = u for aϕ ≤ u ≤ bϕ if bϕ <∞ and ϕ (bϕ) <∞.

(iii) ϕ−1(ϕ(u)) = u for aϕ ≤ u < bϕ if either bϕ =∞ or bϕ <∞ and ϕ (bϕ) =∞.

(iv) ϕ−1(ϕ(u)) > u for 0 ≤ u < aϕ.

(v) ϕ−1(ϕ(u)) < u for u > bϕ.

(vi) ϕ(ϕ−1(u)) = u if u ∈ [0,∞) and ϕ ∈ Y (1) ∪ Y (2).

(vii) ϕ(ϕ−1(u)) = u if u ∈ [0, u0] and ϕ ∈ Y (3), where u0 = inf {u > 0 : ϕ−1(u) = bϕ}.
(viii) ϕ(ϕ−1(u)) < u if u > u0 and ϕ ∈ Y (3), where u0 = inf {u > 0 : ϕ−1(u) = bϕ}.

Note that (i) follows from (vi)–(viii) and (ii)–(iv).

We will use also the following notations: the symbol ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments
[for large arguments] (for small arguments) means that there is a constant C > 0 [there
are constants C, u0 > 0] (there are constants C, u0 > 0) such that the inequality

Cϕ−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) (14)

holds for all u > 0 [for all u ≥ u0] (for all 0 < u ≤ u0), respectively.

The symbol ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for all arguments [for large arguments] (for small argu-
ments) means that there is a constant D > 0 [there are constants D, u0 > 0] (there are
constants D, u0 > 0) such that the inequality

ϕ−1(u) ≤ Dϕ−1
1 (u)ϕ−1

2 (u) (15)

holds for all u > 0 [for all u ≥ u0] (for all 0 < u ≤ u0), respectively.
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The symbol ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments [for large arguments] (for small argu-
ments) means that ϕ−1

1 ϕ−1
2 ≺ ϕ−1 and ϕ−1 ≺ ϕ−1

1 ϕ−1
2 , that is provided there are constants

C,D > 0 [there are constants C,D, u0 > 0] (there are constants C,D, u0 > 0) such that
the inequalities

Cϕ−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) ≤ Dϕ−1
1 (u)ϕ−1

2 (u)

hold for all u > 0 [for all u ≥ u0] (for all 0 < u ≤ u0), respectively.

Lemma 3. (i) If ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments, then

(a) for any 0 < u1 < u0 there are contants C1 ≤ C,D1 ≥ D such that

C1ϕ
−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) ≤ D1ϕ
−1
1 (u)ϕ−1

2 (u) for any u ≥ u1. (16)

(b) bϕ <∞ if and only if bϕ1 <∞ and bϕ2 <∞.

(ii) If ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments, then

(a) for any u1 > u0 there are contants C1 ≤ C,D1 ≥ D such that

C1ϕ
−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) ≤ D1ϕ
−1
1 (u)ϕ−1

2 (u) for any 0 < u ≤ u1. (17)

(b) aϕ = 0 if and only if aϕ1 = 0 or aϕ2 = 0.

Proof. (i). In order to prove (a) it is enough to take

C1 = min

{

C, inf
u1≤u≤u0

ϕ−1(u)

ϕ−1
1 (u)ϕ−1

2 (u)

}

and D1 = max

{

D, sup
u1≤u≤u0

ϕ−1(u)

ϕ−1
1 (u)ϕ−1

2 (u)

}

.

We prove (ii),(b). Necessity. Suppose aϕ = 0 and aϕ1 > 0 or aϕ2 > 0. Taking un → 0 we
get that ϕ−1

1 (un)ϕ−1
2 (un)→ aϕ1aϕ2 > 0 and ϕ−1 (un)→ 0, a contradiction with inequality

(14). Sufficiency. If aϕ1 = 0 and aϕ > 0, then ϕ−1
1 (un)ϕ−1

2 (un) → 0 and ϕ−1(un) → aϕ,
a contradiction with inequality (15). The case aϕ2 = 0 and aϕ > 0 can be proved in an
analogous way.

The proofs of (i),(b) and (ii),(a) are similar.

4. On the inclusion Eϕ2 →֒ M (Eϕ1 , Eϕ)

We will consider the question when the product xy ∈ Eϕ provided x ∈ Eϕ1 and
y ∈ Eϕ2 .

THEOREM 2. Suppose E is a Banach ideal space with the Fatou property and ϕ, ϕ1

and ϕ2 are Young functions. Assume also that at least one of the following conditions
holds:

(i) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments.

(ii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments and L∞ →֒ E.

(iii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for small arguments and E →֒ L∞.

Then, for every x ∈ Eϕ1 and y ∈ Eϕ2 the product xy ∈ Eϕ, which means that Eϕ2 →֒
M (Eϕ1 , Eϕ) .
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Proof. (i). It is well-known that inequality (14) implies

ϕ (Cuv) ≤ ϕ1 (u) + ϕ2 (v) (18)

for each u, v > 0 with ϕ1 (u) , ϕ2 (v) < ∞ (cf. O’Neil [32]). In fact, taking w =
max [ϕ1 (u) , ϕ2 (v)], we obtain

uv ≤ ϕ−1
1 (ϕ1(u))ϕ−1

2 (ϕ2(v)) ≤ ϕ−1
1 (w)ϕ−1

2 (w) ≤ 1

C
ϕ−1(w),

so that ϕ (Cuv) ≤ ϕ(ϕ−1(w)) ≤ w ≤ ϕ1(u) + ϕ2(v). Then, taking any x ∈ Eϕ1 and
y ∈ Eϕ2 with ‖x‖ϕ1 = ‖y‖ϕ2 = 1, we obtain

Iϕ

(

Cxy

2

)

≤ 1

2
Iϕ (Cxy) ≤ 1

2
[Iϕ1 (x) + Iϕ2 (y)] ≤ 1.

This means that ‖xy‖Eϕ ≤ 2
C
‖x‖Eϕ1 ‖y‖Eϕ2 for any x ∈ Eϕ1 and y ∈ Eϕ2 , and so Eϕ2

2/C→֒
M (Eϕ1 , Eϕ).

(ii) Set u1 = 1
‖χΩ‖E . Let C1 = C1 (u1) be the corresponding number from (16). Then,

analogously as in (i), we conclude

ϕ (C1uv) ≤ ϕ1(u) + ϕ2(v)

for each u, v > 0 with ϕ1(u), ϕ2(v) < ∞ and max {ϕ1(u), ϕ2(v)} ≥ u1. Let x ∈ Eϕ1 , y ∈
Eϕ2 with ‖x‖ϕ1 = ‖y‖ϕ2 = 1 and

A = {t ∈ Ω : max [ϕ1(|x(t)|), ϕ2(|y(t)|)] ≥ u1} , and B = Ω\A.

Then

Iϕ

(

C1xy

3
χA

)

≤ 1

3
[Iϕ1(xχA) + Iϕ2(yχA)] ≤ 2

3
.

Since Iϕ1(x) ≤ 1 it follows that ϕ1(|x(t)|) <∞ for µ-a.e. t ∈ Ω and, consequently,

|x(t)| ≤ ϕ−1
1 (ϕ1(|x(t)|)) ≤ ϕ−1

1 (u1) for each t ∈ B.

Analogously, |y(t)| ≤ ϕ−1
2 (u1). Then, by (16), we obtain

Iϕ(C1xyχB) ≤ Iϕ(C1ϕ
−1
1 (u1)ϕ

−1
2 (u1)χB) ≤ ϕ(ϕ−1(u1))‖χΩ‖E ≤ u1‖χΩ‖E = 1.

Finally,

Iϕ

(

C1xy

3

)

≤ Iϕ

(

C1xy

3
χA

)

+
1

3
Iϕ (C1xy χB) ≤ 2

3
+

1

3
= 1,

and, thus, ‖xy‖Eϕ ≤ 3
C1
. Consequently, ‖xy‖Eϕ ≤ 3

C1
‖x‖Eϕ1‖y‖Eϕ2 for any x ∈ Eϕ1 and

y ∈ Eϕ2 . Thus Eϕ2

3/C1→֒ M (Eϕ1 , Eϕ).

(iii) Assume that E
A→֒ L∞. We then follow analogously as above case (i) showing

Eϕ2

2/C1→֒ M (Eϕ1 , Eϕ), where C1 = C1(A) is from (17) for u1 = A and A is such that
ess sup

t∈Ω
|ϕ(u(t))| ≤ A for any u ∈ Eϕ with ‖u‖Eϕ ≤ 1.
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The next result shows the necessity of the estimate ϕ−1
1 ϕ−1

2 ≺ ϕ−1 in Theorem 2.

THEOREM 3. Let E be a Banach function space with the Fatou property and let
ϕ, ϕ1, ϕ2 be Young functions. Suppose

Eϕ2 →֒M (Eϕ1 , Eϕ) . (19)

(i) If Ea 6= {0}, then ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments.

(ii) If suppEa = suppE and L∞ 6 →֒ E, then ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments.

Proof. (i) Suppose the condition ϕ−1
1 ϕ−1

2 ≺ ϕ−1 is not satisfied for large arguments.
This means that there exists a sequence (un) with un ր∞ such that, for any n ∈ N,

ϕ−1
1 (un)ϕ−1

2 (un) ≥ 2nϕ−1(un). (20)

We want to construct a sequence {xn} ⊂ Eϕ2 such that ‖xn‖Eϕ2 ≤ 1 but ‖xn‖M(Eϕ1 ,Eϕ) →
∞, which is equivalent to the fact that Eϕ2 6 →֒ M (Eϕ1 , Eϕ).
First of all, note that for almost all n ∈ N we can find measurable sets An satisfying

‖unχAn‖E = 1. (21)

In fact, if Ea 6= {0}, then there is a nonzero 0 ≤ x ∈ Ea and therefore there is also a
set A of positive measure such that χA ∈ Ea. Of course, for large enough n one has
‖unχA‖E ≥ 1. Applying Dobrakov result from [14] we conclude that the submeasure
ω(B) = ‖χB‖E for B ∈ Σ, B ⊂ A, has the Darboux property. Consequently, for each such
n there exists a set An satisfying (21). Define

xn = ϕ−1
2 (un)χAn, yn = ϕ−1

1 (un)χAn .

Then
Iϕ1(yn) = ‖ϕ1(ϕ

−1
1 (un)χAn)‖E ≤ ‖unχAn‖E = 1

and thus ‖yn‖Eϕ1 ≤ 1. Similarly, we can show that ‖xn‖Eϕ2 ≤ 1. However, for large
enough n, one has by (20)

Iϕ

(xnyn
λ

)

= ‖ϕ
(

ϕ−1
1 (un)ϕ−1

2 (un)

λ

)

χAn‖E

≥ ‖ϕ
(

2nϕ−1 (un)

λ

)

χAn‖E.

If ϕ ∈ Y (1) ∪ Y (2) and λ ≤ 2n, then

‖ϕ
(

2nϕ−1(un)

λ

)

χAn‖E ≥ ‖2n

λ
ϕ
(

ϕ−1 (un)
)

χAn‖E

= ‖2n

λ
un χAn‖E =

2n

λ
≥ 1.

If ϕ ∈ Y (3), then for sufficiently large n and λ < 2n we obtain that

Iϕ

(xnyn
λ

)

= ‖ϕ
(

2n bϕ
λ

)

χAn‖E =∞,
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which implies ‖xnyn‖ϕ ≥ 2n. Finally,

‖xn‖M(Eϕ1 ,Eϕ)
= sup

‖y‖Eϕ1≤1

‖xny‖Eϕ ≥ ‖xnyn‖Eϕ ≥ 2n,

whereas ‖xn‖Eϕ2 ≤ 1 and this is the required sequence.

(ii) Of course, the assumption suppEa = suppE implies that Ea 6= {0}. Therefore
we need only to prove that ϕ−1

1 ϕ−1
2 ≺ ϕ−1 for small arguments. Note that in this case

the proof is almost the same as in (i). One only has to prove that there are sets like
in (21). Since suppEa = suppE we see that there is x ∈ Ea with x > 0 a.e. Define
Bk = {t ∈ Ω : x(t) > 1

k
}. Of course, Bk have positive measure for sufficently large k,

Ω =
⋃∞
k=1Bk and B1 ⊂ B2 ⊂ B3 ⊂ . . .. We have ‖χBk‖E →∞ because L∞ 6 →֒ E and E

has the Fatou property. Moreover, χBk ∈ Ea for any n ∈ N. Therefore, for each un one
can find k (n) such that ‖unχBk(n)‖E > 1 and the argument is the same as before.

The following example explains why the conditions concerning Ea in Theorem 3 are
reasonable but not necessary.

Example 4. Note that Theorem 3 is not true without any additional assumption on
the space E. In fact, for E = L∞ and for any non-trivial Young function ϕ we have that
Eϕ = L∞, which gives

M(Eϕ1 , Eϕ) = M(L∞, L∞) = L∞ = Eϕ2 ,

and no relation between the functions ϕ1, ϕ2, ϕ is necessary. On the other hand, for
the weighted space E = L∞

t [0, 1] with its norm ‖x‖E = ess supt∈[0,1] |t x(t)| we have

Ea = {0} but the condition ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments is necessary for inclusion
Eϕ2 →֒ M (Eϕ1 , Eϕ). To see this it is enough to proceed like in Theorem 3(i) because the
function η : [0, 1]→ [0, 1] given by η(t) = ‖χ[0,t]‖E = t is continuous and therefore has the
Darboux property.

Remark 3. The condition Ea 6= {0} from Theorem 3(i) may be changed by the
following weaker one: there is a > 0 such that for any 0 < t < a we can find A ∈ Σ with
‖χA‖E = t.

Now we investigate necessity condition on the Young functions in the case of Banach
sequence space.

THEOREM 4. Let e be a Banach sequence space with the Fatou property and let ϕ,
ϕ1, ϕ2 be Young functions. Suppose

eϕ2 →֒ M (eϕ1 , eϕ) . (22)

(i) If l∞ 6 →֒ e and supi∈N ‖ei‖e <∞, then ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for small arguments.

(ii) If e 6 →֒ l∞ and for each a > 1 there is a set Ba with 1
2
≤ a‖χBa‖ ≤ 1, then

ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments.
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Proof. (i) Suppose that the condition ϕ−1
1 ϕ−1

2 ≺ ϕ−1 is not satisfied for small ar-
guments. Then there exists a sequence (un) with un → 0 such that for any n ∈ N we
have

ϕ−1
1 (un)ϕ−1

2 (un) ≥ 2nϕ−1(un). (23)

Since l∞ 6 →֒ e and e has the Fatou property, it follows that ‖χ{1,2,...,n}‖e →∞ as n→∞.
From the assumption supi∈N ‖ei‖e <∞ one can find N large enough such that ‖un ei‖e ≤
1/2 for each n > N and each i ∈ N. Furthermore, for each n > N we can find kn satisfying

∥

∥unχ{1,2,...,kn}
∥

∥

e
≤ 1 and

∥

∥unχ{1,2,...,kn,kn+1}
∥

∥

e
> 1.

Because ‖unekn+1‖e ≤ 1/2 one has also 1/2 ≤ ‖unχ{1,2,...,kn}‖e. For n large enough we put
An = {1, 2, ..., kn}, and

xn = ϕ−1
2 (un)χAn, yn = ϕ−1

1 (un)χAn .

Then ‖yn‖eϕ1 ≤ 1 and ‖xn‖eϕ2 ≤ 1. Moreover, by (23), one has

Iϕ

(xnyn
λ

)

= ‖ϕ
(

ϕ−1
1 (un)ϕ−1

2 (un)

λ

)

χAn‖e

≥ ‖ϕ
(

2nϕ−1 (un)

λ

)

χAn‖e .

If λ ≤ 2n−1, then, by applying Lemma 2(vi) and (vii), we obtain

‖ϕ
(

2nϕ−1 (un)

λ

)

χAn‖e ≥ ‖
2nun
λ

χAn‖e ≥
2n−1

λ
≥ 1,

for sufficiently large n, which implies that ‖xnyn‖eϕ ≥ 2n−1 and, consequently,

‖xn‖M(eϕ1 ,eϕ) = sup
‖y‖eϕ1 ≤1

‖xny‖eϕ ≥ ‖xnyn‖eϕ ≥ 2n−1,

whereas ‖xn‖eϕ2 ≤ 1. Therefore (22) is not satisfied.

(ii) We proceed as in (i). Note that the condition is satisfied in many non-symmetric
spaces, for example, in e = l1({1

i
}) for which l∞ 6 →֒ e or e = l1({ 1

i2
}) in which l∞ →֒ e.

Putting Theorems 2 and 3 together we obtain:

Corollary 1. Let E be a Banach function space with the Fatou property and let ϕ,
ϕ1, ϕ2 be Young functions.

(i) Suppose L∞ →֒ E and Ea 6= {0}. Then Eϕ2 →֒ M (Eϕ1 , Eϕ) if and only if ϕ−1
1 ϕ−1

2 ≺
ϕ−1 for large arguments.

(ii) Assume L∞ 6 →֒ E and suppEa = suppE. Then Eϕ2 →֒ M (Eϕ1 , Eϕ) if and only if
ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments.
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Before giving a similar characterization for the sequence case note that the equality e =
l∞ implies then eϕ2 = eϕ1 = eϕ = M (eϕ1 , eϕ) = l∞ for any Orlicz functions. Consequently,
looking for a neccesary and sufficient condition for the inclusion eϕ2 →֒ M (eϕ1, eϕ) we
need to consider the following three cases: (i) e →֒ l∞ and l∞ 6 →֒ e, (ii) l∞ →֒ e and
e 6 →֒ l∞, (iii) l∞ 6 →֒ e and e 6 →֒ l∞.
Taking into account Theorems 2 and 4, we then get immediately

Corollary 2. Let e be a Banach sequence space with the Fatou property and let
ϕ, ϕ1, ϕ2 be Young functions.

(i) Suppose e →֒ l∞, l∞ 6 →֒ e and supi∈N ‖ei‖e < ∞. Then eϕ2 →֒ M(eϕ1 , eϕ) if and
only if ϕ−1

1 ϕ−1
2 ≺ ϕ−1 for small arguments.

Suppose additionally that for each a > 1 there is a set Ba with 1
2
≤ a‖χBa‖ ≤ 1.

(ii) Assume that l∞ →֒ e and e 6 →֒ l∞. Then eϕ2 →֒ M (eϕ1 , eϕ) if and only if ϕ−1
1 ϕ−1

2 ≺
ϕ−1 for large arguments.

(iii) Let l∞ 6 →֒ e, e 6 →֒ l∞ and supi∈N ‖ei‖e < ∞. Then eϕ2 →֒ M (eϕ1 , eϕ) if and only if
ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments.

Note that conditions (14) and (18) are equivalent. The implication (14) ⇒ (18) was
shown in the proof of Theorem 2. We prove that ϕ(Cuv) ≤ ϕ1(u) + ϕ2(v) for all u, v > 0
implies ϕ−1

1 (w)ϕ−1
2 (w) ≤ 2

C
ϕ−1(w) for all w > 0. In fact, for w > 0 let u = ϕ−1

1 (w) and
v = ϕ−1

2 (w). Then, by assumption and Lemma 2, we have

ϕ(Cuv) ≤ ϕ1(u) + ϕ2(v) = ϕ1(ϕ
−1
1 (w)) + ϕ2(ϕ

−1
2 (w)) ≤ 2w,

and again, by Lemma 2 and the concavity of ϕ−1, we obtain

Cuv ≤ ϕ−1(ϕ(Cuv)) ≤ ϕ−1(2w) ≤ 2ϕ−1(w),

which gives ϕ−1
1 (w)ϕ−1

2 (w) ≤ 2
C
ϕ−1(w). Now we consider the respective case for large

and small arguments. Discussing the case for large arguments we prove that the following
conditions are equivalent:

(a) for any u0 > 0 there is C0 > 0 such that C0ϕ
−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) for all u ≥ u0.
(b) for any u1 > 0 there is C1 > 0 such that ϕ(C1uv) ≤ ϕ1(u) + ϕ2(v) for all u, v

with u1 ≤ max {ϕ1(u), ϕ2(v)} <∞.
The implication (a) ⇒ (b) has been shown in the proof of Theorem 2(ii). We prove
(b)⇒ (a) . For any Orlicz function ϕ ∈ Y (3) denote

αϕ = inf
{

u > 0 : ϕ−1(u) = bϕ
}

and for ϕ ∈ Y (1) ∪ Y (2) we set αϕ =∞. Let

u1 = min {u0, αϕ1 , αϕ2} .

Take w ≥ u0 and u = ϕ−1
1 (w), v = ϕ−1

2 (w). Then ϕ1(u) = ϕ1(ϕ
−1
1 (w)) ∈ [u1,∞). Similarly

ϕ2(v) ∈ [u1,∞) and we finish as above. In the case of nondegenerate Orlicz functions we
simply get the following equivalence:
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(a) there are u0 > 0 and C0 > 0 such that C0ϕ
−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) for all u ≥ u0.
(b) there are u1 > 0 and C1 > 0 such that ϕ(C1uv) ≤ ϕ1(u) + ϕ2(v) for all u, v

with u, v ≥ u1.
Finally, for all Orlicz functions, it is easy to show the following equivalence:

(a) for any u0 > 0 there is C0 > 0 such that C0ϕ
−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u) for all u ≤ u0.
(b) for any u1 > 0 there is C1 > 0 such that ϕ(C1uv) ≤ ϕ1(u) + ϕ2(v) for all u, v

with max {ϕ1(u), ϕ2(v)} ≤ u1.

In the case E = L1 the space Eϕ is an Orlicz space Lϕ and our Theorems 2–4 together
with the equivalence of conditions (14) and (18) give the following results of Ando [3] and
O’Neil [32] (see also [26], Theorems 10.2-10.4).

Ando theorem ([3], Theorem 1): Let µ be a non-atomic measure and 0 < µ(Ω) <∞.
For any x ∈ Lϕ1 and any y ∈ Lϕ2 the product xy ∈ Lϕ if and only if there exist C, u0 > 0
such that ϕ(Cuv) ≤ ϕ1(u) + ϕ2(v) for all u, v ≥ u0.

O’Neil [32, Theorem 6.5] observed that the last condition on Young functions is equiv-

alent to the condition lim supu→∞
ϕ−1
1 (u)ϕ−1

2 (u)

ϕ−1(u)
<∞. Krasnoselskĭı and Rutickĭı [20] noted

that relation on embedding of sets is equivalent to estimations of the norms, that is, there
is a number A > 0 such that ‖xy‖ϕ ≤ A‖x‖ϕ1‖y‖ϕ2 for all x ∈ Lϕ1 and y ∈ Lϕ2 .

O’Neil theorems ([32], Theorems 6.6 and 6.7): (i) Let µ be non-atomic measure with
µ(Ω) = ∞. Then the following conditions are equivalent: for any x ∈ Lϕ1 and any
y ∈ Lϕ2 the product xy ∈ Lϕ ⇐⇒ there exist C > 0 such that ϕ(Cuv) ≤ ϕ1(u) + ϕ2(v)

for all u, v > 0 ⇐⇒ supu>0
ϕ−1
1 (u)ϕ−1

2 (u)

ϕ−1(u)
< ∞ ⇐⇒ there is a number B > 0 such that

‖xy‖ϕ ≤ B‖x‖ϕ1 ‖y‖ϕ2 for all x ∈ Lϕ1 and y ∈ Lϕ2.
(ii) Let I = N with the counting measure. The following conditions are equivalent:

for any x ∈ lϕ1 and any y ∈ lϕ2 the product x y ∈ lϕ ⇐⇒ there exist C, u0 > 0 such that

ϕ(Cuv) ≤ ϕ1(u) + ϕ2(v) for all 0 < u, v ≤ u0 ⇐⇒ lim supu→0+
ϕ−1
1 (u)ϕ−1

2 (u)

ϕ−1(u)
< ∞ ⇐⇒

there is a number D > 0 such that ‖x y‖ϕ ≤ D‖x‖ϕ1‖y‖ϕ2 for all x ∈ Lϕ1 and y ∈ Lϕ2.

5. On the inclusion M (Eϕ1 , Eϕ) →֒ Eϕ2

We start by stating a crucial lemma, which in the case E = L1 was proved in [27].

Lemma 4. If ϕ ∈ Y (1) ∪ Y (2) and x =
∑N

k=1 ckχAk , x 6= 0 is a simple function, then

Iϕ

(

x
‖x‖Eϕ

)

= 1.

Proof. We follow arguments as it was done in the proof of Lemma 3 in [27]. It is
enough to show that the function

h(λ) = Iϕ

(x

λ

)

= ‖
N
∑

k=1

ϕ
(ck
λ

)

χAk‖E

is continuous, non-increasing and h : (0, cN/aϕ) → (0,∞). Suppose that ϕ ∈ Y (1). If
λm → λ0, then
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|h(λm)− h(λ0)| ≤ ‖
N
∑

k=1

∣

∣

∣

∣

ϕ

(

ck
λm

)

− ϕ
(

ck
λ0

)
∣

∣

∣

∣

χAk‖E

≤
N
∑

k=1

∣

∣

∣

∣

ϕ

(

ck
λm

)

− ϕ
(

ck
λ0

)
∣

∣

∣

∣

‖χAk‖E → 0

as m→∞. Clearly, h is non-increasing and

lim
λ→0+

h(λ) ≥ lim
λ→0+

ϕ(
c1
λ

)‖χA1‖E =∞, lim
λ→cN/aϕ

h (λ) = 0,

since for λ > cN−1

aϕ
we have that h (λ) = ϕ

(

cN
λ

)

‖χAN‖E . Consequently, there is a number

λ0 ∈ (0, cN/aϕ) with Iϕ

(

x
λ0

)

= 1.

If ϕ ∈ Y (2) the proof is the same as in [27] and Lemma 4 is proved.

The following result is a generalization of Theorem 1 from [27].

THEOREM 5. Suppose E is a Banach ideal space with the Fatou property and
suppE = Ω. Let ϕ, ϕ1, ϕ2 be Young functions. Assume that the condition ϕ−1 ≺ ϕ−1

1 ϕ−1
2

holds:

(i) for all arguments.

(ii) for large arguments and L∞ →֒ E.

(iii) for small arguments and E →֒ L∞.

Then M (Eϕ1 , Eϕ) →֒ Eϕ2 .

Proof. We apply the technique from the proof of Theorem 1 in [27]. The case (i)
follows in the same way as in [27] with one restriction. Namely, if x ∈ M(Eϕ1 , Eϕ) is a
simple function, then x need not belong to Eϕ2 . Consider the case x =

∑n
i=1 aiχAi and

χAi /∈ E for some i. Then there is an increasing sequence
(

Aki
)∞
k=1

of subsets of Ai satisfying
⋃∞
k=1A

k
i = Ai and χAki ∈ E for each k. Taking xk =

∑n
i=1 aiχAki we get xk ∈ Eϕ2 for each

k. Then we follow just the proof of Theorem 1 in [27] and get ‖xk‖M(Eϕ1 ,Eϕ)
≥ 1

D
‖xk‖ϕ2

for each k. But 0 ≤ xk ≤ x and xk ↑ x. Since Eϕ2 has the Fatou property it follows that
‖x‖M(Eϕ1 ,Eϕ) ≥

1
D
‖x‖ϕ2 for each simple function x ∈M(Eϕ1 , Eϕ).

(ii) Assume that L∞ →֒ E. Take α > aϕ2 with ϕ2(α)‖χΩ‖E < 1
2
. Applying Lemma 3

we find a contant D1 ≥ D such that

ϕ−1(u) ≤ D1ϕ
−1
1 (u)ϕ−1

2 (u) for any u ≥ ϕ2(α).

Observe that
Iϕ2(zχB) ≥ 1/2 (24)

for any z = z(t) with Iϕ2 (z) = 1, where B = {t ∈ supp z : |z(t)| ≥ α}. Really, otherwise

1 = Iϕ2(z) ≤ Iϕ2(zχB) + Iϕ2(zχΩ\B) <
1

2
+ ϕ2(α)‖χΩ‖E < 1,

24



and we get a contradiction. Although some steps are similar as in the proof of Theorem 1
from [27] we present the whole proof for the sake of completeness. Assume that ϕ and ϕ2

are in Y (1) ∪ Y (2). Let x ∈ M(Eϕ1 , Eϕ). First suppose that x is a simple function. Then
x ∈ Eϕ2 , because ϕ2 ◦ (λ|x|) is a simple function in E for some λ and χA ∈ L∞ →֒ E for
each A ∈ Σ. Consequently,

y(t) = ϕ2

( |x(t)|
‖x‖Eϕ2

)

<∞ for µ− a.e. t ∈ Ω.

Set

z(t) =

{

ϕ−1
1 (y(t)) if 0 < y(t) <∞,

0 if y(t) = 0.

Then Iϕ1(z) ≤ Iϕ2(
x

‖x‖Eϕ2
) ≤ 1 implies ‖z‖Eϕ1 ≤ 1 and, by the assumption, we have

zx ∈ Eϕ. Denote

A = {t ∈ supp y :
|x(t)|
‖x‖Eϕ2

< α} and B = {t ∈ supp y :
|x(t)|
‖x‖Eϕ2

≥ α}.

Then, for µ-a.e. t ∈ B,

z(t)
|x(t)|
‖x‖Eϕ2

= ϕ−1
1 (y(t))ϕ−1

2 (y(t)) ≥ 1

D1
ϕ−1(y(t)),

so that

ϕ

(

D1z(t)
2|x(t)|
‖x‖Eϕ2

)

≥ ϕ(2ϕ−1(y(t))) ≥ 2ϕ(ϕ−1(y(t))) = 2y(t),

where the last equality follows from the fact that ϕ ∈ Y (1) ∪ Y (2). By Lemma 4, we have

Iϕ2

(

x
‖x‖Eϕ2

)

= 1 and, consequently, by (24),

Iϕ

(

D1z
2x

‖x‖Eϕ2
χB

)

≥ 2Iϕ2

(

x

‖x‖Eϕ2
χB

)

≥ 1.

Thus ‖zx‖Eϕ ≥ 1
2D1
‖x‖Eϕ2 and so ‖x‖M(Eϕ1 ,Eϕ) ≥

1
2D1
‖x‖Eϕ2 . For arbitrary function

x ∈ M (Eϕ1 , Eϕ) we can follow the proof of Theorem 1 from [27], because the space Eϕ2

has the Fatou property provided that E has it.
If ϕ or ϕ2 is in Y (3) we follow again the same way as in case 2 of the proof of Theorem

1 in [27] to show that ‖x‖M(Eϕ1 ,Eϕ) ≥
1

2D1
‖x‖Eϕ2 .

(iii) Let E
A→֒ L∞. First observe that if ‖u‖Eϕ ≤ 1, then ess supt∈Ω |ϕ(u(t))| ≤ A.

Furthermore, by assumption (iii) and Lemma 3, there exists a contant D2 such that

ϕ−1(u) ≤ D2ϕ
−1
1 (u)ϕ−1

2 (u) for any 0 < u ≤ A.

The rest of the proof goes as in the case (i) (see also the proof of Theorem 1 in [27]). The
proof is complete.

To find cases when the condition ϕ−1 ≺ ϕ−1
1 ϕ−1

2 is necessary for the imbedding
M (Eϕ1 , Eϕ) →֒ Eϕ2 we will take as E a symmetric function space on I. Then Eϕ is
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also a symmetric function space and an easy calculation gives that the fundamental func-
tion fEϕ of Eϕ is equal to fEϕ(t) = 1

ϕ−1(1/fE(t))
for t ∈ (0, m(I)).

THEOREM 6. Let E be a symmetric function space on I and let ϕ, ϕ1, ϕ2 be Young
functions. Suppose

M (Eϕ1 , Eϕ) →֒ Eϕ2 . (25)

(i) If there are numbers a, b > 0 such that
fEϕ (t)

fEϕ1
(t) ta

=
ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t)) ta
is a non-decreasing

function of t on an interval (0, b) and Ea 6= {0}, then ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for large
arguments.

(ii) Let bϕ = ∞. If there is a number a > 0 such that
fEϕ(t)

fEϕ1
(t) ta

=
ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t)) ta
is

a non-decreasing function of t on (0,∞), L∞ 6 →֒ E and suppEa = suppE, then
ϕ−1 ≺ ϕ−1

1 ϕ−1
2 for all arguments.

Proof. (i) Assume fEϕ(0+) = 0 and suppose that the condition ϕ−1 ≺ ϕ−1
1 ϕ−1

2 is not
satisfied for large arguments, i.e., there is a sequence (un) tending to infinity such that
for any n ∈ N

2nϕ−1
1 (un)ϕ−1

2 (un) ≤ ϕ−1(un).

It is enough to find a sequence (xn) both in M(Eϕ1 , Eϕ) and Eϕ2 such that

‖xn‖Eϕ2
‖xn‖M(Eϕ1 ,Eϕ)

−→∞.

Analogously as in Theorem 3(i) for each un one can find measurable set An satisfying
‖unχAn‖E = 1. Define

xn = ϕ−1
2 (un)χAn.

Then ‖xn‖Eϕ2 = 1. In fact, if ϕ2 ∈ Y (1) ∪ Y (2), then

Iϕ2(xn) = ‖ϕ2

(

ϕ−1
2 (un)

)

χAn‖E = un ‖χAn‖E = 1.

If ϕ2 ∈ Y (3), then there is N0 with ϕ−1
2 (un) = bϕ2 for n ≥ N0, whence Iϕ2 (xn) ≤ 1 and

Iϕ2 (xn/λ) =∞ for 0 < λ < 1. Thus, ‖xn‖Eϕ2 = 1 for sufficiently large n.

Putting tn = m(An) we obtain by symmetry of E that fE(tn) = ‖χ[0,tn]‖E = ‖χAn‖E =
1
un
→ 0 as n→∞ and so tn → 0 as n→∞. Therefore, according to Theorem 1(iii), for

tn ∈ (0, b), we obtain

‖xn‖M(Eϕ1 ,Eϕ)
= ϕ−1

2 (un) ‖χAn‖M(Eϕ1 ,Eϕ)
= ϕ−1

2 (un)fM(Eϕ1 ,Eϕ)
(tn)

≤ 2
1

a
ϕ−1
2 (un)

fEϕ(tn)

fEϕ1 (tn)
≤ 2

ϕ−1(un)

a 2n ϕ−1
1 (un)

fEϕ(tn)

fEϕ1 (tn)

=
2

a 2n
ϕ−1(un)

ϕ−1
1 (un)

ϕ−1
1 (1/fE(tn))

ϕ−1(1/fE(tn))
=

2

a 2n
→ 0 as n→∞,

which finishes the proof.
In the case when fEϕ(0+) > 0 we have fE(0+) > 0 which implies bϕ <∞ and estimate

on Young functions is automatically satisfied.
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(ii) This part is analogous to the above and Theorem 3(ii).

Combining Theorems 5 and 6, we obtain the following result:

Corollary 3. Let E be a symmetric function space on I with the Fatou property. Let
ϕ, ϕ1, ϕ2 be Young functions.

(i) Suppose L∞ →֒ E,Ea 6= {0} and that there are numbers a, b > 0 such that
ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t)) ta

is a non-decreasing function of t on the interval (0, b). Then M(Eϕ1 , Eϕ) →֒ Eϕ2 if
and only if ϕ−1 ≺ ϕ−1

1 ϕ−1
2 for large arguments.

(ii) Assume bϕ =∞, L∞ 6 →֒ E, suppEa = I and that there is a number a > 0 such that
ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t)) ta
is a non-decreasing function on (0,∞). Then M(Eϕ1 , Eϕ) →֒ Eϕ2 if

and only if ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for all arguments.

Now, if we take in Corollary 3 as E = L1 we obtain the results, which give an answer
for the problem posed in the book [26] (Problem 4, p. 77) in the case of Orlicz spaces
(under an additional assumption):

(i) Let I = [0, 1] and let
ϕ−1
1 (u)ua

ϕ−1(u)
be a non-increasing function for some a > 0 and

suffieciently large u. Then M (Lϕ1 , Lϕ) →֒ Lϕ2 if and only if ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for large
arguments.

(ii) Let I = [0,∞) and let
ϕ−1
1 (u)ua

ϕ−1(u)
be a non-increasing function for some a > 0 and

all u > 0. Then M (Lϕ1 , Lϕ) →֒ Lϕ2 if and only if ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for all arguments.
The monotonicity assumption in (i) is essential for the equivalence (see Example 9 (g)

below).

6. On the equality M (Eϕ1 , Eϕ) = Eϕ2

Putting together Theorems 2 and 5 we obtain sufficient conditions for coincidence of
the space of pointwise multipliers M (Eϕ1, Eϕ) with Eϕ2 .

Corollary 4. Let ϕ, ϕ1 and ϕ2 be Young functions. Suppose E is a Banach ideal space
with the Fatou property and suppE = Ω. Assume also that at least one of the following
conditions holds:

(i) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments.

(ii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments and L∞ →֒ E .

(iii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments and E →֒ L∞.

Then M (Eϕ1 , Eϕ) = Eϕ2 with equivalent norms.

Taking into account Corollary 1 and 3, we obtain

Corollary 5. Let E be a symmetric function space with the Fatou property. Let
ϕ, ϕ1, ϕ2 be Young functions.

(i) Suppose L∞ →֒ E,Ea 6= {0} and that there are numbers a, b > 0 such that
ϕ−1
1 (1/fE(t)

ϕ−1(1/fE(t)) ta

is a non-decreasing function of t on the interval (0, b). Then M(Eϕ1 , Eϕ)
= Eϕ2 if and only if ϕ−1 ≈ ϕ−1

1 ϕ−1
2 for large arguments.
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(ii) Assume bϕ =∞, L∞ 6 →֒ E, suppEa = suppE and that there is a number a > 0 such

that
ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t)) ta
is a non-decreasing function on (0,∞). Then M(Eϕ1 , Eϕ) = Eϕ2

if and only if ϕ−1 ≈ ϕ−1
1 ϕ−1

2 for all arguments.

7. On the construction of a Young function generating the space M (Eϕ1 , Eϕ)

The following questions arises: having two Young functions ϕ1, ϕ how can one find a
Young function ϕ2 satisfying ϕ−1

1 ϕ−1
2 ≈ ϕ−1? Does such a function always exist?

It appears that such a function may not exist. The following example describes such
possibility.

Example 5. Let ϕ(u) = u2, ϕ1(u) = u and E = L∞
t [0, 1] with the norm ‖x‖E =

ess supt∈[0,1]|t x(t)|. The equivalence ϕ−1
1 ϕ−1

2 ≈ ϕ−1 means that uϕ−1
2 ≈

√
u, i.e., ϕ−1

2 ≈
1/
√
u, which is not possible for any Young function ϕ2. Moreover, M(Eϕ1 , Eϕ) is not a

Calderón-Lozanovskĭı space of the form Eϕ3 for any Young function ϕ3. In fact, Eϕ =
L∞√

t
[0, 1] and

M(Eϕ1 , Eϕ) = M(L∞
t [0, 1], L∞√

t
[0, 1]) = L∞

1/
√
t
[0, 1].

This space cannot be of the form Eϕ3 since χ[0,1] ∈ Eϕ3 and ‖χ[0,1]‖Eϕ3 = 1/ϕ−1
3 (1), but

χ[0,1] 6∈ L∞
1/

√
t
[0, 1].

We have seen in the proof of Theorem 2 that the inequality ϕ−1
1 (u)ϕ−1

2 (u) ≤ ϕ−1(u)
for all u > 0 gives that ϕ(uv) ≤ ϕ1(v) + ϕ2(u) for all u, v > 0 and that the last estimate
suggests to consider an operation on two Young functions ϕ1, ϕ and compare it with ϕ2.
Define a new function ϕ⊖ ϕ1 : [0,∞)→ [0,∞] by the formula

(ϕ⊖ ϕ1) (u) = sup
v≥0

[ϕ (uv)− ϕ1 (v)] .

We may say that ϕ ⊖ ϕ1 is the conjugate (complementary) function (in the sense of
Young) to ϕ1 with respect to ϕ. In particular, if ϕ(u) = u, then ϕ⊖ ϕ1 = ϕ∗

1 is the usual
conjugate (complementary) function (in sense of Young) to ϕ1. This operation on the
class of N-functions was defined by Ando [3, p. 180] and on the class of extended Young
functions (by word ”extended Young” functions we mean nondecreasing convex functions
ϕ : [0,∞)→ [0,∞] with ϕ(0) = 0 and they can be trivial) by O’Neil [32, p. 325] and he
referred to Ando.

Note that it can happen that the function ϕ ⊖ ϕ1 (u) = ∞ for u > 0, and then we
have that the corresponding Orlicz space is the zero space. To avoid a confusion when
max{bϕ, bϕ1} <∞ since then we will have symbol ∞−∞ we better skip this case.

Moreover, in the case when we work with sequence spaces (or in case E →֒ L∞) it is
reasonable to define ϕ⊖ ϕ1 in a different way, namely,

(ϕ⊖ ϕ1)0 (u) = sup
0≤v≤1

[ϕ (uv)− ϕ1 (v)] ,

since then only the behaviour of the functions in a neighbourhood of zero is important.
Djakov and Ramanujan [13] proved that in the case of Orlicz sequence spaces we have
that M(lϕ1 , lϕ) = lϕ2 , where ϕ2 = (ϕ⊖ ϕ1)0. It is easy to see that the function (ϕ⊖ ϕ1)0
is smaller than ϕ⊖ ϕ1 and it can be different from ϕ⊖ ϕ1.
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Example 6. Let ϕ(u) = up/p, ϕ1(u) = up1/p1 with 1 ≤ p, p1 < ∞. If p > p1, then
(ϕ⊖ ϕ1)(u) =∞ for u > 0 and

(ϕ⊖ ϕ1)0(u) =

{

0 if 0 ≤ u ≤ (p/p1)
1/p,

up

p
− 1

p1
if u ≥ (p/p1)

1/p.

If p = p1, then

(ϕ⊖ ϕ1)(u) =

{

0 if 0 ≤ u ≤ 1,

∞ if u > 1,

and

(ϕ⊖ ϕ1)0(u) =

{

0 if 0 ≤ u ≤ 1,
up−1
p

if u ≥ 1.

If p < p1, then (ϕ⊖ ϕ1)(u) = up2
p2

, where 1
p2

= 1
p
− 1

p1
and

(ϕ⊖ ϕ1)0(u) =

{

up2
p2

if 0 ≤ u ≤ 1,
up

p
− 1

p1
if u ≥ 1.

Example 7. Let

ϕ(u) =

{

0 if 0 ≤ u ≤ 1,

u− 1 if u ≥ 1,

and ϕ1(u) = u2. Then

ϕ2(u) = (ϕ⊖ ϕ1)(u) =

{

0 if 0 ≤ u ≤ 2,
u2

4
− 1 if u ≥ 2,

ϕ3(u) = (ϕ⊖ ϕ2)(u) =











0 if 0 ≤ u ≤ 1/2,

2u− 1 if 1/2 ≤ u ≤ 1,

u2 if u ≥ 1,

and ϕ4(u) = (ϕ ⊖ ϕ3)(u) = ϕ2(u) for all u ≥ 0. The last equality was proved by O’Neil
[32, p. 325]. For Orlicz spaces considered on I = [0,∞) we have

M(Lϕ1 , Lϕ) = M(L2, L1 + L∞) = L2 + L∞ = Lϕ2 (26)

and
M(Lϕ2 , Lϕ) = M(L2 + L∞, L1 + L∞) = Lϕ3 = L2 + L∞. (27)

The second equality in (26) we can get in the following way: if x ∈ L2 + L∞ and y ∈ L2,
then

‖xy‖L1+L∞ =

∫ 1

0

(xy)∗(t)dt ≤ (

∫ 1

0

x∗(t/2)2dt)1/2 (

∫ 1

0

y∗(t/2)2dt)1/2

≤ 2‖x‖L2+L∞‖y‖L2,
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and, hence, L2 +L∞ 2→֒ M(L2, L1 +L∞). This embedding also follows from Theorem 2(i)
since ϕ−1

1 (u)ϕ−1
2 (u) ≤ 2ϕ−1(u) for all u > 0.

On the other hand, the function yt(s) = χ[0,t](s)/max(1, t) ∈ L1∩L∞ and ‖yt‖L1∩L∞ =
1. Thus, by the general property in (vii) and Theorem 1(i),

‖x‖M(L2,L1+L∞) = ‖x‖M(L1∩L∞,L2) = ‖x∗‖M(L1∩L∞,L2)

≥ ‖x∗yt‖L2 =
1

max(1, t)
‖x∗χ[0,t]‖L2 for any t > 0.

Hence,

‖x‖M(L2,L1+L∞) ≥ sup
t>0

1

max(1, t)
‖x∗χ[0,t]‖L2 = (

∫ 1

0

x∗(s)2ds)1/2

≥ 1√
2
‖x‖L2+L∞ ,

and we have the reverse embedding M(L2, L1+L∞)
√
2→֒ L2+L∞. This embedding does not

follow from Theorem 5(i) or Corollary 4(i) since limu→0+
ϕ−1(u)

ϕ−1
1 (u)ϕ−1

2 (u)
= limu→0+

u+1√
u·2

√
u+1

=

∞. This is also not a contradiction with Theorem 6(ii), Corollary 3(ii) and Corollary 5(ii)
since the function ϕ−1

1 (1/t)/[ϕ−1(1/t)ta] is not non-decreasing for any a > 0.
The second equality in (27) follows from Corollary 4(i) since ϕ−1(u) ≤ ϕ−1

2 (u)ϕ−1
3 (u) ≤

2ϕ−1(u) for all u > 0.

Some properties of operation ϕ⊖ ϕ1 are collected in the next lemma (part (iii) in the
Lemma 5 below was proved in [43, Theorem 3] with some additional assumptions; cf. also
[26] and [28]).

Lemma 5. Let ϕ, ϕ1 be two Young functions with max{bϕ, bϕ1} =∞ and ϕ2 = ϕ⊖ϕ1.

(i) The function ϕ2 is non-decreasing, convex, left-continuous on [0,∞) with ϕ2(0) = 0
and it can be ∞ on (0,∞).

(ii) We have
ϕ−1
1 (u)ϕ−1

2 (u) ≤ 2ϕ−1(u) for all u ≥ 0.

(iii) If bϕ = bϕ1 =∞ (which means that ϕ, ϕ1 are, in fact, Orlicz functions) and for any

v > 0 the function ϕ1(u)
ϕ(uv)

is equivalent to a non-decreasing function, then ϕ−1
1 ϕ−1

2 ≈
ϕ−1 for all arguments.

Remark 4. This lemma gives a constructive way to define the function ϕ2 such that
M(Eϕ1 , Eϕ) →֒ Eϕ2 (see Theorem 5) and Eϕ2 →֒ M(Eϕ1 , Eϕ) (see Theorem 2).

Proof of Lemma 5. (i) Of course, ϕ2(0) = 0 and ϕ2 is a non-decreasing function
together with ϕ. Moreover, ϕ2 is a convex function since ϕ is convex. We only need to
show that ϕ2 is left-continuous at u0 > 0. We consider two cases.

10. Let 0 < ϕ2(u0) < ∞. Suppose, on the contrary, that ϕ2 is not left-continuous
at u0. Then, since ϕ2 is non-decreasing, we can find a δ > 0 such that for all u < u0
we have ϕ2(u) ≤ ϕ2(u0) − δ. Also, by the definition of ϕ2, there is v > 0 such that
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ϕ2(u0) ≤ ϕ(u0v) − ϕ1(v) + δ
3

and, by the left-continuity of ϕ, there is t < u0 such that
0 ≤ ϕ(u0v)− ϕ(tv) ≤ δ

3
. Thus

ϕ2(t) ≥ ϕ(tv)− ϕ1(v) ≥ ϕ(u0v)− ϕ1(v)− δ

3
≥ ϕ2(u0)−

2δ

3
,

which is a contradiction. This contradiction shows that ϕ2 is left-continuous at u0 > 0.

20. Let ϕ2(u0) = ∞. Suppose again that ϕ2 is not left-continuous at u0. Then, since
ϕ2 is non-decreasing, we can find M > 0 such that for all u < u0 we have that ϕ2(u) ≤ M.
Moreover, by the definition of ϕ2, there is v > 0 such that ϕ(u0v)− ϕ1(v) ≥ 3M and, by
the left-continuity of ϕ, there is t < u0 such that ϕ(tv) = ∞ (in the case u0v > bϕ) or
ϕ(tv) ≥ ϕ(u0v)−M (in the case u0v ≤ bϕ). Then, in the case uov ≤ bϕ, we have

ϕ2(t) ≥ ϕ(tv)− ϕ1(v) ≥ ϕ(u0v)− ϕ1(v)−M ≥ 2M,

or in the case u0v > bϕ we obtain

ϕ2(t) ≥ ϕ(tv)− ϕ1(v) =∞ ≥ 3M,

which give contradictions. Thus, our claim is proved.

(ii) By the definition of ϕ2 we have ϕ(uv) ≤ ϕ1(v) + ϕ2(u) for all u, v > 0. Then (ii)
follows from remarks after Corollary 2.

(iii) The equivalence of the function ϕ1(u)
ϕ(uv)

to a non-decreasing function means that
there is a number K > 0 such that for each v > 0 there is a non-decreasing function ψv
with estimates 1

K
ψv(u) ≤ ϕ1(u)

ϕ(uv)
≤ Kψv(u) for all u > 0.

Let u > 0 be fixed and suppose 0 < ϕ−1
1 (u) < v. Then, by the monotonicity of ψw,

one has for w = ϕ−1(u)

ϕ−1
1 (u)

ϕ1(v)

ϕ(vw)
≥ 1

K
ψw(v) ≥ 1

K
ψw(ϕ−1

1 (u)) ≥ 1

K2

ϕ1(ϕ
−1
1 (u))

ϕ(ϕ−1
1 (u)w)

=
1

K2

u

ϕ(ϕ−1(u))
=

1

K2
,

which gives ϕ(vw) ≤ K2ϕ1(v). If ϕ−1
1 (u) ≥ v, then by monotonicity of ϕ, we obtain

ϕ(vw) ≤ ϕ(ϕ−1
1 (u)w) = ϕ(ϕ−1(u)) = u. Consequently, by convexity of ϕ1, for any v > 0

we have that ϕ(vw) ≤ K2ϕ1(v) + u ≤ ϕ1(K
2v) + u and, therefore, ϕ2(

w
K2 ) ≤ u. Thus

ϕ−1(u) ≤ K2ϕ−1
1 (u)ϕ−1

2 (u) for all u > 0 and the proof is complete.

Using Lemma 5(iii), we obtain the following other version of Theorem 6.

THEOREM 7. Let E be a Banach function space with the Fatou property and let
ϕ, ϕ1, ϕ2 be Orlicz functions. Suppose

M(Eϕ1 , Eϕ) →֒ Eϕ2 .

Assume that for any v > 0 the function ϕ1(u)
ϕ(uv)

is equivalent to a non-decreasing function

of u > 0. If L∞ →֒ E and Ea 6= {0}, then ϕ−1 ≺ ϕ−1
1 ϕ−1

2 for large arguments.
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Proof. By Lemma 5(iii), we know that there is ϕ3 = ϕ⊖ ϕ1 satisfying ϕ−1
1 ϕ−1

3 ≈ ϕ−1.
Therefore, according to Corollary 4, we have

M(Eϕ1 , Eϕ) = Eϕ3 →֒ Eϕ2 .

Moreover, it is known (see [17], Theorem 2.4) that if Ea 6= {0} and Eϕ3 →֒ Eϕ2 then there

is k > 0 such that lim supu→∞
ϕ2(k u)
ϕ3(u)

< ∞. Therefore, we have ϕ2(k u) ≤ C ϕ3(u) for

some C > 1 and large u. Consequently, for u = ϕ−1
3 (v) from Lemma 2 we obtain

ϕ2(kϕ
−1
3 (v)) ≤ C ϕ3(ϕ

−1
3 (v)) ≤ Cv

and
kϕ−1

3 (v) ≤ ϕ−1
2 (ϕ2(kϕ

−1
3 (v))) ≤ ϕ−1

2 (Cv) ≤ Cϕ−1
2 (v) for large v.

Finally, we have ϕ−1 ≈ ϕ−1
1 ϕ−1

3 ≺ ϕ−1
1 ϕ−1

2 for large arguments and the theorem is proved.

It is worth to notice that there are Orlicz spaces Lϕ, Lϕ1 such that for any v > 0
the function ϕ1(u)

ϕ(uv)
is non-decreasing in u, but there is no a > 0 such that fLϕ (t)

fLϕ1 (t) t
a is

non-decreasing in t.

Example 8. Consider the Orlicz functions ϕ(u) = u2 and ϕ1(u) = u2 ln(u + 1).

Then Lϕ1 [0, 1] →֒ Lϕ[0, 1] and the function ϕ1(u)
ϕ(uv)

= ln(u+1)
v2

is non-decreasing in u > 0 for

any v > 0. On the other hand, if in the quotient fLϕ(t)
fLϕ1 (t) t

a =
ϕ−1
1 ( 1

t
)

ϕ−1( 1
t
) ta

after substitution

t = 1
ϕ1(u)

we obtain

ϕ1(u)a u

ϕ−1(ϕ1(u))
=
u2a+1 lna(u+ 1)
√

u2 ln(u+ 1)
= u2a lna−1/2(u+ 1)→∞,

as u→∞ for any a > 0. Consequently, fLϕ (t)
fLϕ1 (t) t

a →∞ as t→ 0+ and therefore it cannot

be non-decreasing for small t > 0.

If we drop the assumption that ϕ1(u)
ϕ(uv)

is non-decreasing in Theorem 7, then the result
may not be true.

Example 9. Let ϕ(u) = u2

2
and we will construct a new function ψ which does not

satisfy the ∆2-condition for large arguments, i.e, lim supu→∞
ψ(2u)
ψ(u)

=∞ and such that

ψ(u) ≥ ϕ(u) for all u > 0 and ψ(un) = ϕ(un)

for some sequence (un) tending to infinity with ψ(2un)
ψ(un)

ր∞.

Take any sequence (an) of positive real numbers satisfying two conditions

an+1

an
ր∞ and 2

n
∑

k=1

(−1)n−k ak <
n+1
∑

k=1

(−1)n+1−k ak for all n ∈ N. (28)

It is easy to see that, for example, the sequence an = (n + 2)! satisfies those conditions.
Define the required sequence as un = 2

∑n
k=1(−1)n−k ak, u0 = 0 and consider the sequence
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of pairwise disjoint subintervals of [0,∞) defined by In = [un−1, un), n = 1, 2, . . .. The
numbers an are the centers of In, since un+un−1

2
= an. Now define the following Orlicz

function

ψ(u) =

∫ u

0

∞
∑

n=1

an χIn(s)ds. (29)

For any n ∈ N we have

∫

In

ands = an(un − un−1) =
1

2
(un + un−1)(un − un−1) =

u2n − u2n−1

2
=

∫

In

sds

and, thus,

ψ(un) =

∫ un

0

∞
∑

k=1

ak χIk(s)ds =
n
∑

k=1

∫

Ik

akds

=
n
∑

k=1

∫

Ik

sds =

∫ un

0

sds =
u2n
2

= ϕ(un).

We must now check that the function ψ is bigger than the function ϕ. For u ∈ [0, u1] =
[0, 2a1] we have ψ(u) = a1u ≥ u2/2 and, for u ∈ [un−1, un], n = 2, 3, . . ., it yields

ψ(u) =

∫ u

0

∞
∑

k=1

ak χIk(s)ds =
n−1
∑

k=1

ak(uk − uk−1) + an (u− un−1)

=
1

2

n−1
∑

k=1

(u2k − u2k−1) +
un + un−1

2
(u− un−1)

=
1

2
u2n−1 +

un + un−1

2
u− un + un−1

2
un−1

=
un + un−1

2
u− unun−1

2
=
h(u)

2
+
u2

2
,

where
h(u) = −u2 + (un + un−1) u− un un−1.

Since for u ∈ [un−1, un] one has h(u) ≥ max [h(un−1), h(un)] = 0 it follows that ψ(u) ≥
u2

2
for any u ∈ [un−1, un], and consequently ψ(u) ≥ u2

2
for any u ≥ 0. Moreover, by

assumptions (28) on an, we see that 2un ∈ In+1 = [un, un+1) and one has

ψ(2un)

ψ(un)
=

(un+1 + un) un − un+1 un
2

u2n/2

=
2un+1 un + 2u2n − un+1un

u2n
= 2 +

un+1

un

= 2 +
2an+1 − un

un
= 1 +

2an+1

un

= 1 +
2an+1

2an − un−1
> 1 +

an+1

an
→∞,

as n→∞.
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Of course, Lψ[0, 1] ⊂ Lϕ[0, 1] = L2[0, 1] because ψ(u) ≥ ϕ(u) for all u > 0 and
thus M(Lψ, Lϕ) is non-trivial. Moreover, Lψ 6= Lϕ = L2 since ψ does not satisfy the
∆2-condition for large u. Let us calculate ϕ2 = ϕ⊖ ψ. For u > 1

ϕ2(u) = sup
v>0

[ϕ(uv)− ψ(v)] ≥ lim sup
n→∞

[ϕ(uun)− ψ(un)]

= lim sup
n→∞

1

2
u2n(u2 − 1) =∞,

and for 0 < u ≤ 1 one has ϕ(u v) − ψ(v) ≤ ϕ(v) − ψ(v) ≤ 0 for each v > 0 and so
ϕ2(u) = 0. Therefore,

ϕ2(u) =

{

0 if 0 ≤ u ≤ 1,

∞ if u > 1,

and ψ−1(u)ϕ−1
2 (u) = ψ−1(u) ≤ ϕ−1(u) for all u > 0.

Let us now collect some properties of functions and spaces that arise in Example 9.

(a) We don’t have the relation ϕ−1 ≺ ψ−1ϕ−1
2 for large u, since

lim inf
u→∞

ψ−1(u)

ϕ−1(u)
= lim inf

v→∞

v

ϕ−1(ψ(v))

≤ lim
n→∞

2un
ϕ−1(ψ(2un))

= lim
n→∞

√
2un

√

ψ(2un)
=
√

2 lim
n→∞

un
√

(un+1 + un)un − un+1un/2

=
√

2 lim
n→∞

un
√

2an+1un − (2an+1 − un)un/2
=
√

2 lim
n→∞

un
√

an+1un + u2n/2

=
√

2 lim
n→∞

1
√

1
2

+ an+1

un

≤
√

2 lim
n→∞

1
√

1
2

+ an+1

2an

= 0.

(b) The function ψ(u)
ϕ(u)

cannot be monotone since

ψ(un)

ϕ(un)
= 1 and

ψ(2un)

ϕ(2un)
=
ψ(2un)

2u2n
=
ψ(2un)

4ψ(un)
→∞ as n→∞.

In consequence, from (a) and (b), we obtain

(c) we cannot drop the assumption of monotonicity of ψ(u)
ϕ(uv)

in Lemma 5(iii), in general.

Moreover,

(d) there is no a > 0 such that fLϕ (t)
f
Lψ

(t)ta
is non-decreasing near zero, because

lim sup
t→0+

fLϕ(t)

fLψ(t)
= lim sup

u→∞

ψ−1(u)

ϕ−1(u)
≥ lim sup

n→∞

ψ−1(un)

ϕ−1(un)
= 1 (30)

and for each a > 0 and every sequence tn → 0+ we have t−an → +∞.
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(e) The function fLϕ (t)
f
Lψ

(t)
cannot be equivalent at 0 to any pseudo-concave function, be-

cause of (30) and

lim inf
t→0+

fLϕ(t)

fLψ(t)
= lim inf

t→0+

ψ−1(1
t
)

ϕ−1(1
t
)

= lim inf
u→∞

ψ−1(u)

ϕ−1(u)
= 0.

Thus, in particular, formula (5.21) fM(E,F )(t) = fF (t)
fE(t)

in the book [5] is false, in

general (even up to equivalence). Note that in this example we have fM(E,F )(t) =

sup0<s≤t
fF (s)
fE(s)

= 1.

(f) We have M(Lψ, Lϕ) = L∞ = Lϕ2 .

In fact, as we have seen in the proof of Theorem 1(iii), we always have that

fM(E,F )(t) ≥ fF (t)
fE(t)

. Therefore, lim supt→0+ fM(Lψ ,Lϕ)(t) ≥ lim supt→0+
fLϕ (t)
f
Lψ

(t)
≥ 1

and M(Lψ, Lϕ) as a symmetric space on [0, 1] with the Fatou property such that

limt→0+ fM(Lψ ,Lϕ)(t) > 0 must be L∞[0, 1] (cf. [22], p. 118).

(g) The assumption of Theorem 6(i) is not satisfied since we have (d) and also the
assumption of Theorem 7 is not satisfied since we have (b) but one can see that
M(Lψ, Lϕ) ⊂ Lϕ2 while ϕ−1 6≺ ψ−1ϕ−1

2 as it was shown in (a).

(h) There is no Young function ϕ3 satisfying the equivalence ϕ−1 ≈ ψ−1ϕ−1
3 . If such a

function should exists, then, by Corollary 4, we have that M(Lψ, Lϕ) = Lϕ3 . On
the other hand, from (f) we have M(Lψ, Lϕ) = L∞, which will mean that ϕ3 ≈ ϕ2

for large arguments, but this is not possible because of (a).

As we have seen earlier we have equality M(E,E) = L∞ and we can ask if M(E, F ) = L∞

implies that E = F ? From (f) we see that this is not always the case.

Assume here that suppE = suppF = Ω. Note that M(E, F ) = L∞ if and only if
EFF = F . Really, if EF = L∞, then EFF = (L∞)F = F . On the other hand, if EFF = F ,
then EF = EFFF = F F = L∞. We can also have equality M(E, F ) = L∞ if E is a proper
subspace of F and the norms of ‖ · ‖E and ‖ · ‖F are equivalent on E. For example, if
E = Fa with F 6= Fa and suppFa = suppF = Ω. Thus

(i) Lψ is not Lϕ-perfect. In fact, from (f) and Lψ 6= Lϕ we obtain

(Lψ)L
ϕLϕ = M(M(Lψ , Lϕ), Lϕ) = M(L∞, Lϕ) = Lϕ 6= Lψ.

Using Lemma 5, Corollary 4(ii) and the operation ϕ ⊖ ϕ1 we are able to prove that
the multiplier space between two Orlicz spaces M(Lϕ1 , Lϕ) on [0, 1] is an Orlicz space
Lϕ2 with ϕ2 = ϕ⊖ ϕ1 under some additional assumptions on the Orlicz functions ϕ, ϕ1,
which is a certain similarity to the case of sequence Orlicz spaces. Our proof is presented
even for the Calderón-Lozanovskĭı spaces.
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Theorem 8. Let ϕ, ϕ1 be increasing Orlicz functions and let E be a symmetric space
on [0, 1] with the Fatou property.

(i) If lim supu→∞
ϕ(uv)
ϕ1(u)

= 0 for any v > 0 and additionally at least one of the following

three conditions holds: either the function fv(u) := ϕ(uv)
ϕ1(u)

is non-increasing on (0,∞)

for any v > 0 or ϕ−1(u)

ϕ−1
1 (u)

is a non-decreasing function for large u or the function

ϕ2(u) = (ϕ⊖ ϕ1)(u) = sup
v>0

[ϕ(uv)− ϕ1(v)] (31)

satisfies the ∆2-condition for large arguments, then M(Eϕ1 , Eϕ) = Eϕ2.

(ii) If lim supu→∞
ϕ(uv)
ϕ1(u)

<∞ for some v > 0 and lim supu→∞
ϕ(uw)
ϕ1(u)

> 0 for some w > 0,

then M(Eϕ1 , Eϕ) = L∞.

(iii) If lim supu→∞
ϕ(uv)
ϕ1(u)

=∞ for all v > 0, then M(Eϕ1 , Eϕ) = {0}.

Proof. (i) We only need to prove that in all these three cases we have ϕ−1 ≺ ϕ−1
1 ϕ−1

2

for large arguments, since by Lemma 5(ii), we have ϕ−1
1 ϕ−1

2 ≺ ϕ−1 even for all arguments,
which means that ϕ−1

1 ϕ−1
2 ≈ ϕ−1 for large arguments and then Corollary 4(ii)l implies

M(Eϕ1 , Eϕ) = Eϕ2 . Therefore, in each of these three cases we will proceed as follows:
10. If for any v > 0, fv(u) is a non-increasing function on (0,∞), then, by Lemma

5(iii), we obtain that ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments.

20. Let ϕ−1(u)

ϕ−1
1 (u)

be non-decreasing for u > u0 ≥ 0. Since lim supv→∞
ϕ(vw)
ϕ1(v)

= 0 for

any w > 0 it follows that the supremum in the definition of ϕ2 is attained at some

v0 = v0(w) > 0. Can we say something more about this v0? If w = ϕ−1(u)

ϕ−1
1 (u)

and we have

v0 ≥ ϕ−1
1 (u), then, by the monotonicity assumption, we get

ϕ2[
ϕ−1(u)

ϕ−1
1 (u)

] = ϕ[
ϕ−1(u)

ϕ−1
1 (u)

v0]− ϕ1(v0) ≤ ϕ[
ϕ−1(ϕ1(v0))

v0
v0]− ϕ1(v0) = 0

and this case is not important since ϕ2 ≥ 0. Therefore it must be v0 ≤ ϕ−1
1 (u) with

u > u0 ≥ 0, which, in its turn gives,

ϕ2[
ϕ−1(u)

ϕ−1
1 (u)

] = ϕ[
ϕ−1(u)

ϕ−1
1 (u)

v0]− ϕ1(v0) ≤ ϕ[
ϕ−1(u)

ϕ−1
1 (u)

v0] ≤ ϕ[ϕ−1(u)] = u,

i.e., ϕ−1(u) ≤ ϕ−1
1 (u)ϕ−1

2 (u) for u > u0 ≥ 0.

30. Let ϕ2 satisfy the ∆2-condition for large arguments, that is, there exist constants
C ≥ 1, u0 ≥ 0 such that ϕ2(2u) ≤ Cϕ2(u) for all u > u0. Similarly as in 20 we find that
for any w > 0 there exists a v0 = v0(w) > 0 such that ϕ2(w) = ϕ(wv0) − ϕ1(v0). For
w = ϕ−1

2 (u) we have

u = ϕ2[ϕ
−1
2 (u)] = ϕ[ϕ−1

2 (u) v0]− ϕ1(v0) > 0,

that is, ϕ−1
2 (u) ≥ ϕ−1[ϕ1(v0)]

v0
. Hence, by using Lemma 5(ii), we obtain

1 ≥ ϕ−1[ϕ1(v0)]

v0 ϕ
−1
2 (u)

≥ ϕ−1
1 [ϕ1(v0)]ϕ

−1
2 [ϕ1[v0)]

2v0 ϕ
−1
2 (u)

=
ϕ−1
2 [ϕ1(v0)]

2ϕ−1
2 (u)

,
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and, by the ∆2-condition of ϕ2 for u > u1 = ϕ2(u0) ≥ 0, we get

v0 ≤ ϕ−1
1 [ϕ2(2ϕ

−1
2 (u))] ≤ ϕ−1

1 (Cu).

Since ϕ−1[u+ ϕ1(v0)] = ϕ−1
2 (u) v0 it follows that

ϕ−1(u) ≤ ϕ−1
1 (Cu)

v0
ϕ−1(u) ≤ ϕ−1

1 (Cu)

v0
ϕ−1[u+ ϕ1(v0)]

≤ ϕ−1
1 (Cu)

v0
ϕ−1
2 (u)v0 = ϕ−1

1 (Cu)ϕ−1
2 (u) ≤ Cϕ−1

1 (u)ϕ−1
2 (u)

for u > u1 = ϕ2(u0) ≥ 0. Therefore, all three cases are proved.

(ii) Suppose lim supu→∞
ϕ(uv)
ϕ1(u)

< ∞ for some v > 0. Then there is K > 0 such that

ϕ(uv) ≤ Kϕ1(u) for large u and, by [17, Theorem 2.3], we obtain Eϕ1 →֒ Eϕ. Thus L∞ →֒
M(Eϕ1 , Eϕ). On the other hand, suppose on the contrary that lim supu→∞

ϕ(uw)
ϕ1(u)

= η > 0

for some w > 0 and M(Eϕ1 , Eϕ) 6= L∞. Define the new function ψ (u) = 2
η
ϕ(uw). Then,

again, by [17, Theorem 2.3] we have that Eϕ = Eψ and so M(Eϕ1 , Eϕ) = M(Eϕ1 , Eψ). The
fundamental function fM of the symmetric space M = M(Eϕ1 , Eψ) satisfies the condition
limt→0+ fM(t) = 0 because M(Eϕ1 , Eψ) 6= L∞. Since

1 =

∥

∥

∥

∥

χ[0,t]

fM(t)

∥

∥

∥

∥

M(Eϕ1 ,Eψ)

≥
∥

∥

∥

∥

χ[0,t]

fM(t)

χ[0,t]

fEϕ1 (t)

∥

∥

∥

∥

ψ

=
1

fM(t)

fEψ(t)

fEϕ1 (t)

and limt→0+ fM (t) = 0 it follows that limt→0+
fEψ (t)

fEϕ1
(t)

= 0. This means

0 = lim
t→0+

fEψ(t)

fEϕ1 (t)
= lim

t→0+

ϕ−1
1 (1/fE(t))

ϕ−1(1/fE(t))
= lim

u→∞

ϕ−1
1 (u)

ψ−1(u)
.

But

η < lim sup
u→∞

ϕ(uw)

ϕ1(u)
= lim sup

u→∞

η
2
ψ(u)

ϕ1(u)
,

and thus we can find a sequence un → ∞ such that ψ(un) ≥ ϕ1(un). Putting vn =

ψ(un) we see that
ϕ−1
1 (vn)

ψ−1(vn)
≥ 1, which is a contradiction with the just mentioned equality

limu→∞
ϕ−1
1 (u)

ψ−1(u)
= 0.

(iii) The condition: there are K, u0,M > 0 such that ϕ(Ku) ≤Mϕ1(u) for all u > u0
is necessary for the inclusion Eϕ1 →֒ Eϕ (see [17], Theorem 2.4) and this inclusion is

necessary for M(Eϕ1 , Eϕ) 6= {0} by Proposition 1(i). But lim supu→∞
ϕ(uv)
ϕ1(u)

= ∞ means
that the just mentioned condition on the function ϕ is not satisfied.

Example 10. Let ϕ1 be an increasing Orlicz function and ϕ(u) = 2ϕ1(
√
u). Then

ϕ2(u) = supv>0[ϕ(uv)− ϕ1(v)] = ϕ1(u) since, by convexity of ϕ1, we have

ϕ(uv)− ϕ1(v) = 2ϕ1(
√
uv)− ϕ1(v) ≤ 2ϕ1(

u+ v

2
)− ϕ1(v) ≤ ϕ1(u)
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with equality for v = u (see also [43, p. 269] and [26, p. 79]). If ϕ is a convex function,
then

ϕ−1(u) = ϕ−1
1 (u/2)2 ≤ ϕ−1

1 (u)2 = ϕ−1(2u) ≤ 2ϕ−1(u)

for any u > 0 and from Corollary 4 we obtain that M(Eϕ1 , Eϕ) = Eϕ1 for any Banach
ideal space E with the Fatou property. Note that for the concrete ϕ1(u) = exp(u2)−1 we

have that ϕ(u) = 2(eu − 1) and f4(u) = ϕ(4u)
ϕ1(u)

is not decreasing on (0,∞) since f ′
4(1) > 0,

ϕ1 does not satisfy the ∆2-condition for large arguments, but the function ϕ−1(u)/ϕ−1
1 (u)

is increasing on (0,∞).

Theorem 8 with E = L1[0, 1], that is, for Orlicz spaces Lϕ, Lϕ1 on [0, 1] and the space
of multipiers M(Lϕ1 , Lϕ) has the following form:

Corollary 6. Let ϕ, ϕ1 be increasing Orlicz functions generating the corresponding
Orlicz spaces Lϕ and Lϕ1 on [0, 1].

(i) If lim supu→∞
ϕ(uv)
ϕ1(u)

= 0 for any v > 0 and additionally at least one of three conditions

on ϕ, ϕ1, ϕ2 from Theorem 8(i) hold, then M(Lϕ1 , Lϕ) = Lϕ2.

(ii) If limu→∞
ϕ(uv)
ϕ1(u)

< ∞ for some v > 0 and lim supu→∞
ϕ(uw)
ϕ1(u)

> 0 for some w > 0,

then M(Lϕ1 , Lϕ) = L∞.

(iii) If lim supu→∞
ϕ(uv)
ϕ1(u)

=∞ for all v > 0, then M(Lϕ1 , Lϕ) = {0}.

Corollary 6(i) without any proof was written in the papers by Wang [41, Lemma
2], Zabrĕıko [42, p. 109] and in the book by Appell and Zabrejko [5, p. 123]. In these
mentioned sources the authors formulate Corollary 6(i) without additional assumptions on
ϕ, ϕ1, but we were able to prove only the result with these three additional assumptions.
Of course, it will be nice to give the proof without these additional conditions. The
proof of the first case in Corollary 6(i) was already given in the book [26, pp. 77-78].
Note that Ando [3, Theorem 5] for given Orlicz functions ϕ1, ϕ defined the function ϕ2

by the formula (31) and proved that Lϕ2 is a largest Orlicz space on [0, 1] such that
Lϕ2 ⊂M(Lϕ1 , Lϕ) 6= {0}.

Parts (ii) and (iii) appeared without any proof in Zabrĕıko [42, pp. 108-109] and with
different proofs than our in the book [5, pp. 132, 148-149] (the same proof of part (iii)
appeared also earlier in [4, pp. 309-310]).

Already in 1957 Shragin [Sh57] proved that x ∈ M(Lϕ1 , Lϕ) if and only if there are

c > 0 and λ > 0 such that
∫ 1

0
ϕ(λ|x(t)| fc(λ|x(t)|) dt < ∞, where fc(u) = sup{v ≥ 0 :

ϕ(uv) ≥ cϕ1(v)}. It seems that the last condition, in general, cannot be discribed in
terms of the function ϕ2.

B. Maurey in the paper [29] on pages 128-138 is proving that if ϕ, ϕ1 are two Orlicz

functions which additionally are N-functions at infinity, that is, limu→∞
ϕ(u)
u

= limu→∞
ϕ1(u)
u

=∞ and limu→∞
ϕ(vu)
ϕ1(u)

= 0 for any v > 0, then for any measure space (Ω, µ) we have (cf.

[29], Proposition 107)
M (Lϕ1(Ω, µ), Lϕ(Ω, µ)) = Lθ(Ω, µ),

where θ = ϕ⊖ϕ1. His proof of this result is using one important property of operation ⊖,
namely that ϕ⊖ [ϕ⊖ ϕ1](u) = ϕ1(u) for all u > 0 (cf. [29], Proposition 104(b), p. 130).
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Unfortunately, the last equality is not true for all u > 0, as we can see on the example
below.

Example 11. Let ϕ(u) = u2 and let ϕp for 1 ≤ p ≤ 4 be defined by

ϕp(u) =

{

up if 0 ≤ u ≤ 1,

u4 if u ≥ 1.

If 1 ≤ p ≤ 2, then

θ(u) = ϕ⊖ ϕp(u) =











0 if 0 ≤ u ≤ 1,

u2 − 1 if 1 ≤ u ≤
√

2,

u4/4 if u ≥
√

2,

and

ϕ⊖ θ(u) = ϕ⊖ [ϕ⊖ ϕp](u) = ϕ2(u) =

{

u2 if 0 ≤ u ≤ 1,

u4 if u ≥ 1.

Therefore, for 1 ≤ p < 2, ϕ ⊖ [ϕ ⊖ ϕp] is equal to ϕp only on interval [1,∞) but not on
the interval (0, 1) where it is ϕ2.

We finish our considerations with a conjecture motivated by the above Example 9,
Theorem 8 and Example 10.

Conjecture. We have equality M(Eϕ1 , Eϕ) = Eϕ⊖ϕ1 for any Banach ideal space E.
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