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LOCAL PINCHING ESTIMATESIN 3-DIM RICCI FLOW

BING-LONG CHEN, GUOYI XU, ZHUHONG ZHANG

Asstract. We study curvature pinching estimates of Ricci flow on catgB-

dimensional manifolds without bounded curvature asswnptWWe will derive

some general curvature conditions which are preservedyoanplete solution
of 3-dim Ricci flow, these conditions include nonnegativedRicurvature and
sectional curvature as special cases. A local version ofilttarlvey estimates
is also obtained.

Mathematics Subject Classification: 35K15, 53C44

1. INTRODUCTION

Ricci flow on noncompact complete manifolds has receivedmattention since
W.X.Shi’'s fundamental work in 1990’s (see€ [6]] [7]). Manyogress in the field are
achieved under bounded curvature assumption, which ésbesupport the use
of maximum principle globally on the whole manifold. Witho{local) bounded
curvature assumption for the solution of the Ricci flow, vlaw (localized) esti-
mates have been obtained. Note that Shi's local gradieimatsts depends on the
local curvature bound of the solution.

In [, the first author obtained some local estimates on tdveeinds of curva-
ture operators in 3-dim Ricci flow only assuming the compless of the solution.
As a corollary, it was shown that nonnegative sectionalaiuire is preserved under
3 dimensional complete smooth solution to the Ricci flow. thoge-manifolds, the
nonnegative curvature operator is equivalent to the naatihvegsectional curvature.

In dimension 3, Ricci curvature also determines the wholeature operator.
One purpose of this note is to generalize the resultlin [Lh@Ricci curvature
case. We will show (see Theorém11.2)that for any fixed nortivegeonstants,
b,c > 0,aR+ b-minRc+ c-min.#Z > 0 is preserved on any 3-dim complete
solution to the Ricci flow without bounded curvature assuampbn the solution,
where.#; = Rgj — 2R;j is the curvature tensor &fi3. More precisely,

Theorem 1.1. Given a smooth complete solution of Ricci figM?, g(t)) on [0, T],
letA > u > v are eigenvalues of curvature operator matrijj. Suppose for some
nonnegative constantsla c > 0, we havda(l + u + v) + b(u + v) + cv](g(0)) = 0
attime t= 0, then[a(d + u + v) + b(u + v) + cv](g(t)) = Ofor t > O.

From this general curvature pinching result, we find ®at0, Rc> 0 and.Z >
0 are all preserved under any 3-dim complete Ricci flow sofutin particular, we
have
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Theorem 1.2. (M3, g(t)) is a smooth complete solution of Ricci flow [@nT], if
Rdg(0)) = 0, then R¢g(t)) = O.

Note that in[[2] R. Hamilton proved th&c > 0O is preserved for the Ricci flow
on closed 3-manifolds.

In 3-dim Ricci flow, the magic Hamilton-lvey pinching estitagor its improve-
ment) states that the least eigenvalues of the curvaturatgpere not compara-
ble with the largest eigenvalues on the high curvature regore precisely, if
v(x,0) > —1(this is always possible by scaling the initial metriclertifort > 0,
we have

(1.1) R> (—v)(=3+ In((1 +t)(-V)))

whenv < 0, whered > u > v are eigenvalues of the curvature operat®r=
A+u+v. Note that[(1.11) was only proved (séé [4]) previously on cochpalutions
or complete noncompact solutions with bounded curvaturee fesult in[[1] is
just the linearized and localized version of the above egBmThe second major
purpose of this note is to derive a genuine local versione(ithproved) Hamilton-
Ivey pinching estimated (11.1).

Theorem 1.3. Let(M?3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on [0, T]. For any fixed ¢, K > 0, assume R, t) < 2r62 for x € By(Xo,ro),

t € [0, T], andv(x,0) > —K on By(Xp, 2Arp) at time t= 0, where A> %(% + T),
C > 0is some universal constant. Then at any péit) € B;(xo, Aro),ot € [0,T]
wherev(x,t) < 0, we have

) { ~ 8640(1+ KT) _31104(1+ KT)}
KAleg ’ Ke3(Arg)?
We remark that in Theorein_1.3, the completeness of the eanlusi not nec-

essary, we only need the condition that all bai$xg, ro) and Bi(Xo, 2Arg) are
compactly contained in the manifold.

R
1.2) — —-In(- 3+1 >
( )_V n(-v) + +n1+Kt_

Corollary 1.4. Let(M3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on [0, T]. For any fixed < K < oo, if v(x,0) > —K on M2 at time t= 0. Then at
any point(x,t) € M3 x [0, T] with v(x, t) < 0, we have

> 0.
1+Kt ™~

R
1.3) i In(v) +3+1In
A special case of Corollafy 1.4 is

Corollary 1.5. Let(M3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on[0, T]. Then we have

(1.4) R > (—v)(=3 + In(t(-v)))
at any point(x,t) € M3 x [0, T] with v(x, t) < 0.

In the end of this section, we mention one interesting apptio of Theorem
[1.2. We may generalize the strong uniqueness theorem ofrsh@dithor in[[1] to
the case where the initial manifold has only bounded nortivegRicci curvature
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and a uniform injectivity radius lower bound. See Theofed f2r the precise
statement.
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2. THE PRESERVATION OF RC> O AND LocAL HAMILTON-I VEY ESTIMATES IN 3-DIM Riccr
FLOW

In the following computations, we will use some cut-functions which are
composition of a cut# function of R and distance function. A cutfofunction ¢
on real lineR, is a smooth nonnegative nonincreasing function, it is 1-en,(l]
and 0 on [2c0). We can further assume that

n2
(2.1) 'l <2, |o"+ ﬂ < 16.
®

Another often used notation is= % — A, whereA is the Laplacian with the metric
g(t).

Proof. of Theoren_1ll. To prove the Theorem, we claim that ffises to prove
that the condition

R+au+v)+bv>=0

is preserved under complete solutions of Ricci flow for ajty > 0.

Indeed, suppose the claim has been proved, we only need $aleorthe case
whethera(u + v) + bv > 0 is preserved. If we haweu + v) + by > 0 initially, then
for anye > 0, we knoweR+ a(u +v) + bv > O initially, hencesR+a(u+v)+bv > 0
for t > O by the claim. By the arbitrariness ef we knowa(u + v) + by > 0 for
t>0.

To prove the claim, we argue by contradiction. If there exgsit) € M3x (0, T]
such thalR + a(u + v) + bv is negative at this point. By assumption & a(u +
v) + bv](9(0)) > 0 and Proposition.2 in [1], we knowR(x,t) > 0 on [Q T], where
R = A+ u + v is the scalar curvature. This implies+ b > 0. Then there are
O0<s<s <lsuchthat -s< W%Hb), and the followings are satisfied:

R+dau+v)+bvy] =A+(as+1)u+v)+by

(22) =1+ (3-1 + 1)</J + V) + b]_V > 09

on M3 x [0, T], wherea; = as b; = bs and

(2.3) R+s[aw+v)+bv] =a+(@s +1)(u+v)+bsy
) =A+(@+s1+Du+v)+(b1+)v <0,

at some Xy, t1) in M3x (0, T], where O< s; = as —a; < 755, 0< S, = bs - by <
1

m.
By (2.2) and [23), we knows; + s, > 0,v < 0 anda > 0.
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Choosexo € M3,rg > 0 such thaRqx, t) < 2ry? for x € By(Xo, o), t € [0, T].
By [5], we have

(2.4) adk(Xo, X) > —%)r‘l,

wheneverd:(Xg, X) > rg in the sense of support functions. Define

(2.5) Pij = QD(dt(;\((r)c’)X))///ij’

whereA > 1 is any big enough number such thai,t;) € B, (X0, Arg), Where
A (X 1)ij = Rgj — 2Ry is the curvature operator matric.

In the following, we use the Uhlenbeck trick as [in [3] to writee equation of
the curvature operator in moving frames:

(2.6) %/// =AM + M%+ "

Letd > u > v be eigenvalues o#, andV1, V», V3 be the corresponding orthonor-
mal eigenvectors. Then in this basis, we have

A 00
//l={0;10,
0 0 v
and
A2+ py 0 0
M+ M = 0 4+ v o]
0 0 V2 + u

Letu(t) = mingpyz[d + (a1 + St + L) (u + v) + (by + )v]e(x, t). From [23), we
know u(t;) < 0. Assumeu(ts) = [A1 + (a1 + S1 + L)(u + v) + (b1 + )v]e(Xs, t3) =
minte[o,T] U(t) < 0. Thentz € (O, T].

At (X3, t3), let V1, Vp, V3 be the orthonormal eigenvectors.af with the corre-
sponding eigenvalues > y > v.

To apply the maximum principle, we parallel translatg V,, V3 along radial
geodesics emanating froxg at timets. These local sections, denoted%y, Vo, V3
are orthonormal, and

8§i ~ ~
(2.7) E(Xa, t3) = VVi(xs, t3) = AVi(Xs, t3) = 0.

We define a functiouu(x, t) = [.#(V1, V1) + (a1 + St + 1) (V2, Vo) + (aq +
S1+ 1+ b1 + ). (V3, V3)]p(X 1) near s, t3).

It is easy to see that at amye M3,

A+@+s1+Du+v)+ (b1 + )y
=inf{Z/ (W1, W1) + (a1 + S1 + 1)/ (W2, W2) + (a1 + S1 + 1 + by + ). (W3, W3)
| where{W1, W, W} is an orthonormal basis of JM3}.

From this, we know
(2.8) ux.t) >[4+ (a0 + s+ L) +v) + (br + s2)v]p(x. 1),
and the equality holds ak4, t3).
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On the other hand, from (2.5}, (2.6) and {2.7), we have
IZIPij = —2V<pV///|J + Q”,
(2.9) Ol(Xs, t3) = —2VeV() + Q(V1, V1) + (4 + 51+ 1)Q(V2, V2)
+(by + SQ)Q(V3, V3)
where
Q(Vy, Vl) + (a1 + 51+ 1)Q(V2, V) + (by + )Q(V3, V3)
—go[/l +uv+ (@ + s+ D2+ v+ A +v)] + (b + ) (02 + Ap)
Aro[‘ﬁ 00k(Xo, X) — ¢ 7 [+ (@ + s+ D) +v) + (b + )]
— ol +11.
At (X3, t3), we have

I(Xa,t3) = A2+ v + (a1+§1+1) [? +v?] + G2 4 02) 4 (@ + 51+ DA+ v)
+(b1 + % + (b + ) A — V) + (b1 + ) Av
> A+ (ag + L)(u +v) + byv]
+ QU2 1 32] 4 (by + )2 + (b1 + $) A — V)
+S1A(u + v) + SAv.
Now by (Z3),1 < (a1 + 51 + D|u + v| + (b + )|V, so

|S1d(u + v) + AV
< sy(ag + s1+ D)+ v)? + (b + )7

(2.10) +[s1(b1 + S2) + (a1 + 1+ sp)]vllu + v
< (a1+l+51 + b%(s)z)(/l + V)2 + (a]_;é-é;sl + b1+SQ)V
< (a1+1+51 " bi&s)z)ﬂ + (a1+l+S1 1+Sz)v
Therefore

|(X3, t3) > a1+1+51 2 + (a1+1+51 + b1+52)v

H?+%Mw—wbﬁﬁﬂ
_a++51 2 2 +522
1 (y+v)+14

by + A1) + b2 Bib%2
If 4> 0, theni(u — v) > 2, otherwiseu < 0, themy? > 12, so
[(x3,13)

atles (2 4 )2) 4 D2
ai+ +Sl(/l + )2 blzgz 2
m[(al + 1+ s1)(u+v) + (b1 + 2))?
m[(al +1+s)(u+v) + (b + )v)?
W{[(al + 1+ 5)(u+v)+ (b1 + V% + 2%
—64(a1+1b1+2)[/l +(ag + 1+ s)(u+v)+ (b + V]2
Hence, at the pointg, t3), we have

Q(V1, V1) + (ag + s1 + 1)Q(Va, Vz) + (b1 + 52)Q(V3, V)

1 2 64@i+bh+2) 1 ]
= 64(@1+b1+2)p [U Arg ( Bro + Aro)u

Combining [2.8),[(219) with the faci(t3) < 0, and applying the maximum princi-
ple, we have

vV IV IV IV IV vV
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1 2 64(@+b1+2) ¥'\2
0 > 64 +b1+2)p [U %Arol (3ro Aro)u] (Ar )2( ) u(t3)
1 2 128(@1+b1+2)
= 64@1+b1+2)p [U i\ro . (| 3o | + |Aro + WDu(t?’)]

256(@ +by +2
If u(ts) < 2000220, 16) e get

1
2.11 0> t3)? > 0
(2.11) Z 1286, + b, 7 2) @) >
which is a contradiction. Henasfts) > — 290kurbnt2)(20 4 18) on [0,T]. By the
definition ofu(t), we get

(2.12) A+@+s+Du+v)+ (b1 + )y = —%C(al + by, rg)
0

on Bi(xo, Arg), fort € [0, T]. Then letA — oo, we getd+(ag+ S+ 1)(u+v) + (b1 +
s)v > 0 on M3 x [0, T]. That is contradiction with[{Z]3). The proof of Theorem
L1 is completed.

m]

By takinga=0,b=1,c=0in Theoreni_ 1]1, we get Theorém11.2.

Remark 2.1. In 3-dim Ricci flow, nonnegative Ricci curvature is always presd
with bounded curvature assumption, which can be proved mguke maximum
principle directly. The above theorem removes the boundegature assumption.
In [1], the local estimate of Rm is achieved by an induction metHede we make
the argument in a ‘continuous’ way.

In the following, we will prove the local Hamilton-lvey estate without bounded
curvature assumption on 3-dim manifolds.

Proof. of Theoren_1.B. Assume that> u > v are the eigenvalues of curvature
operator.#;; andR = A + u + v as before. Note our curvature operator’s value on
tangent plane is two times sectional curvature of the tangjene.

Letw= & —In(-v) + 3+ In $5= be a function defined on

= {(x )] v(x,t) <0, (x,t) e M3x [0, T]}

We want to prove[(1]2) o2 N Bi(xo, Arp). Recall that as in[(2]6), we pick a
abstract vector bundIE with fixed bundle metric and a family of time-dependent
connections compatible with the metric. After pulling baakh the moving frames
from the tangent bundle, the curvature opera#racts onE.

Define

W t, V) =-R-[Z(x)V, V] -In(=Z(x1)(V,V))

2.13
(2.13) +(3+ In 1+KKt) VP2

to be a function on

Q1 ={(xt, V)| Z(X1)(V,V) <0, (xt)eQ, VeE, [V|=1}
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WhenR > v, considering the functiohy(s) = _ﬂs—ln(—s), we find it is increasing
in s. Hence, wherR > v, (X, t) € Q, we have

W(x,t,V);
where(x,t,V) e Q; |~

Note R(x, 0) > 3v(x,0) > —3K on Bg(Xg, 2Arp), by Proposition 2L of [1], we
have

(2.14) W(x,t) = min{

3K C
1

(2.15) R(x.t) 2 min{ - ——, -—
1+ Kt Arg

wherex € Bt(xo,%Aro), t € [0, T], andC is some universal constant. By the
assumptioA > 5(% + T) and [Z.15), we get
0

3K
R>-—,
= 1Kt

on By (o, Aro) -
If0 > v >R, assume® = a, then-3 < a < -1. Note-v = IR < -
hence

(2.16) w>a+In(-a)+3-In3>0.

The last inequality uses the fact that the minimum of funcéieIn(—a) on [-3, 1]
is (-3 + In 3). By (2.16), we only need to show (1.2) for the cése v.
Let

3_K
a 1+Kt’

20k (X0, X)

(2.17) u(x t) = (’D(A—ro — )w(x. 1)
be a function defined of);. Let (x3, t3, V3) be a point such that
(2.18) (X3, 13)W(x3, 3, V3) = woin, Q(QDW)(X, t).

If o(x3, t3)W(Xs, t3, V3) > 0, we are done.

So we may assumg(xs, t3)W(xs, ts, V3) < 0, thertt € (0, T] andxs € By,(Xo, 3Aro).
Note that we havi(xs, t3) > —1ox-.

At (xs, 13, V3), let V be a local vector field defined by parallel translation& gf
along radial geodesics emanating fragmt timets. Then|V| = 1 and2V = VV =

AV = 0 at (xs, t3). Define two smooth functions
v =4 (x1)(V,V)

b= [_EV =In(=7) +3+In— Kt]¢(x, )

near s, t3), these two functions satisfy
(2.19) v>v,i>u

and equalities hold atxg, t3).
At (xs, t3), a straightforward computation gives
- (pl (p/l — — —
2.20 ol = (2—nod - 4 W(, -, V) = 2VoVW(-, -, V) + ooOW(-, -, V
(2.20) |27 0% = 4 ey WG ) = 296 VW, ¥) + 0., )
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and
OW(x t, V) = 2VIn(=%) - VW + [V In(=%)2

-2V — 1+KKt +v 21 -v)(u - V)R
From[2.20) and(2.21), we have

od ><p[ 2v — 1+Kt]+”0

1
+4:5(] Led |+|¢|+|—A‘%|)w— 64 W2,

(2.21)

U

(2.22)

Combining with [Z.1B) and (Z2.19), and applying the maximumgiple at (s, t3),
we get
0 > Ol t5)
(2.23) > ¢| - 2 - gli| + ¢HFIR S Rw - o w?
= (I)+(II)+(III)+(IV).
The rest computations are all atz(t3) without illustration.We estimatel ()

firstly. If R(x3,t3) > 0, then (1) > 0.
If R(xs,t3) < 0, we have

2
(1) = &3 R> ¢(R 43R
2
> 4] In(-v) - In(£;)| R
Now we will estimate () + (1) in terms ofy. Note

(2.24)

R K K
2.25 0 = — —In(- 3+1In > —In(- In———
(2.25) >w= = -+ 3+in e 2 =) +in ==
hence we get
K

2.26 ) < (In(=v) = 1In )
(2.26) WO, 1) < [In(=) = In =
On the other side, by(xs, t3) < 0, we get

R K
2.27 In- — +3+1In > In .
(2.27) > 53+ G 2 Nk
Then-v > &=, and we get
(2.28) 0O)=¢: (-v).
Now consider the function

f(g) = S

K 2
||n s—In th3|

wheres > m Then it is easy to get(s) > f(e?-
$> kg From this and{2.26), we get

e K
(2.29) Ve Kts[ln(—v) ~In

K — €&
TKG) = 1+Kt for any
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Hence
1 Kt 3
(2.30) DE —( P PALITN S
As a consequence, we always have
1
(2.31) O+ > —g¥
To control (V), we consider the function
s
ha(s) =
Ins—In e
wheres > m Then it is easy to gety(s) > h2(1+Kt3) = % . 1+Kt for any
$> g+ Asin (229), we get
e
2.32 v = 3,
(2.32) Y2 T K™
By (2.29), [2.31) and (2.32), we have
1 K

2.33 Iy >-= —_— 3
(2.33) O+=z-g¢v> 75 Toke?" * 186 Tr k™

By (2.23) and[(2.33), we get
(2.34) > 7 —1+‘f<t3 (pw)? + AW

) e 486  1+Kt 64

ta86; e |W|((90W)2 + TR (Aro)29"w)
From the above, we get
8640(hKt: 31104(Kt:

(2.35) lowi < max{ KA(leg L )

By ¢ = 1 onBy(xo, Arg), t € [0, T] and [2.35), we have
236) & -In()+3+In gk = min{ - SOLKD _suoin)

Theoreni 1B is proved. O

Remark 2.2. Our method of using maximal principle here is a little biffeient
from Hamilton’s way of using maximal principle 8] and[4].

Now we give the proof of Corollary 11.4.

Proof. of Corollary[I.4. We chooseg € M3, ro > 0 such thaRqx,t) < 2r;?
for x € Bi(xo,ro), t € [0, T]. This is always possible if we pick smal). For any

constantA > 3C2(1 + T), by Theoreni 113, we get

(2.37) B —In(-v) + 3+In(g) > mi”{ - Ssﬂgr?)’ ‘31;33»‘22]:0? )}

at any points X1, t1) € B;(Xo, Arg) with v(x,t1) < O.
Let A — o in (Z.31), we get

(2.38) B —In(-v) + 3+In(5g) = 0.
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O

If we have a ancient solution defined onc§, 0], and there were some point
(X1, t1) such that(xy,t;) < 0, then by Corollary 15, we have

(2.39) R(X1,t1) > (=v)(Xg, t1)(=3 + In(ts — t2)(-v) (X1, t1)))

for anyt, < t;. Whent, —» —oo, this will give a contradiction. Therefore, we
have the following pinching result about ancient solutioigioally due to the first
author (see ]1]).

Corollary 2.3. Any smooth complete ancient solution of Ricci flovBahm man-
ifold must have R 0.

Following similar strategy in 1], we also have the followitheorem.

Theorem 2.4. Let (M3, g(x)) be a complete noncompagtdim manifold with0 <
Rc < Kpg, for some fixed positive constang.kKAlso assumeyi= min, s inj(x) >
6 > 0. If g1(t) and g(t) are both smooth complete solutions to the Ricci flow on
M3x[0, T] with g(x) as initial data, we havet) = ga(t), for 0 < t < min{T, ;).
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