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LOCAL PINCHING ESTIMATES IN 3-DIM RICCI FLOW

BING-LONG CHEN, GUOYI XU, ZHUHONG ZHANG

Abstract. We study curvature pinching estimates of Ricci flow on complete 3-
dimensional manifolds without bounded curvature assumption. We will derive
some general curvature conditions which are preserved on any complete solution
of 3-dim Ricci flow, these conditions include nonnegative Ricci curvature and
sectional curvature as special cases. A local version of Hamilton-Ivey estimates
is also obtained.

Mathematics Subject Classification: 35K15, 53C44

1. Introduction

Ricci flow on noncompact complete manifolds has received much attention since
W.X.Shi’s fundamental work in 1990’s (see [6], [7]). Many progress in the field are
achieved under bounded curvature assumption, which essentially support the use
of maximum principle globally on the whole manifold. Without (local) bounded
curvature assumption for the solution of the Ricci flow, veryfew (localized) esti-
mates have been obtained. Note that Shi’s local gradient estimates depends on the
local curvature bound of the solution.

In [1], the first author obtained some local estimates on lower bounds of curva-
ture operators in 3-dim Ricci flow only assuming the completeness of the solution.
As a corollary, it was shown that nonnegative sectional curvature is preserved under
3 dimensional complete smooth solution to the Ricci flow. Forthree-manifolds, the
nonnegative curvature operator is equivalent to the nonnegative sectional curvature.

In dimension 3, Ricci curvature also determines the whole curvature operator.
One purpose of this note is to generalize the result in [1] to the Ricci curvature
case. We will show (see Theorem 1.2)that for any fixed nonnegative constantsa,
b, c ≥ 0, aR+ b · minRc+ c · minM ≥ 0 is preserved on any 3-dim complete
solution to the Ricci flow without bounded curvature assumption on the solution,
whereMi j = Rgi j − 2Ri j is the curvature tensor ofM3.More precisely,

Theorem 1.1. Given a smooth complete solution of Ricci flow(M3, g(t)) on [0,T],
let λ ≥ µ ≥ ν are eigenvalues of curvature operator matrixMi j . Suppose for some
nonnegative constants a, b, c ≥ 0, we have[a(λ + µ + ν) + b(µ + ν) + cν](g(0)) ≥ 0
at time t= 0, then[a(λ + µ + ν) + b(µ + ν) + cν](g(t)) ≥ 0 for t > 0.

From this general curvature pinching result, we find thatR≥ 0,Rc≥ 0 andM ≥

0 are all preserved under any 3-dim complete Ricci flow solution. In particular, we
have
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Theorem 1.2. (M3, g(t)) is a smooth complete solution of Ricci flow on[0,T], if
Rc(g(0)) ≥ 0, then Rc(g(t)) ≥ 0.

Note that in [2] R. Hamilton proved thatRc≥ 0 is preserved for the Ricci flow
on closed 3-manifolds.

In 3-dim Ricci flow, the magic Hamilton-Ivey pinching estimate (or its improve-
ment) states that the least eigenvalues of the curvature operator are not compara-
ble with the largest eigenvalues on the high curvature region. More precisely, if
ν(x, 0) ≥ −1(this is always possible by scaling the initial metric), then for t > 0,
we have

(1.1) R≥ (−ν)(−3+ ln((1+ t)(−v)))

when ν < 0, whereλ ≥ µ ≥ ν are eigenvalues of the curvature operator,R =
λ+µ+ν.Note that (1.1) was only proved (see [4]) previously on compact solutions
or complete noncompact solutions with bounded curvature. The result in [1] is
just the linearized and localized version of the above estimate. The second major
purpose of this note is to derive a genuine local version of the (improved) Hamilton-
Ivey pinching estimate (1.1).

Theorem 1.3. Let (M3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on [0,T]. For any fixed r0,K > 0, assume Rc(x, t) ≤ 2r−2

0 for x ∈ Bt(x0, r0),

t ∈ [0,T], andν(x, 0) ≥ −K on B0(x0, 2Ar0) at time t= 0, where A≥ C
3r2

0

(
1
K + T

)
,

C > 0 is some universal constant. Then at any point(x, t) ∈ Bt(x0,Ar0), t ∈ [0,T]
whereν(x, t) < 0, we have

(1.2)
R
−ν
− ln(−ν) + 3+ ln

K
1+ Kt

≥ min
{
−

8640(1+ KT)

KAe2r2
0

, −
31104(1+ KT)

Ke3(Ar0)2

}
.

We remark that in Theorem 1.3, the completeness of the solution is not nec-
essary, we only need the condition that all ballsBt(x0, r0) and Bt(x0, 2Ar0) are
compactly contained in the manifold.

Corollary 1.4. Let(M3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on [0,T]. For any fixed0 < K ≤ ∞, if ν(x, 0) ≥ −K on M3 at time t= 0. Then at
any point(x, t) ∈ M3 × [0,T] with ν(x, t) < 0, we have

(1.3)
R
−ν
− ln(−ν) + 3+ ln

K
1+ Kt

≥ 0.

A special case of Corollary 1.4 is

Corollary 1.5. Let(M3, g(t)) be a 3-dim complete smooth solution of the Ricci flow
on [0,T]. Then we have

(1.4) R≥ (−ν)(−3+ ln(t(−ν)))

at any point(x, t) ∈ M3 × [0,T] with ν(x, t) < 0.

In the end of this section, we mention one interesting application of Theorem
1.2. We may generalize the strong uniqueness theorem of the first author in [1] to
the case where the initial manifold has only bounded nonnegative Ricci curvature
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and a uniform injectivity radius lower bound. See Theorem 2.4 for the precise
statement.
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2. The preservation of Rc≥ 0 and local Hamilton-Ivey estimates in 3-dim Ricci
flow

In the following computations, we will use some cut-off functions which are
composition of a cut-off function ofR and distance function. A cut-off functionϕ
on real lineR, is a smooth nonnegative nonincreasing function, it is 1 on (−∞, 1]
and 0 on [2,∞). We can further assume that

(2.1) |ϕ′| ≤ 2 , |ϕ′′| +
(ϕ′)2

ϕ
≤ 16.

Another often used notation is� = ∂∂t −∆, where∆ is the Laplacian with the metric
g(t).

Proof. of Theorem 1.1. To prove the Theorem, we claim that it suffices to prove
that the condition

R+ a(µ + ν) + bν ≥ 0

is preserved under complete solutions of Ricci flow for anya, b ≥ 0.
Indeed, suppose the claim has been proved, we only need to consider the case

whethera(µ + ν) + bν ≥ 0 is preserved. If we havea(µ + ν) + bν ≥ 0 initially, then
for anyε > 0, we knowεR+a(µ+ν)+bν ≥ 0 initially, henceεR+a(µ+ν)+bν ≥ 0
for t > 0 by the claim. By the arbitrariness ofε, we knowa(µ + ν) + bν ≥ 0 for
t > 0.

To prove the claim, we argue by contradiction. If there exists (x, t) ∈ M3× (0,T]
such thatR+ a(µ + ν) + bν is negative at this point. By assumption of [R+ a(µ +
ν) + bν](g(0)) ≥ 0 and Proposition 2.1 in [1], we knowR(x, t) ≥ 0 on [0,T], where
R = λ + µ + ν is the scalar curvature. This impliesa + b > 0. Then there are
0 ≤ s< s′ ≤ 1 such thats′ − s≤ 1

100(a+b) , and the followings are satisfied:

(2.2)
R+ s[a(µ + ν) + bν] = λ + (as+ 1)(µ + ν) + bsν

= λ + (a1 + 1)(µ + ν) + b1ν ≥ 0,

on M3 × [0,T], wherea1 = as, b1 = bs, and

(2.3)
R+ s′[a(µ + ν) + bν] = λ + (as′ + 1)(µ + ν) + bs′ν

= λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν < 0,

at some (x1, t1) in M3 × (0,T], where 0≤ s1 = as′ − a1 ≤
1

100, 0 ≤ s2 = bs′ − b1 ≤
1

100.
By (2.2) and (2.3), we knows1 + s2 > 0, ν < 0 andλ ≥ 0.
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Choosex0 ∈ M3, r0 > 0 such thatRc(x, t) ≤ 2r−2
0 for x ∈ Bt(x0, r0), t ∈ [0,T].

By [5], we have

(2.4) �dt(x0, x) ≥ −
10
3

r−1
0 ,

wheneverdt(x0, x) > r0 in the sense of support functions. Define

(2.5) Pi j = ϕ
(dt(x0, x)

Ar0

)
Mi j ,

whereA > 1 is any big enough number such that (x1, t1) ∈ Bt1(x0,Ar0), where
M (x, t)i j = Rgi j − 2Ri j is the curvature operator matric.

In the following, we use the Uhlenbeck trick as in [3] to writethe equation of
the curvature operator in moving frames:

(2.6)
∂

∂t
M = △M +M

2 +M
♯.

Letλ ≥ µ ≥ ν be eigenvalues ofM , andV1,V2,V3 be the corresponding orthonor-
mal eigenvectors. Then in this basis, we have

M =


λ 0 0
0 µ 0
0 0 ν

 ,

and

M
2 +M

♯ =



λ2 + µν 0 0
0 µ2 + λν 0
0 0 ν2 + λµ

 .

Let u(t) = minx∈M3[λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν]ϕ(x, t). From (2.3), we
know u(t1) < 0. Assumeu(t3) = [λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν]ϕ(x3, t3) =
mint∈[0,T] u(t) < 0. Thent3 ∈ (0,T].

At (x3, t3), letV1,V2,V3 be the orthonormal eigenvectors ofM with the corre-
sponding eigenvaluesλ ≥ µ ≥ ν.

To apply the maximum principle, we parallel translateV1,V2,V3 along radial
geodesics emanating fromx3 at timet3. These local sections, denoted byṼ1, Ṽ2, Ṽ3

are orthonormal, and

(2.7)
∂Ṽi

∂t
(x3, t3) = ∇Ṽi(x3, t3) = △Ṽi(x3, t3) = 0.

We define a function ˜u(x, t) = [M (Ṽ1, Ṽ1) + (a1 + s1 + 1)M (Ṽ2, Ṽ2) + (a1 +

s1 + 1+ b1 + s2)M (Ṽ3, Ṽ3)]ϕ(x, t) near (x3, t3).
It is easy to see that at anyx ∈ M3,

λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν
= inf {M (W1,W1) + (a1 + s1 + 1)M (W2,W2) + (a1 + s1 + 1+ b1 + s2)M (W3,W3)

| where{W1,W2,W3} is an orthonormal basis o f TxM3}.

From this, we know

(2.8) ũ(x, t) ≥ [λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν]ϕ(x, t),

and the equality holds at (x3, t3).



LOCAL PINCHING ESTIMATES IN RICCI FLOW 5

On the other hand, from (2.5), (2.6) and (2.7), we have

(2.9)
�Pi j = −2∇ϕ∇Mi j + Qi j ,

�ũ(x3, t3) = −2∇ϕ∇( ũ
ϕ ) + Q(V1,V1) + (a1 + s1 + 1)Q(V2,V2)

+(b1 + s2)Q(V3,V3)
,

where

Q(V1,V1) + (a1 + s1 + 1)Q(V2,V2) + (b1 + s2)Q(V3,V3)
= ϕ[λ2 + µν + (a1 + s1 + 1)[µ2 + ν2 + λ(µ + ν)] + (b1 + s2)(ν2 + λµ)
+ 1

Ar0
[ϕ′ · �dt(x0, x) − ϕ′′ 1

Ar0
][λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν]

= ϕI + II .

At (x3, t3), we have

I (x3, t3) = λ2 + µν + (a1+s1+1)
2 [µ2 + ν2] + (a1+s1+1)

2 [µ2 + ν2] + (a1 + s1 + 1)λ(µ + ν)
+(b1 + s2)ν2 + (b1 + s2)λ(µ − ν) + (b1 + s2)λν

≥ λ[λ + (a1 + 1)(µ + ν) + b1ν]
+

(a1+s1+1)
2 [µ2 + ν2] + (b1 + s2)ν2 + (b1 + s2)λ(µ − ν)

+s1λ(µ + ν) + s2λν.

Now by (2.3), λ < (a1 + s1 + 1)|µ + ν| + (b1 + s2)|ν|, so

(2.10)

|s1λ(µ + ν) + s2λν|
≤ s1(a1 + s1 + 1)(µ + ν)2 + s2(b1 + s2)ν2

+[s1(b1 + s2) + s2(a1 + 1+ s1)]|ν||µ + ν|
≤ (a1+1+s1

50 +
b1+s2
200 )(µ + ν)2 + (a1+1+s1

200 +
b1+s2

50 )ν2

≤ (a1+1+s1
25 +

b1+s2
100 )µ2 + (a1+1+s1

10 +
b1+s2

25 )ν2.

Therefore

I (x3, t3) ≥ a1+1+s1
4 µ2 + (a1+1+s1

4 +
b1+s2

2 )ν2

+(b1 + s2)λ(µ − ν) − b1+s2
100 µ

2

=
a1+1+s1

4 (µ2 + ν2) + b1+s2
4 ν

2

+(b1 + s2)λ(µ − ν) + b1+s2
4 ν

2 −
b1+s2
100 µ

2.

If µ ≥ 0, thenλ(µ − ν) ≥ µ2, otherwise,µ < 0, thenν2 ≥ µ2, so

I (x3, t3) ≥ a1+1+s1
4 (µ2 + ν2) + b1+s2

4 ν
2

≥
a1+1+s1

8 (µ + ν)2 +
b1+s2

4 ν
2

≥ 1
16(a1+1+s1+b1+s2) [(a1 + 1+ s1)(µ + ν) + (b1 + s2)ν]2

≥ 1
16(a1+b1+2)[(a1 + 1+ s1)(µ + ν) + (b1 + s2)ν]2

≥ 1
32(a1+b1+2){[(a1 + 1+ s1)(µ + ν) + (b1 + s2)ν]2 + λ2}

≥ 1
64(a1+b1+2)[λ + (a1 + 1+ s1)(µ + ν) + (b1 + s2)ν]2.

Hence, at the point (x3, t3), we have

Q(V1,V1) + (a1 + s1 + 1)Q(V2,V2) + (b1 + s2)Q(V3,V3)
≥ 1

64(a1+b1+2)ϕ

[
u2 −

64(a1+b1+2)
Ar0

(10ϕ′

3r0
+
ϕ′′

Ar0
)u
]
.

Combining (2.8), (2.9) with the factu(t3) < 0, and applying the maximum princi-
ple, we have
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0 ≥ 1
64(a1+b1+2)ϕ

[
u2 −

64(a1+b1+2)
Ar0

(10ϕ′

3r0
+
ϕ′′

Ar0
)u
]
+ 2

(Ar0)2 (ϕ
′

ϕ )2u(t3)

≥ 1
64(a1+b1+2)ϕ

[
u2 +

128(a1+b1+2)
Ar0

(|10ϕ′

3r0
| + |

ϕ′′

Ar0
+
ϕ′2

Ar0ϕ
|)u(t3)

]
.

If u(t3) < −256(a1+b1+2)
Ar0

( 20
3r0
+ 16

Ar0
), we get

(2.11) 0≥
1

128(a1 + b1 + 2)
u(t3)2 > 0

which is a contradiction. Henceu(t3) ≥ −256(a1+b1+2)
Ar0

( 20
3r0
+ 16

Ar0
) on [0,T]. By the

definition ofu(t), we get

(2.12) λ + (a1 + s1 + 1)(µ + ν) + (b1 + s2)ν ≥ −
1

Ar0
C(a1 + b1, r0)

on Bt(x0,Ar0), for t ∈ [0,T]. Then letA→ ∞, we getλ+ (a1+ s1+1)(µ+ν)+ (b1+

s2)ν ≥ 0 on M3 × [0,T]. That is contradiction with (2.3). The proof of Theorem
1.1 is completed.

�

By takinga = 0, b = 1, c = 0 in Theorem 1.1, we get Theorem 1.2.

Remark 2.1. In 3-dim Ricci flow, nonnegative Ricci curvature is always preserved
with bounded curvature assumption, which can be proved by using the maximum
principle directly. The above theorem removes the bounded curvature assumption.
In [1], the local estimate of Rm is achieved by an induction method.Here we make
the argument in a ‘continuous’ way.

In the following, we will prove the local Hamilton-Ivey estimate without bounded
curvature assumption on 3-dim manifolds.

Proof. of Theorem 1.3. Assume thatλ ≥ µ ≥ ν are the eigenvalues of curvature
operatorMi j andR = λ + µ + ν as before. Note our curvature operator’s value on
tangent plane is two times sectional curvature of the tangent plane.

Let w = R
−ν − ln(−ν) + 3+ ln K

1+Kt be a function defined on

Ω = {(x, t)| ν(x, t) < 0, (x, t) ∈ M3 × [0,T]}

We want to prove (1.2) onΩ ∩ Bt(x0,Ar0). Recall that as in (2.6), we pick a
abstract vector bundleE with fixed bundle metric and a family of time-dependent
connections compatible with the metric. After pulling backwith the moving frames
from the tangent bundle, the curvature operatorM acts onE.

Define

(2.13)
W(x, t,V) = −R · [M (x, t)(V,V)]−1 − ln(−M (x, t)(V,V))

+
(
3+ ln K

1+Kt

)
· |V|2

to be a function on

Ω1 = {(x, t,V)|M (x, t)(V,V) < 0, (x, t) ∈ Ω, V ∈ E, |V| = 1}.
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WhenR> ν, considering the functionh1(s) = R
−s−ln(−s), we find it is increasing

in s. Hence, whenR> ν, (x, t) ∈ Ω, we have

(2.14) w(x, t) = min

{
W(x, t,V);

where(x, t,V) ∈ Ω1

}
.

Note R(x, 0) ≥ 3ν(x, 0) ≥ −3K on B0(x0, 2Ar0), by Proposition 2.1 of [1], we
have

(2.15) R(x, t) ≥ min
{
−

3K
1+ Kt

,−
C

Ar2
0

}
,

where x ∈ Bt(x0,
3
2Ar0), t ∈ [0,T], and C is some universal constant. By the

assumptionA ≥ C
3r2

0

(
1
K + T

)
and (2.15), we get

R≥ −
3K

1+ Kt
,

on Bt(x0,Ar0) .
If 0 > ν ≥ R, assumeR

−ν = a, then−3 ≤ a ≤ −1. Note−ν = 1
aR ≤ −3

a
K

1+Kt ,
hence

(2.16) w ≥ a+ ln(−a) + 3− ln 3 ≥ 0.

The last inequality uses the fact that the minimum of function a+ln(−a) on [−3,−1]
is (−3+ ln 3). By (2.16), we only need to show (1.2) for the caseR> ν.

Let

(2.17) u(x, t) = ϕ
(2dt(x0, x)

Ar0
− 1
)
w(x, t)

be a function defined onΩ1. Let (x3, t3,V3) be a point such that

(2.18) ϕ(x3, t3)W(x3, t3,V3) = min
t∈[0,T],x∈Ω

(ϕw)(x, t).

If ϕ(x3, t3)W(x3, t3,V3) ≥ 0, we are done.
So we may assumeϕ(x3, t3)W(x3, t3,V3) < 0, thent3 ∈ (0,T] andx3 ∈ Bt3(x0,

3
2Ar0).

Note that we haveR(x3, t3) ≥ − 3K
1+Kt .

At (x3, t3,V3), let Ṽ be a local vector field defined by parallel translations ofV3

along radial geodesics emanating fromx3 at timet3. Then|Ṽ| ≡ 1 and ∂∂t Ṽ = ∇Ṽ =

△Ṽ = 0 at (x3, t3). Define two smooth functions

ν̃ =M (x, t)(Ṽ, Ṽ)

ũ =
[ R
−ν̃
− ln(−ν̃) + 3+ ln

K
1+ Kt

]
ϕ(x, t)

near (x3, t3), these two functions satisfy

(2.19) ν̃ ≥ ν, ũ ≥ u

and equalities hold at (x3, t3).
At (x3, t3), a straightforward computation gives

(2.20) �ũ =
[
2
ϕ′

Ar0
�dt − 4

ϕ′′

(Ar0)2

]
W(·, ·, Ṽ) − 2∇ϕ∇W(·, ·, Ṽ) + ϕ�W(·, ·, Ṽ)
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and

(2.21)
�W(x, t, Ṽ) = 2∇ ln(−ν̃) · ∇w̃+ |∇ ln(−ν̃)|2

−2ν̃ − K
1+Kt + ν

−2(λ − ν)(µ − ν)R.

From(2.20) and (2.21), we have

(2.22)
�ũ ≥ ϕ

[
− 2ν − K

1+Kt

]
+ ϕ (λ−ν)(µ−ν)

ν2
R

+4 2
Ar2

0

(
|
10ϕ′

3 | + |
ϕ′′

A | + |
1
A ·

(ϕ′)2

ϕ |
)
w− 64

(Ar0)2 w2.

Combining with (2.18) and (2.19), and applying the maximum principle at (x3, t3),
we get

(2.23)

0 ≥ �ũ|(x3,t3)

≥ ϕ
[
− 2ν − K

1+Kt

]
+ ϕ (λ−ν)(µ−ν)

ν2
R+ 120

Ar2
0
w− 64

(Ar0)2 w2

= (I ) + (II ) + (III ) + (IV).

The rest computations are all at (x3, t3) without illustration.We estimate (II )
firstly. If R(x3, t3) ≥ 0, then (II ) ≥ 0.

If R(x3, t3) < 0, we have

(2.24)
(II ) ≥ ϕ (R−3ν)2

4ν2 R≥ ϕ4
(

R
−ν + 3

)2
R

≥
ϕ
4

[
ln(−ν) − ln( K

1+Kt )
]2

R.

Now we will estimate (I ) + (II ) in terms ofν. Note

(2.25) 0> w =
R
−ν
− ln(−ν) + 3+ ln

K
1+ Kt3

≥ − ln(−ν) + ln
K

1+ Kt3
,

hence we get

(2.26) |w(x3, t3)| ≤
∣∣∣∣ ln(−ν) − ln

K
1+ Kt3

∣∣∣∣.

On the other side, byw(x3, t3) < 0, we get

(2.27) ln(−ν) >
R
−ν
+ 3+ ln

K
1+ Kt3

≥ ln
K

1+ Kt3
.

Then−ν > K
1+Kt3

, and we get

(2.28) (I ) ≥ ϕ · (−ν).

Now consider the function

f (s) =
s

∣∣∣∣ ln s− ln K
1+Kt3

∣∣∣∣
2

wheres > K
1+Kt3

. Then it is easy to getf (s) ≥ f (e2 · K
1+Kt3

) = e2

4 ·
K

1+Kt3
for any

s> K
1+Kt3

. From this and (2.26), we get

(2.29) −ν ≥
e2

4
·

K
1+ Kt3

[
ln(−ν) − ln

K
1+ Kt3

]2
≥

e2

4
·

K
1+ Kt3

w2.
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Hence

(2.30) (II ) ≥
ϕ

e2
(−ν) ·

1+ Kt3
K

R≥
3
e2
ϕν.

As a consequence, we always have

(2.31) (I ) + (II ) ≥ −
1
9
ϕν.

To control (IV), we consider the function

h2(s) =
s

∣∣∣∣ ln s− ln K
1+Kt3

∣∣∣∣
3

wheres > K
1+Kt3

. Then it is easy to geth2(s) ≥ h2( Ke3

1+Kt3
) = e3

27 ·
K

1+Kt3
for any

s> K
1+Kt3

. As in (2.29), we get

(2.32) −ν ≥
e3

27
K

1+ Kt3
|w|3.

By (2.29), (2.31) and (2.32), we have

(2.33) (I ) + (II ) ≥ −
1
9
ϕν ≥

e2

72
·

K
1+ Kt3

ϕw2 +
e3

486
·

K
1+ Kt3

ϕ|w|3.

By (2.23) and (2.33), we get

(2.34)
0 ≥ e2

72ϕ ·
K

1+Kt3
(ϕw)2 + 120

Ar2
0ϕ
ϕw

+ e3

486ϕ ·
K

1+Kt3
|w|
(
(ϕw)2 + 486

e3 ·
1+Kt3

K · 64
(Ar0)2ϕw

)

From the above, we get

(2.35) |ϕw| ≤ max
{

8640(1+Kt3)
KAe2r2

0
, 31104(1+Kt3)

Ke3(Ar0)2

}

By ϕ = 1 onBt(x0,Ar0), t ∈ [0,T] and (2.35), we have

(2.36) R
−ν − ln(−ν) + 3+ ln K

1+Kt ≥ min
{
−

8640(1+KT)
KAe2r2

0
, −31104(1+KT)

Ke3(Ar0)2

}
.

Theorem 1.3 is proved. �

Remark 2.2. Our method of using maximal principle here is a little bit different
from Hamilton’s way of using maximal principle in[3] and [4].

Now we give the proof of Corollary 1.4.

Proof. of Corollary 1.4. We choosex0 ∈ M3, r0 > 0 such thatRc(x, t) ≤ 2r−2
0

for x ∈ Bt(x0, r0), t ∈ [0,T]. This is always possible if we pick smallr0. For any
constantA ≥ C

3r2
0
(1+ T), by Theorem 1.3, we get

(2.37) R
−ν − ln(−ν) + 3+ ln( K

1+Kt ) ≥ min
{
−

8640(1+KT)
KAe2r2

0
, −31104(1+KT)

Ke3(Ar0)2

}
.

at any points (x1, t1) ∈ Bt(x0,Ar0) with ν(x1, t1) < 0.
Let A→ ∞ in (2.37), we get

(2.38) R
−ν − ln(−ν) + 3+ ln( K

1+Kt ) ≥ 0.
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If we have a ancient solution defined on (−∞, 0], and there were some point
(x1, t1) such thatν(x1, t1) < 0, then by Corollary 1.5, we have

(2.39) R(x1, t1) ≥ (−ν)(x1, t1)(−3+ ln(t1 − t2)(−ν)(x1, t1)))

for any t2 < t1. When t2 → −∞, this will give a contradiction. Therefore, we
have the following pinching result about ancient solution originally due to the first
author (see [1]).

Corollary 2.3. Any smooth complete ancient solution of Ricci flow on3-dim man-
ifold must have Rm≥ 0.

Following similar strategy in [1], we also have the following theorem.

Theorem 2.4. Let (M3, g(x)) be a complete noncompact3-dim manifold with0 ≤
Rc≤ K0g, for some fixed positive constant K0. Also assume i0 = minx∈M3 in j(x) ≥
δ > 0. If g1(t) and g2(t) are both smooth complete solutions to the Ricci flow on
M3×[0,T] with g(x) as initial data, we have g1(t) ≡ g2(t), for 0 ≤ t < min{T, 1

45K0
}.
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