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THE GEOMETRIC INVARIANTS OF GROUP EXTENSIONS

NIC KOBAN AND PETER WONG

Abstract. In this paper, we compute the Σn(G) and Ωn(G) invariants when 1 → H →

G → K → 1 is a short exact sequence of finitely generated groups with K finite. We also

give sufficient conditions for G to have the R∞ property in terms of Ωn(H) and Ωn(K) when

either K is finite or the sequence splits. As an application, we construct a group F ⋊ρ Z2

where F is the R. Thompson’s group F and show that F ⋊ρ Z2 has the R∞ property while

F is not characteristic.

1. Introduction

The Bieri-Neumann-Strebel-Renz invariants (and their homological analogs) Σn(G) of a

group have been useful in obtaining finiteness properties of subgroups of G with abelian

quotients. Connections to other areas of mathematics have been made while the computation

of these invariants remains difficult in general. In fact, the so-called direct product conjecture

for Σn(H ×K) has been shown to be false in general ([21] for the homotopical version and

[22] for the homological, although in [2], the product conjecture for the homological version of

the Σ-invariants is proven over a field). On the other hand, an analogous geometric invariant

Ωn(G) has been introduced and has proven somewhat easier to compute. For example, the

product formula Ωn(H ×K) = Ωn(H) ⊛ Ωn(K), the spherical join of Ωn(H) and Ωn(K),

holds. More recently, the product formula for Ωn has been employed to yield new families

of groups for which the R∞ property holds [18]. The R∞ property arises from the study

of twisted conjugacy classes of elements of the fundamental group in topological fixed point

theory (see § 6).

Motivated by [18] and the product formula for Ωn [17], we conjectured similar formulas

for Ω1 for finite and split extensions in the unpublished manuscripts [19] and [20]. We have

since found counterexamples to the formulas. Although these formulas are false in general,

we have found use for the formulas which we discuss in § 6 of this paper.

The main objective of this paper is to use the Σ- and Ω-invariants to detect the R∞

property for an extension 1 → H → G → K → 1 where either K is finite or the sequence
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splits. As an application, we construct a finitely presented group with Ω2 consisting of a

single discrete point and hence with the R∞ property whereas Ω1 contains two antipodal

points from which the R∞ property cannot be detected. This is the first example known to

the authors where n = 2 is needed to obtain this property where n = 1 fails to satisfy the

conditions.

This paper is organized as follows. The invariants Ωn were defined in [16] and are analogs

of the Bieri-Neumann-Strebel-Renz invariants Σn defined in [4] for n = 1 and in [5] for

n ≥ 2. We recall these definitions in § 2.1 and § 2.2. In § 3, we describe the real vector

space of characters, Hom(G,R), for a finite and split extension G in terms of Hom(H,R),

Hom(K,R), and the action of K on H . In § 4, we prove the formula for Σ1(G) where G is a

finite extension. In § 5, we investigate the conjectured Ω-formula for finite extensions, and

give examples where this formula fails and conditions when the formula holds. In § 6, we give

conditions using the Ω-invariant to detect the R∞ property in finite and split extensions.

2. The Geometric Invariants Σ and Ω

Let G be a finitely generated group with generating set S. In this section, we define two

invariants of G:

(1) the Bieri-Neumann-Strebel (or BNS) invariant Σ, and

(2) the invariant Ω.

2.1. The BNS invariant Σ. The set Hom(G,R) of homomorphisms from G to the additive

group of reals is a real vector space with dimension equal to the Z-rank of the abelianization

of G, so Hom(G,R) ∼= R
m for some m. Thus, there is a natural isomorphism between

Hom(G,R) and the real vector space G/G′ ⊗Z R. The group G acts on G/G′ ⊗Z R by left

multiplication on the G/G′ component, and this gives an action of G on Hom(G,R) (by

translations).

Let Γ denote the Cayley graph of G with respect to a chosen generating set. Define

h : Γ → R
m to be the abelianization map on the vertices and extend linearly on the edges.

Denote by ∂∞R
m the boundary at infinity of Rm (ie. the set of geodesic rays in R

m initiating

from the origin). This is isomorphic to the character sphere of G defined as the set of

equivalence classes S(G) := {[χ]|χ ∈ Hom(G,R) − {0}} where χ1 ∼ χ2 if and only if

χ1 = rχ2 for some r > 0. Let e ∈ ∂∞R
m and let γ be the geodesic ray defining e. We denote

by He the half space perpendicular to γ that contains all of the image of γ. Denote by Γe
the largest subgraph of Γ that is contained in h−1(He). The direction e ∈ Σ1(G) if Γe is path

connected.

We give an equivalent definition for Σ1(G) that we will use in this paper. It will also

be useful to see the motivation for the definition of Ω1(G). Let e ∈ ∂∞R
m and let γ be a
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geodesic ray defining e. For each s ∈ R, let Hγ,s be the closed half-space orthogonal to γ so

that Hγ,s ∩ γ([0,∞)) = γ([s,∞)). For each s ∈ R, denote by Γγ,s the largest subgraph of Γ

contained in h−1(Hγ,s). The direction e ∈ Σ1(G) if and only if for every s ≥ 0, there exists

λ = λ(s) ≥ 0 such that any two points u, v ∈ Γγ,s can be joined by a path in Γγ,s−λ and

s− λ(s) → ∞ as s→ ∞.

2.2. The invariant Ω. In the compactified space Rm ∪ ∂∞R
m, the compactified half-spaces

play the role of neighborhoods of the point e ∈ ∂∞R
m, but this gives an unsatisfactory topol-

ogy to Rm∪∂∞R
m. From the point of view of topology, it is more natural to have a similar def-

inition to Σ1(G) using “ordinary” neighborhoods of e. A basis for these neighborhoods con-

sists of “truncated cones”. For each s ≥ 0, define the truncated cone Cγ,s := Coneθ(γ)∩Hγ,s

where Coneθ(γ) is the closed cone of angle θ and vertex γ(0) and θ := arctan(1
s
) if s > 0

and θ := π
2
if s = 0. For each s ≥ 0, denote by ∆γ,s the largest subgraph of Γ contained in

h−1(Cγ,s). We say that e ∈ Ω1(G) if and only if there exists s0 ≥ 0 such that for each s ≥ s0,

there exists λ = λ(s) ≥ 0 such that any two points u, v ∈ ∆γ,s can be joined by a path in

∆γ,s−λ and s− λ(s) → ∞ as s→ ∞.

When n > 1, we can make the following changes to the definitions to obtain Σn(G) and

Ωn(G): replace G being finitely generated with type Fn, replace the Cayley graph Γ with

an n-dimensional, (n − 1)-connected CW-complex X on which G acts freely as a group

of cell permuting homeomorphisms with G\X a finite complex, h is a G-map from X to

Hom(G,R) , and replace the path-connected property in the definition with the analogous

(n− 1)-connected property (see [5] for Σ and [16] for Ω). We should mention that Ωn(G) is

always a closed set while Σn(G) is open.

The following theorem relates the invariants Σn(G) and Ωn(G).

Theorem 2.1. [16, Theorem 3.1] Let e ∈ ∂∞R
m. Then e ∈ Ωn(G) if and only if e′ ∈ Σn(G)

for every e′ in an open π
2
-neighborhood of e.

Given Σn(G), we can completely determine Ωn(G): for each e ∈ ∂∞R
m, e ∈ Ωn(G) if and

only if the open π
2
-neighborhood of e is in Σn(G). However, it is not the case that Ωn(G)

completely determines Σn(G); examples of such groups are given in [16, § 1.3].

The following theorem completely describes Ωn(H × K) in terms of Ωn(H) and Ωn(K).

This theorem will be useful in § 6.

Theorem 2.2. [17, Theorem 3.8] Ωn(H × K) = Ωn(H) ⊛ Ωn(K) where ⊛ represents the

spherical join.
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3. The Space Hom(G,R)

Consider a group extension G given by the following short exact sequence of groups

1 → H
i
→ G

p
→ K → 1.

Without loss of generality we may assume that the monomorphism i is an inclusion so that

H is identified with its image in G as a normal subgroup. Let K̃ be a left transversal for H ,

i.e., K̃ = ν(K) where ν : K → G is an injective function so that (p◦ν)(k) = k for all k ∈ K.

In addition, we assume that ν(1K) = 1G. There is an “action” of K̃ on Hom(H,R) given by

(k̃ · φ)(h) = φ(k̃hk̃−1)

for all h ∈ H where φ ∈ Hom(H,R).

Let

Fixν̂ = {φ ∈ Hom(H,R)|k̃ · φ = φ, ∀k̃ ∈ K̃ = ν(K)}.

Note that Fixν̂ is a vector subspace of Hom(H,R).

Remark 3.1. If ν1, ν2 : K → G are two left transversals for H then Fixν̂1 = Fixν̂2. To see

this, let φ ∈ Fixν̂1 and k̃2 ∈ ν2(K). Write k̃2 = ν2(k) for some k ∈ K. Since (p ◦ νi)(k) = k

for i = 1, 2, it follows that ν2(k) = ν1(k)h
′ for some h′ ∈ H. Now,

(ν2(k) · φ)(h) = φ(ν2(k)hν2(k)
−1)

= φ(ν1(k)h
′h(h′)−1ν1(k)

−1)

= φ(h′h(h′)−1) since φ ∈ Fixν̂1

= φ(h).

Thus, φ ∈ Fixν̂2. A similar argument shows that if φ ∈ Fixν̂2 then φ ∈ Fixν̂1.

In the special case when G = H ⋊ρ K is the semi-direct product given by an action

ρ : K → Aut(H), the canonical left transversal ν is the section given by ν(k) = (1, k). Then

Fixν̂ = {φ ∈ Hom(H,R)|φ(ρ(k)(h)) = φ(h) for all h ∈ H, k ∈ K}. In this case, we also

write Fixρ̂ for Fixν̂ as the fixed subspace induced by the action ρ.

Following [15], we will use the presentations for H and K to derive a presentation for

G. Let H ∼= 〈A|R〉 and K ∼= 〈B|S〉. Since every word in S is equivalent to the identity,

ν(S) ⊆ ker(p) = H . Thus, every word ν(S) is equivalent to some word ws in A. Denote

by X := {ν(s)w−1
s |s ∈ S and ws is the equivalent word to ν(s) in A}. For each b̃ ∈ ν(B)

and each a ∈ A, there is a word wa,b ∈ H such that b̃ab̃−1 = wa,b. Let Y := {b̃ab̃−1w−1
a,b |b̃ ∈

ν(B); a ∈ A}. Then G ∼= 〈A ∪ ν(B)|R ∪X ∪ Y 〉.

Proposition 3.1. Let G be a finite extension given by the short exact sequence of groups

1 → H
i
→ G

p
→ K → 1
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where K is finite and let ν : K → G be a left transversal for H such that ν(1K) = 1G. Then

Hom(G,R) ∼= Fixν̂.

Proof. Suppose φ ∈ Fixν̂. Thus, φ is defined on A, so we need only define φ on B so that it

satisfies the relations X and Y of G to get a homomorphism from G to the reals. Since K is

finite, for each b ∈ B, there is a relation in S of the form bm for some integer m ≥ 1. Thus,

there is a word w in A such that b̃mw−1 = 1, so φ(b̃) = φ(w)
m

. Since φ ∈ Fixν̂, the relations

in Y are satisfied, and obviously the relations in X are satisfied. Let φ̂ be this extension of

φ. Define T : Fixν̂ → Hom(G) by T (φ) = φ̂.

If φ ∈ Hom(G,R) then define Q : Hom(G,R) → Fixν̂ by Q(φ) = φ ◦ i. A priori,

Q(φ) ∈ Hom(H,R). To see that the image actually lies in Fixν̂, we note that

k̃ · (φ ◦ i))(h) = (φ ◦ i)(k̃hk̃−1)

= φ(k̃hk̃−1)

= φ(k̃)φ(h)φ(k̃)−1 [since φ ∈ Hom(G,R)]

= φ(h).

It follows that (φ ◦ i) ∈ Fixν̂. It is easy to see that Q ◦ T and T ◦Q yield identity maps and

thus the assertion follows. �

We now give the analogous proposition in the split extension case.

Proposition 3.2. Let G be a split extension given by the short exact sequence of groups

1 → H
i
→ G

p
→ K → 1

and let ν : K → G be a left transversal for K such that ν(1K) = 1G. Then Hom(G,R) ∼=

Fixρ̂×Hom(K,R).

Proof. Define Φ : Hom(G,R) → Fixρ̂×Hom(K,R) by φ 7→ (φ ◦ i, φ ◦ σ). To show that Φ is

well-defined, we first show that φ ◦ i ∈ Fixρ̂. Let h ∈ H and k ∈ K, so

(k · φ ◦ i)(h) = φ ◦ i(k̃hk̃−1) = φ(k̃hk̃−1) = φ(k̃) + φ(h)− φ(k̃) = φ ◦ i(h).

Define Ψ : Fixρ̂ × Hom(K,R) → Hom(G,R) by (α, β) 7→ (α̂ + β ◦ π) where α̂(g) =

α̂(hk̃) := α(h) and k̃ = σ ◦ π(g). Since ker(π) = H , (β ◦ π)(h) = 0 for all h ∈ H . To

show that α̂ is a homomorphism, we note that since α ∈ Fixρ̂, we have α(k̃hk̃−1) = α(h).

Therefore,

α̂(g1g2) = α̂(h1k̃1h2k̃2) = α̂(h1(k̃1h2k̃
−1
1 )k̃1k̃2) = α(h1)α(k̃1h2k̃

−1
1 ) = α(h1)α(h2) =

α̂(g1)α̂(g2).

To see that Φ and Ψ are inverses, we have
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Φ ◦Ψ(α, β)(h, k) = ((α̂+ β ◦ π) ◦ i, (α̂+ β ◦ π) ◦ σ)(h, k) = (α̂(h) + β ◦ π(h), β ◦ π(σ(k))) =

(α(h), β(k))

and

Ψ ◦ Φ(φ)(g) = (φ̂ ◦ i+ φ ◦ σ ◦ π)(g) = φ̂ ◦ i(hk̃) + φ(σ(π(hk̃))) = φ(h) + φ(k̃) = φ(g).

�

4. The Σ-invariant for finite extensions

In this section, we prove for a finite extension 1 → H → G → K → 1 that Σ1(G) =

∂∞Fixν̂ ∩ Σ1(H). We should mention that a more general result for finite index subgroups

was given in [21].

Theorem 4.1. [21, Theorem 9.3] Suppose that H ≤ G is a subgroup of finite index, and

that χ restricts to a non-zero homomorphism of H. Then [χ|H ] ∈ Σn(H) if and only if

[χ] ∈ Σn(G).

We give a geometric proof of Theorem 4.3 for n = 1. The authors would like to thank

Dessislava Kochloukova for pointing us to the result in [21].

Proposition 4.2. Given an extension 1 → H → G → K → 1 where K is finite, if H is

finitely generated, then Σ1(G) ⊆ Σ1(H).

Proof. Since H is finitely generated and K is finite, G is finitely generated. First, we note

that since Hom(G,R) = Fixν̂, we have Hom(G,R) ⊆ Hom(H,R) as a vector subspace. Let

ΓH and ΓG be the Cayley graphs of H and of G with respect to the generating sets A and

A ∪ ν(B) respectively. For any height function h : ΓG → Hom(G,R), we have an induced

height function h̄ : ΓH → Hom(H,R) such that the following diagram commutes:

ΓH
h̄

−−−→ Hom(H,R)

î

y
xQ̂

ΓG
h

−−−→ Hom(G,R)

where Q̂ is the induced inclusion Hom(G,R) ⊆ Hom(H,R) from the proof of Proposition3.1,

and î is induced by the inclusion i : A ⊆ A ∪ B̃. In fact, î is the inclusion of ΓH as the

subgraph induced by the vertices {hν(1K)|h ∈ H} in ΓG.

Let e ∈ Σ1(G). We will show that e ∈ Σ1(H). First, take a half space H̄e,s for e in

Hom(H,R). Since Hom(G,R) ⊆ Hom(H,R), there is a unique half space He,s in Hom(G,R)

such that He,s = H̄e,s ∩ Hom(G,R). Take x and y to be vertices in h̄−1(H̄e,s). Since

h̄ = Q̂ ◦ h ◦ î, it follows that h̄−1(H̄e,s) ⊆ h−1(He,s) and thus x, y ∈ h−1(He,s), that is,
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there exist g1, g2, ..., gm ∈ (A ∪ B̃) such that y = xg1g2...gm and for each 1 ≤ i ≤ m,

h(xg1 . . . gi) ⊂ He,s. Let µ := min{h(k̃|k̃ ∈ ν(K)}. We can rewrite the path from y to x

as h1k1h2k2 . . . hp−1kp−1hp where each hj ∈ H and each kj ∈ ν(K) with the possibility that

h1 and hp are the identity element. Since H is normal, we have for each 1 ≤ i ≤ p − 1,

kihi+1 = h̄i+1ki, and h(xh̄1 . . . h̄i+1) ⊂ He,s−µ. Therefore, y = xh̄1 . . . h̄pk1 . . . kp−1, and since

x, y, (h̄1 . . . h̄p) ∈ H , we have that k1 . . . kp−1 is trivial (otherwise it would be a non-trivial

element of H). Thus, y = xh̄1 . . . h̄p and for each 1 ≤ i ≤ p, h(xh̄1 . . . h̄i) ⊂ He,s−µ. Hence x

and y are connected in h̄−1(H̄e,s) or e ∈ Σ1(H). �

Remark 4.1. Note that the inclusion Hom(G,R) ⊆ Hom(H,R) of Proposition 4.2 can be

strict. For instance, take H = Z
2 and G to be the fundamental group of the Klein bottle with

K = Z2. Here, rkZ(G) = 1 < 2 = rkZ(Z
2). Moreover, Proposition 4.2 is false if K is not

finite, e.g., take G = Z
2 and H = Z.

Theorem 4.3. Let G be a finite extension given by the short exact sequence of groups

1 → H
i
→ G

p
→ K → 1

where K is finite, H is finitely generated, and let ν : K → G be a left transversal for K such

that ν(1K) = 1G. Then, Σ1(G) = ∂∞Fixν̂ ∩ Σ1(H).

Proof. By Prop. 4.2, Σ1(G) ⊆ Σ1(H). Since K is finite, we have Hom(G,R) = Fixρ̂ by

Prop. 3.1. Thus, Σ1(G) ⊆ ∂∞Hom(G) = ∂∞Fixρ̂, and we have Σ1(G) ⊆ ∂∞Fixρ̂ ∩ Σ1(H).

Suppose e ∈ ∂∞Fixρ̂∩Σ1(H) and suppose γ is a geodesic ray defining e. To show that e ∈

Σ1(G), let s ∈ R, and let Hγ,s be the corresponding half space of e in Hom(G,R) = Fixρ̂ ⊆

Hom(H,R). Let π : G → G/G′ ∼= Z
m be the natural projection epimorphism. Let ΓG be

the Cayley graph of G with respect to the generating set A ∪ ν(B) from the presentations

H = 〈A|R〉 and K = 〈B|S〉. Define h : ΓG → Hom(G,R) ∼= R
m by: h(g) = π(g) for all

vertices g ∈ ΓG, and extend linearly on edges. Choose two points x, y ∈ h−1(Hγ,s). Since G

is a finite extension, x and y can be uniquely written as x = h1k̃1 and y = h2k̃2 for some

h1, h2 ∈ H and k1, k2 ∈ K. Let λ1 := min{d(h(k̃), Hγ,0)|k̃ ∈ ν(K)} where d(h(k̃), Hγ,0) is

the distance between the point h(k̃) and the half space Hγ,0. Since x, y ∈ h−1(Hγ,s), we have

h1, h2 ∈ h−1(Hγ,s−λ1). Since e ∈ Σ1(H), there exists λ2 ≥ 0 such that there is a path w in

(ΓH)γ,s−λ1−λ2 ⊆ (ΓG)γ,s−λ1−λ2 from h1 to h2. Thus, k̃
−1
1 wk̃2 is a path in (ΓG)γ−λ1−λ2 from x

to y. Since K is finite, s− λ1 − λ2 → ∞ as s→ ∞. �

Remark 4.2. It should be noted that due to Theorem 4.1 and Proposition 3.1 the result in

Theorem 4.3 holds for all n ≥ 1. We will use this fact in later constructions in this paper.

Corollary 4.4. For the semi-direct product H ⋊ρ K of a finitely generated group H and a

finite group K, we have Σ1(H ⋊ρ K) = Σ1(H) ∩ ∂∞Fixρ̂.
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Example 4.3. Consider the fundamental group of the Klein Bottle with the standard pre-

sentation

G = 〈α, β|αβαβ−1 = 1〉.

The subgroup generated by α and β2 is isomorphic to Z
2 since αβ2 = αβ(αβα) = (αβα)(βα) =

β(β(α) = β2α. This subgroup is the fundamental group of the 2-torus as a double cover of

the Klein Bottle. Moreover, G admits the following short (non-split) exact sequence

0 → 〈α, β2〉 → G
p
→ Z2 = 〈β̄|β̄2 = 1̄〉 → 0

where the projection p sends α to 1̄ and β to β̄.It follows from Theorem 4.3 that Σ1(G) =

Σ1(Z2) ∩ ∂∞Fixν̂ where ν : Z2 → G is given by β̄ 7→ β. Thus,

Σ1(G) = S
1 ∩ ∂∞Fixν̂

= S
1 ∩ ∂∞{φ ∈ Hom(Z2)|β · φ = φ}

= S
1 ∩ ∂∞{φ ∈ Hom(Z2)|φ(βhβ−1) = φ(h), ∀h ∈ H}.

Note that H = 〈α, β2〉 and φ(βαβ−1) = φ(α) implies that φ(α−1) = φ(α) which in turn

implies that φ(α) = 0. This implies that Fixν̂ = R and so Σ1(G) = {±∞}. Since

Hom(G,R) = Fixν̂ = R is one dimensional, we have Ω1(G) = Σ1(G) = {±∞}.

Example 4.4. Consider the infinite dihedral group D∞. It is known that D∞
∼= Z2 ∗Z2, the

free product of Z2 with Z2. Moreover, it is also isomorphic to Z ⋊ρ Z2 where the action ρ

is the non-trivial one. It is easy to see that Fixρ̂ is the origin {0} so that ∂∞Fixρ̂ = ∅. It

follows from Theorem 4.3 that Σ1(D∞) = ∅ = Ω1(D∞). On the other hand, D∞ admits the

following non-split extension

1 → (Z2 ∗ Z2)
′ → Z2 ∗ Z2 → Z2 × Z2 → 0

where Z ′ denotes the commutator subgroup of a group Z. Furthermore, (Z2 ∗ Z2)
′ is iso-

morphic to the infinite cyclic group Z (see e.g. Exercise 10 on p.134 of [15]). Again similar

arguments show that, using Theorem 4.3, that Σ1(D∞) = ∅ = Ω1(D∞).

5. The Ω-invariant for finite extensions

The authors originally conjectured that Ω1(G) = Ω1(H) ∩ ∂∞Fixν̂. This however turned

out not to be true as the following examples show.

Example 5.1. Recall that the R. Thompson’s group F can be given the following presentation

F = 〈x0, x1, x2, ...|x
−1
k xnxk = xn+1, k < n〉.
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The elements x0 and x1 correspond to the following piecewise linear homeomorphisms of the

unit interval:

(1) x0(t) =





t

2
, 0 ≤ t ≤

1

2

t−
1

4
,

1

2
≤ t ≤

3

4

2t− 1,
3

4
≤ t ≤ 1

and

(2) x1(t) =





t, 0 ≤ t ≤
1

2
t

2
+

1

4
,

1

2
≤ t ≤

3

4

t−
1

8
,

3

4
≤ t ≤

7

8

2t− 1,
7

8
≤ t ≤ 1

The 180 degree rotation of the square [0, 1]× [0, 1] centered at the point (1
2
, 1
2
) induces an

order 2 automorphism ρ of the group F . It is easy to see that F can be generated by x0 and x1.

This automorphism ρ is given by ρ(x0) = x−1
0 and ρ(x1) = x0x1x

−2
0 . Using the automorphism

ρ of F , we form the semi-direct product G = F ⋊ρ Z2. The vector space Hom(G,R) =

{χ|χ(x0) = 0} ∼= R
1, and we use Theorem 4.3 to show that Σ1(G) = {±∞}. To see this, first

recall that Σ1(F )c = {[χ1], [χ2]} where χ1(x0) = 1, χ1(x1) = 0, and χ2(x0) = χ2(x1) = −1.

Since neither of these points are in ∂F ixρ̂, by Theorem 4.3, Σ1(G) = Σ1(F ) ∩ ∂F ixρ̂ =

{±∞}. Since Hom(G,R) is one-dimensional, we have that Ω1(G) = Σ1(G). Using the

π/2-neighborhood result of Theorem 2.1, it follows that Ω1(F ) is a single arc which contains

the north pole +∞ but not the south pole −∞. Thus Ω1(F ) ∩ ∂F ixρ̂ = {+∞}. Thus,

Ω1(G) 6= Ω1(H) ∩ ∂∞Fixν̂ in general.

Example 5.2. Let H ∼= 〈a, b|b−1ab = a2〉× 〈c, d|d−1cd = c2〉 × 〈x, y〉 (so H is the product of

two Baumslag-Solitar groups and the free group on two generators), and define the action ρ

of Z2
∼= 〈t|t2 = 1〉 on H by t · a = c, t · b = d, t · c = a, t · d = b, t · x = y, and t · y = x. Let

G ∼= H ⋊ρ Z2. The vector space Hom(H,R) ∼= R
4 as any homomorphism must send a and c

to zero, and Fixρ̂ = {φ|φ(b) = φ(d);φ(x) = φ(y)} ∼= R
2. The complement of Σ1(H) is the

set {[χ]|χ(b) = χ(d) = 0} ∪ {[χ]|χ(x) = χ(y) = χ(b) = 0;χ(d) = −1} ∪ {[χ]|χ(x) = χ(y) =

χ(d) = 0;χ(b) = −1}. Thus, by Theorem 4.1, the complement of Σ1(G) is the two-point

set {[χ]|χ(b) = χ(d) = 0}. By Theorem 2.1, Ω1(G) is the two-point set {[χ]|χ(x) = χ(y) =

0}. However, by Theorem 2.2, Ω1(H) = {[χ]|χ(x) = χ(y) = 0;χ(b) > 0;χ(d) > 0}, so

Ω1(H) ∩ ∂∞Fixρ̂ is the one-point set {[χ]|χ(x) = χ(y) = 0;χ(b) = χ(d) = 1}.

We do have the following containments.
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Proposition 5.1. Ωn(H) ∩ ∂∞Fixν̂ ⊆ Ωn(G) ⊆ Σn(H) ∩ ∂∞Fixν̂.

Proof. To see that Ωn(G) ⊇ Ωn(H) ∩ ∂∞Fixν̂, if [χ] ∈ Ωn(H) ∩ ∂∞Fixν̂, then the open
π
2
-neighborhood of [χ] in ∂∞Hom(H,R), denoted NH

π/2([χ]), is contained in Σn(H). Thus,

NG
π/2([χ]) = NH

π/2([χ]) ∩ ∂∞Fixν̂ ⊆ Σn(H) ∩ ∂∞Fixν̂ = Σn(G) which implies [χ] ∈ Ωn(G).

Further, by Theorem 4.1 and remark 4.2, Ωn(G) ⊆ Σn(G) = Σn(H)∩∂∞Fixν̂ which finishes

the proof. �

It should be noted that these containments can be strict. Example 5.1 shows that the first

containment can be strict, and example 5.2 shows the second containment can be strict.

Proposition 5.1 leads to the following sufficient conditions to obtain equality.

Theorem 5.2. Ωn(G) = Ωn(H) ∩ ∂∞Fixν̂ if

(1) Hom(H,R) ∼= R
1,

(2) Σn(H) = S(H) which is the character sphere of Hom(H,R), or

(3) Σn(H) = ∅.

Proof. Each condition implies that Σn(H) = Ωn(H) which gives equality for the left and

right ends of the above subset inclusion. �

Remark 5.3. It is worth noting that many groups H satisfy the conditions in Theorem 5.2

such as free groups, free abelian groups, nilpotent groups, polycyclic groups, and the Baumslag-

Solitar groups BS(1, m).

Example 5.4. The above conditions are not necessary. Revisiting example 5.1, it was shown

in [3] that Σ2(F ) contains the larger arc but not the smaller arc from Σ1(F ). Therefore, by

Theorem 4.1 and remark 4.2, we have Σ2(F ⋊ρ Z2) = Σ2(F )∩ ∂∞Fixρ̂ = {+∞}. Therefore,

Ω2(F ⋊ρ Z2) = {+∞} = Ω2(F ) ∩ ∂∞Fixρ̂, but Thompson’s group F does not satisfy any of

the conditions of Theorem 5.2.

6. Twisted Conjugacy and the Ω-invariant of extenstions

6.1. Twisted conjugacy. Following [23], a group G is said to have the property R∞ if

R(ϕ) = ∞ for all ϕ ∈ Aut(G) where R(ϕ) denotes the cardinality of the set of ϕ-twisted

conjugacy classes of elements of G (i. e. the number of orbits of the left action of G on G

via g · h 7→ ghϕ(g)−1). For instance, R(1G) is the number of ordinary conjugacy classes of

elements of G. It has been shown in [18] that G has property R∞ if Ωn(G) consists of a single

discrete point. However, for such a group G with #Ω1(G) = 1, Theorem 2.1 implies that

Σ1(G) 6= −Σ1(G) so in particular, G cannot be the fundamental group of a closed 3-manifold

(See [4, Cor. F]). The only known examples of groups G with #Ωn(G) = 1 are of the form

BS(1, n)×W where n ≥ 2 and #Ωn(W ) = 0.
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The basic algebraic techniques used in the present paper for showing R(ϕ) = ∞ is the

relationship among the Reidemeister numbers of group homomorphisms of a short exact

sequence. In general, given a commutative diagram of groups and homomorphisms

A
η

−−−→ B

ψ

y
yϕ

A
η

−−−→ B

the homomorphism η induces a function η̂ : R(ψ) → R(ϕ) where R(α) denotes the set of

α-twisted conjugacy classes. For our purposes, we are only concerned with automorphisms.

For more general results, see [12] and [24]. We will use the following lemma; for a proof, see

[18].

Lemma 6.1. Consider the following commutative diagram

1 −−−→ A −−−→ B −−−→ C −−−→ 1

ϕ′

y ϕ

y ϕ

y
1 −−−→ A −−−→ B −−−→ C −−−→ 1

where the rows are short exact sequences of groups and the vertical arrows are group auto-

morphisms.

(1) If R(ϕ) = ∞ then R(ϕ) = ∞.

(2) If |Fixϕ| <∞ and R(ϕ′) = ∞ then R(ϕ) = ∞.

6.2. Using Ω for finite extensions.

Theorem 6.2. Let G be a finite extension given by the short exact sequence of groups

1 → H
i
→ G

p
→ K → 1

where K is finite, H is finitely generated, and let ν : K → G be a left transversal for K such

that ν(1K) = 1G. Let ϕ ∈ Aut(G) such that H is invariant under ϕ. If Ωn(H) ∩ ∂∞Fixν̂

has exactly one rational point, then R(ϕ) = ∞. In particular, if H is characteristic in G

and Ωn(H) ∩ ∂∞Fixν̂ has exactly one rational point, then G has the R∞ property.

Proof. Suppose ϕ ∈ Aut(G) with ϕ(H) = H , and suppose Ωn(H) ∩ ∂∞Fixν̂ = {[χ]}. Let

N = ker(χ) and V := Hom(G/N,R). Since [χ] is rational, G/N has rank 1, so V is 1-

dimensional. Define ϕ̃ : Hom(G,R) → Hom(G,R) by ϕ̃(α) = α ◦ ϕ. Since ϕ(H) = H and

both Ωn(H) and ∂∞Fixν̂ are invariant under automorphisms, [ϕ̃(χ)] ∈ Ωn(H)∩ ∂∞Fixν̂, so

[ϕ̃(χ)] = [χ]. Thus, χ ◦ ϕ = cχ for some c ∈ Z, so ϕ(N) ⊆ N and N is invariant under ϕ.

The automorphism ϕ induces the map ϕ̄ : G/N → G/N defined by ϕ̄(gN) = ϕ(g)N

and the map ϕ̂ : V → V defined by ϕ̂(α)(gN) = α(ϕ(g)N). We will show ϕ̄ = id. Since

ϕ is invertible and N is invariant under ϕ, we have that ϕ̂ is invertible, and {[χ̄]} is a

11



basis for V where χ̄ : G/N → R is induced by χ. Since ϕ̂ is invertible, c = ±1, but since

−[χ] 6∈ Ωn(H) ∩ ∂∞Fixν̂, c = 1. Thus, ϕ̂(χ̄) = χ̄ which implies that χ̄(gN) = χ̄(ϕ(g)N),

and so g−1ϕ(g) ∈ N . Therefore, ϕ(g)N = gN which implies ϕ̄(gN) = ϕ(g)N = gN . The

free abelian group G/N has rank 1, so (G/N)/{torsion} ∼= Z, and ϕ̄ is the identity on G/N ,

so it is also induces the identity on (G/N)/{torsion}. It is clear that R(1Z) = ∞. It follows

from Lemma 6.1 that R(ϕ̄) = ∞, and hence, R(ϕ) = ∞. In particular, if H is characteristic

in G, then G has property R∞. �

Remark 6.1. It is known that if Ωn of a group is finite, then it contains either 0, 1, or 2

points (in the case with two points, the points are antipodal). Although Ωn(H) ∩ ∂∞Fixν̂

is not equal to Ωn(G) in general, the set Ωn(H) ∩ ∂∞Fixν̂ has the same property that if it

is finite, then it contains either 0, 1, or 2 (antipodal) points. This is due to the fact that if

Ωn(H) ∩ ∂∞Fixν̂ contains two non-antipodal points, then by Theorem 2.1, the arc joining

those points will also be in Ωn(H) ∩ ∂∞Fixν̂.

Example 6.2. Revisiting example 5.2, we showed that Ω1(G) was two antipodal points while

Ω1(H)∩ ∂∞Fixρ̂ contains exactly one rational point. The automorphism ϕ : G→ G defined

by ϕ(a, 1) = (a, 1), ϕ(b, 1) = (b, 1), ϕ(c, 1) = (c, 1), ϕ(d, 1) = (d, 1), ϕ(1, t) = (1, t), ϕ(x, 1) =

(y, t), and ϕ(y, 1) = (x, t) is an order two automorphism of G that is not H-invariant, so H

is not characteristic in G. However, there are automorphisms of G that are H-invariant (for

example, send a 7→ c, b 7→ d, c 7→ a, d 7→ b, x 7→ y, y 7→ x, and t 7→ t), and by Theorem 6.2,

these automorphisms φ have R(φ) = ∞. This information cannot be obtained from either

[11] (since Σ1(G)c is two antipodal points) or [18] (since Ω1(G) is two antipodal points).

Example 6.3. Revisiting example 5.4, since Ω2(F ) ∩ ∂∞Fixρ̂ contains exactly one point,

any automorphism ϕ of this group that leaves F invariant would have R(ϕ) = ∞. Note that

the map given by (x0, 1) 7→ (x0, 1); (x1, 1) → (x1, t); (1, t) 7→ (x0, t) defines an automorphism

and it does not preserve F so that F is not characteristic in G. The fact that F is not

characteristic in G is the reason that the R∞ property of G does not follow from case (2) of

Lemma 6.1 from the fact that F has property R∞ [7]. However, by [18, Theorem 4.3], since

Ω2(F ⋊ρ Z) contains exactly one point, the group F ⋊ρ Z has the R∞ property.

6.3. Using Ω for split extensions.

Theorem 6.3. Let G be a split extension given by the short exact sequence of groups

1 → H
i
→ G

p
→ K → 1

H and K are finitely generated, and let ν : K → G be a left transversal for K such that

ν(1K) = 1G. Let ϕ ∈ Aut(G) such that H is invariant under ϕ. If (Ωn(H)∩∂∞Fixν̂)⊛Ωn(K)

has exactly one point, then R(ϕ) = ∞. In particular, if H is characteristic in G and

(Ωn(H) ∩ ∂∞Fixν̂)⊛ Ωn(K) has exactly one rational point, then G has the R∞ property.
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Proof. For (Ωn(H) ∩ ∂∞Fixν̂)⊛ Ωn(K) to have exactly one rational point, either Ωn(H) ∩

∂∞Fixν̂ contains exactly one rational point or Ωn(K) contains exactly one rational point.

In the case where Ωn(H)∩∂∞Fixν̂ contains exactly one rational point, the proof follows the

proof of Theorem 6.2.

In the case where Ωn(K) contains exactly one rational point, it follows from [18] that K

has property R∞. Since ϕ is H-invariant, ϕ induces an automorphism ϕ̄ on K. Therefore,

R(ϕ̄) = ∞. By Lemma 6.1, we have R(ϕ) = ∞.

In particular, if H is characteristic in G, then G has property R∞. �

Just as in remark 6.1, if (Ω1(H) ∩ ∂∞Fixν̂)⊛ Ω1(K) is finite, then it will either contain

0, 1, or 2 (antipodal) points.

It is fair to wonder about the conjecture that Ω1(G) = (Ω1(H) ∩ ∂∞Fixν̂)⊛ Ω1(K). The

authors know of examples where the containment (Ω1(H) ∩ ∂∞Fixν̂) ⊛ Ω1(K) ⊆ Ω1(G) is

false. Example 5.1 shows the reverse containment Ω1(G) ⊆ (Ω1(H) ∩ ∂∞Fixν̂) ⊛ Ω1(K) is

also false. Are there sufficient and/or necessary conditions where the conjecture does hold?
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